Copyright © 2023, IEEE

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses in any
current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Cite as

Ancilotto, F. Paissan and E. Farella, "PhiNet-GAN: Bringing real-time face swapping to embedded
devices," 2023 IEEE International Conference on Pervasive Computing and Communications Workshops
and other Affiliated Events (PerCom Workshops), Atlanta, GA, USA, 2023, pp. 677-682, doi:
10.1109/PerComWorkshops56833.2023.10150292.

Publisher: IEEE



PhiNet-GAN: Bringing real-time face swapping to
embedded devices

Alberto Ancilotto, Francesco Paissan, Elisabetta Farella
aancilotto@fbk.eu, fpaissan@fbk.eu, efarella@fbk.eu
E3DA Unit, Digital Society center, Fondazione Bruno Kessler (FBK), Trento, Italy

Abstract—Recent years have seen an unprecedented devel-
opment of deep learning-based techniques for processing live
video from CCTV cameras, causing growing privacy concerns.
A possible solution is to ensure that a subject’s personal infor-
mation never leaves the device in which it was collected, thus
implementing a Privacy-by-Design (PbD) approach. In live video
processing tasks, PbD can be guaranteed through anonymisation
techniques, such as face-swapping, performed directly on the end
device. This paper, therefore, presents PhiNet-GAN, an extension
of the PhiNet family of embedded neural networks applied to
generative networks. PhiNet-GAN targets resource-constrained
platforms based on low-power microcontrollers. An example is
the Kendryte K210, a RISC V dual-core processing unit working
at 400MHz on which we tested our network. Overall we achieved
a power consumption of less than 300mW, working at more than
15fps with an FID score lower than 150.

Index Terms—Faceswap, Neural Networks, Edge AI, Tiny ML,
Hardware-Aware Scaling, Generative Networks

I. INTRODUCTION

In smart city scenarios, the primary users of data collected
by distributed devices are public administrations (PAs) and
law enforcement agencies (LEAs). The principal goal of PAs
and LEAs regarding the data collected by urban ambient
sensors, such as CCTV cameras and microphones, is to
support decision-making and real-time intervention. In the last
decades, the fast development of Al analytics created space
for innovation in the described scenarios of interest. As most
deep learning pipelines are designed to work on clusters of
GPU-equipped workstations, streaming data from sensors to
these high-end devices is crucial. However, data recorded in
public spaces contain sensitive personal information - such
as citizens’ biometric data - that might be stolen in case
of man-in-the-middle attacks. TinyML is a growing field
focusing on bringing high-performance processing to low-
power, low-resource end devices. One of the main benefits is
that TinyML enables privacy-by-design (PbD). Source data,
potentially including sensitive information, are not sent or
stored but consumed close to where they are collected to
produce an event, signature or feature. Even in the case
of cyber-attacks, the original data cannot be retrieved. Only
higher-level information, usually with a less sensitive nature,
is maintained and/or sent (e.g. in the case of people counting,
only a number will be stored or transmitted, not the entire
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Fig. 1. These results are generated with an energy of 17.1mJ per frame.
Comparable state-of-the-art methods running on GPUs can require 115J per
frame, a difference of 4 orders of magnitude.

frame or sequence of frames). We consider the case study of
the EU project “MARVEL: Multimodal Extreme Scale Data
Analytics for Smart Cities Environments” [1]. In MARVEL’s
applications, video streaming is required for high-end process-
ing by different components since high-level features extracted
at the edge do not suffice. Therefore, to protect citizens’
privacy without affecting the components’ performance, we
anonymise target features at the edge, i.e. by face swapping.

In the described scenario, the challenges are multiple and
can be clustered into two categories. The first category is typi-
cal of TinyML, i.e. reducing algorithm complexity and energy
consumption while preserving performance. The second is
specific to executing Generative Adversarial Networks (GANs)
on resource-constrained edge devices. For example, existing
toolchains provide limited support for generative networks.
Furthermore, working with low-resource devices sometimes
involves low sensing resolutions, imposing higher challenges
to preserving sufficient information of interest for PAs and
LEAs.

This paper presents PhiNet-GAN, an innovative face-
swapping approach explicitly developed for edge devices with
low computational capabilities. Furthermore, we will analyse
the effects of quantisation on the network to achieve an
anonymisation pipeline that enables high performance on
embedded devices.



II. RELATED WORKS

Traditional video anonymization techniques are generally
based on blurring or pixelization, making subsequent image
processing (e.g. face detection, action recognition, emotion
classification) impossible due to corruption of the information
in the frame. Recently, there has been a rapid increase in
the development of face-swapping methods, targeting the
movies, gaming, and entertainment industries [2], and focusing
on designing approaches that can be utilized on consumer
hardware without the need for high-end equipment. These
techniques have been adapted for privacy protection, using
face-swapping as an anonymisation technique aimed at re-
moving only personal information from the frame but not
alternating the content significantly [3]-[8]. Among the first
approaches used are inpainting techniques applied to people’s
faces [9] that maintain the possibility of face identification
in the frame, although still destroying information about pose
and expression. More recent approaches based on image-to-
image translation [10] can maintain unchanged the pose and
expression of a target face. One of the earliest examples of
this application is DeepPrivacy [3], which relies on StyleGAN
[11] to generate lifelike images. CIAGAN [4], more recently,
exploits a discriminator network-based architecture to force
the generation of images with a lower rate of target re-
identifications. Approaches such as SimSwap [12], FaceShifter
[13], Ghost [14], FaceController [15], and HiFiFace [16] aim
at the generalization of high-fidelity face swapping approaches
by allowing the injection of different identities at runtime,
without them being encoded during the training process but
requiring architectures that are more complex than what can
be run on embedded devices. With recent developments in
tinyML techniques for generating networks with reduced com-
putational requirements [17]-[23], it is increasingly possible
to bring processing pipelines to edge devices. In this work, we
focus on designing and implementing a face-swapping network
suitable for very low-power embedded devices and microcon-
trollers, leveraging the tinyML innovations introduced with
PhiNets [17], i.e. a hardware-aware scaling approach, and
extending it to implement a face-swapping pipeline.

III. METHODOLOGY

Existing face-swapping approaches rannge in complexity
and performance, from very lightweight techniques such as
Mobile Faceswap [24], to more complex, 3D based methods
and frameworks employing multiple networks for face gen-
eration and seemingly merging source attributes on a target
face like FaceShifter [13]. Most of these approaches are based
on a many-to-many swapping paradigm, where the source
face features are encoded in a latent vector and then used
by a second network to generate the target facial features.
In this section, we will analyse the limitations of current
anonymisation approaches when applied on embedded devices
and propose a methodology to tackle those challenges.

A. Challenges of a TinyML generative pipeline

Platform characteristics and runtime limitations may make
it impractical, if not impossible, to execute state-of-the-art
approaches on microcontrollers. Merging a low-resolution,
high filter count latent representation of the source image
during the inference pass of a generative network poses two
challenges for tinyML:

e It requires a large amount of RAM to store both the
generative network intermediate tensors and the latent
vector containing the source image features

« It needs a tinyML runtime capable of receiving different
kinds of network inputs at different times during the
computation (i.e. the original three-dimensional image
and the one-dimensional latent representation).

For this reason, instead, we chose to base our framework
on a one-to-one face-swapping approach. This has the great
advantage that a single input encoder-decoder architecture
transforms the input face using features from the source iden-
tity, where these are already known by the network without the
need for additional input vectors, thus significantly improving
the compatibility of our approach to all runtimes that can
execute basic convolutional operations and upsampling.

B. A strategy towards lightweight architectures

We base our solution on the original Deepfakes framework
[25], extending and improving it to achieve a very lightweight,
many-to-one face-swapping framework fit for tiny embed-
ded platforms. For this purpose, we extend the method by
modifying the training procedure, implementing improvements
presented in later works (such as the addition of adversar-
ial and perceptual loss [12], [26]), and, most importantly,
replacing the original face-swapping network (pix2pix [27])
with one designed ad-hoc for tinyML applications. To design
the network, we start from the Phinets architectures family
[17], by adding an upsampling convolutional block. The newly
introduced block respects the scaling principles needed for
Hardware Aware Scaling (HAS) principle, a novel paradigm
that enables the one-shot design of neural architectures for
our target edge platform thanks to the PhiNets’ advanced
scalability features [17]. With this, we only have to know three
hardware specifications, namely RAM, FLASH, and the num-
ber of operations per second of the target platform, to design,
in one shot, an optimal neural architecture that is suitable for
our task and platform and matches the requirements.

IV. FROM DEEPFAKE TO PHINETS-GAN

As mentioned, we start our design from DeepFakes [25].
The network architecture used in the original framework
consists of 2 image-to-image translation networks (adapted
from CycleGAN [10]) sharing a common encoder stage, and
two separate decoders, that are trained one on images of the
source identity, and one on images of the target one. During
training, warped images of the source and target faces are sent
to the respective network, which has the task of unwarping the
pictures into the original photo. During inference, images of
the target face are sent to the source network, which interprets



them as warped source images reconstructing source identity
facial features on the target image.

A. Many-to-one face swapping

While simple, this approach has the obvious disadvantage
of only allowing for single-target-to-single-source swapping.
To overcome this limitation, we modify the training proce-
dure to obtain a network capable of many-to-one swapping.
Specifically, we keep the encoder-source decoder operation the
same during training, while the encoder-target decoder archi-
tecture will be trained on different identity images (vggface
dataset [28]). In this way, we get an encoder with a higher
generalization capability in encoding a generic identity and a
specific decoder for our source identity. This could lead to
mode collapse when training the second decoder, but in our
case, this is not a problem as that network will get discarded
and not be used for inference.

B. Fully convolutional network

The original DeepFake implementation relies on down-
sampling blocks to reduce the input resolution down to a
2 x 2 feature map, then using a reshape operation and fully
connected layers to generate the latent feature vector that will
be sent to the decoder network. This allows for a global
receptive field in the architecture, where each value in the
latent feature map is determined by all the pixels in the input
image. This, however, is the cause of the two main limitations
of the approach: the high number of parameters and operations
used by the CycleGAN network.

Moreover, bringing this type of processing to embedded
devices proves to be very inefficient, especially in the case
of hardware platforms that include Tensor Processing Units,
such as the chosen target platform for the tests, the Kendryte
K210. The efficiency in computing convolutional layers is
proportional to the input size of the layer itself: while on large
feature maps, the convolutional weights can be loaded once in
memory and reused many times, for very small tensors, these
weights are only used a couple of times then discarded. Cou-
pled with the fact that the lower resolution feature maps are
usually the ones containing the highest number of channels,
this leads to high inefficiencies in executing these networks.

TABLE I
EFFECTS OF DIFFERENT RESOLUTIONS FOR LATENT REPRESENTATION ON
NETWORK PERFORMANCE METRICS

Latent resolution Params [M] Latency [ms] FID |
1x1 1.80 125 152
2x2 1.59 104 164
4x4 1.48 62 173

Table I shows a comparison between three similar networks,
where the number of convolutional blocks has been increased
in order to change the latent resolution at the smallest network
tensor. At the same time, the number of filters in the networks
was reduced, so that the networks required a similar amount of
operations to run. This experiment highlights the relationship
between latent resolution, network latency, and performance,

showing how a smaller resolution of the latent tensor allows
for a larger receptive field and this, in turn, provides higher
performance evaluated in terms of Fréchet Inception Distance
(FID) [29]. It can also be seen that this directly affects the
number of network parameters, as layers with lower spatial
resolution make use of more feature maps.

This shows how different network configurations can be
developed, either using the smallest latent resolution to provide
the best performance despite the decrease in efficiency, or
more efficient options where we limit the number of down-
sampling and upsampling layers for better throughput.

C. Increasing generative quality

More recent works [12], [26], [30] have introduced some
training modifications to the original framework, aimed at
improving its performance. For our work, we extend the
original approach by adding:

e An adversarial loss term, given by a patchGAN [31]
network trained to discern between real and fake images,
to allow generating more true-to-life images

o A perceptual loss term [32] given by the distance between
feature vectors generated by VGG-Face between a real
and a fake face, to increase the quality of generated faces

¢ An additional reconstruction loss term in the eyes area
to generate more realistic eyes movements, introduced in
[26]

These additions lead to a high increase in generated face
quality, which can counteract the performance penalty due to
the network capacity reduction and the quantisation needed to
make the approach suitable for MCUs.

D. Upsampling block design

We propose an efficient upsampling block (Figure 2) that is
based on a sequence of a 1 x 1 and a 3 x 3 convolution, with
an interpolation operation between the two. In particular

o The first pointwise convolution brings down the number
of channels from C;, to C;,/E, where E (expansion
factor) is a network hyperparameter > 1 (default 3). It
reduces the complexity of the interpolation and second
convolution and allows the upsampling block to require
less RAM for intermediate tensors.

« For the interpolation operation, different schemes can be
used, such as nearest neighbour or bilinear interpolation.
In our case, for our target platform, bilinear interpolation
provided a better trade-off between latency and quality
of the generated images.

o The third operation is the main convolution of the block.
We chose a standard 2D convolution as, for our target
platform and application, we can afford the increased
number of parameters and increased latency given the
higher quality of the generated faces. Nonetheless, a
simpler depthwise operation can be used for even lower
operation and parameter count architectures.
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Fig. 2. Proposed upsampling block

1) Block hyperparameters: As in the case of the original
Phinet convolutional block presented in [17], the proposed
architecture presents 3 hyperparameters:

o Width scaling factor (a): it scales the number of filters
linearly for all convolutional layers - e.g. going from
a = 1to a = 0.5 halves filter count for all layers,
reducing parameter count and operations to one fourth
of the original network.

« Base expansion factor (Fjp): it is the ratio between input
and output channels for the two block convolutions.
Scaling E linearly changes the operation and parameter
count for the network.

o Shape factor (3): it changes the block expansion factor
linearly along the network, from F = SEj in the first
block to ' = Ej on the last block. The expansion factor
for the block at index B of a sequence of N blocks is
computed as F = EOM# to keep compatibility
with the Hardware Aware Scaling approach [17].

As these hyperparameters control different aspects of the
block topology, they can be tuned knowing the actual platform
specifications using Hardware Aware Scaling [17].

2) Ey vs « trade-offs: We analyzed, in particular, the trade-
offs that can be achieved by varying a and E) at the same time
since these affect the network similarly. It results in networks
with the same (or very similar) number of parameters and
operations. In particular, the block operations are given by the
sum of the pointwise and 2D convolutions in the block (with
W x H x C feature map size, K kernel size):

MACC = WH x aCy, 2Sm

aC}

+2W2HK? x T” X aCloyt

a2

x —
E
And similarly for the number of parameters. For this reason,

we can vary alpha and E between two networks, A and B, so

2 2
that ?Ti = %—';, achieving very similar operatiop and parameter
count. Table IT shows the result of these operations on network
performance. Face generation performance of the different

networks is given in terms of FID [29].

TABLE I
TRADE-OFFS BETWEEN DIFFERENT RATIOS OF Y AND ov ON NETWORK
PERFORMANCE METRICS

Ey Params [M] Latency [ms] | FID |
1 0.35 1.43 75.8 173
2 0.5 1.37 51.3 168
3 0.6 1.38 52.6 157
4 0.7 1.39 54.3 157

We can observe how, for £ > 1, we gradually have a
decrease in FID score by increasing E and increasing alpha,
and an opposite behaviour regarding latency. As a trade-off,
we will use by default a base expansion factor Ey = 3 in the
block. It should be noted that while parameters and operations
remain unchanged, RAM usage decreases as E increases, so
Ey = 4 may prove to be a better choice for very constrained
devices, at a small latency increase cost.

E. Network architecture

Encoder: PhiNet
{a:1.0, t;:4.0, :0.66} {a:1.0, ty:4.0, B:0.66)

Decoder: PhiNet GAN

Fig. 3. The proposed network architecture

Figure 3 shows the proposed architecture. The network
is an encoder-decoder structure where the encoder blocks
are four standard Phinet [17] downsampling blocks, followed
by a neck of two non-downsampling blocks that act on the
low-resolution latent representation. The generative section of
the network is composed of a sequence of four Phinet-GAN
upsampling blocks described previously. The final architecture
specifications are shown in Table III.

TABLE III
CHOSEN NETWORK HYPERPARAMETERS AND NECESSARY HARDWARE
RESOURCES
Ey o Params [M] MACC [M] RAM [KB]
3 0.5 1.9 360 172

V. NETWORK QUANTISATION
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Fig. 4. Effects of partial quantisation on generated images
The quantisation of generative networks is a complex op-
eration, as even small errors in the latent representation can
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Fig. 5. Comparison between our proposed approach and other State-of-the-art face-swapping frameworks

generate large discrepancies with the unquantised model in the
images generated by the decoder network.

In particular, naively applying post-training quantisation to
the network causes a substantial degeneration in the quality
of the produced images, as demonstrated in [33]. Such effects
can be mitigated by employing a partial quantisation scheme,
where a fraction of the layers of the network is left operating
on floating point values. In particular, we can see from Figure
4 (top row of images for each source image) that to obtain
images of acceptable quality, it is necessary to leave around
20% of the layers with lower output resolutions in floating
point. While this allows for higher fidelity image generation,
it impacts inference latency, as our target platform’s TPU can
only provide acceleration for integer operators while floating
point operations need to be executed on the RISC V cores.

MSE for partial quantization

—— Modified
u‘
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Fraction of fp32 layers

Fig. 6. MSE between generated images of full precision and quantised models
varying the percentage of quantised layers.

To decrease the quantisation error, two changes were made

in the convolutional blocks of the network:

o The activation function of all layers has been changed
to the thresholded ReLU6 activation to achieve more
consistent ranges for quantisation

o The downsampling blocks have been changed slightly to
include a max-pooling operation instead of relying on a
striding operation for downsampling, increasing in this
way the Signal to Quantisation Noise Ratio

Figure 4 shows the comparison between original network

and network after these modifications for different percentages

of partial quantisation. We can see how the two implemented
changes allow for sufficient quality of generated images,
even with a fully quantised network, without incurring in the
latency penalty for partial quantisation. Figure 6 compares
the Mean Squared Error, pixel per pixel of the generated
image between the non-quantised floating-point model and
the partially quantised model, with different thresholds. We
observe a MSE orders of magnitude lower with the modified
model. Some noise in the MSE measurement is to be expected.

VI. RESULTS

Table IV compares our proposed approach with other
SOTA techniques in terms of resource usage and perfor-
mance. Latency tests were performed on a consumer GP-
GPU (RTX2060). Since our model relies on conv2d instead
of depthwise operations, it can be seen that, in comparison
with mobile-faceswap, the number of MACCs performed is
higher. Still, the latency of the model is lower, given the higher
efficiency of the operations and the lower fragmentation in
our proposed architecture, thanks to the absence of an id-
injection module that is instead required for many-to-many
face swapping approaches. We also trained a second network,
referred to as Phinet GAN S in Table IV, swapping the 2D
convolutions for depthwise operators to compare the different
approaches. Thanks to the even lower parameter and operation
count, this network could prove a viable approach for even
more resource-constrained devices.

TABLE IV
REQUIREMENTS AND PERFORMANCE FOR DIFFERENT SOTA APPROACHES
AND OUR PROPOSED NETWORKS

Size MACC Latency FID |
Simswap 1824MB  24.1G 289ms 130
Faceshifter 1400MB 45.6G 491ms 134
Mobile faceswap 2MB 0.12G 18.3ms 132
Phinet GAN S 0.46MB  0.088G 6ms 136
Phinet GAN L 1.9MB 0.360G  11.2ms 130

We tested our approach on a Kendryte K210 microcon-
troller, a tinyML-oriented device consisting of two 64-bit
RISC-V cores and a convolutional accelerator (Tensor Pro-
cessing Unit, TPU) capable of up to 500 GMACC per second.
Power consumption of the device was measured at around
280mW with both the CPU and TPU operating at 400M H z.



The network model was converted for usage on the K210 using
nncase 0.2.0, and a modified version of micropython has
been used to allow for generative networks to be run on
the device. The final model required 1.37M B of FLASH
storage while executing the network at a frame rate of 16.4 fps
and using 172K B of the device’s RAM. The average power
required by the platform running inference at the maximum
speed has been measured at 280mW - an energy consumption
of 17.1mJ per frame.

VII. CONCLUSION

This work showed the possibility of developing face-
swapping frameworks with very low energy consumption us-
ing Phinet and Phinet—-GAN convolutional blocks. Results
comparable to state-of-the-art approaches can be obtained with
only a fraction of the energy and using networks with such
low hardware requirements that inference can be performed on
microcontrollers. In particular, using a Kendryte K210 MCU
in conjunction with the proposed approach, we verified that the
energy required to perform face-swapping can be reduced by 3
to 4 orders of magnitude without significant performance loss.
In future works, we will aim at adapting many-to-many face-
swapping solutions to increase the generality of the proposed
strategy. In conclusion, we would like to highlight the ethical
concerns of the proposed pipeline, which are in line with the
ones of the original approach, summarized in [34].
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