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NONLINEAR CONSENSUS+INNOVATIONS UNDER CORRELATED
HEAVY-TAILED NOISES: MEAN SQUARE CONVERGENCE RATE
AND ASYMPTOTICS

MANOJLO VUKOVIC*, DUSAN JAKOVETIC!, DRAGANA BAJOVIC!, AND SOUMMYA
KARS

Abstract. We consider distributed recursive estimation of consensus-+innovations type in the
presence of heavy-tailed sensing and communication noises. We allow that the sensing and commu-
nication noises are mutually correlated while independent identically distributed (i.i.d.) in time, and
that they may both have infinite moments of order higher than one (hence having infinite variances).
Such heavy-tailed, infinite-variance noises are highly relevant in practice and are shown to occur,
e.g., in dense internet of things (IoT) deployments. We develop a consensus+innovations distributed
estimator that employs a general nonlinearity in both consensus and innovations steps to combat
the noise. We establish the estimator’s almost sure convergence, asymptotic normality, and mean
squared error (MSE) convergence. Moreover, we establish and explicitly quantify for the estimator
a sublinear MSE convergence rate. We then quantify through analytical examples the effects of
the nonlinearity choices and the noises correlation on the system performance. Finally, numerical
examples corroborate our findings and verify that the proposed method works in the simultaneous
heavy-tail communication-sensing noise setting, while existing methods fail under the same noise
conditions.

Key words. nonlinear mappings, consensus-+innovations, distributed estimation, heavy-tailed
noise, mean square convergence rate, correlated noises

AMS subject classifications. 93E10, 93E35, 60G35, 94A13, 62M05

1. Introduction. We consider a distributed estimation problem where a net-
work of agents cooperates to estimate an unknown static vector parameter 8% €
RM . Specifically, we are interested in consensus+innovations distributed estimation,
e.g., [18, 16, 17]. With consensus+innovations, each agent iteratively updates its un-
known parameter’s estimate by 1) exchanging its estimate with immediate neighbors
in the network; and 2) assimilating a newly acquired observation (measurement).

Consensus+innovations distributed estimators have been extensively studied, e.g.,
[18, 16, 17]; see also [20, 22, 23, 27, 30, 24, 38] for related diffusion-type and other
methods. Typically, such distributed estimators exhibit strong convergence guaran-
tees under various imperfection models (noises) in 1) sensing (observations) and/or
2) inter-agent communications. For example, reference [18] establishes almost sure
(a.s.) convergence and asymptotic normality of the estimators developed therein.
The authors of [18] allow for an observation noise with finite variance and a network
model that accounts for random link failures and dithered quantization (effectively an
additive noise with finite variance). Reference [16] considers consensus+innovations
distributed estimation in the presence of random link failures without quantization or
additive noise, and it develops estimators that are asymptotically efficient, i.e., that
achieve the minimal possible asymptotic variance. The authors of [17] propose adap-
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2 M. VUKOVIC, D. JAKOVETIC, D. BAJOVIC AND S. KAR

tive asymptotically efficient estimators, wherein the innovation gains are adaptively
learned during the algorithm progress. Consensus—+innovations distributed detection
and related distributed detection methods have also been considered, e.g., [25, 3, 2, 14].
The above distributed estimation and distributed detection-related works typically as-
sume that the noises have finite moments of a certain order greater than two, and
hence they have finite variance.

It is highly relevant to investigate distributed estimators in the presence of heavy-
tailed communication and sensing noises, as they arise in many application scenarios.
For example, edge devices in Internet of Things (IoT) systems or sensor networks can
be subject to noise distributions that may not have finite moments of order higher
than one, e.g., [6, 31, 12, 37, 11, 7], like, e.g., symmetric a-stable noise distributions.
This effect may occur due to interference, e.g., when wireless sensor network is rela-
tively densely deployed. In this case, the signals of neighboring nodes interfere with
each other and corrupt the signal to be received. References [10, 36] analyze the prob-
ability distribution of the interference and demonstrate that it has heavy-tails. More
precisely, [10, 36] show that the interference power has an alpha-stable distribution
in a network with infinite radius and no guard zone when the interferers are placed
according to a Poisson point process, where alpha depends on the path loss coefficient
between the interferers and the receiver (see [10, 36] for details). Empirical evidence
for the emergence of heavy-tail interference noise in certain IoT systems has been
provided in [6].

Moreover, observation and communication noises may be mutually correlated
due to the common interference processes in the environment that the sensing and
communication devices are exposed to.

Several recent works [19, 21, 35, 33, 5, 1, 4, 26] consider distributed estimation
methods in the presence of impulsive observations noise," but still assuming a finite
noise variance and no communication noise. For example, reference [19] introduces a
method based on Wilcoxon-norm; [21] utilizes a Huber-loss function; and [35] adopts a
mean error minimization approach. Robust distributed estimation methods based on
adaptive subgradient projections are considered in [33, 5]. To cope with the impulsive
observation noise, several references employ a certain monlinearity in the innovation
step. Reference [1] develops a method that adaptively learns an optimized nonlinearity
at the innovation step for each agent in the network. Reference [4] employs a satura-
tion nonlinearity in the innovation step to cope with measurement attacks. Further
results on distributed estimation under impulsive observations noise can be found in a
recent survey [26]. Very recently, we have developed a consensus+innovations distrib-
uted estimator [15] that provably works under a heavy-tailed communications noise
and a light-tailed observations noise. Specifically, under the assumed setting, [15]
establishes almost sure convergence and asymptotic normality of the method therein.
However, [15] is not concerned with mean squared error (MSE) rate analysis of the
method. While asymptotic normality is a useful result that provides the algorithm’s
rate of convergence (in the weak convergence sense) asymptotically, it does not capture
the (MSE) algorithm behavior in non-asymptotic regimes.

In summary, we identify for the current literature the following major gaps with
respect to design and analysis of distributed estimation methods under heavy-tailed

LAs explained in, e.g., [1], an impulsive noise may be described as one whose realizations contain

sparse, random samples of amplitude much higher than nominally accounted for. Impulsive noise
may have a finite or infinite variance. Existing works on distributed estimation in impulsive noises
assume a finite noise variance.
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NONLINEAR CONSENSUS+INNOVATIONS UNDER HEAVY-TAILED NOISES 3

noises. 1) All existing works assume a finite observations noise variance. That is, even
when impulsive observation noise is assumed, existing works still require the variance
of the noise to be finite. This assumption can be restrictive and is violated for several
commonly used heavy-tail noise models like a-stable distributions [11]. 2) No existing
work simultaneously handles heavy-tailed (infinite-variance) sensing and heavy-tailed
(infinite-variance) observation noises. 3) MSE convergence rate analysis has not been
developed for distributed estimation in the presence of either infinite-variance sens-
ing and/or infinite-variance communication noises. 4) Existing works on distributed
estimation in the presence of infinite-variance (either sensing and/or communication
noises) assume mutually independent sensing and communication noises.

Contributions. In this paper, we close the gaps identified above by developing a
nonlinear consensus+innovations distributed estimator that provably works under the
simultaneous presence of correlated heavy-tailed (infinite variance) observation and
communication noises. We allow for a very general model of the sensing and commu-
nication noises, only assuming that they exhibit symmetric zero-mean distributions
with finite first moments. Hence, the variances of both sensing and communication
noises may be infinite. Moreover, we allow that, for a fixed time instant ¢, the ad-
ditive sensing and communication noises may be mutually dependent, while they are
both independent identically distributed (i.i.d.) in time. The proposed estimator
employs a generic nonlinearity both at the innovations and the consensus terms. The
encompassed nonlinearities are very general and include a broad class of (possibly dis-
continuous) odd functions, such as the component-wise sign and clipping functions.
We establish for the proposed estimator almost sure convergence, asymptotic normal-
ity, and we explicitly evaluate the corresponding asymptotic variance. Furthermore,
we establish for the proposed method, under a carefully designed step size sequence,
a MSE convergence rate O(1/t"), and we quantify the rate x € (0,1) in terms of the
system parameters. In addition, we quantify through analytical examples the effects
of correlation between sensing and observation noises, and we demonstrate how the
derived asymptotic covariance results may be used as a guideline to optimize the
employed nonlinearities for a problem at hand. Finally, we compare the proposed
method with existing works in [1] and [15], both through analytical examples and
by simulation. Most notably, we show that the existing methods fail to converge
under the simultaneous presence of heavy-tailed (infinite-variance) observation and
communication noises, while the proposed method provably works in the heavy-tailed
setting.

Paper organization. Section 2 provides a description of the distributed esti-
mation model that is considered and also gives all basic assumptions. In Section 3,
we present the proposed nonlinear consensus+innovations estimator. Section 4 es-
tablishes almost sure convergence, asymptotic normality and the MSE rate of the
proposed distributed estimator. Section 5 presents analytical and numerical exam-
ples. The conclusion is given in Section 6. Some auxiliary supporting arguments are
provided in [34].

Notation. We denote by R the set of real numbers and by R™ the m-dimensional
Fuclidean real coordinate space. We use normal lower-case letters for scalars, lower
case boldface letters for vectors, and upper case boldface letters for matrices. Further,
to represent a vector a € R™ through its component, we write a = [a;,az, ..., a,,]
and we denote by: a; or [a;], as appropriate, the i-th element of vector a; A;; or
[A;;], as appropriate, the entry in the i-th row and j-th column of a matrix A; AT
the transpose of a matrix A; ® the Kronecker product of matrices. Further, we use
either a' b or (a, b) for the inner products of vectors a and b. Next, we let I, 0, and
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4 M. VUKOVIC, D. JAKOVETIC, D. BAJOVIC AND S. KAR

1 be, respectively, the identity matrix, the zero vector, and the column vector with
unit entries; Diag(a) the diagonal matrix whose diagonal entries are the elements of
vector a; J the N x N matrix J := (1/N)11"T. When appropriate, we indicate the
matrix or vector dimension through a subscript. Next, A > 0(A > 0) means that
the symmetric matrix A is positive definite (respectively, positive semi-definite). We
further denote by: ||-|| = ||-||2 the Euclidean (respectively, spectral) norm of its vector
(respectively, matrix) argument; \;(-) the i-th smallest eigenvalue; ¢'(v) the derivative
evaluated at v of a function g : R — R; Vh(w) and V2h(w) the gradient and Hessian,
respectively, evaluated at w of a function h : R™ — R, m > 1; P(A) and E[u] the
probability of an event A and expectation of a random variable u, respectively; and
by sign(a) the sign function, i.e., sign(a) = 1, for a > 0, sign(a) = —1, for a < 0, and
sign(0) = 0. Finally, for two positive sequences 7, and x,, we have: n, = O(x,) if

limsup,,_, o, & < o0.

2. Problem model and basic assumptions. We consider a network of NV
agents (sensors), through which the parameter of interest 8* € RM is to be estimated.

At each time ¢ = 0,1, ..., each agent ¢ = 1,2, ..., N observes parameter 8" following
the linear regression model:
(2.1) 2t =h/ 0" +nl.

Here, 2! € R is the observation, h; € RM is the deterministic, non-zero regression
vector known only by agent i and n! € R is the observation noise. The underlying
topology is modeled via a graph G = (V, E), where V = {1, ..., N} is the set of agents
and F is the set of links, i.e., {4, j} € E if there exists a link between agents i and j.
We also define the set of all arcs Ey in the following way: if {i,j} € E then (i, j) € Ey4
and (j,i) € Eq. We denote by Q; = {j € V : {i,j} € E} set of neighbors of agent i
(excluding i) and by D = Diag({d;}) the degree matrix, where d; = |Q;] is the number
of neighbors of agent i. The graph Laplacian matrix L is defined by L = D — A,
where A is the adjacency matrix, which is a zero-one symmetric matrix with zero
diagonal, such that, for i # j, A;; = 1 if and only if {7,j} € E. Let us denote by
(Q, F,P) the underlying probability space.

We make the following assumptions.

Assumtion 2.1. Network model and Observability:
1. Graph G = (V| E) is undirected, simple (no self or multiple links) and static;
2. The matrix Efil h;h]

, 1s invertible;
The condition 2 in Assumption 2.1 ensures that (2.1) is observable, i.e., a centralized
estimator (e.g., least squares) that collects all z!,i = 1,2,...,N, for all ¢, and has

knowledge of all vectors h;,7 =1,2,..., N, is consistent.

Assumtion 2.2. Observation noise:
1. For each agent i = 1,..., N, the observation noise sequence {n!} in (2.1), is
independent identically distributed (i.i.d.);
2. At each agent i = 1,..., N at each time ¢t = 0,1, ..., noise n! has the same
probability density function p,.
3. Random variables n} and nj are mutually independent whenever the tuple
(i,t) is different from (j, s);
4. The pdf p, is symmetric, i.e. po(u) = po(—u), for every u € R, and p,(u) > 0
for |u| < ¢, for some constant ¢, > 0;
5. There holds that with [ |u|p,(u)du < co.

If there is an arc between agents ¢ and j, i.e., (i,7) € Eg, we denote by Efj communi-
cation noise that is injected when agent j communicates to agent ¢ at time instant ¢

This manuscript is for review purposes only.
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NONLINEAR CONSENSUS+INNOVATIONS UNDER HEAVY-TAILED NOISES 5

(see ahead algorithm (3.1)).

Assumtion 2.3. Communication noise:

1. Additive communication noise {£fj}7 Eﬁj € RM is iid. in time ¢, and inde-
pendent across different arcs (i,7) € Ey.

2. Each random variable [&ﬁj]g, for each t = 0, 1..., for each arc (i, j), for each
entry £ =1, ..., M, has the same probability density function p..

3. The pdf p. is symmetric, i.e. p,(u) = pe(—u), for every u € R and p.(u) > 0
for |u| < ¢, for some constant ¢, > 0;

4. There holds that [ |u|p.(u)du < cc.

Remark 2.4. Notice here that from the symmetry of the probability density func-
tions p, and p., it follows that both of the distributions are zero mean. Moreover,
notice that we do not assume that observation and communication noises are mutually
independent for a fixed t. However, they are both i.i.d. in time.

Remark 2.5. Condition 2 in Assumptions 2.2 and 2.3 can be relaxed in the sense
that it can be assumed that n’ has joint probability density function p, and Efj has
the joint probability density function p.;;. (see Appendix C in [34]). The reason why
there is condition 4 in the Assumption 2.2 and condition 3 in the Assumption 2.3 will
become clear later.

For future reference, a compact vector form of (2.1) is:

(2.2) z' =H(ly ® ") +n’,

where, z' = [2%,25,...,24]7 € RY is the observation vector, H € RN*(MN) ig the
regression matrix whose i-th row vector equals [0, ..., 0, h;'—, 0,..,0] € RMY where the
i-th block of size M equals h;r, and the other M-size blocks are the zero vectors; and

n! = [nf,nk,...,n]" € RY is the noise vector at time .

3. Proposed algorithm. In order to estimate the unknown parameter 8 €
RM in the presence of heavy-tailed observation noise and heavy-tailed communica-
tion noise, each agent uses a nonlinear consensus+innovations strategy. Therein, the
impact of the two heavy-tailed noises is mitigated by nonlinearities that have been
added to both consensus and innovation steps.

In more detail, each agent i at each time ¢t = 0,1, ..., generates a sequence of estimates
{x!}+>0 of unknown parameter 8" by the following algorithm:

31 x =xt o [ D30 (x4 g) - (2L B )
jey

Here, oy is a step-size, and a,b > 0 are constants. We consider a family of decaying
step-size choices i, = a/(t + 1)?, § € (0.5,1]. As shown later, the step-size (values of
a and 0) should be designed appropriately in order for good properties (e.g., a.s. con-
vergence, MSE rate guarantees) of the algorithm to hold. Functions ¥, : R — R and
¥, : RM™ — RM are non-linear functions and function ¥, operates component-wise by
abusing notation, i.e., for y € RM we set that ¥.(y) = [Yc(y1), Ve(y2), ..., Ye(yar)]-
Also, functions ¥, and W, satisfy Assumption 3.1. We compare the proposed method
(3.1) with the LU scheme in [18] and the scheme in [15]. Compared with these
schemes, (3.1) introduces a nonlinearity in the innovation step as well. LU is obtained
from (3.1) by setting both of the nonlinearities ¥, and ¥, to identity functions and
d =1, the method in [15] is recovered from (3.1) by setting ¥, to the identity function
and § = 1.

This manuscript is for review purposes only.
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Assumtion 3.1. Nonlinearity :
The non-linear function ¥ : R — R satisfies the following properties:
Function V¥ is odd, i.e., ¥(a) = —¥(—a), for any a € R;
U(a) > 0, for any a > 0.
Function V¥ is a monotonically nondecreasing function;
U is continuous, except possibly on a point set with Lebesque measure of
zero. Moreover, W is piecewise differentiable;
|¥(a)| < ¢, for some constant ¢; > 0.
6. ¥ is either discontinuous at zero, or ¥(u) is strictly increasing for u €
(—ca,ca), for some cg > 0.

=W

ot

As it will become clear ahead, the role of ¥, and ¥, is to lower the impact of the
heavy-tailed noise that occurs in the regression model and in the communication
between agents. As it is presented in [15], there are many nonlinear functions which
satisfy Assumption 3.1. Now, we add more assumptions on the observation and
communication noises through the following assumption.

At each time ¢t =0, 1, ..., a compact vector form of algorithm (3.1) is

(3.2) x =x' — oy <bL\pC (x)-H"®, (z' — th)) .
a

Here, x! = [x},x5,...,x%]" € RMYN map Lg_(x) : RMY — RMN g defined by

Ly, (x) = Jg{:} W (x; —x; +&;;)

where, the blocks Y. Wc(x; —x; + &;;) € RM are stacked one on top of another for
JEQ;
i=1,..,N.

4. Theoretical results. In subsection 4.1 we express algorithm (3.2) in more
general way, that will be used in the following subsections. Subsection 4.2 presents
the statement and the proof of almost sure convergence of algorithm (3.1). In sub-
section 4.3 we state and prove asymptotic normality and calculate the corresponding
asymptotic variance. Subection 4.4 presents and proves results on MSE rates.

4.1. Setting up analysis. In this subsection we rewrite algorithm (3.1) in the
form suitable for stating the main results. To do that, firstly we define function
p:R— R by

(4.1) o(@) = [ W(a +wpw)du,

where U : R — R is a nonlinear function that satisfies Assumption 3.1, and p is a
probability density function that satisfies Assumptions 2.2 or 2.3.

Remark 4.1. The mapping ¢ has all key properties of function ¥ (see Lemma 6.2
in Appendix B in [34], see also [29]). Moreover, it has a strictly positive derivative
at zero, i.e., ¢'(0) > 0, which is necessary to prove our results. The facts that
the nonlinearity W is discontinuous at zero or that it has a positive derivative at
zero, together with condition 4 from Assumptions 2.2 and condition 3 from 2.3, are
crucial to ensure that ¢ has a positive derivative at zero (see Appendix B in [34], see
also [15, 29]). Notice that the requirement that the pdf p is positive in the vicinity
of the zero is not restrictive, since it holds true for a broad classes of non-zero noise
pdfs.

This manuscript is for review purposes only.



275
276
277
278
279
280
281
282
283
284
285

286

312
313
314
315
316

317

NONLINEAR CONSENSUS+INNOVATIONS UNDER HEAVY-TAILED NOISES 7

Next, we define functions ¢, : RY — RY o : RM™ — RM as ¢ (y1,y2, .- YN) =
[SDO(yl)a (Po(yQ), ) (PO(YN)]v Soc(ylv y?a ooy yM) = [@C(yl)’ @C(yZ)a B3] @C(yM)]a where
y € RV, € R™ and functions ¢, and ¢, are transformations defined by (4.1)
that correspond to ¥, and V., respectively. For the a.s. convergence and asymptotic
normality results, we will follow the stochastic approximation framework from [28, 18]
(see Theorem 4 in Appendix A in [34]). That is, we represent algorithm (3.1) in
the form suitable for stochastic approximation analysis. We start by substituting
regression model (2.2) into algorithm (3.2), we get

(4.2) xTh=xt — <bL\pC (x)-H'¥, (H (1y ®60*) +n' — th)> )
a

Define ¢* € RN and n* € RMY by
(4.3)

. . ot
Ct = ‘I’o(H(lN@H >+nt_HXt> _CPO (H ((1N®0 )—Xt))’ ']”t = jGZanU ,

where nf; = W (x} —x} + &) — po(xt — x’). Now, since ¢ is defined by (4.1), it can

be shown that E[¢'] = E[n] = 0, where the expectation is taken with respect to F

(see Appendix B in [34]). Furthermore, we define function L, : RMY — RMN a5

L, () = Ly (-)—n', i.e., its i-th block of size M is Y ¢.(x;—x;). fori=1,2,...,N.
JEQ;

Finally, substituting (4.3) into (4.2), we rewrite algorithm (3.2) by

b b
(4.4) x*'=x'—q, (L¢C(xt) ~H'p, H(A1y®0%) —x"))-H'¢" + nt> .
a a
Now, we are ready to establish following results.
4.2. Almost sure convergence. We have the following Theorem.

THEOREM 4.2 (Almost sure convergence). Let Assumptions 2.1-3.1 hold and
ar = a/(t +1)°, 8§ € (0.5,1]. Then, for each agent i = 1,...,N, the sequence of
iterates {x!} generated by algorithm (3.1) converges almost surely to the true vector
parameter 0.

Theorem 4.2 establishes almost sure convergence of the proposed algorithm (3.1),
whether observation or communication noises have finite or infinite moments of order
greater then one. On the other hand, if we set at least one of the functions ¥,, ¥, to
be identity functions (and thus recover either the £Uf scheme from [18] or the method
from [15]), the resulting method fails to converge (See Appendix D in [34]). In other
words, the methods in [18] and [15] fail to converge under the simultaneous presence
of heavy-tailed observation and communication noises.

Proof. (Proof of Theorem 4.2)
The proof consists of verifying conditions B1-B5 of Theorem 4 in [34] (See Appendix
A in [34]). First, we define quantities r(x) and (¢ + 1, x,w) by:

(45) () =~ L (x) ~ H g, (H (x — (1 26°)

b
(4.6) y(t+1,x,w)=——n' +HT¢
a
Here, w denotes a canonical element of the underlying probability space (2, F,P).
Condition B1 holds because r(-) is BMY measurable and ~(t + 1,-,-) is BMN @ F
measurable for each t, where BMY is the Borel sigma algebra on RMY . Consider
s t—1

the filtration Fy, t = 1,2, ..., where F; is the o- algebra generated by {n°}._; and

This manuscript is for review purposes only.
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8 M. VUKOVIC, D. JAKOVETIC, D. BAJOVIC AND S. KAR

{&5; Z;}). We have that the family of random vectors (¢ + 1,x,w) is F; measurable,
zero-mean and independent of F;_;. Hence, condition B2 holds.

We now show that condition B3 also holds. We use the following Lyapunov function
V:RMN LR,

(4.7) V(x) =[x — 1y 672,

which is clearly twice continuously differentiable and has uniformly bounded second
order partial derivatives. The gradient of V equals VV(x) = 2(x — 1y ® 8%). We
must show that

(4.8) sup (r(x), VV(x)) < 0,
XESe
where S, = {x € RMN : ||x — 1y ® 0" € (¢,1/€)}. For any x € RMYN we have:

(r(x), VV(x)) =2 (x — 1y © 6°)" (—zL%(x) —H e, (H(x' - (1y ®e*>)))

(4.9)
=-—x-1v®8") L, (x)-Hx-(In®8"))) ¢, (H(x-(1y2867).
T1(x) Tz (x)
The terms T3 (x) and T5(x) can be written respectively as
Ty (X) = Z (Xi - Xj)T Pc (xi - Xj) = Z gT‘Pc (g) )

{i.7}€E, i< {i,j}€E,i<j
N

Ta(x) =Y &i¢ol&i),
=1

where § = H' ¢, (H (x' — (1y ®0"))), g = x; —x; and g T, (8) = > o_, gepe ()
Using the fact that both of the functions ¢, and ¢, are odd functions, for which we
have that p(a) > 0 if @ > 0, we have that (r(x), VV(x)) > 0 for all x € RM¥ (see
Appendix B in [34]). Moreover, recalling the fact that function ¢. is continuous at
zero, and equal to zero only at zero, we have that Tj(x) is equal to zero if and only if
X—1y®0* =1y ®m, for m € RM (see Lemma 6 in Appendix B in [34]). We only
consider the case when m # 0, since from m = 0 we have that x = 1y ® 0, which is
not in the set S.. However, for that choice of x — 1y ® 8 we have that
T2(1N®0* +1ly®m)= (H1N®m)T<pO(H1N®m)

N
=Y (h/m) g, (h/m) >0,
=1

since h/ m and ¢, (h]/m) have the same sign. Hence, for all € > 0 we have that
sup (r(x), VV(x)) < 0. Thus, condition B3 also holds.

XES.

Now we inspect condition B4. From equation (4.5) we have that
(4.10)

b N 2 N 2
le(ol* < Lo (x—1y®8 )‘ +[[H e, (H(x— 1y @0")[" < cr(1+V(x),
for some positive constant ¢; (see Appendix B in [34]). Moreover, we have that
b2
(4.11) Iyt +Lxw)l” < | 2o+ [HT¢
which leads to )
(4.12) E [yt + 1%, 0)|"] <214+ Vix),

This manuscript is for review purposes only.
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for some positive constant co. Finally, we have that
2
G2+ [yt + 1,5, w)[°] < el 4+ V),
for some positive constant c3. Setting that e — 0% in (4.8), for all x € RMY  we have
that (r(x), VV(x)) < 0. Thus,

2
IO +E [Jv(t +1,x"w)[*] < es(1+ V() — k{r(x), YV (x)
for every k > 0. Therefore, condition B4 also holds. Condition B5 holds by the
definition of the algorithm (3.1). Thus, almost sure convergence is proved. O

4.3. Asymptotic normality. We now consider asymptotic normality of the
proposed estimator (3.1). We have the following theorem.

THEOREM 4.3 (Asymptotic normality). Let Assumptions 2.1-3.1 hold. Consider
algorithm (3.1) with step-size ay = a/(t +1)°, t = 0,1,..., a > 0, with § = 1. Then,
the normalized sequence of iterates {\/t + 1(x' — 1y ® )} converges in distribution
to a zero-mean multivariate normal random vector, i.e., the following holds:

Vi+1(x' — 1y ® 6%) = N(0,S),

where the asymptotic covariance matrix S equals:
o0

(4.13) S = aQ/eE”SOeET”dv.
0

Here, Sg = Z—Zaf Diag ({d; Ins}) — 2K o H — PHTK/, + 02H H; 02 = [ |¥,(w)|?
d®,(w) is the effective observation noise variance after passing through the nonlin-
earity Wo; 02 = [ |U(w)[2d®.(w) is the effective communication noise variance after
passing through the nonlinearity W.; K., € RMN*N s the effective cross-covariance
matriz between the observation and the communication noise after passing through
the appropriate nonlinearity, i.e., the (k,s) element of the matriz K., is given by

(Keo)lks = 2 [ [ Welwije)Uo(wi)py 5o (wije, wi)dwijedwy. Here, € satisfies the fol-
JEQ;

lowing: s = M(i—1)+4; and pZ’zﬂ 1s the joint probability density function for the k-th

observation noise ny and the €-th element of the communication noise [(€;;)]e. We

also recall the observation matriz H in (2.2); functions ., ©o appropriate versions

of function ¢ in (4.1); and ¥ = 11— a(2pL(0)L @ Iy + ¢, (0)HH); here, a is taken

large enough such that matriz X is stable.

Remark 4.4. Notice that, for the assumed setting, 02 and o2 are finite. Also,
K., is finite, i.e., ||K¢of < oo, since we have that

|//\I/C(w1)\110(w2)d<1>°’° < //|\Ilc(w1)\llo(w2)|d<1>°’° < %a§+%a§.

Remark 4.5. If we assume that observation and communication noise are mutu-
ally independent, the only difference from the previous theoretical results occurs in

the A(t,x), i.e., in the Sg. Under this setting, matrix Sy is now equal to
2

b .
So = ﬁag Diag ({d; Ins}) + 0>H H,
which is expected, since the effective cross-covariance matrix K., is now equal to
Zero.

Theorem 4.3 establishes asymptotic normality of the proposed method. This is
achieved with heavy-tailed observation and communication noise an the nonlineari-
ties ¥, and V. with uniformly bounded outputs. Moreover, the theorem explicitly
evaluates the corresponding asymptotic variance. When the two noises are mutually
independent, ¥, is identity, and observation noise variance is finite, we recover the re-
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sult in [15], Theorem 3.5, as a special case. That is, a notable difference with respect
to [15] is the ability to handle here mutually correlated observation and communi-
cation noises. The effect of correlation is complex in general, however, as shown in
Section 5 later, generally a stronger positive noises correlation leads to a lower asymp-
totic variance. Intuitively, at an extreme, a full positive correlation practically means
that only one effective noise exists in the system, and hence it can be suppressed more
easily. Further, note that Theorem 4.3 establishes a local asymptotic rate O(1/t) of
x! to zero, in the weak convergence sense, when o; = a/(t + 1). We show later (see

Theorem 4.6) that a global MSE rate O(1/t%) with a lower (worse) degree § can be
established when step-size ay = a/(t + 1)?, § € (0.5, 1), is used.

We next discuss asymptotic efficiency? of the proposed estimator. We first briefly
review the relevant existing work to better position our results. First, consider the
best linear centralized estimator x!_ . of 8*, that has access to measurements from all
sensors (nodes) n = 1,2,..., N at all times ¢ = 0,1,.... In the general case, addition-
ally assuming that observation noise has finite variance, the best linear centralized
estimator x%. . is asymptotically normal and has the lowest asymptotic covariance
matrix Scent among all estimators of 8* when the only knowledge of observation
noise is variance and no other information of noise distribution is known. Moreover,
its asymptotic covariance matrix Scent attains the Cramér-Rao lower bound if the
observation noise is Gaussian (see for example [17]). On the other hand, when the
probability density function is known, the centralized estimator in [29] can be tuned to
the pdf of the observation noise so that it achieves the Cramér-Rao bound. In the dis-
tributed setting, when there is no communication noise, the authors of [17] develop an
estimator which is asymptotically normal and has the optimal asymptotic covariance
matrix Scent (optimal in the sense that the asymptotic covariance matrix is the same
as for the best linear centralized estimator x!.,,). We now discuss the asymptotic
covariance matrix S of the proposed estimator (3.1). This quantity depends on the
system parameters, including network topology and communication noise. Therefore,
in the general case, the proposed estimator (3.1) is not asymptotically efficient, i.e.,
S # I71(0"), where 1(0*) is the Fisher information matrix. However, with respect to
the proposed distributed recursive estimator, we make the following observations. 1)
First, the estimator is order-optimal in the weak convergence sense; that is, its (weak
convergence sense) rate of error decay is the same as that of the asymptotically ef-
ficient estimator. 2) The corresponding “convergence constant,” i.e., the asymptotic
covariance, is different from that of the centralized Cramér-Rao-optimal estimator,
and it is hence not optimal. We note that the paper provides major contributions
with respect to state of the art, as it gives the first distributed estimator that ensures
almost sure convergence in the presence of infinite variance correlated sensing and
communication noises; moreover, its weak convergence sense rate of convergence is
order-optimal. It remains an interesting future work direction to explore whether an
optimal asymptotic covariance can be achieved in this setting via distributed estima-
tors. In view of the results [29] for the centralized setting, it is likely that this cannot
be achieved unless the nonlinearities are tuned to the noise pdfs that in turn have to
be known.

Proof. (Proof of Theorem 4.3)
2An estimator y? of an unknown parameter 8*, for which we have that v + 1(yt — 6*) =
N(0,%), is said to be asymptotically efficient if S = I~1(0*), where I(8*) is the Fisher information

matrix. The Fisher information matrix represents the best achievable asymptotic covariance by any
estimator, as determined by the well-known Cramer-Rao bound (see [28]).

This manuscript is for review purposes only.
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We prove Theorem 4.3 in the same manner as Theorem 4.2 is proved, i.e., by verifying
assumptions C1-C5 of Theorem 4 in [34] (see Appendix A in [34]). Function r(-)
defined by (4.5) can be written as

b % *
r(x) = (L@ Ly (x = 1nv ©67) = ¢ (VH H (x — 1y © 6%) + §(x),
Here, mapping 6 : RMY — RMY ig given by:
(4.14) d(x) = —éLgc(X) ~H'6,(H(x—1y®6%)).
a

Next, mapping L, (x) : RMY — RMN s vector of size M N such that the i-th M-size
block equals Y &c(x; — x;), i = 1,2,..., N, mappings 6. : R® — RM §,: RY —
JEQY,
RY are component-wise maps of 6. and J, are first order residuals that corresponds
to . and @, respectively, i.e., 8c(¥1,¥1, - Yar) = [0c(¥1),6c(y2), ..., 0c(yar)] " and
60(y13y1, ,yN) = [60(571)’50(5’2)3 () 50(yM)}T for Y € RN)S’ € RM (See Appendix
B in [34]).
Thus, r(x) admits representation in (36) of Theorem 4 in [34] for B = —2¢/(0)L ®
Iy — ¢/ (0)H"TH and mapping &(-) defined by (4.14). Therefore, condition C1 holds.
Since we use that ay = 75, condition C2 trivially holds. Furthermore, ¥ = aB + %I
is stable if a is large enough, because matrix —B is positive definite (See [18]). Thus,
condition C3 also holds.
For A(t,x) =E[v(t + 1,x,w)y " (t +1,x,w)] it is easy to show that
2
lim  A(t,x) = %af Diag ({d; Ips}) — SKC,OH — SHTK,IO +0’H"H.

t—o0,x—0*

Therefore, condition C4 also holds. To show that condition C5 holds, it is suffice
to show that the family of random variables {|v,(t + 1,x,w)|[*}i=0,1,..., ||x—6%||<e¢ 18
uniformly integrable. To do that, follow the arguments as in e.g., [18] and [15]. O

4.4. Mean squared error convergence. In this subsection, we state and prove
a result on the mean squared error (MSE) convergence rate when both nonlinearities
U, and U, satisfy part 5’ of Assumption 3.1, i.e., |¥,| < ¢, |¥e| < ¢, for some positive
constants ¢, and c.. Moreover, we set the step size to a; = %, for § € (%, 1). We

(t+1)%>
have the following theorem.

THEOREM 4.6 (MSE convergence). Let Assumptions 2.1-3.1 hold. Then, for
the sequence of iterates {x'} generated by algorithm (3.2), provided that the step-size
sequence {a;} is given by ay = a/(t +1)°, a > 0,6 € (0.5,1), there exists 6 € (0,1)
such that E[||x — 1y ® 8*||2] = O(1/t9).

Theorem 4.6 establishes a MSE convergence rate of the proposed estimator (3.2) under
the simultaneous presence of heavy-tailed (possibly infinite variance) observation and
communication noises, when both the observation and communication nonlinearities
have uniformly bounded outputs. This is in contrast with recent studies on distributed
estimation in heavy-tailed noises like [15] that only establishes a.s. and asymptotic
normality results. We refer to the proof of Theorem 4.6 for the exact value of the
convergence rate power 5.

Setting up the proof. We now prove Theorem 4.6 through a sequence of
intermediate results (Lemmas). Recall quantities r(-), v(-,-,-) and V(-) from (4.5),
(4.6) and (4.7) respectively. The proof will be based on establishing a sufficient decay
on quantity E[V (x!)]. First, notice that algorithm (4.4) can be written as

x =x"+ o (r(x") + v+ 1,x",w)).

This manuscript is for review purposes only.
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Moreover, we have that
V(x't) = )+ 20 (x' =1y ® 0*)T (r(x") +~(t+1,x",w))
+at|| ( D+t +1xw)|?
=V(x')+2a (x' -1y ® 0*)T (r(x") +~y(t+1,x",w)) +of
for positive constant ¢’ = |r(x?) +v(t + 1,x", w)||? < co. Therefore, taking a condi-
tional expectation with respect to F;, we have:

(4.15) E[V(x")|F] = V(x") + 20 (x' — 1y ® 0*)T r(x') +a?c.
Also, from equation (4.9), it follows that
b
(4.16) (x' =1y ® 6°) " r(x") = — 2Ty (x!) — Ty(x").
a
We next need to show that the quantity in (4.16) is “sufficiently negative”, relative

to quantity V(x!). This is achieved through a sequence of lemmas. First, we upper
bound quantities ||x!|| and ||x’ — 1y ® 6%|.

LEMMA 4.7. Let Assumptions 2.1-3.1 hold. Then, for the sequence of iterates
{x'} generated by algorithm (3.2), provided that the step-size sequence {cay} is given
by ap = a/(t+1)°, a> 0,6 € (0.5,1), we have that, for any outcome w:

1-6
(417) ||Xt|| <g = ||XO|| + (b \/mdcc + aHHH\/NCo) 1-¢’
(4.18)
tl §
Ix' = 1y 07| < g = x° — 1y 0 0°)| + (bW Nd e +a [HIVNe, ) T—.

Consequently, |H (x! — 1y ® 0%) || < |H|| g;-

Proof. Using the boundness of the nonlinearities, we have that ||Lg_(x)
VMNdc, and |[H' ¥, (H(1y ® 0* —x') +n?) || < |[H||VNc,, where d = maxd;.

Therefore, recalling the algorithm (4.2), for all ¢ > 0 we have that

_ b _
x| < |7 + s <avMNch + ||H||\/Nco> <X +apoct+ayic

[

c
t—1

a -6
< [Ix° ———ds < ||x° .
Ix |\+cz gy S e / geds < X+ cat—
0
Analogously, for all t > 0, we have that ||x' — 1y @ 6" < g}, and as a consequence
IH(x' -1y @ 0%) || < [[H]| g;. 0

Next, we have the following Lemma that bounds quantities T} (z) and To(x).

LEMMA 4.8. Let Assumptions 2.1-3.1 hold. Then, for the sequence of iterates
{x'} generated by algorithm (3.2), provided that the step-size sequence {cu} is given
by ay = a/(t+1)° a > 0,0 € (0.5,1), we have that there exist positive constants G..
and Go such that, for any outcome w:

!
Ty (x") > %)G" (x' -1y ®6) Lal(x' -1y 267,
gt
90/ (O)Go
Ty(x') > Lorro
20¢) 2 JTHg;

To prove Lemma 4.8, we make use of the following Lemma from [13] (see Lemma 5.5
n [13]).

LEMMA 4.9. Consider function ¢ in (4.1), there exists a positive constant G such

—1y©6) H'H(x' —1y®6°),

This manuscript is for review purposes only.
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’(0) Gla
that |p(a)| < %QH, for all |a] < g.

Proof. (Proof of Theorem 4.8) Using Lemma 4.9 for function ¢, we get that there
exists a positive constant G such that

Tix)= Y (x-x) e, (xt - x))

{i,J}€E,i<j

= 3 S (e (x0) T e (e — (x)e)

{i,J}€E,i<j t=1

'(0)G '(0)G
(1.19) > £00Ge sm et = EOGe (g g e
9t fiiYeR,i<j gt
A (0)C

=P (x 1y @ 67) LeI(x - 1y@6"),
gt
since, from Lemma 4.7 we have ||x!|| < g;. Analogously, from Lemma 4.9 we have

that for the function ¢, there exists a positive constant G, such that

N
Ty(x) = (H(x— 1y ®6"); ¢ (H(x — 1y ©6%)),)
i=1
/
(4.20) 2M(X—INQZ)O*)THTH(Xle@O*),
2[Hllg;
since, from Lemma 4.7 we have |[H (x! — 1y ® 8%) || < |[H|| g;. O

We next have the follovving theorem that analyzes positive definiteness of the

SACLE 24 (0)Go T
Lol+ S HH.

LEMMA 4.10. Let Assumptions 2.1-3.1 hold. The following is true for any x €

RMN.'
(x—1y©0%)" (('DC(O)G LI+ #o(0)Go HTH> (x—1y®6Y)
4gs 2||H]|gz

N min{%(O)G </\H B 25sz> 7% Az(Ll) } Ix — 1y ® 6*|?,
2[[H||g; VN dag: 1437

N
where g; and g, are defined in Lemma /.7, G. and G, in Lemma 4.8, Sy = Y. ||h;|?,
i=1

matrix £

N N
AH = M1 (Z hih;'—> > 0 is the smallest eigenvalue of regular matriz > h;h] (see
i=1 i=1
Assumption 2.1) and recalling that Ao(L) > 0 is the smallest positive eigenvalue of
Laplacian matriz L.

Proof. Let us consider matrix LQI+H " H and follow argument as in Appendix A
of [32]. For any x € RM¥  we have that there exist vectors u € span{1®@m|m € RM}

and v € span{l ® m|m € R™}+ such that x = u + v. Firstly, we have that
N

(u-1y®60") H Hu-1y®0%) = (a—6) " hh/ (a6

i=1

(a—6%)" (ZhhT> 0 —6%)
> o — 6%,

where @1 € RM such that u = 1 ® @. Notice here that ||[u— 1y ® 8*|| = VN|[a — 6*|.
Secondly, (x —u)' H'H(x —u) > 0, since H'H is positive semi-definite matrix.

This manuscript is for review purposes only.
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Thirdly, following also holds

N
(u-1y®60") H H(x—u) =) (i-6") hh/(x;,—0)

i=1

N
> =3 i — 67 ix —

i=1

> —[la— 67| v]Su.

Analogously, we have that (x —u)' H'H (u— 1y ® 8*) > —||a — 6*||||v||Sx. There-

fore,
(x—1y®6%) H H(x— 1y ®60%) > Aglla — 0%|* — 2Su[a — 6*[||v].

We also have that u—1®0* € null(L®1I) and v € Range(L ® I) and, hence, we have
that

(x—1y®60") Lelx—1y20)=u-1y00 +v) Lol(u—1y® 0" +v)

=v LoIvzXLel)|v]® = (L)|v|]*
Let k > 0 be arbitrarily chosen. If ||v|| < k|jlu — 15 ® 67|, then we have that
(x—1y©6") (LeI+H H)(x—1y® 6"
> Antl[@ — 0712 — 2ulla — 67| v]| + A2 (L)||v]|?

2 _ k) Ju— 1y © 6% + Aa(L)v]?

25
> mln{— - \/—Ek A (L)}x — 1x @ 072,

where in the last inequality we used the fact that [|[x — 1y ® %> = [u— 1y ® 0" ||* +
[v[2. If [[v] > kl|lu— 1x ® 67|, then

(x-1y©6") (LeI+HH)(x—1y®8%) >0+ Ap(L)|v]

Ao(L) | o Aol 2
Z u—1y®60
M T I e e
A
212( )H _1 ®0*||2
+

Therefore, regardless of Vector v, we have that
(x—1y 09" (L®I+HTH) (x— 1y ®6%)

. [ m 2SH X2 (L) } w2
>min{ — — — -1y ®06%|".
{30 - By, ! -1 o]
Following the same idea, we get that

x—1y®0 ( ¢ LI+ —H'H|(x—1y®80
-0 (7, STl B ) 1)

[0G, (AH 2SH> bl (0 >GCA2<L>} -
421) > mind L\ (AH 2oH A 0@D)be AW Ly e g2,
“2) =2 {2H||g; N VN T dag 14 gy ol

Finally, to prove Theorem 4.6, we make use of the following Lemma from [13] (see
Theorem 5.2 in [13]).
LEMMA 4.11. Let 2zt be a nonnegative (deterministic) sequence satisfying
A< (1 —rh)zt b,
forallt >t for some t' > 0, with some z'' > 0. Here, {rt} and {rL} are deterministic
sequences with t+1 <rt <1andrk< with a1,as > 0, and 6 > 0. Then, the

_az _
(t+1)%>
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following holds: (1) z* = O(3) provided that ay > § — 15 (2) if ay < 6 — 1, them
2t =0(3%), for any s < ax.
We are finally ready to finalize the proof of Theorem 4.6.

Proof. (Proof of Theorem 4.6) From equations (4.21) and (4.16) we get that
(x—1y ®0%) "r(x")

#0(0)Go

: b (0)Ge Ao(L)
< —min ,
- { 2||H]|g} (N VN > dage 1+ 4%

Therefore, taking the expectation in (4.15), we have that

BV ()] < (1- 20 ) BV +

Au 25nu

} Ix— 1y ® %2

a2
(1+1)207

where

o (0)Goa(l — 0) (AH - QSH\/JVk>
[E|| N (||x0 1y ® 0| +bVMNdc +a HHH\/NCO) ’

a1 = min

b (0)Ge(1 = 8)Ao(L)K?
2(k2 + 1) (||x0|| +bVMNde, +a ||H|\\/Nco)

and ay = a?c’. Therefore, using the Lemma 4.11, 5 is any positive number such that
o (0)Goa(l — 0) ()\H - ZSH\/Nk)

[H|| N (||x0 1y ® 0| +bVMNde. +a \|H||\/ﬁco) ’

5 <min{ 26 — 1,

b (0)Ge(1 — d)No(L)K?
2(k2 + 1) (||x0|| +byV/MNdce +a ||H||\/Nco)

Therefore, using Lemma 4.11 we obtain MSE convergence with rate O(1/ tg). 0

Remark 4.12. Even though, we see that the convergence factor ) depends on the
system parameters, i.e., on the network and sensing model and also on the innovation
and consensus nonlinearities, it is easy to see that 6 € (0,1) regardless of the system
parameters. Recall that Theorem 4.3 shows that the proposed estimator (3.1) obtains
rate 1/t in the weak convergence sense, while Theorem 4.6 shows that (3.1) obtains
a slower convergence rate, but in the sense of the mean squared convergence. Note
that this is not a contradiction, and Theorem 4.6 adds information with respect to
Theorem 4.3. Namely, it is well known that mean squared convergence implies con-
vergence in distribution; therefore, with the same assumptions as in Theorem 4.6, the
convergence rate 1/t° is also attainable for convergence in distribution. In contrast,
from Theorem 4.3, we can not conclude that the rate of the mean squared convergence
is also 1/t.

Remark 4.13. In fact, we next show that, in the presence of the heavy-tailed
observation noise considered here, the MSE convergence rate cannot be as fast as 1/t,
for any estimator (even not for centralized ones). In this sense, the fact that quantity
8 is strictly smaller than one is not a consequence of loose bounds, but it is rather due
to the intrinsic difficulty of the estimation problem. To be specific, we consider here
the special case where each agent i observes a scalar parameter 8* € R according to
(4.22) zi(t) = 0" +nl,
where n! satisfies Assumption 2.2. In this case, the proposed estimator (3.1) can
be viewed as a mean estimator of the probability density function p,(u — 6*). Let us
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denote by P the class of all probability density functions p,(u— 60*) such that p, is the
pdf of the observation noise that satisfies Assumption 2.2, for any 6* € R. Extending
the results from [8] (see Appendix G in [34]), we prove that, for any 6* € R, and for
any mean estimator ét, the following holds:
(4.23) sup sup tNE[|0;, — 0*|?] = +o0.

t peP

On the other hand, Theorem 4.6 shows that, with the proposed distributed estima-
tor (3.1), the following holds:
sup sup(tN)°E[|0; — 0*]?] < 400,
t peP
for some § € (3,1)?

Remark 4.14. Theorems 4.2, 4.3 and 4.6 continue to hold even if the linear trans-
formation vectors h; in (2.1) are no longer static (see Appendix H in [34]). That is,
we can allow that each agent ¢ at each time t = 0, 1, ..., makes the observation by:
(4.24) 2t = (h})T0* +nl.

Here, for each agent i, for each time step ¢, the linear transformation vector h! is a
random variable that satisfies the following assumptions.

1. For each agent ¢ and each time step ¢t = 0,1, ...,, the linear transformation
vector is given by h! = h; + hf, where the vector h; € R is deterministic,
and vector flf € RM is a random vector;

2. The sequence of vectors {[h%, hb, ..., hi]} is i.i.d., with finite second moment,
and it is independent of the sequences n’ and 5% for {i,j} € E;

3. At each agent i = 1,..., N at each time ¢t = 0,1, ...,, each entry £ = 1,2,..M
[hf], has the same probability density function py;

4. The pdf py, is symmetric, i.e. py(u) = pp(—u), for every u € R and py(u) > 0
for |u| < ¢y, for some constant ¢y, > 0;

5. The matrix Zf\; h; (Hi)T is invertible.

5. Analytical and numerical examples. In this section we provide analytical
and numerical examples that illustrate results from Section 4.
Example 1: We consider the network where each agent 7 observes a scalar parameter
0* € R following the linear regression model:
(5.1) 2i(t) = ho* +n,
where h # 0 and n,;(t) is zero mean and i.i.d. in time and across agents. For sim-
plicity, we assume that the underlying graph of the network is regular, with degree
d. We assume that there is no communication noise between agents, i.e., §; = 0
for (i,j) € E4. We additionally assume that the nonlinearity on the consensus part
P, in (3.1) is the identity function and the nonlinearity on the innovation part is
U, (w) = Btanh(w/B), for B > 0. Therefore, algorithm (3.1) is now given by:

b
6.2 e =t [ DS (et ) h (e e )
JEQ
for each agent i and each time ¢t. From Theorem 4.3, we have that the asymptotic
covariance matrix is given by (4.13) and matrix Sy is now given by Sg = 02h’I

and 02 = [|U,(w)|?d®,(w) is the effective observation noise. Following the same
procedure as in [18, 15], for ¥ = %I — ayl (0)h?1, we have that the average per-agent

3Notice that in the centralized case, the observations are collected in batches of fixed size N.
That is, after ¢ time steps, there are Nt observations. Henceforth, we include quantity N in (4.23)
for a precise statement. Note that, since N is constant and the supremum is taken with respect to
t, the inclusion of N is not necessary.
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2 _2;2
asymptotic variance, denoted by 0% = =+ Tr(S), is equal to 6% = 5 L for

2ah2¢’ (0)—1°
1

@ > 3oy (see Appendix F in [34]). Therefore, we need to change the constant a
when changing B, i.e., we define a = a(B) = W(O)(B) +¢*, for some constant € > 0,

2 2 _ (1420°¢ (0)e)*03(B)

we rewrite o7, as follows (see Appendix F in [34]), o3 = RIS (0)%c . For the

nonlinearity W, that is considered here, we have that o2 = +fOOB2 tanh? (%) f(w)dw,
+00 +o0 -

and ¢, (0) = 7{0 U (w) f(w)dw = 7{;0 mf(w)dw Notice that both functions

o2 and ¢/ (0) are increasing with respect to B (see Appendix F in [34]). Since we

have that [B2tanh?®(%)f(w)| < |w?f(w)| and |Cos+z(§)f(w)| < |f(w)| for all w € R

and all B > 0, using the Lebesgue’s dominated convergence theorem, we have that

lim ¢2 = 0, lim o2 = U,?],Bli_)H(}Jr ol (0) = O,BEmeg(O) = 1, where o7 is the

B0+ © B—foo °
variance of the observation noise 7. Therefore, we have that o} = lim+ 0% = +o00
B—0
. . . 1+2h%e)% 02
(see Appendix F in [34]), and 0% = Bli%m o %. Suppose now that
the variance of the observation noise 7 is infinite, i.e. 02 = +o00. This means that

02, = 4o0. For the continuous function ¢%, defined for all B € (0,+oc), we have
that lim 0% = lim 0% = +o0o. Therefore, there exists an optimal B* such that
B—0+ B—+oc0
0%, = 5 i(nf )0]23. Note that the case B — oo corresponds to a LU scheme from [18],
€(0,00

while the case B — 0 corresponds to each agent working in isolation. Therefore,
we show analytically on the simple class of nonlinearities ¥, (hyperbolic tangent),
that cooperation through a nonlinear mapping W, strictly improves performance with
respect to both using linear and non-cooperative schemes.

To numerically illustrate the above results, we now consider a sensor (agents)
network with NV = 8 agents, setting that the underlying topology is given by a regular
graph with degree d = 3. The true parameter is 8* = 1, the observation parameter is
h =1, and the observation noise for each aggnt’s measurements has the following pdf

-1
with 8 = 2.05, which has an infinite variance. Recall that we assumed that there is
no communication noise between agents. We set the consensus parameter as b = 1
and the innovation parameter as a = a(0.3) = W + 0.1. Figure la shows

the average per-agent asymptotic variance 0% versus B. As it can be seen, optimal
B* approximately equals B* = 0.65. Using Monte Carlo simulations, we compare
numerically an estimated per-sensor MSE across iterations, for the optimal B* and
for some sub-optimal choices of B. We can see that the algorithm performs better
for the optimal value B* than for the other considered suboptimal choices of B (see
Figure 1b), hence confirming the theory.

Example 2: In this example we provide analysis in the terms of the average
per node variance with respect to the level of the mutual dependence of observation
and communication noise. Once more, we consider the network where each agent 4
observes a scalar parameter 6* € R following the linear regression model (5.1) and we
assume that the underlying graph of the network is regular, with degree d. As it is said,
we now allow observation and communication noise to be mutually dependent. For

4 . 1
€ is added since we need to have that a > T (0)
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4
15 —B=B"
w o —B=1
o 2 B=10
= —B=03
Q20
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0 1 2 /] 1 2
B t x10%
(a) (b)

FiGc. 1. (a) Average per-agent asymptotic variance 0% versus B (b) Monte Carlo-estimated
per-sensor MSE error on logarithmic scale for the different choices of B
simplicity, we consider the case when that dependence between communication noise
fj and observation noise n; is given by &;; = pnf++/1 — p?al, at each time t = 0,1, ..
and for all tuples {i,j} € E, where, p € (—1,1), sequence {n!} is independently
identically distributed in time ¢ and across all agents i. Moreover, n} are 7 mutually
independent whenever (i,t) # (4, s). Here, it is easy to see that we have strong positive
correlation if p — 1, strong negative correlation if p — —1 and we do not have any
correlation if p = 0. Moreover, we set that U,(w) = ¥.(w) = signw, and hence,

algorithm (3.1) is given by

(5.4)
b

=gl —a | 2 YW (xg — 2l 4 pnl+/T—p? nt) — hW, (h(0* — 1)+ ny)

JEQ;

Analogously to the previous example, we have that the average per-agent asymp-
totic variance 03 is given by
(5.5) 52 :b202d2 + a?h%0? — 2abhdo,.
N I CTTRE ().

b202d2 + a2h202 — 2abhdoe. 1

(5.6) i ozd” +a“h”of abhao, Z 7
N 2bpl (0)A; + 2ah?pl (0) — 1

=2
since Sp = (g—";agdZ +o2h? — 2ghdaoc) Tand £ = LT — a (2@l (0)L + ¢, (0)h2T) .
Here, regardless of p we have that 02 = 02 = 1 and ¢/, (0) = 2p,,(0) (see [15]). On the

other hand, o,. which is effective cross-covariance between the observation and the
communication noise after passing through the appropriate nonlinearity and ¢/ (0)
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are functions with respect to p. We have that

(5.7) Ooc = 7 7\Ifc(px+ 1 — p?y)Wo(2)pa(y)pn(2)dzdy
+o0 oo +oo\/%

(5.8) - / é  (9)pn () dydz — / 4 P ()P (y)dyde
0 oo 0 \/%

(5.9) - [ | mwewdzs [ [ patpadyas,

and we see that o, -+ 0as p =0, 0oc - 1asp — 1 and 0oc -+ —1 as p = —1.
oo

Moreover, we have that ¢.(0) =2 [ pa(—pz)pn(y/1 — p?x)dz, and again, it is easy
— 00

to see that, ¢.(0) — 2p,,(0) as p — £1 and ¢.(0) — 2p5(0) as p — 0. To demonstrate
the above results, again we consider a sensor (agents) network with N = 8 agents,
setting that the underlying topology is given by a regular graph with degree d = 3.
The true parameter is #* = 1, the observation parameter, the innovation parameter
and consensus parameter are h = a = b = 1. We set that for all i, n; and n; have
the pdf as in (5.3) with g = 2.05. Figure 2a shows 0'3 with respect to p. As it can be
seen, the lowest J% is attained at p =1, also 0'3 has two local maxima at p ~ —0.88
and at p = 0.31. Figure 2b shows the comparison of Monte Carlo simulation for
~Ix* — 1 ® 6]|* ¢ for different choices of p. Moreover, Figure 2b justifies the results
presented in 2a, in the sense that 3 [x* — 1 ® 6||? ¢ is minimal for p = 1 and maximal
for p = —0.88. Finally, we note that, while the two local maxima obtained here are
specific for the simplistic correlation and sensing model assumed here for analytical
tractability, we observe numerically for more general models that the general trend of
this example is preserved, in the sense that higher (more positive) correlations lead

to a better performance.

5 12
_p=-1
&+ 10
4 &
® 8
N3 Z 6
[
<, 4
2 2\
~l= 2|
1 0
-1 0 1 0 2000 4000
) iterations

(a) (b)
F1G. 2. (a) Average per-agent asymptotic variance 023 versus B (b) Monte Carlo-estimation of
%th — 1y ® 0*||2t for different choices of p

5.1. Numerical simulations. In this subsection, we demonstrate the perfor-
mance of proposed consensus+innovations estimator in a larger sensor network. We
consider a sensor network with N = 40 agents where the underlying topology is an
instance of a random geometric graph; we used randomly generated true parameter
0* ¢ R0, whose entries are drawn mutually independently form the uniform distri-
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bution on [—10,10]; we used randomly generated observation vectors h; € R, for
which the condition 2 of Assumption 2.1 is verified to be true. We set the consensus
parameter as b = 1 and and step-size parameter as § = 1. First, we compare the
proposed consensus+innovations estimator with the method from [1] and its hypo-
thetical variant in the case when there is no communication noise, but in the presence
of heavy-tailed observation noise with pdf as in (5.3) for 8 = 2.05. Here, we used
the same algorithm settings and the same nonlinearities for the proposed algorithm
as in Example 1, with a slight change, i.e., we set that B = 10 and a = 0.2 For
method from [1] and its hypothetical variant (see Appendix E in [34]), we set that
B, = 2, ¢;1(z) = x and ¢;2(x) = tanh(z) for all agents 7. Furthermore, we set

that weighting coeflicients are chosen according to a;; = ZA%“, where A = A +1.
CEN;

Moreover, for the smoothing recursions, zero initial conditions are assumed, v; is set
to 0.9 for every agent i and ¢ = 1072. We can see all methods manage to (slowly)
decrease MSE over iterations, with the proposed method exhibiting the best perfor-
mance among the three methods considered. Figure 3b shows Monte Carlo simulation
of the MSE for the proposed algorithm, algorithm from [1] and the algorithm in [15],
when communication between agents is also contaminated with heavy-tailed commu-
nication noise. Here, for the proposed algorithm we set that both nonlinearities are
U, (w) = ¥.(w) = Btanh(w/B), for B = 10 and a = 1. Further, we use the same
algorithm setting for the method in [1] as in the previous simulation example, and
we use the same nonlinearity on the consensus part and the same B for algorithm
from [15] as in the proposed algorithm. We can see that both [15] and [1] here fail to
converge, while the proposed method still effectively reduces MSE.

24 ‘ :
===Method from [1] Method from [1]
Hip. method from [1] —
g 235; === Proposed algorithm g J— Method from [5!
s X s 10
E 2.3 E
] ]
g22 sl
8 A W T | —
o 22 o
0
1 2 o 1 2
t x10* t x10*

a b

Fic. 3. (a) Monte Cag"l())-estimated per-sensor MSE error on (lo;am'thmic scale for proposed
algorithm for B = 10, method from [1] and its hypothetical variant (b) Monte Carlo-estimated per-
sensor MSE error on logarithmic scale for proposed algorithm, algorithm form [1] and algorithm
from [15]

We next present the scenario where the observation and communication noises are
mutually dependent. To do this, we set that the i-th element of the observation noise
n is given by n; = v; exp (%vl2 ), where v has standard normal distribution and h is a
heavy-tail parameter (see [9]). Moreover, the /-th element of the communication noise
€;; is given by [€;]¢ = [wyj]eexp (&[w;]7), where w;; is the linear transformation of
v, ie., w;; = Wy v and Wy; € RM*N g a randomly generated matrix independent
of the observation noise. Figure 4a presents Monte Carlo estimates of per-agent
MSE across iterations. Figure 4b shows Monte Carlo simulation of quantity +/x’ —
1y ® 0*]|>V/t. For this numerical setting, from the Figure 4b, we can deduce that
E[||x! — 15 ® 0%]|?] decreases at least as fast as O(ﬁ), hence confirming our MSE

rate theory.
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107 Error
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©
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Fic. 4. (a) Monte Carlo-estimated per-sensor MSE error on logarithmic scale for proposed
algorithm when link failures can occur for B =1 and h = 10 (b) Monte Carlo-estimation of % Ixt —

1y ®0%||2+V/t for B=10 and h = 2.

6. Conclusion. We have studied distributed consensus-+innovations estimation
under the simultaneous presence of heavy-tailed (infinite variance) correlated sensing
and communication noises. This setting is in contrast with existing work that either
always assumes a finite-variance sensing noise. We developed a nonlinear estimator
and established its almost sure convergence and asymptotic normality. Furthermore,
we showed that the estimator achieves a sublinear MSE convergence rate O(1/t"),
and we explicitly charaterized the rate xi € (0,1) in terms of system parameters.
Analytical examples illustrate the role of the nonlinearities incorporated in the method
and the effects of noises correlation. Finally, numerical simulations corroborate our
findings and demonstrate that the proposed distributed estimator converges under
the simultaneous presence of heavy-tailed (infinite variance) correlated sensing and
communication noises, while, for the same setting, existing distributed estimators fail
to converge.
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Appendix.

A. Some results on Stochastic approximation. We make use of the following
standard stochastic approximation result, see [28], see also [18].

THEOREM 6.1. Let {x! € R'};>¢ be a random sequence:
(6.1) xTh = x4+ oy [r(x?) +A(t + 1,x5 W),
where, v(-) : Rl — R! is Borel measurable and {~(t, X, W) h>0.xert 45 a family of
random vectors in R!, defined on a probability space (Q, F,P), andw € Q is a canonical
element. Let the following sets of assumptions hold:
B1: The function v(t,-,-) : Rt x Q — R is B' ® F measurable for every t; B! is
the Borel algebra of R!.
B2: There exists a filtration {Fi}i>0 of F, such that, for each t, the family of
random vectors {y(t,x,w) }xert s Fr measurable, zero-mean and independent
Of ]:tfl.
(If Assumtions B1, B2 hold, {x(t)}+>0, is Markov.)
B3: There exists a twice continuously differentiable V(x) with bounded second
order partial derivatives and a point x* € R! satisfying
V(x*)=0,V(x) >0,x # x*, | llllm V(x) = oo,
X|[|—0o0
sup  (r(x), VV(x)) <0, Ve > 0.
e<||x7x*H<%
Bj: There exists constants ki, ko > 0, such that,
IeGO1? + E[|Jy(t + 1,x,w)[[*] < ki (1 + V(%)) — k2 (x(x), VV (%))
B5: The weight sequence {a(t)}i>0 satisfies

oy >O,Zo¢t:oo,2af < 00.

>0 >0
C1: The function r(x) admits the representation
(6.2) r(x) = B(x — x") + d(x),
where
(6.3) im0
x—x* ||xX — xX* ||

(Note, in particular, if §(x) =0 then (6.3) is satisfied.)
C2: The weight sequence {ay}i>o s of form
a
6.4 =——Vt>0
( ) a t+ 17 - Y

where a > 0 is a constant (note that C2 implies B5).
C3: Let I be the | x 1 identity matriz and a,B as in (6.4) and (6.2), respectively.
Then, the matriz 3 = aB + %I 1s stable.
C4: The entries of the matrices, ¥t > 0, x € R,
A(t, X) = E['Y(t7 X, w)'YT (t7 X, W)L
are finite, and the following limit exists:
lim  A(t,x) = So.

t—o0,x—x*

C5: There exists € > 0, such that
lim sup sup / [[v(t+ 1,%,w)||*dP =0

R—=00 ||x—x*||<e t>

Ollv(t+1,x7w)H>R

Let Assumptions B1-B5 hold for {x(t)}it>0 in (6.1). Them, starting from an arbitrary

initial state, the Markov process, {x'};>0, converges a.s. to x*. In other words,
P[tlirroloxt =x"]=1.

The normalized process, {v/t(xt — x*) hi>0, is asymptotically normal if, besides As-
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sumptions B1-B5, Assumptions C1-C5 are also satisfied. In particular, ast — oo
(6.5) Vi(x' —x*) = N(0,8),
where = denotes convergence in distribution (weak convergence). Also, asymptotic

variance, S, in (6.5) is
oo

.
S = a2/ezvsoez Ydv
0

B. Additional results on nonlinearity ¢. We present some properties of the
function ¢ defined in (4.1). As it is stated in [15], we can intuitively see function ¢ as
a convolution-like transformation of nonlinearity ¥ : R — R, where the convolution
is taken with respect to the probability density function p of random value w. If w is
generated by the underlying probability space (€2, F,P), we have that expectation of
(6.6) v="V(a+w)— p(a)
is equal to zero, i.e., E[v] = 0. Here, the expectation is taken with respect to F.
Hence, for all t = 0,1, ..., we have that expectation of both of the sequences ¢*, n
defined in (4.3) is equal to zero, due to the fact that communication noise £' and
observation noise nt, ¢t = 0,1, ..., are generated by underlying probability space.

We have following Lemma (see [29], see also [15]).

LEMMA 6.2 ([29]). Consider function ¢ in (4.1), where function ¥ : R — R,

satisfies Assumption 3.1. Then, the following holds:

1. ¢ s odd;

2. If [¥(v)| < c1, for any v € R, then |p(a)| < ¢, for any a € R, for some
¢y > 0;
p(a) is monotonically nondecreasing;
p(a) >0, for any a > 0.
© 18 continuous at zero;

@ is differentiable at zero, with a strictly positive derivative at zero, equal to:
S

S Vi1
(6.7)  #'(0) =)D (W(r;+0) = U(; —0))p(ri) + Z/ ' (v)p(v)dv,
i=1 i=0 Vi

where v;, 1 = 1,....s are points of discontinuity of ¥ such that vy = —oo and
Vsy1 = 00, and we recall that p(u) is the pdf of random variable w.

S Gt W

From Lemma 6.2, we have that ¢(a) = 0 if and only if a = 0. Moreover, there exists
a function ¢ : R — R, which is continuous in the vicinity of zero, such that
(6.8) p(a) = ¢(0) + ¢'(0)a+ d(a) = ¢'(0)a + d(a),
and lim %@ = 0.

a—0 @
We now prove boundedness of the function r(-) in equation (4.10). If condition 2
of Lemma 6.2 is satisfied for both functions ¢. and ¢,, then the right hand side
of (4.10) would be lesser or equal to some positive constant ¢, which would led to

[rx)||* < e1(1 + V(x)). Suppose now that condition 3 of Lemma 6.2 is satisfied for
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the function ¢, then there exists some positive constant c¢; such that

()2 T e 2

i=1 ||jeQ

< (b)fj > et =)l

i=1jeQ;

(NS (I xl)

i=1 e,

) (2)2 i > (C (1 + i — 0% + |1x; — 0*||2))

i=1j€Q;
< a(l+V(x),
since we have that [|x; — 0> < ||x — 1y ® 0%]|2 = V(x) for all i = 1,2, ..., N. If we
assume that condition 3 of Lemma 6.2 is satisfied for the function ¢,, we will get that
[HT o, (H (x — (1y @ 0")] < [H| g, (H(x — (1y © 6")))]’

< JHJPe (14 H (x - (1y 2 67))

b
HaLwc (x -1y ®67)

2 2 Y
< JHP e (14 [HIP [x - 1y @ 67)) .

Therefore, HHTgoo (H(x—(1y ®6%) g))HQ < ¢1(1 + V(x)), for some positive con-
stant ¢;. Hence, inequality in (4.10) is proven.

Next we prove boundedness of E [H’y(t—i— 1,xt,w)||2] in (4.12). If the function ¥

in (4.1) satisfies condition 5’ of Assumption 3.1, whether w in (4.1) has finite or
infinite variance, v in (6.6) is bounded, i.e.,
[0 < [¥(a +w)* + |p(a)* < c,
for some positive constant c. If the function ¥ in (4.1) satisfies condition 5 of As-
sumption 3.1 and w has finite variance, we get that variance of v in (6.6) is bounded
with ¢ (1 + |al?) for some positive constant c, i.e.,
Eflo*] <E[[¥(a +w)* + |¢(a)’] < Eler(1+ [a+w]*) + ¢} (1 + |a]*)]
<cr(1+ |af +Ellwf) + (1 +al*) < c(1+]af?),

where ¢; and ¢y are some positive constants. Thus, whether condition 5 or 5’ is
satisfied for the function ¥ in (4.1), variance of v in (6.6) is bounded with ¢ (1 + |a|?)
for some positive constant c¢. Hence, we have that for ¢*, n* defined in (4.3)

E']<d(1+V(x))

Eln'] < "(1+V(x)),
for all t = 0,1, ..., where ¢’ and ¢” are some positive constants.

C. Mutually dependent observation noise and mutually dependent com-Ji
munication noise. In this subsection we relax assumptions on observation and com-
munication noises and show that Theorems 4.2 and 4.3 continue to hold. We let As-
sumptions 1-6 still hold except those which overlap with the following generalizations:

e The observation noise n’ has the joint probability density function p, such
that:

[ laltaia <o, [ apaia,
acRN acRN
and p,(a) = po(—a), for all a € RV,
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A (possibly) different nonlinear function ¥,; : R — R is assigned to each
agent ¢. Each function ¥, ; obeys Assumption 3.1.
e The communication noise £§j has the joint probability density function pe i;
such that:
llal|pe,ij(a)da < oo, / apc;j(a)da=0,
a€eRM acRM
and pc,ij(a) = peij(—a), for all a € RM.
o A different nonlinear function ¥ ;;,: R — R is assigned to each arc (i,5) €
E,4 and to each element £ =1, ..., M of the communication noise [Sm ¢ Each
function W ;;, obeys Assumption 3.1.

This means that observation noises of agents ¢ and j can be mutually dependent.
Moreover, the communication noises £§j may have mutually dependent elements [ﬁﬁj]g,
for £ = 1,..., M. Further, here, for simplicity, we assume that observation and com-
munication noises are mutually independent.

Let us define functions ¢, ; : R - Rfori=1,2,...,N and ¢;;,: R — R for (i,j) € E
and ¢ = 1,2,..., M in the same manner as in (4.1), i.e.,

(6.9) poi(a) = / Vi@ + w)po.s(w)duw,

(6.10) Peijela) = /‘I’C,ij,e(a + w)pe,ije(w)dw.

Here, p, ; and pe ;¢ are the marginal probability density functions of random variables
n! and [£fj]g, respectively. Following same steps as in the proofs of Theorems 4.2
and 4.3, almost sure convergence and asymptotic normality can be shown. In the
following, we emphasize only differences. First of all, algorithm (4.4) gets replaced by

b b
x ! = x' — q (aL%(xt) ~H'g,( H((1yv®6") —x")) -H¢' + a”t> :

Now, the map i‘wc (RMN 4 RMN g

i"Pc (x) = ]GZS:Z, Pe,ij (Xi - xj)

for any x € RMY where for all (i,j) € F, function ¢_;; : RM — RM is given
with @i (Y1, Y2, ¥M) = [#eii1(¥1)s Peij2(¥2), - Peigmr(Yar)] T, for y € RM,
functions ¢c;je(a) for (i,j) € E and £ = 1,2,...,M are given by (6.10). More-
over, for y € RY, the map ¢, : RN — RY is now given with ¢ (y1,y2, ..., YN) =
[0.1(¥1)s Po2(¥2), -y Po.n(yn)] |- Using the same notation, sequences ¢* € RY and
n' € RMN are appropriate versions of the sequences defined in (4.3). If we define
quantities r(x) and 4(¢ + 1, x,w) as follows

(6.11) () = — L (x) ~ H g, (H (x — (1 @0°)))

b
(612) ’?(t_'_lvxaw) = _777t+HTCt7

a
it is easy to see that all conditions B1-B5 and C1-C5 from Theorem 6.1 still hold
(see [15]). The only difference occurs in the asymptotic covariance matrix S, i.e., in
S, which is now given by

SO = EK,,] +H KcH,
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where K,, € RV*N and K¢ € RMVXMN are the effective covariance matrices of com-
munication and observation noises after passing through the appropriate nonlinearities
(analogously defined as cross-covariance matrix K., in Theorem 4.3).

D. Heavy-tailed noise and identity function. In this subsection, we show
that the algorithm (3.1) does not converge in the presence of heavy-tailed observation
and communication noise if at least one of the nonlinearities ¥, and ¥, is the identity
function. This means that in the presence of heavy-tailed observation and communi-
cation noises, the algorithms from [15, 18] do not converge, in fact, they exhibit an
infinite variance solution sequence.

THEOREM 6.3 (Infinite variance). For the sequence of iterates {x'},t = 1,2,...,
generated by (3.1), we have that E[||x! — 1y ® 0*||?] = co,t = 1,2, ..., if at least one
of the following statements is true.

1. Punction U, is the identity function, i.e., ¥,(a) = a and the observation
noise has infinite variance, i.e., fa2d<I>o = +00.

2. Function V. is the identity function, i.e., V.(a) = a and the communication
noise has infinite variance, i.e., fazdtbc = +o00.

Proof. For simplicity, we assume that if statement 1 holds there is no communi-
cation noise, i.e. §;; =0 for all (i,j) € E4 , and vice versa, if statement 2 holds we
assume that there is no observation noise, i.e., n = 0. If statement 1 holds, in the
absence of communication noise, the algorithm (3.2) can be written as

xt=xt — oy (bL\pC (x)-H" (z' — th)>
a

If we define ! = x! — 1y ® ", t = 1,2, ..., we have that e*! = Ft(e!) + a;H n?,
where function F* : RMY — RMN js given by F'(y) = (I+ o,H'H)y — oy 2Ly (y),
for y € RMN | Therefore, we have that
le™ 1|1 = |[F*(e")[|* + 20 (F*(e")) "Hn’ + of |[H n’||?
> 20, (HF*(e")) 'n' + o2[H n'|]%,
and using the fact that e’ and n® are independent, we have that
Efle”™*|*] > ofE[|H n’||?] = oo,

which completes the proof of statement 1. Proof of statement 2 follows directly from
Appendix B in [15]. d

E. Hypothetical variant of algorithm from [1]. Firstly, we give an overview
of algorithm that is proposed in [1], for more information see [1]. They considered
a network of N agents where each agent i = 1,2,..., N at each time t > 0 collects a
linear transformation of unknown vector parameter w’ € RM corrupted by noise as
follows

di (t) = umwo + (O (t),
where u; ; € RM is a row regression vector and v;(t) € R is wide-sense stationary zero-
mean impulsive noise process with variance Ui,r They introduced an agent-dependent
and time-varying error nonlinearity, h; ¢(e;(t)), into the adaptation step and proposed
following algorithm

Y, = W1+ pin hig(ei(t)),
(6.13) Wit = Z iy

KGNi

This manuscript is for review purposes only.



1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

1177

1178
1179

1180

1181

1182
1183
1184

1185

1186

1187

1188

1189

NONLINEAR CONSENSUS+INNOVATIONS UNDER HEAVY-TAILED NOISES 29

where p; is a step size parameter, N is the set of agents connected to agent 4 including
himself and ay; are weighting coefficients. For the error nonlinearity h; +(e;(t)), they
set to be a linear combination of B; > 1 preselected sign-preserving basis functions,
Le., hii(ei(t)) = o ;4 (ei(t)). As it is said in [1], if agent i were to run the sand-
alone counterpart of the adaptive filter in (6.13), then the optimal nonlinearity that

minimizes i-th agent MSE is given by hi%'(z) = —zig; in terms of the pdf of the
error signal.
Even though the pdf is not available in practice, for the purpose of comparing algo-
rithms in the specific numerical example when we know pdf, we introduce hypothetical
variant of algorithm, by finding optimal a?}zt, for each agent 4 at each time t, i.e.,
ot = argmin RS} (ei(t)) — hia(es(t)))?
it

F. Derivations and numerical illustrations for Example 1. Derivation for

the average per-agent asymptotic variance 0% = % Tr(S) follows

1 i 1 i
O'%; = ﬁTr(a2 / EE”SOEE”dv) = N 2h2 / (e 22”dv)
0 0

2 272
osh

1 2
- h2 N (1—2ah? (0 vd _ )
e / ‘ "7 2ah2g(0) — 1

N

Integral in the last equality converge for a >

W'
Ifa=a(B) = W@O)(B) + €, for some constant € > 0, we have that
2 1 € 2
9 <2h2 7(0) +€) gghQ (l-zii;wiz%g))) ) UCZ)hQ
o = =
2 (m + e) h2n(0) —1 2 (m + e) h2! (0) — 1
14225/, (0)e | 2
B ( 2h2¢i(70) ) ooh? B (1+2h2apg(0)e)20§

142020 (0)e—1 8hipl(0)3e

Next, we validate that Blim 0% = +o0. It is suffice to show that hm (0)3 = 400,
—0t

2 4 2 2
i 5 o2 4h%eo 4h”e
SINCe 0p = gRar(0)% + 8hZpl (0)2€ + 8h4 (0)6'

B? f tanh? (%) f (w)dw

om

lim % __ im — = [E =t,dw = dt]
B0+ 0L (03 BSOY /100 s 'p 7
(‘L Cosh%("[;)f(w)dw>
B? [ tanh®(%)f(w)dw
" oot too 3
B3 ( [ COShZ(w)f(Bw)dw>
+o0 N
J tanh® (%) f(w)dw
= lim —= = +o0,

B0+ +oo 3
B ( f COSth(w)f(Bw)dw>
00
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+oo +oo

. . 2/w — ] — 1 —

since ]311_{18+ J;o tanh”(%)f(w)dw = 1 and Bh—>HO1+ = 7{(} COshz(w)f(Bw)dw < +o0.

We now prove that both of the functions o2 and ¢/, (0) are increasing function with
respect to B. Suppose that B; < By, then we have that

w w

B% tanhQ(E) < B% tanhz(g),

1 1

<
2/ w 20w\’
cosh”(g-)  cosh™(gz;)
for all w € R. Moreover, since f(w) > 0 for all w € R, we have that

BY tanh®( ) f(w) < B tanh® () f(w),
1 1

— o (W) < —5 =~ f(w),
coshQ(B—l) cosh2(3—2)
for all w € R. Therefore, we have that
+o00 +oo
w2(Br) = [ Bt (G f(widw < [ B tank(G0) f(w)dw = o3(Ba)
1 2

“+o0 —+o0

1 1
7 (0)(B :/7 wdw</7 w)dw = ¢, (0)(Bz).
OB = | i) o = OB)
We now compare, in the presence of heavy-tailed observation noise with pdf as in (5.3)
for B = 2.05, the proposed algorithm (5.2) for the optimal choice of B* with the
method from [1] and its hypothetical variant (see Appendix E). For those methods we

set that B, = 2, ¢;.1(x) = z and ¢, o(x) = tanh(x) for all agents. Furthermore, we set

that weighting coefficients are chosen according to a;; = ZAiji“’ where A = A + L.
LEN;

Moreover, for the smoothing recursions, zero initial conditions are assumed, v; is set

to 0.9 for every agent i and € = 1072.

Figure 5a shows Monte Carlo estimation of MSE for step size oy = f_%l and the
Figure 5b shows Monte Carlo estimation of MSE for step size a; = t_%l As it can
be seen, the hypothetical variant of the method from [1] outperforms the proposed
one in both of the scenarios. However, that is because with the hypothetical variant
of [1] we optimize the choice of the nonlinearity for each agent at each time, whereas
the proposed algorithm (5.2) is optimized only by average per-agent asymptotic vari-
ance. Moreover, we see that the method from [1] is not as robust as the proposed
algorithm (5.2) with respect to the choice of the step size oy (constant a).

G. Proof of the assertion in Remark 4.13. Here, we modify Theorem 3.1
from [8] and make it applicable to probability density functions that satisfy Assump-
tion 2.2. We will show that

1,2 THe
R eM?<In20
(6.14) sup P (16 — o] > M In20 >,
pep{\ie t(ln 2(5 — 1)
for any 0* € R, ¢ € (0, %), where ’Plj\ﬁ[re C P denotes the subclass of all pdfs from

P such that 1 + e-central moment equals M for e € (0,1). Therefore, using Markov
inequality, we get
~ l1—e
sup tE[|0; — 0*|*] > it T,

PEPM,
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Method from [1]
=== Hip. method from [1]

Method from [1]
=== Hip. method from [1]

g 0 === Proposed g 2 === Proposed
= =
L 2
£ Eo
£ £
= =
© (]
o -2
o ~— o v —
T s, \N"“"-Am-q.m, S
-2 — -4 =
0 1 2 V] 1 2
t x10% t x10*
() (b)

Fic. 5. (a) Monte Carlo-estimated per-sensor MSE error on logarithmic scale for the algo-
rithm (5.2) for optimal B* and for algorithm and its hypothetical variant from [1] for a = 0.5 (b)
Monte Carlo-estimated per-sensor MSE error on logarithmic scale for the algorithm (5.2) for opti-
mal B* and for algorithm an(é its hypothetical variant from [1] for a =1

12 T+e
for ¢; = § &AL n20 . Using that P4, C P and taking the supremum with

respect to t we get (4.23).
To show that (6.14) holds, we follow the same idea as in [8]. Let us consider the
class Py _ = {p4+,p_} of probability density function p; and p_ such that p4 and p_

are probability density functions of uniform random variables on [”ZT_”, 1’2%] and on
[#, %], respectively, for p € (0,1). It is easy to see that means of probability

density functions p; and p_ are 6, = % and 0_ = —%, respectively. Moreover,

1 + e-th central moment of both pdfs is equal to
e+1
p
1 __
(6.15) 2¢+1 (e + 2)
Let (X;,Y;),5 = 1,2,..,t be iid. pairs random variables such that p, is pdf of

Xy, and Vi = Xy if Xy € T = [252 229 and ¥; = —X, if X, ¢ I. Notice that
probability density function of Y7 is p_. Since we have that P{X; € I} =1 — p, for
Xt = (X1, X2,..., X;) and Yt = (Y1, Y5, ..., Y;), we have that

P{X'=Y"} = (1-p)"
Using that 1 —p > eT™7, we have that P{X* = Y'} = (1 — p)! > 26, if p < Jn2
Setting that p := %, we have that p € (0,1) for all ¢ = 1,2,... and § € (0, 3).

Let 0, = ét() be any estimator, then we have that
n t p2 é Yt 0 p2
max (P{|0t(X )= 0, > 5},P{| (YY) 0| > 2})

1 N P> A P>
S 2 £y b~ ty b~
2]P{|0t(X ) 9+| > B) or \Qt(Y ) 07| > }

> JP{B(XY) = (7))

1
> §]P’{Xt =Y'} >4
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e+1 e+1

p2) 2 p2) 2
Finally, using (6.15) we get that ( 2 ) > (fl) = M > Mp?, which gives us
2V2 2% (e41)

that % > (8%M H p) B and therefore we have that

€

t(In2§ — 1)

X FMim26\
max IE”{|9t(Xt)—0+|><8 - > }

. 8102 mas\ T
1y — - >
BlI6.r") — 0| > (t(ln26— 1)) e

Since we have that Py _ C P, it follows that (6.14) also holds.

H. Proof of extensions in Remark 4.14. For compact notation, we set
that H and H! are the N x (M N) matrices whose i-th row vectors are equal to
[0,...,0,(h;)",0,...,0] and [0,...,0,(l~1§)—'—,07...,0]7 respectively. Hence, for Hf =
H + ﬁt, we have that (4.24) can be written, in compact form, as
(6.16) 2 =H'(1y®0")+n' =H(1y ® 6*) + H (1y ® 8") + n’.

Under this setting, we modify algorithm (3.1) such that, at each time ¢t = 0,1, ..., ,,
each agent i updates its estimate x! according to

b _ _
(6.17) xH=xt —a; | = Z U, (x}— X; + £fj) - h; ¥, (Zf - hiTXf)
a
JEQ;

Assuming that all Assumptions 2.1-3.1 still hold (except those which overlap and
are hence replaced with assumptions in Remark 4.14), we show that the results in
subsections 4.2, 4.3 and 4.4 continue to hold for algorithm (6.17). Following the same
idea as in Section 4, we write algorithm (6.17), in compact form, by:

(6.18) xt =xt — o (bL\I,c (x) — ﬁT\IIO (zt — th))
a
Substituting (6.16) into (6.18), we get that
b _ _ N _
xt+ = xt — q (L\pc (x)—H ¥, (H (1y ©0°) + H (1y ©0%) +nt — th)>
a

b . __ ~
=x'— o (an,C(x) ~H'w, (H (1y®0" —x') +H' (1y ® %) +nt)> .
Recalling n* € RMN from (4.3) and defining ¢' € RY by
¢ =, (H(1y 20" —x') +H (1y ©0%) +n') — ¢, (H((1y ©6") - x))
algorithm (6.18) can be written by

(6.19) xt =xt — ((Z;L({,C (x") — ﬁTgoo (ﬁ ((1N ®0") — xt)) — ﬁTCt + Znt> ,

Since random variable HY (1y ® 0") + n’ satisfies Lemma 6.2, the rest of the proofs
are same as in the Section 4.
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