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Abstract. We consider distributed recursive estimation of consensus+innovations type in the6
presence of heavy-tailed sensing and communication noises. We allow that the sensing and commu-7
nication noises are mutually correlated while independent identically distributed (i.i.d.) in time, and8
that they may both have infinite moments of order higher than one (hence having infinite variances).9
Such heavy-tailed, infinite-variance noises are highly relevant in practice and are shown to occur,10
e.g., in dense internet of things (IoT) deployments. We develop a consensus+innovations distributed11
estimator that employs a general nonlinearity in both consensus and innovations steps to combat12
the noise. We establish the estimator’s almost sure convergence, asymptotic normality, and mean13
squared error (MSE) convergence. Moreover, we establish and explicitly quantify for the estimator14
a sublinear MSE convergence rate. We then quantify through analytical examples the effects of15
the nonlinearity choices and the noises correlation on the system performance. Finally, numerical16
examples corroborate our findings and verify that the proposed method works in the simultaneous17
heavy-tail communication-sensing noise setting, while existing methods fail under the same noise18
conditions.19
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1. Introduction. We consider a distributed estimation problem where a net-23

work of agents cooperates to estimate an unknown static vector parameter θ∗ ∈24

RM . Specifically, we are interested in consensus+innovations distributed estimation,25

e.g., [18, 16, 17]. With consensus+innovations, each agent iteratively updates its un-26

known parameter’s estimate by 1) exchanging its estimate with immediate neighbors27

in the network; and 2) assimilating a newly acquired observation (measurement).28

Consensus+innovations distributed estimators have been extensively studied, e.g.,29

[18, 16, 17]; see also [20, 22, 23, 27, 30, 24, 38] for related diffusion-type and other30

methods. Typically, such distributed estimators exhibit strong convergence guaran-31

tees under various imperfection models (noises) in 1) sensing (observations) and/or32

2) inter-agent communications. For example, reference [18] establishes almost sure33

(a.s.) convergence and asymptotic normality of the estimators developed therein.34

The authors of [18] allow for an observation noise with finite variance and a network35

model that accounts for random link failures and dithered quantization (effectively an36

additive noise with finite variance). Reference [16] considers consensus+innovations37

distributed estimation in the presence of random link failures without quantization or38

additive noise, and it develops estimators that are asymptotically efficient, i.e., that39

achieve the minimal possible asymptotic variance. The authors of [17] propose adap-40
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2 M. VUKOVIC, D. JAKOVETIC, D. BAJOVIC AND S. KAR

tive asymptotically efficient estimators, wherein the innovation gains are adaptively41

learned during the algorithm progress. Consensus+innovations distributed detection42

and related distributed detection methods have also been considered, e.g., [25, 3, 2, 14].43

The above distributed estimation and distributed detection-related works typically as-44

sume that the noises have finite moments of a certain order greater than two, and45

hence they have finite variance.46

It is highly relevant to investigate distributed estimators in the presence of heavy-47

tailed communication and sensing noises, as they arise in many application scenarios.48

For example, edge devices in Internet of Things (IoT) systems or sensor networks can49

be subject to noise distributions that may not have finite moments of order higher50

than one, e.g., [6, 31, 12, 37, 11, 7], like, e.g., symmetric α-stable noise distributions.51

This effect may occur due to interference, e.g., when wireless sensor network is rela-52

tively densely deployed. In this case, the signals of neighboring nodes interfere with53

each other and corrupt the signal to be received. References [10, 36] analyze the prob-54

ability distribution of the interference and demonstrate that it has heavy-tails. More55

precisely, [10, 36] show that the interference power has an alpha-stable distribution56

in a network with infinite radius and no guard zone when the interferers are placed57

according to a Poisson point process, where alpha depends on the path loss coefficient58

between the interferers and the receiver (see [10, 36] for details). Empirical evidence59

for the emergence of heavy-tail interference noise in certain IoT systems has been60

provided in [6].61

Moreover, observation and communication noises may be mutually correlated62

due to the common interference processes in the environment that the sensing and63

communication devices are exposed to.64

Several recent works [19, 21, 35, 33, 5, 1, 4, 26] consider distributed estimation65

methods in the presence of impulsive observations noise,1 but still assuming a finite66

noise variance and no communication noise. For example, reference [19] introduces a67

method based on Wilcoxon-norm; [21] utilizes a Huber-loss function; and [35] adopts a68

mean error minimization approach. Robust distributed estimation methods based on69

adaptive subgradient projections are considered in [33, 5]. To cope with the impulsive70

observation noise, several references employ a certain nonlinearity in the innovation71

step. Reference [1] develops a method that adaptively learns an optimized nonlinearity72

at the innovation step for each agent in the network. Reference [4] employs a satura-73

tion nonlinearity in the innovation step to cope with measurement attacks. Further74

results on distributed estimation under impulsive observations noise can be found in a75

recent survey [26]. Very recently, we have developed a consensus+innovations distrib-76

uted estimator [15] that provably works under a heavy-tailed communications noise77

and a light-tailed observations noise. Specifically, under the assumed setting, [15]78

establishes almost sure convergence and asymptotic normality of the method therein.79

However, [15] is not concerned with mean squared error (MSE) rate analysis of the80

method. While asymptotic normality is a useful result that provides the algorithm’s81

rate of convergence (in the weak convergence sense) asymptotically, it does not capture82

the (MSE) algorithm behavior in non-asymptotic regimes.83

In summary, we identify for the current literature the following major gaps with84

respect to design and analysis of distributed estimation methods under heavy-tailed85

1As explained in, e.g., [1], an impulsive noise may be described as one whose realizations contain
sparse, random samples of amplitude much higher than nominally accounted for. Impulsive noise
may have a finite or infinite variance. Existing works on distributed estimation in impulsive noises
assume a finite noise variance.
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noises. 1) All existing works assume a finite observations noise variance. That is, even86

when impulsive observation noise is assumed, existing works still require the variance87

of the noise to be finite. This assumption can be restrictive and is violated for several88

commonly used heavy-tail noise models like α-stable distributions [11]. 2) No existing89

work simultaneously handles heavy-tailed (infinite-variance) sensing and heavy-tailed90

(infinite-variance) observation noises. 3) MSE convergence rate analysis has not been91

developed for distributed estimation in the presence of either infinite-variance sens-92

ing and/or infinite-variance communication noises. 4) Existing works on distributed93

estimation in the presence of infinite-variance (either sensing and/or communication94

noises) assume mutually independent sensing and communication noises.95

Contributions. In this paper, we close the gaps identified above by developing a96

nonlinear consensus+innovations distributed estimator that provably works under the97

simultaneous presence of correlated heavy-tailed (infinite variance) observation and98

communication noises. We allow for a very general model of the sensing and commu-99

nication noises, only assuming that they exhibit symmetric zero-mean distributions100

with finite first moments. Hence, the variances of both sensing and communication101

noises may be infinite. Moreover, we allow that, for a fixed time instant t, the ad-102

ditive sensing and communication noises may be mutually dependent, while they are103

both independent identically distributed (i.i.d.) in time. The proposed estimator104

employs a generic nonlinearity both at the innovations and the consensus terms. The105

encompassed nonlinearities are very general and include a broad class of (possibly dis-106

continuous) odd functions, such as the component-wise sign and clipping functions.107

We establish for the proposed estimator almost sure convergence, asymptotic normal-108

ity, and we explicitly evaluate the corresponding asymptotic variance. Furthermore,109

we establish for the proposed method, under a carefully designed step size sequence,110

a MSE convergence rate O(1/tκ), and we quantify the rate κ ∈ (0, 1) in terms of the111

system parameters. In addition, we quantify through analytical examples the effects112

of correlation between sensing and observation noises, and we demonstrate how the113

derived asymptotic covariance results may be used as a guideline to optimize the114

employed nonlinearities for a problem at hand. Finally, we compare the proposed115

method with existing works in [1] and [15], both through analytical examples and116

by simulation. Most notably, we show that the existing methods fail to converge117

under the simultaneous presence of heavy-tailed (infinite-variance) observation and118

communication noises, while the proposed method provably works in the heavy-tailed119

setting.120

Paper organization. Section 2 provides a description of the distributed esti-121

mation model that is considered and also gives all basic assumptions. In Section 3,122

we present the proposed nonlinear consensus+innovations estimator. Section 4 es-123

tablishes almost sure convergence, asymptotic normality and the MSE rate of the124

proposed distributed estimator. Section 5 presents analytical and numerical exam-125

ples. The conclusion is given in Section 6. Some auxiliary supporting arguments are126

provided in [34].127

Notation. We denote by R the set of real numbers and by Rm the m-dimensional128

Euclidean real coordinate space. We use normal lower-case letters for scalars, lower129

case boldface letters for vectors, and upper case boldface letters for matrices. Further,130

to represent a vector a ∈ Rm through its component, we write a = [a1,a2, ...,am]⊤131

and we denote by: ai or [ai], as appropriate, the i-th element of vector a; Aij or132

[Aij ], as appropriate, the entry in the i-th row and j-th column of a matrix A; A⊤133

the transpose of a matrix A; ⊗ the Kronecker product of matrices. Further, we use134

either a⊤b or ⟨a, b⟩ for the inner products of vectors a and b. Next, we let I, 0, and135
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1 be, respectively, the identity matrix, the zero vector, and the column vector with136

unit entries; Diag(a) the diagonal matrix whose diagonal entries are the elements of137

vector a; J the N × N matrix J := (1/N)11⊤. When appropriate, we indicate the138

matrix or vector dimension through a subscript. Next, A ≻ 0 (A ⪰ 0) means that139

the symmetric matrix A is positive definite (respectively, positive semi-definite). We140

further denote by: ∥·∥ = ∥·∥2 the Euclidean (respectively, spectral) norm of its vector141

(respectively, matrix) argument; λi(·) the i-th smallest eigenvalue; g′(v) the derivative142

evaluated at v of a function g : R → R; ∇h(w) and ∇2h(w) the gradient and Hessian,143

respectively, evaluated at w of a function h : Rm → R, m > 1; P(A) and E[u] the144

probability of an event A and expectation of a random variable u, respectively; and145

by sign(a) the sign function, i.e., sign(a) = 1, for a > 0, sign(a) = −1, for a < 0, and146

sign(0) = 0. Finally, for two positive sequences ηn and χn, we have: ηn = O(χn) if147

lim supn→∞
ηn

χn
< ∞.148

2. Problem model and basic assumptions. We consider a network of N149

agents (sensors), through which the parameter of interest θ∗ ∈ RM is to be estimated.150

At each time t = 0, 1, ..., each agent i = 1, 2, ..., N observes parameter θ∗ following151

the linear regression model:152

zti = h⊤
i θ

∗ + nt
i.(2.1)153154

Here, zti ∈ R is the observation, hi ∈ RM is the deterministic, non-zero regression155

vector known only by agent i and nt
i ∈ R is the observation noise. The underlying156

topology is modeled via a graph G = (V,E), where V = {1, ..., N} is the set of agents157

and E is the set of links, i.e., {i, j} ∈ E if there exists a link between agents i and j.158

We also define the set of all arcs Ed in the following way: if {i, j} ∈ E then (i, j) ∈ Ed159

and (j, i) ∈ Ed. We denote by Ωi = {j ∈ V : {i, j} ∈ E} set of neighbors of agent i160

(excluding i) and by D = Diag({di}) the degree matrix, where di = |Ωi| is the number161

of neighbors of agent i. The graph Laplacian matrix L is defined by L = D − A,162

where A is the adjacency matrix, which is a zero-one symmetric matrix with zero163

diagonal, such that, for i ̸= j, Aij = 1 if and only if {i, j} ∈ E. Let us denote by164

(Ω,F ,P) the underlying probability space.165

We make the following assumptions.166

Assumtion 2.1. Network model and Observability:167

1. Graph G = (V,E) is undirected, simple (no self or multiple links) and static;168

2. The matrix
∑N

i=1 hih
⊤
i is invertible;169

The condition 2 in Assumption 2.1 ensures that (2.1) is observable, i.e., a centralized170

estimator (e.g., least squares) that collects all zti , i = 1, 2, ..., N, for all t, and has171

knowledge of all vectors hi, i = 1, 2, ..., N, is consistent.172

Assumtion 2.2. Observation noise:173

1. For each agent i = 1, ..., N , the observation noise sequence {nt
i} in (2.1), is174

independent identically distributed (i.i.d.);175

2. At each agent i = 1, ..., N at each time t = 0, 1, ..., noise nt
i has the same176

probability density function po.177

3. Random variables nt
i and ns

j are mutually independent whenever the tuple178

(i, t) is different from (j, s);179

4. The pdf po is symmetric, i.e. po(u) = po(−u), for every u ∈ R, and po(u) > 0180

for |u| ≤ co, for some constant co > 0;181

5. There holds that with
∫
|u|po(u)du < ∞.182

If there is an arc between agents i and j, i.e., (i, j) ∈ Ed, we denote by ξtij communi-183

cation noise that is injected when agent j communicates to agent i at time instant t184
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(see ahead algorithm (3.1)).185

Assumtion 2.3. Communication noise:186

1. Additive communication noise {ξtij}, ξ
t
ij ∈ RM is i.i.d. in time t, and inde-187

pendent across different arcs (i, j) ∈ Ed.188

2. Each random variable [ξtij ]ℓ, for each t = 0, 1..., for each arc (i, j), for each189

entry ℓ = 1, ...,M , has the same probability density function pc.190

3. The pdf pc is symmetric, i.e. po(u) = pc(−u), for every u ∈ R and pc(u) > 0191

for |u| ≤ cc, for some constant cc > 0;192

4. There holds that
∫
|u|pc(u)du < ∞.193

Remark 2.4. Notice here that from the symmetry of the probability density func-194

tions po and pc, it follows that both of the distributions are zero mean. Moreover,195

notice that we do not assume that observation and communication noises are mutually196

independent for a fixed t. However, they are both i.i.d. in time.197

Remark 2.5. Condition 2 in Assumptions 2.2 and 2.3 can be relaxed in the sense198

that it can be assumed that nt has joint probability density function po and ξtij has199

the joint probability density function pc,ij . (see Appendix C in [34]). The reason why200

there is condition 4 in the Assumption 2.2 and condition 3 in the Assumption 2.3 will201

become clear later.202

For future reference, a compact vector form of (2.1) is:203

zt = H (1N ⊗ θ∗) + nt,(2.2)204205
where, zt = [zt1, z

t
2, ..., z

t
N ]⊤ ∈ RN is the observation vector, H ∈ RN×(MN) is the206

regression matrix whose i-th row vector equals [0, ...,0,h⊤
i ,0, ..,0] ∈ RMN , where the207

i-th block of size M equals h⊤
i , and the other M -size blocks are the zero vectors; and208

nt = [nt
1, n

t
2, ..., n

t
N ]⊤ ∈ RN is the noise vector at time t.209

3. Proposed algorithm. In order to estimate the unknown parameter θ∗ ∈210

RM , in the presence of heavy-tailed observation noise and heavy-tailed communica-211

tion noise, each agent uses a nonlinear consensus+innovations strategy. Therein, the212

impact of the two heavy-tailed noises is mitigated by nonlinearities that have been213

added to both consensus and innovation steps.214

In more detail, each agent i at each time t = 0, 1, ..., generates a sequence of estimates215

{xt
i}t≥0 of unknown parameter θ∗ by the following algorithm:216

xt+1
i = xt

i − αt

 b

a

∑
j∈Ωi

Ψc

(
xt
i − xt

j + ξ
t
ij

)
− hiΨo

(
zti − h⊤

i x
t
i

) .(3.1)217

218
Here, αt is a step-size, and a, b > 0 are constants. We consider a family of decaying219

step-size choices αt = a/(t+ 1)δ, δ ∈ (0.5, 1]. As shown later, the step-size (values of220

a and δ) should be designed appropriately in order for good properties (e.g., a.s. con-221

vergence, MSE rate guarantees) of the algorithm to hold. Functions Ψo : R → R and222

Ψc : RM → RM are non-linear functions and function Ψc operates component-wise by223

abusing notation, i.e., for y ∈ RM , we set that Ψc(y) = [Ψc(y1),Ψc(y2), ...,Ψc(yM )].224

Also, functions Ψc and Ψo satisfy Assumption 3.1. We compare the proposed method225

(3.1) with the LU scheme in [18] and the scheme in [15]. Compared with these226

schemes, (3.1) introduces a nonlinearity in the innovation step as well. LU is obtained227

from (3.1) by setting both of the nonlinearities Ψo and Ψo to identity functions and228

δ = 1, the method in [15] is recovered from (3.1) by setting Ψo to the identity function229

and δ = 1.230
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Assumtion 3.1. Nonlinearity Ψ:231

The non-linear function Ψ : R → R satisfies the following properties:232

1. Function Ψ is odd, i.e., Ψ(a) = −Ψ(−a), for any a ∈ R;233

2. Ψ(a) > 0, for any a > 0.234

3. Function Ψ is a monotonically nondecreasing function;235

4. Ψ is continuous, except possibly on a point set with Lebesque measure of236

zero. Moreover, Ψ is piecewise differentiable;237

5. |Ψ(a)| ≤ c1, for some constant c1 > 0.238

6. Ψ is either discontinuous at zero, or Ψ(u) is strictly increasing for u ∈239

(−c2, c2), for some c2 > 0.240

As it will become clear ahead, the role of Ψc and Ψo is to lower the impact of the241

heavy-tailed noise that occurs in the regression model and in the communication242

between agents. As it is presented in [15], there are many nonlinear functions which243

satisfy Assumption 3.1. Now, we add more assumptions on the observation and244

communication noises through the following assumption.245

At each time t = 0, 1, ..., a compact vector form of algorithm (3.1) is246

xt+1 = xt − αt

(
b

a
LΨc

(x)−H⊤Ψo

(
zt −Hxt

))
.(3.2)247

248
Here, xt = [xt

1,x
t
2, ...,x

t
N ]⊤ ∈ RMN , map LΨc

(x) : RMN → RMN is defined by249

LΨc(x) =


...∑

j∈Ωi

Ψc(xi − xj + ξij)

...

 ,250

251
where, the blocks

∑
j∈Ωi

Ψc(xi − xj + ξij) ∈ RM are stacked one on top of another for252

i = 1, ..., N.253

4. Theoretical results. In subsection 4.1 we express algorithm (3.2) in more254

general way, that will be used in the following subsections. Subsection 4.2 presents255

the statement and the proof of almost sure convergence of algorithm (3.1). In sub-256

section 4.3 we state and prove asymptotic normality and calculate the corresponding257

asymptotic variance. Subection 4.4 presents and proves results on MSE rates.258

4.1. Setting up analysis. In this subsection we rewrite algorithm (3.1) in the259

form suitable for stating the main results. To do that, firstly we define function260

φ : R → R by261

φ(a) =

∫
Ψ(a+ w)p(w)dw,(4.1)262

263
where Ψ : R → R is a nonlinear function that satisfies Assumption 3.1, and p is a264

probability density function that satisfies Assumptions 2.2 or 2.3.265

Remark 4.1. The mapping φ has all key properties of function Ψ (see Lemma 6.2266

in Appendix B in [34], see also [29]). Moreover, it has a strictly positive derivative267

at zero, i.e., φ′(0) > 0, which is necessary to prove our results. The facts that268

the nonlinearity Ψ is discontinuous at zero or that it has a positive derivative at269

zero, together with condition 4 from Assumptions 2.2 and condition 3 from 2.3, are270

crucial to ensure that φ has a positive derivative at zero (see Appendix B in [34], see271

also [15, 29]). Notice that the requirement that the pdf p is positive in the vicinity272

of the zero is not restrictive, since it holds true for a broad classes of non-zero noise273

pdfs.274
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Next, we define functions φo : RN → RN , φc : RM → RM as φo(y1,y2, ...,yN ) =275

[φo(y1), φo(y2), ..., φo(yN )], φc(ŷ1, ŷ2, ..., ŷM ) = [φc(ŷ1), φc(ŷ2), ..., φc(ŷM )], where276

y ∈ RN , ŷ ∈ RM and functions φo and φc are transformations defined by (4.1)277

that correspond to Ψo and Ψc, respectively. For the a.s. convergence and asymptotic278

normality results, we will follow the stochastic approximation framework from [28, 18]279

(see Theorem 4 in Appendix A in [34]). That is, we represent algorithm (3.1) in280

the form suitable for stochastic approximation analysis. We start by substituting281

regression model (2.2) into algorithm (3.2), we get282

xt+1 = xt − αt

(
b

a
LΨc

(x)−H⊤Ψo

(
H (1N ⊗ θ∗) + nt −Hxt

))
.(4.2)283

284
Define ζt ∈ RN and ηt ∈ RMN by285

ζt = Ψo(H (1N ⊗ θ∗) + nt −Hxt)−φo

(
H
(
(1N ⊗ θ∗)− xt

))
, ηt =


...∑

j∈Ωi

ηt
ij

...

 ,

(4.3)

286

287
where ηt

ij = Ψc(x
t
i − xt

j + ξ
t
ij)−φc(x

t
i − xt

j). Now, since φ is defined by (4.1), it can288

be shown that E[ζt] = E[ηt] = 0, where the expectation is taken with respect to F289

(see Appendix B in [34]). Furthermore, we define function Lφc
: RMN → RMN as290

Lφc
(·) = LΨc

(·)−ηt, i.e., its i-th block of size M is
∑

j∈Ωi

φc(xi−xj). for i = 1, 2, ..., N.291

Finally, substituting (4.3) into (4.2), we rewrite algorithm (3.2) by292

xt+1 = xt − αt

(
b

a
Lφc

(xt)−H⊤φo

(
H
(
(1N ⊗ θ∗)− xt

))
−H⊤ζt +

b

a
ηt

)
.(4.4)293

294
Now, we are ready to establish following results.295

4.2. Almost sure convergence. We have the following Theorem.296

Theorem 4.2 (Almost sure convergence). Let Assumptions 2.1-3.1 hold and297

αt = a/(t + 1)δ, δ ∈ (0.5, 1]. Then, for each agent i = 1, ..., N , the sequence of298

iterates {xt
i} generated by algorithm (3.1) converges almost surely to the true vector299

parameter θ∗.300

Theorem 4.2 establishes almost sure convergence of the proposed algorithm (3.1),301

whether observation or communication noises have finite or infinite moments of order302

greater then one. On the other hand, if we set at least one of the functions Ψo,Ψc to303

be identity functions (and thus recover either the LU scheme from [18] or the method304

from [15]), the resulting method fails to converge (See Appendix D in [34]). In other305

words, the methods in [18] and [15] fail to converge under the simultaneous presence306

of heavy-tailed observation and communication noises.307

Proof. (Proof of Theorem 4.2)308

The proof consists of verifying conditions B1–B5 of Theorem 4 in [34] (See Appendix309

A in [34]). First, we define quantities r(x) and γ(t+ 1,x, ω) by:310

r(x) = − b

a
Lφc

(x)−H⊤φo (H (x− (1N ⊗ θ∗))) ,(4.5)311

γ(t+ 1,x, ω) = − b

a
ηt +H⊤ζt.(4.6)312

313
Here, ω denotes a canonical element of the underlying probability space (Ω,F ,P).314

Condition B1 holds because r(·) is BMN measurable and γ(t + 1, ·, ·) is BMN ⊗ F315

measurable for each t, where BMN is the Borel sigma algebra on RMN . Consider316

the filtration Ft, t = 1, 2, ..., where Ft is the σ- algebra generated by {ns}t−1
s=0 and317
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8 M. VUKOVIC, D. JAKOVETIC, D. BAJOVIC AND S. KAR

{ξsij}t−1
s=0. We have that the family of random vectors γ(t+ 1,x, ω) is Ft measurable,318

zero-mean and independent of Ft−1. Hence, condition B2 holds.319

We now show that condition B3 also holds. We use the following Lyapunov function320

V : RMN → R,321

V (x) = ||x− 1N ⊗ θ∗||2,(4.7)322323
which is clearly twice continuously differentiable and has uniformly bounded second324

order partial derivatives. The gradient of V equals ∇V (x) = 2 (x− 1N ⊗ θ∗). We325

must show that326

sup
x∈Sϵ

⟨r(x),∇V (x)⟩ < 0,(4.8)327

328
where Sϵ = {x ∈ RMN : ∥x− 1N ⊗ θ∗∥ ∈ (ϵ, 1/ϵ)}. For any x ∈ RMN , we have:329

⟨r(x),∇V (x)⟩ = 2 (x− 1N ⊗ θ∗)⊤
(
− b

a
Lφc

(x)−H⊤φo

(
H
(
xt − (1N ⊗ θ∗)

)))
330

= −2b

a
(x− 1N ⊗ θ∗)⊤ Lφc

(x)︸ ︷︷ ︸
T1(x)

− (H (x− (1N ⊗ θ∗)))⊤φo (H (x− (1N ⊗ θ∗)))︸ ︷︷ ︸
T2(x)

.

(4.9)

331

332
The terms T1(x) and T2(x) can be written respectively as333

T1(x) =
∑

{i,j}∈E, i<j

(xi − xj)
⊤
φc (xi − xj) =

∑
{i,j}∈E, i<j

g⊤φc (g) ,334

T2(x) =

N∑
i=1

ĝi φo(ĝi),335

336

where ĝ = H⊤φo (H (xt − (1N ⊗ θ∗))), g = xi − xj and g⊤φc (g) =
∑M

ℓ=1 gℓφc (gℓ).337

Using the fact that both of the functions φc and φo are odd functions, for which we338

have that φ(a) > 0 if a > 0, we have that ⟨r(x),∇V (x)⟩ ≥ 0 for all x ∈ RMN (see339

Appendix B in [34]). Moreover, recalling the fact that function φc is continuous at340

zero, and equal to zero only at zero, we have that T1(x) is equal to zero if and only if341

x− 1N ⊗ θ∗ = 1N ⊗m, for m ∈ RM (see Lemma 6 in Appendix B in [34]). We only342

consider the case when m ̸= 0, since from m = 0 we have that x = 1N ⊗ θ∗, which is343

not in the set Sϵ. However, for that choice of x− 1N ⊗ θ∗ we have that344

T2(1N ⊗ θ∗ + 1N ⊗m) = (H1N ⊗m)
⊤
φo (H1N ⊗m)345

=

N∑
i=1

(
h⊤
i m

)
φo

(
h⊤
i m

)
> 0,346

347
since h⊤

i m and φo

(
h⊤
i m

)
have the same sign. Hence, for all ϵ > 0 we have that348

sup
x∈Sϵ

⟨r(x),∇V (x)⟩ < 0. Thus, condition B3 also holds.349

Now we inspect condition B4. From equation (4.5) we have that350

∥r(x)∥2 ≤
∥∥∥∥ baLφc

(x− 1N ⊗ θ∗)
∥∥∥∥2 + ∥∥H⊤φo (H (x− (1N ⊗ θ∗)))

∥∥2 ≤ c1(1 + V (x)),

(4.10)

351
352

for some positive constant c1 (see Appendix B in [34]). Moreover, we have that353

∥γ(t+ 1,x, ω)∥2 ≤
∥∥∥∥ baηt

∥∥∥∥2 + ∥∥H⊤ζt
∥∥2(4.11)354

355
which leads to356

E
[∥∥γ(t+ 1,xt, ω)

∥∥2] ≤ c2(1 + V (x)),(4.12)357
358
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for some positive constant c2. Finally, we have that359

∥r(x)∥2 + E
[∥∥γ(t+ 1,xt, ω)

∥∥2] ≤ c3(1 + V (x)),360
361

for some positive constant c3. Setting that ϵ → 0+ in (4.8), for all x ∈ RMN , we have362

that ⟨r(x),∇V (x)⟩ ≤ 0. Thus,363

∥r(x)∥2 + E
[∥∥γ(t+ 1,xt, ω)

∥∥2] ≤ c3(1 + V (x))− k⟨r(x),∇V (x)⟩364
365

for every k > 0. Therefore, condition B4 also holds. Condition B5 holds by the366

definition of the algorithm (3.1). Thus, almost sure convergence is proved.367

4.3. Asymptotic normality. We now consider asymptotic normality of the368

proposed estimator (3.1). We have the following theorem.369

Theorem 4.3 (Asymptotic normality). Let Assumptions 2.1-3.1 hold. Consider370

algorithm (3.1) with step-size αt = a/(t + 1)δ, t = 0, 1, ..., a > 0, with δ = 1. Then,371

the normalized sequence of iterates {
√
t+ 1(xt − 1N ⊗ θ∗)} converges in distribution372

to a zero-mean multivariate normal random vector, i.e., the following holds:373 √
t+ 1(xt − 1N ⊗ θ∗) ⇒ N (0,S),374375

where the asymptotic covariance matrix S equals:376

(4.13) S = a2
∞∫
0

eΣvS0e
Σ⊤vdv.377

Here, S0 = b2

a2σ
2
c Diag ({di IM}) − b

aKc,oH − b
aH

⊤K⊤
c,o + σ2

oH
⊤H; σ2

o =
∫
|Ψo(w)|2378

dΦo(w) is the effective observation noise variance after passing through the nonlin-379

earity Ψo; σ
2
c =

∫
|Ψc(w)|2dΦc(w) is the effective communication noise variance after380

passing through the nonlinearity Ψc; Kc,o ∈ RMN×N is the effective cross-covariance381

matrix between the observation and the communication noise after passing through382

the appropriate nonlinearity, i.e., the (k, s) element of the matrix Kc,o is given by383

[(Kc,o)]ks =
∑

j∈Ωi

∫ ∫
Ψc(wijℓ)Ψo(wk)p

c,o
k,ijℓ(wijℓ, wk)dwijℓdwk. Here, ℓ satisfies the fol-384

lowing: s = M(i−1)+ℓ; and pc,ok,ijℓ is the joint probability density function for the k-th385

observation noise nk and the ℓ-th element of the communication noise [(ξij)]ℓ. We386

also recall the observation matrix H in (2.2); functions φc, φo appropriate versions387

of function φ in (4.1); and Σ = 1
2I− a( baφ

′
c(0)L⊗ IM +φ′

o(0)H
⊤H); here, a is taken388

large enough such that matrix Σ is stable.389

Remark 4.4. Notice that, for the assumed setting, σ2
c and σ2

o are finite. Also,390

Kc,o is finite, i.e., ∥Kc,o∥ < ∞, since we have that391

|
∫ ∫

Ψc(w1)Ψo(w2)dΦ
c,o| ≤

∫ ∫
|Ψc(w1)Ψo(w2)|dΦc,o <

1

2
σ2
c +

1

2
σ2
o .392

393

Remark 4.5. If we assume that observation and communication noise are mutu-394

ally independent, the only difference from the previous theoretical results occurs in395

the A(t,x), i.e., in the S0. Under this setting, matrix S0 is now equal to396

S0 =
b2

a2
σ2
c Diag ({di IM}) + σ2

oH
⊤H,397

398
which is expected, since the effective cross-covariance matrix Kc,o is now equal to399

zero.400

Theorem 4.3 establishes asymptotic normality of the proposed method. This is401

achieved with heavy-tailed observation and communication noise an the nonlineari-402

ties Ψo and Ψc with uniformly bounded outputs. Moreover, the theorem explicitly403

evaluates the corresponding asymptotic variance. When the two noises are mutually404

independent, Ψo is identity, and observation noise variance is finite, we recover the re-405
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10 M. VUKOVIC, D. JAKOVETIC, D. BAJOVIC AND S. KAR

sult in [15], Theorem 3.5, as a special case. That is, a notable difference with respect406

to [15] is the ability to handle here mutually correlated observation and communi-407

cation noises. The effect of correlation is complex in general, however, as shown in408

Section 5 later, generally a stronger positive noises correlation leads to a lower asymp-409

totic variance. Intuitively, at an extreme, a full positive correlation practically means410

that only one effective noise exists in the system, and hence it can be suppressed more411

easily. Further, note that Theorem 4.3 establishes a local asymptotic rate O(1/t) of412

xt to zero, in the weak convergence sense, when αt = a/(t + 1). We show later (see413

Theorem 4.6) that a global MSE rate O(1/tδ̂) with a lower (worse) degree δ̂ can be414

established when step-size αt = a/(t+ 1)δ, δ ∈ (0.5, 1), is used.415

We next discuss asymptotic efficiency2 of the proposed estimator. We first briefly416

review the relevant existing work to better position our results. First, consider the417

best linear centralized estimator xt
cent of θ

⋆, that has access to measurements from all418

sensors (nodes) n = 1, 2, ..., N at all times t = 0, 1, .... In the general case, addition-419

ally assuming that observation noise has finite variance, the best linear centralized420

estimator xt
cent is asymptotically normal and has the lowest asymptotic covariance421

matrix Scent among all estimators of θ⋆ when the only knowledge of observation422

noise is variance and no other information of noise distribution is known. Moreover,423

its asymptotic covariance matrix Scent attains the Cramér-Rao lower bound if the424

observation noise is Gaussian (see for example [17]). On the other hand, when the425

probability density function is known, the centralized estimator in [29] can be tuned to426

the pdf of the observation noise so that it achieves the Cramér-Rao bound. In the dis-427

tributed setting, when there is no communication noise, the authors of [17] develop an428

estimator which is asymptotically normal and has the optimal asymptotic covariance429

matrix Scent (optimal in the sense that the asymptotic covariance matrix is the same430

as for the best linear centralized estimator xt
cent). We now discuss the asymptotic431

covariance matrix S of the proposed estimator (3.1). This quantity depends on the432

system parameters, including network topology and communication noise. Therefore,433

in the general case, the proposed estimator (3.1) is not asymptotically efficient, i.e.,434

S ̸= I−1(θ⋆), where I(θ⋆) is the Fisher information matrix. However, with respect to435

the proposed distributed recursive estimator, we make the following observations. 1)436

First, the estimator is order-optimal in the weak convergence sense; that is, its (weak437

convergence sense) rate of error decay is the same as that of the asymptotically ef-438

ficient estimator. 2) The corresponding “convergence constant,” i.e., the asymptotic439

covariance, is different from that of the centralized Cramér-Rao-optimal estimator,440

and it is hence not optimal. We note that the paper provides major contributions441

with respect to state of the art, as it gives the first distributed estimator that ensures442

almost sure convergence in the presence of infinite variance correlated sensing and443

communication noises; moreover, its weak convergence sense rate of convergence is444

order-optimal. It remains an interesting future work direction to explore whether an445

optimal asymptotic covariance can be achieved in this setting via distributed estima-446

tors. In view of the results [29] for the centralized setting, it is likely that this cannot447

be achieved unless the nonlinearities are tuned to the noise pdfs that in turn have to448

be known.449

Proof. (Proof of Theorem 4.3)450

2An estimator yt of an unknown parameter θ⋆, for which we have that
√
t+ 1(yt − θ∗) ⇒

N (0,Σ), is said to be asymptotically efficient if S = I−1(θ⋆), where I(θ⋆) is the Fisher information
matrix. The Fisher information matrix represents the best achievable asymptotic covariance by any
estimator, as determined by the well-known Cramer-Rao bound (see [28]).
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We prove Theorem 4.3 in the same manner as Theorem 4.2 is proved, i.e., by verifying451

assumptions C1-C5 of Theorem 4 in [34] (see Appendix A in [34]). Function r(·)452

defined by (4.5) can be written as453

r(x) = − b

a
φ′
c(0)L⊗ IM (x− 1N ⊗ θ∗)− φ′

o(0)H
⊤H (x− 1N ⊗ θ∗) + δ(x),454

455
Here, mapping δ : RMN → RMN is given by:456

δ(x) = − b

a
Lδc

(x)−H⊤δo (H (x− 1N ⊗ θ∗)) .(4.14)457
458

Next, mapping Lδc
(x) : RMN → RMN is vector of size MN such that the i-th M -size459

block equals
∑

j∈Ωi

δc(xi − xj), i = 1, 2, ..., N, mappings δc : RM → RM , δo : RN →460

RN are component-wise maps of δc and δo are first order residuals that corresponds461

to φc and φo respectively, i.e., δc(y1,y1, ...,yM ) = [δc(y1), δc(y2), ..., δc(yM )]⊤ and462

δo(ŷ1, ŷ1, ..., ŷN ) = [δo(ŷ1), δo(ŷ2), ..., δo(ŷM )]⊤ for y ∈ RN , ŷ ∈ RM (see Appendix463

B in [34]).464

Thus, r(x) admits representation in (36) of Theorem 4 in [34] for B = − b
aφ

′
c(0)L ⊗465

IM − φ′
o(0)H

⊤H and mapping δ(·) defined by (4.14). Therefore, condition C1 holds.466

Since we use that αt =
a

t+1 , condition C2 trivially holds. Furthermore, Σ = aB+ 1
2I467

is stable if a is large enough, because matrix −B is positive definite (See [18]). Thus,468

condition C3 also holds.469

For A(t,x) = E
[
γ(t+ 1,x, ω)γ⊤(t+ 1,x, ω)

]
it is easy to show that470

lim
t→∞,x→θ∗

A(t,x) =
b2

a2
σ2
c Diag ({di IM})− b

a
Kc,oH− b

a
H⊤K⊤

c,o + σ2
oH

⊤H.471
472

Therefore, condition C4 also holds. To show that condition C5 holds, it is suffice473

to show that the family of random variables {∥γφ(t + 1,x, ω)∥2}t=0,1,..., ∥x−θ⋆∥<ϵ is474

uniformly integrable. To do that, follow the arguments as in e.g., [18] and [15].475

4.4. Mean squared error convergence. In this subsection, we state and prove476

a result on the mean squared error (MSE) convergence rate when both nonlinearities477

Ψo and Ψc satisfy part 5’ of Assumption 3.1, i.e., |Ψo| ≤ co, |Ψc| ≤ cc, for some positive478

constants co and cc. Moreover, we set the step size to αt =
a

(t+1)δ
, for δ ∈ ( 12 , 1). We479

have the following theorem.480

Theorem 4.6 (MSE convergence). Let Assumptions 2.1-3.1 hold. Then, for481

the sequence of iterates {xt} generated by algorithm (3.2), provided that the step-size482

sequence {αt} is given by αt = a/(t + 1)δ, a > 0, δ ∈ (0.5, 1), there exists δ̂ ∈ (0, 1)483

such that E[∥x− 1N ⊗ θ∗∥2] = O(1/tδ̂).484

Theorem 4.6 establishes a MSE convergence rate of the proposed estimator (3.2) under485

the simultaneous presence of heavy-tailed (possibly infinite variance) observation and486

communication noises, when both the observation and communication nonlinearities487

have uniformly bounded outputs. This is in contrast with recent studies on distributed488

estimation in heavy-tailed noises like [15] that only establishes a.s. and asymptotic489

normality results. We refer to the proof of Theorem 4.6 for the exact value of the490

convergence rate power δ̂.491

Setting up the proof. We now prove Theorem 4.6 through a sequence of492

intermediate results (Lemmas). Recall quantities r(·), γ(·, ·, ·) and V (·) from (4.5),493

(4.6) and (4.7) respectively. The proof will be based on establishing a sufficient decay494

on quantity E[V (xt)]. First, notice that algorithm (4.4) can be written as495

xt+1 = xt + αt

(
r(xt) + γ(t+ 1,xt, ω)

)
.496497
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Moreover, we have that498

V (xt+1) = V (xt) + 2αt

(
xt − 1N ⊗ θ∗

)⊤ (
r(xt) + γ(t+ 1,xt, ω)

)
499

+ α2
t ∥r(xt) + γ(t+ 1,xt, ω)∥2500

= V (xt) + 2αt

(
xt − 1N ⊗ θ∗

)⊤ (
r(xt) + γ(t+ 1,xt, ω)

)
+ α2

t c
′,501502

for positive constant c′ = ∥r(xt) + γ(t + 1,xt, ω)∥2 < ∞. Therefore, taking a condi-503

tional expectation with respect to Ft, we have:504

E[V (xt+1)|Ft] = V (xt) + 2αt

(
xt − 1N ⊗ θ∗

)⊤
r(xt) + α2

t c
′.(4.15)505506

Also, from equation (4.9), it follows that507 (
xt − 1N ⊗ θ∗

)⊤
r(xt) = − b

a
T1(x

t)− T2(x
t).(4.16)508

509
We next need to show that the quantity in (4.16) is “sufficiently negative”, relative510

to quantity V (xt). This is achieved through a sequence of lemmas. First, we upper511

bound quantities ∥xt∥ and ∥xt − 1N ⊗ θ∗∥.512

Lemma 4.7. Let Assumptions 2.1-3.1 hold. Then, for the sequence of iterates513

{xt} generated by algorithm (3.2), provided that the step-size sequence {αt} is given514

by αt = a/(t+ 1)δ, a > 0, δ ∈ (0.5, 1), we have that, for any outcome ω:515

∥xt∥ ≤ gt = ∥x0∥+
(
b
√
MNdcc + a ∥H∥

√
Nco

) t1−δ

1− δ
,(4.17)516

∥xt − 1N ⊗ θ∗∥ ≤ g′t = ∥x0 − 1N ⊗ θ∗∥+
(
b
√
MNdcc + a ∥H∥

√
Nco

) t1−δ

1− δ
.

(4.18)

517
518

Consequently, ∥H (xt − 1N ⊗ θ∗) ∥ ≤ ∥H∥ g′t.519

Proof. Using the boundness of the nonlinearities, we have that ∥LΨc(x)∥2 ≤520 √
MNdcc and ∥H⊤Ψo (H (1N ⊗ θ∗ − xt) + nt) ∥ ≤ ∥H∥

√
Nco, where d = max

i
di.521

Therefore, recalling the algorithm (4.2), for all t > 0 we have that522

∥xt∥ ≤ ∥xt−1∥+ αt−1

(
b

a

√
MNdcc + ∥H∥

√
Nco

)
︸ ︷︷ ︸

c

≤ ∥xt−2∥+ αt−2 c+ αt−1 c523

≤ ∥x0∥+ c

t−1∑
j=0

a

(1 + j)δ
≤ ∥x0∥+ c

t−1∫
0

a

(1 + s)δ
ds ≤ ∥x0∥+ c a

t1−δ

1− δ
.524

525
Analogously, for all t > 0, we have that ∥xt − 1N ⊗ θ∗∥ ≤ g′t, and as a consequence526

∥H (xt − 1N ⊗ θ∗) ∥ ≤ ∥H∥ g′t.527

Next, we have the following Lemma that bounds quantities T1(x) and T2(x).528

Lemma 4.8. Let Assumptions 2.1-3.1 hold. Then, for the sequence of iterates529

{xt} generated by algorithm (3.2), provided that the step-size sequence {αt} is given530

by αt = a/(t + 1)δ, a > 0, δ ∈ (0.5, 1), we have that there exist positive constants Gc531

and G0 such that, for any outcome ω:532

T1(x
t) ≥ φ′

c(0)Gc

4gt

(
xt − 1N ⊗ θ∗

)⊤
L⊗ I

(
xt − 1N ⊗ θ∗

)
,533

T2(x
t) ≥ φ′

o(0)Go

2∥H∥g′t

(
xt − 1N ⊗ θ∗

)⊤
H⊤H

(
xt − 1N ⊗ θ∗

)
,534

535

To prove Lemma 4.8, we make use of the following Lemma from [13] (see Lemma 5.5536

in [13]).537

Lemma 4.9. Consider function φ in (4.1), there exists a positive constant G such538
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that |φ(a)| ≤ φ′(0)G|a|
2 g , for all |a| < g.539

Proof. (Proof of Theorem 4.8) Using Lemma 4.9 for function φc we get that there540

exists a positive constant Gc such that541

T1(x
t) =

∑
{i,j}∈E, i<j

(
xt
i − xt

j

)⊤
φc

(
xt
i − xt

j

)
542

=
∑

{i,j}∈E, i<j

M∑
ℓ=1

(
(xt

i)ℓ − (xt
j)ℓ
)⊤
φc

(
(xt

i)ℓ − (xt
j)ℓ
)

543

≥ φ′
c(0)Gc

4gt

∑
{i,j}∈E, i<j

∥xt
i − xt

j∥2 =
φ′
c(0)Gc

4gt
(xt)⊤(L⊗ I)xt(4.19)544

=
φ′
c(0)Gc

4gt

(
xt − 1N ⊗ θ∗

)⊤
L⊗ I

(
xt − 1N ⊗ θ∗

)
,545

546
since, from Lemma 4.7 we have ∥xt∥ ≤ gt. Analogously, from Lemma 4.9 we have547

that for the function φo there exists a positive constant Go such that548

T2(x) =

N∑
i=1

(H (x− 1N ⊗ θ∗))i φo ((H (x− 1N ⊗ θ∗))i)549

≥ φ′
o(0)Go

2∥H∥g′t
(x− 1N ⊗ θ∗)⊤ H⊤H (x− 1N ⊗ θ∗) ,(4.20)550

551
since, from Lemma 4.7 we have ∥H (xt − 1N ⊗ θ∗) ∥ ≤ ∥H∥ g′t.552

We next have the following theorem that analyzes positive definiteness of the553

matrix
φ′

c(0)Gc

4gt
L⊗ I+

φ′
o(0)Go

2∥H∥g′
t
H⊤H.554

Lemma 4.10. Let Assumptions 2.1-3.1 hold. The following is true for any x ∈555

RMN :556

(x− 1N ⊗ θ∗)⊤
(
φ′
c(0)Gc

4gt
L⊗ I+

φ′
o(0)Go

2∥H∥g′t
H⊤H

)
(x− 1N ⊗ θ∗)557

≥ min

{
φ′
o(0)Go

2∥H∥g′t

(
λH

N
− 2SH√

N
k

)
,
b φ′

c(0)Gc

4agt

λ2(L)

1 + 1
k2

}
∥x− 1N ⊗ θ∗∥2,558

559

where gt and g′t are defined in Lemma 4.7, Gc and Go in Lemma 4.8, SH =
N∑
i=1

∥hi∥2,560

λH = λ1

(
N∑
i=1

hih
⊤
i

)
> 0 is the smallest eigenvalue of regular matrix

N∑
i=1

hih
⊤
i (see561

Assumption 2.1) and recalling that λ2(L) > 0 is the smallest positive eigenvalue of562

Laplacian matrix L.563

Proof. Let us consider matrix L⊗I+H⊤H and follow argument as in Appendix A564

of [32]. For any x ∈ RMN , we have that there exist vectors u ∈ span{1⊗m|m ∈ RM}565

and v ∈ span{1⊗m|m ∈ RM}⊥ such that x = u+ v. Firstly, we have that566

(u− 1N ⊗ θ∗)⊤ H⊤H (u− 1N ⊗ θ∗) =
N∑
i=1

(û− θ⋆)⊤hih
⊤
i (û− θ⋆)567

= (û− θ⋆)⊤
(

N∑
i=1

hih
⊤
i

)
(û− θ⋆)568

≥ λH∥û− θ⋆∥2,569570

where û ∈ RM such that u = 1⊗ û. Notice here that ∥u− 1N ⊗ θ∗∥ =
√
N∥û− θ⋆∥.571

Secondly, (x− u)
⊤
H⊤H (x− u) ≥ 0, since H⊤H is positive semi-definite matrix.572
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Thirdly, following also holds573

(u− 1N ⊗ θ∗)⊤ H⊤H (x− u) =

N∑
i=1

(û− θ⋆)⊤hih
⊤
i (xi − û)574

≥ −
N∑
i=1

∥û− θ⋆∥∥hi∥2∥xi − û∥575

≥ −∥û− θ⋆∥∥v∥SH.576577

Analogously, we have that (x− u)
⊤
H⊤H (u− 1N ⊗ θ∗) ≥ −∥û− θ⋆∥∥v∥SH. There-578

fore,579

(x− 1N ⊗ θ∗)⊤ H⊤H (x− 1N ⊗ θ∗) ≥ λH∥û− θ⋆∥2 − 2SH∥û− θ⋆∥∥v∥.580581
We also have that u−1⊗θ⋆ ∈ null(L⊗ I) and v ∈ Range(L⊗ I) and, hence, we have582

that583

(x− 1N ⊗ θ∗)⊤ L⊗ I (x− 1N ⊗ θ∗) = (u− 1N ⊗ θ∗ + v)
⊤
L⊗ I (u− 1N ⊗ θ∗ + v)584

= v⊤L⊗ I v ≥ λ2(L⊗ I)∥v∥2 = λ2(L)∥v∥2.585586
Let k > 0 be arbitrarily chosen. If ∥v∥ ≤ k∥u− 1N ⊗ θ∗∥, then we have that587

(x− 1N ⊗ θ∗)⊤
(
L⊗ I+H⊤H

)
(x− 1N ⊗ θ∗)588

≥ λH∥û− θ⋆∥2 − 2SH∥û− θ⋆∥∥v∥+ λ2(L)∥v∥2589

≥
(
λH

N
− 2SH√

N
k

)
∥u− 1N ⊗ θ∗∥2 + λ2(L)∥v∥2590

≥ min{λH

N
− 2SH√

N
k, λ2(L)}∥x− 1N ⊗ θ∗∥2,591

592
where in the last inequality we used the fact that ∥x−1N ⊗θ∗∥2 = ∥u−1N ⊗θ∗∥2+593

∥v∥2. If ∥v∥ ≥ k∥u− 1N ⊗ θ∗∥, then594

(x− 1N ⊗ θ∗)⊤
(
L⊗ I+H⊤H

)
(x− 1N ⊗ θ∗) ≥ 0 + λ2(L)∥v∥2595

≥ λ2(L)

1 + 1
k2

∥v∥2 + λ2(L)

1 + 1
k2

∥u− 1N ⊗ θ∗∥2596

≥ λ2(L)

1 + 1
k2

∥x− 1N ⊗ θ∗∥2.597

598
Therefore, regardless of vector v, we have that599

(x− 1N ⊗ θ∗)⊤
(
L⊗ I+H⊤H

)
(x− 1N ⊗ θ∗)600

≥ min

{
λH

N
− 2SH√

N
k,

λ2(L)

1 + 1
k2

}
∥x− 1N ⊗ θ∗∥2.601

602
Following the same idea, we get that603

(x− 1N ⊗ θ∗)⊤
(
φ′
c(0)Gc

4gt
L⊗ I+

φ′
o(0)Go

2∥H∥g′t
H⊤H

)
(x− 1N ⊗ θ∗)604

≥ min

{
φ′
o(0)Go

2∥H∥g′t

(
λH

N
− 2SH√

N
k

)
,
b φ′

c(0)Gc

4agt

λ2(L)

1 + 1
k2

}
∥x− 1N ⊗ θ∗∥2.(4.21)605

606

Finally, to prove Theorem 4.6, we make use of the following Lemma from [13] (see607

Theorem 5.2 in [13]).608

Lemma 4.11. Let zt be a nonnegative (deterministic) sequence satisfying609

zt+1 ≤ (1− rt1)z
t + rt2,610611

for all t ≥ t′, for some t′ > 0, with some zt
′ ≥ 0. Here, {rt1} and {rt2} are deterministic612

sequences with a1

t+1 ≤ rt1 ≤ 1 and rt2 ≤ a2

(t+1)δ
, with a1, a2 > 0, and δ > 0. Then, the613
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following holds: (1) zt = O( 1
tδ−1 ) provided that a1 > δ − 1; (2) if a1 ≤ δ − 1, them614

zt = O( 1
ts ), for any s < a1.615

We are finally ready to finalize the proof of Theorem 4.6.616

Proof. (Proof of Theorem 4.6) From equations (4.21) and (4.16) we get that617

(x−1N ⊗ θ∗)⊤r(xt)618

≤ −min

{
φ′
o(0)Go

2∥H∥g′t

(
λH

N
− 2SH√

N
k

)
,
b φ′

c(0)Gc

4agt

λ2(L)

1 + 1
k2

}
∥x− 1N ⊗ θ∗∥2.619

620
Therefore, taking the expectation in (4.15), we have that621

E[V (xt+1)] ≤
(
1− a1

t+ 1

)
E[V (xt)] +

a2
(1 + t)2δ

,622
623

where624

a1 = min

 φ′
o(0)Goa(1− δ)

(
λH − 2SH

√
Nk
)

∥H∥N
(
∥x0 − 1N ⊗ θ∗∥+ b

√
MNdcc + a ∥H∥

√
Nco

) ,625

b φ′
c(0)Gc(1− δ)λ2(L)k

2

2(k2 + 1)
(
∥x0∥+ b

√
MNdcc + a ∥H∥

√
Nco

)
626

627

and a2 = a2c′. Therefore, using the Lemma 4.11, δ̂ is any positive number such that628

δ̂ < min

2δ − 1,
φ′
o(0)Goa(1− δ)

(
λH − 2SH

√
Nk
)

∥H∥N
(
∥x0 − 1N ⊗ θ∗∥+ b

√
MNdcc + a ∥H∥

√
Nco

) ,629

b φ′
c(0)Gc(1− δ)λ2(L)k

2

2(k2 + 1)
(
∥x0∥+ b

√
MNdcc + a ∥H∥

√
Nco

)
 .630

631

Therefore, using Lemma 4.11 we obtain MSE convergence with rate O(1/tδ̂).632

Remark 4.12. Even though, we see that the convergence factor δ̂ depends on the633

system parameters, i.e., on the network and sensing model and also on the innovation634

and consensus nonlinearities, it is easy to see that δ̂ ∈ (0, 1) regardless of the system635

parameters. Recall that Theorem 4.3 shows that the proposed estimator (3.1) obtains636

rate 1/t in the weak convergence sense, while Theorem 4.6 shows that (3.1) obtains637

a slower convergence rate, but in the sense of the mean squared convergence. Note638

that this is not a contradiction, and Theorem 4.6 adds information with respect to639

Theorem 4.3. Namely, it is well known that mean squared convergence implies con-640

vergence in distribution; therefore, with the same assumptions as in Theorem 4.6, the641

convergence rate 1/tδ̂ is also attainable for convergence in distribution. In contrast,642

from Theorem 4.3, we can not conclude that the rate of the mean squared convergence643

is also 1/t.644

Remark 4.13. In fact, we next show that, in the presence of the heavy-tailed645

observation noise considered here, the MSE convergence rate cannot be as fast as 1/t,646

for any estimator (even not for centralized ones). In this sense, the fact that quantity647

δ̂ is strictly smaller than one is not a consequence of loose bounds, but it is rather due648

to the intrinsic difficulty of the estimation problem. To be specific, we consider here649

the special case where each agent i observes a scalar parameter θ⋆ ∈ R according to650

zi(t) = θ⋆ + nt
i,(4.22)651652

where nt
i satisfies Assumption 2.2. In this case, the proposed estimator (3.1) can653

be viewed as a mean estimator of the probability density function po(u− θ⋆). Let us654
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16 M. VUKOVIC, D. JAKOVETIC, D. BAJOVIC AND S. KAR

denote by P the class of all probability density functions po(u−θ⋆) such that po is the655

pdf of the observation noise that satisfies Assumption 2.2, for any θ⋆ ∈ R. Extending656

the results from [8] (see Appendix G in [34]), we prove that, for any θ⋆ ∈ R, and for657

any mean estimator θ̂t, the following holds:658

sup
t

sup
p∈P

tNE[|θ̂t − θ⋆|2] = +∞.(4.23)659

660
On the other hand, Theorem 4.6 shows that, with the proposed distributed estima-661

tor (3.1), the following holds:662

sup
t

sup
p∈P

(tN)δ̂E[|θ̂t − θ⋆|2] < +∞,663

664

for some δ̂ ∈ ( 12 , 1)
3665

Remark 4.14. Theorems 4.2, 4.3 and 4.6 continue to hold even if the linear trans-666

formation vectors hi in (2.1) are no longer static (see Appendix H in [34]). That is,667

we can allow that each agent i at each time t = 0, 1, ..., makes the observation by:668

zti = (ht
i)

⊤θ⋆ + nt
i.(4.24)669670

Here, for each agent i, for each time step t, the linear transformation vector ht
i is a671

random variable that satisfies the following assumptions.672

1. For each agent i and each time step t = 0, 1, ...,, the linear transformation673

vector is given by ht
i = hi + h̃t

i, where the vector hi ∈ RM is deterministic,674

and vector h̃t
i ∈ RM is a random vector;675

2. The sequence of vectors {[h̃t
1, h̃

t
2, ..., h̃

t
N ]} is i.i.d., with finite second moment,676

and it is independent of the sequences nt and ξtij for {i, j} ∈ E;677

3. At each agent i = 1, ..., N at each time t = 0, 1, ...,, each entry ℓ = 1, 2, ...M678

[h̃t
i]ℓ has the same probability density function ph;679

4. The pdf ph is symmetric, i.e. ph(u) = ph(−u), for every u ∈ R and ph(u) > 0680

for |u| ≤ ch, for some constant ch > 0;681

5. The matrix
∑N

i=1 hi

(
hi

)⊤
is invertible.682

5. Analytical and numerical examples. In this section we provide analytical683

and numerical examples that illustrate results from Section 4.684

Example 1: We consider the network where each agent i observes a scalar parameter685

θ⋆ ∈ R following the linear regression model:686

zi(t) = hθ⋆ + nt
i,(5.1)687688

where h ̸= 0 and ni(t) is zero mean and i.i.d. in time and across agents. For sim-689

plicity, we assume that the underlying graph of the network is regular, with degree690

d. We assume that there is no communication noise between agents, i.e., ξij ≡ 0691

for (i, j) ∈ Ed. We additionally assume that the nonlinearity on the consensus part692

Ψc in (3.1) is the identity function and the nonlinearity on the innovation part is693

Ψo(w) = B tanh(w/B), for B > 0. Therefore, algorithm (3.1) is now given by:694

xt+1
i = xt

i − αt

 b

a

∑
j∈Ωi

(
xt
i − xt

j

)
− hΨo

(
zti − hxt

i

) ,(5.2)695

696
for each agent i and each time t. From Theorem 4.3, we have that the asymptotic697

covariance matrix is given by (4.13) and matrix S0 is now given by S0 = σ2
oh

2I698

and σ2
o =

∫
|Ψo(w)|2dΦo(w) is the effective observation noise. Following the same699

procedure as in [18, 15], for Σ = 1
2I− aφ′

o(0)h
2I, we have that the average per-agent700

3Notice that in the centralized case, the observations are collected in batches of fixed size N .
That is, after t time steps, there are Nt observations. Henceforth, we include quantity N in (4.23)
for a precise statement. Note that, since N is constant and the supremum is taken with respect to
t, the inclusion of N is not necessary.
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asymptotic variance, denoted by σ2
B = 1

N Tr(S), is equal to σ2
B =

a2σ2
oh

2

2ah2φ′
o(0)−1 , for701

a > 1
2h2φ′

o(0)
(see Appendix F in [34]). Therefore, we need to change the constant a702

when changing B, i.e., we define a = a(B) = 1
2h2φ′

o(0)(B) +ϵ4, for some constant ϵ > 0,703

we rewrite σ2
B as follows (see Appendix F in [34]), σ2

B =
(1+2h2φ′

o(0)ϵ)
2σ2

o(B)
8h4φ′

o(0)
3ϵ . For the704

nonlinearity Ψo that is considered here, we have that σ2
o =

+∞∫
−∞

B2 tanh2
(
w
B

)
f(w)dw,705

and φ′
o(0) =

+∞∫
−∞

Ψ′(w)f(w)dw =
+∞∫
−∞

1
cosh2(w

B )
f(w)dw. Notice that both functions706

σ2
o and φ′

o(0) are increasing with respect to B (see Appendix F in [34]). Since we707

have that |B2 tanh2(wB )f(w)| ≤ |w2f(w)| and | 1
cosh2(w

B )
f(w)| ≤ |f(w)| for all w ∈ R708

and all B > 0, using the Lebesgue’s dominated convergence theorem, we have that709

lim
B→0+

σ2
o = 0, lim

B→+∞
σ2
o = σ2

η, lim
B→0+

φ′
o(0) = 0, lim

B→+∞
φ′
o(0) = 1, where σ2

η is the710

variance of the observation noise η. Therefore, we have that σ2
0 = lim

B→0+
σ2
B = +∞711

(see Appendix F in [34]), and σ2
∞ = lim

B→+∞
σ2
B =

(1+2h2ϵ)2σ2
η

8h4ϵ . Suppose now that712

the variance of the observation noise η is infinite, i.e. σ2
η = +∞. This means that713

σ2
∞ = +∞. For the continuous function σ2

B , defined for all B ∈ (0,+∞), we have714

that lim
B→0+

σ2
B = lim

B→+∞
σ2
B = +∞. Therefore, there exists an optimal B⋆ such that715

σ2
B⋆ = inf

B∈(0,∞)
σ2
B . Note that the case B → ∞ corresponds to a LU scheme from [18],716

while the case B → 0 corresponds to each agent working in isolation. Therefore,717

we show analytically on the simple class of nonlinearities Ψo (hyperbolic tangent),718

that cooperation through a nonlinear mapping Ψo strictly improves performance with719

respect to both using linear and non-cooperative schemes.720

To numerically illustrate the above results, we now consider a sensor (agents)721

network with N = 8 agents, setting that the underlying topology is given by a regular722

graph with degree d = 3. The true parameter is θ∗ = 1, the observation parameter is723

h = 1, and the observation noise for each agent’s measurements has the following pdf724

f(w) =
β − 1

2 (1 + |w|)β
,(5.3)725

726
with β = 2.05, which has an infinite variance. Recall that we assumed that there is727

no communication noise between agents. We set the consensus parameter as b = 1728

and the innovation parameter as a = a(0.3) = 1
2h2φ′

o(0)(0.3)
+ 0.1. Figure 1a shows729

the average per-agent asymptotic variance σ2
B versus B. As it can be seen, optimal730

B⋆ approximately equals B⋆ = 0.65. Using Monte Carlo simulations, we compare731

numerically an estimated per-sensor MSE across iterations, for the optimal B⋆ and732

for some sub-optimal choices of B. We can see that the algorithm performs better733

for the optimal value B⋆ than for the other considered suboptimal choices of B (see734

Figure 1b), hence confirming the theory.735

Example 2: In this example we provide analysis in the terms of the average736

per node variance with respect to the level of the mutual dependence of observation737

and communication noise. Once more, we consider the network where each agent i738

observes a scalar parameter θ⋆ ∈ R following the linear regression model (5.1) and we739

assume that the underlying graph of the network is regular, with degree d. As it is said,740

we now allow observation and communication noise to be mutually dependent. For741

4ϵ is added since we need to have that a > 1
2h2φ′

o(0)
.
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(a) (b)

Fig. 1. (a) Average per-agent asymptotic variance σ2
B versus B (b) Monte Carlo-estimated

per-sensor MSE error on logarithmic scale for the different choices of B

simplicity, we consider the case when that dependence between communication noise742

ξtij and observation noise ni is given by ξij = ρnt
i+
√
1− ρ2 n̂t

i, at each time t = 0, 1, ..743

and for all tuples {i, j} ∈ E, where, ρ ∈ (−1, 1), sequence {n̂t
i} is independently744

identically distributed in time t and across all agents i. Moreover, nt
i are n̂s

j mutually745

independent whenever (i, t) ̸= (j, s). Here, it is easy to see that we have strong positive746

correlation if ρ → 1, strong negative correlation if ρ → −1 and we do not have any747

correlation if ρ = 0. Moreover, we set that Ψo(w) = Ψc(w) = signw, and hence,748

algorithm (3.1) is given by749

xt+1
i = xt

i − αt

 b

a

∑
j∈Ωi

Ψc

(
xt
i − xt

j + ρnt
i +
√

1− ρ2 n̂t
i

)
− hΨo

(
h(θ⋆ − xt

i) + ni

) .

(5.4)

750

751
Analogously to the previous example, we have that the average per-agent asymp-752

totic variance σ2
ρ is given by753

σ2
ρ =

b2σ2
cd

2 + a2h2σ2
o − 2abhdσoc

N (2ah2φ′
o(0)− 1)

(5.5)754

+
b2σ2

cd
2 + a2h2σ2

o − 2abhdσoc

N

N∑
i=2

1

2bφ′
c(0)λi + 2ah2φ′

o(0)− 1
,(5.6)755

756

since S0 =
(

b2

a2σ
2
cd

2 + σ2
oh

2 − 2 b
ahdσoc

)
I and Σ = 1

2I − a
(
b
aφ

′
c(0)L+ φ′

o(0)h
2I
)
.757

Here, regardless of ρ we have that σ2
o = σ2

c = 1 and φ′
o(0) = 2pn(0) (see [15]). On the758

other hand, σoc which is effective cross-covariance between the observation and the759

communication noise after passing through the appropriate nonlinearity and φ′
c(0)760
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are functions with respect to ρ. We have that761

σoc =

∞∫
−∞

∞∫
−∞

Ψc(ρx+
√
1− ρ2y)Ψo(x)pn̂(y)pn(x)dxdy(5.7)762

=

+∞∫
0

∞∫
−ρx√
1−ρ2

pn̂(y)pn(y)dydx−
+∞∫
0

−ρx√
1−ρ2∫

−∞

pn̂(y)pn(y)dydx(5.8)763

−
0∫

−∞

∞∫
−ρx√
1−ρ2

pn̂(y)pn(y)dydx+

0∫
−∞

−ρx√
1−ρ2∫

−∞

pn̂(y)pn(y)dydx,(5.9)764

765
and we see that σoc → 0 as ρ → 0, σoc → 1 as ρ → 1 and σoc → −1 as ρ → −1.766

Moreover, we have that φ′
c(0) = 2

∞∫
−∞

pn̂(−ρx)pn(
√
1− ρ2x)dx, and again, it is easy767

to see that, φ′
c(0) → 2pn(0) as ρ → ±1 and φ′

c(0) → 2pn̂(0) as ρ → 0. To demonstrate768

the above results, again we consider a sensor (agents) network with N = 8 agents,769

setting that the underlying topology is given by a regular graph with degree d = 3.770

The true parameter is θ∗ = 1, the observation parameter, the innovation parameter771

and consensus parameter are h = a = b = 1. We set that for all i, ni and n̂i have772

the pdf as in (5.3) with β = 2.05. Figure 2a shows σ2
ρ with respect to ρ. As it can be773

seen, the lowest σ2
ρ is attained at ρ = 1, also σ2

ρ has two local maxima at ρ ≈ −0.88774

and at ρ ≈ 0.31. Figure 2b shows the comparison of Monte Carlo simulation for775
1
N ∥xt − 1 ⊗ θ∥2 t for different choices of ρ. Moreover, Figure 2b justifies the results776

presented in 2a, in the sense that 1
N ∥xt − 1⊗ θ∥2 t is minimal for ρ = 1 and maximal777

for ρ = −0.88. Finally, we note that, while the two local maxima obtained here are778

specific for the simplistic correlation and sensing model assumed here for analytical779

tractability, we observe numerically for more general models that the general trend of780

this example is preserved, in the sense that higher (more positive) correlations lead781

to a better performance.782

(a) (b)

Fig. 2. (a) Average per-agent asymptotic variance σ2
B versus B (b) Monte Carlo-estimation of

1
N
∥xt − 1N ⊗ θ⋆∥2 t for different choices of ρ

5.1. Numerical simulations. In this subsection, we demonstrate the perfor-783

mance of proposed consensus+innovations estimator in a larger sensor network. We784

consider a sensor network with N = 40 agents where the underlying topology is an785

instance of a random geometric graph; we used randomly generated true parameter786

θ⋆ ∈ R10, whose entries are drawn mutually independently form the uniform distri-787
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bution on [−10, 10]; we used randomly generated observation vectors hi ∈ R10, for788

which the condition 2 of Assumption 2.1 is verified to be true. We set the consensus789

parameter as b = 1 and and step-size parameter as δ = 1. First, we compare the790

proposed consensus+innovations estimator with the method from [1] and its hypo-791

thetical variant in the case when there is no communication noise, but in the presence792

of heavy-tailed observation noise with pdf as in (5.3) for β = 2.05. Here, we used793

the same algorithm settings and the same nonlinearities for the proposed algorithm794

as in Example 1, with a slight change, i.e., we set that B = 10 and a = 0.2 For795

method from [1] and its hypothetical variant (see Appendix E in [34]), we set that796

Bi = 2, ϕi,1(x) = x and ϕi,2(x) = tanh(x) for all agents i. Furthermore, we set797

that weighting coefficients are chosen according to aij =
Ãij∑

ℓ∈Ni

Ãℓi
, where Ã = A + I.798

Moreover, for the smoothing recursions, zero initial conditions are assumed, νi is set799

to 0.9 for every agent i and ϵ = 10−2. We can see all methods manage to (slowly)800

decrease MSE over iterations, with the proposed method exhibiting the best perfor-801

mance among the three methods considered. Figure 3b shows Monte Carlo simulation802

of the MSE for the proposed algorithm, algorithm from [1] and the algorithm in [15],803

when communication between agents is also contaminated with heavy-tailed commu-804

nication noise. Here, for the proposed algorithm we set that both nonlinearities are805

Ψo(w) = Ψc(w) = B tanh(w/B), for B = 10 and a = 1. Further, we use the same806

algorithm setting for the method in [1] as in the previous simulation example, and807

we use the same nonlinearity on the consensus part and the same B for algorithm808

from [15] as in the proposed algorithm. We can see that both [15] and [1] here fail to809

converge, while the proposed method still effectively reduces MSE.810

(a) (b)
Fig. 3. (a) Monte Carlo-estimated per-sensor MSE error on logarithmic scale for proposed

algorithm for B = 10, method from [1] and its hypothetical variant (b) Monte Carlo-estimated per-
sensor MSE error on logarithmic scale for proposed algorithm, algorithm form [1] and algorithm
from [15]

We next present the scenario where the observation and communication noises are811

mutually dependent. To do this, we set that the i-th element of the observation noise812

n is given by ni = vi exp (
h
2v

2
i ), where v has standard normal distribution and h is a813

heavy-tail parameter (see [9]). Moreover, the ℓ-th element of the communication noise814

ξij is given by [ξij ]ℓ = [wij ]ℓ exp (
h
2 [wij ]

2
ℓ), where wij is the linear transformation of815

v, i.e., wij = Wijv and Wij ∈ RM×N is a randomly generated matrix independent816

of the observation noise. Figure 4a presents Monte Carlo estimates of per-agent817

MSE across iterations. Figure 4b shows Monte Carlo simulation of quantity 1
N ∥xt −818

1N ⊗ θ⋆∥2
√
t. For this numerical setting, from the Figure 4b, we can deduce that819

E[∥xt − 1N ⊗ θ⋆∥2] decreases at least as fast as O( 1√
t
), hence confirming our MSE820

rate theory.821
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(a) (b)
Fig. 4. (a) Monte Carlo-estimated per-sensor MSE error on logarithmic scale for proposed

algorithm when link failures can occur for B = 1 and h = 10 (b) Monte Carlo-estimation of 1
N
∥xt−

1N ⊗ θ⋆∥2
√
t for B = 10 and h = 2.

6. Conclusion. We have studied distributed consensus+innovations estimation822

under the simultaneous presence of heavy-tailed (infinite variance) correlated sensing823

and communication noises. This setting is in contrast with existing work that either824

always assumes a finite-variance sensing noise. We developed a nonlinear estimator825

and established its almost sure convergence and asymptotic normality. Furthermore,826

we showed that the estimator achieves a sublinear MSE convergence rate O(1/tκ),827

and we explicitly charaterized the rate κi ∈ (0, 1) in terms of system parameters.828

Analytical examples illustrate the role of the nonlinearities incorporated in the method829

and the effects of noises correlation. Finally, numerical simulations corroborate our830

findings and demonstrate that the proposed distributed estimator converges under831

the simultaneous presence of heavy-tailed (infinite variance) correlated sensing and832

communication noises, while, for the same setting, existing distributed estimators fail833

to converge.834
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Appendix.939

A. Some results on Stochastic approximation. Wemake use of the following940

standard stochastic approximation result, see [28], see also [18].941

Theorem 6.1. Let {xt ∈ Rl}t≥0 be a random sequence:942

xt+1 = xt + αt[r(x
t) + γ(t+ 1,xt, ω)],(6.1)943944

where, r(·) : Rl → Rl is Borel measurable and {γ(t,x, ω)}t≥0,x∈Rl is a family of945

random vectors in Rl, defined on a probability space (Ω,F ,P), and ω ∈ Ω is a canonical946

element. Let the following sets of assumptions hold:947

B1: The function γ(t, ·, ·) : Rl × Ω → R is Bl ⊗ F measurable for every t; Bl is948

the Borel algebra of Rl.949

B2: There exists a filtration {Ft}t≥0 of F , such that, for each t, the family of950

random vectors {γ(t,x, ω)}x∈Rl is Ft measurable, zero-mean and independent951

of Ft−1.952

(If Assumtions B1, B2 hold, {x(t)}t≥0, is Markov.)953

B3: There exists a twice continuously differentiable V (x) with bounded second954

order partial derivatives and a point x∗ ∈ Rl satisfying955

V (x∗) = 0, V (x) > 0,x ̸= x∗, lim
||x||→∞

V (x) = ∞,956

sup
ϵ<||x−x∗||< 1

ϵ

⟨r(x),∇V (x)⟩ < 0,∀ϵ > 0.957

958
B4: There exists constants k1, k2 > 0, such that,959

||r(x)||2 + E[||γ(t+ 1,x, ω)||2] ≤ k1(1 + V (x))− k2⟨r(x),∇V (x)⟩960961
B5: The weight sequence {α(t)}t≥0 satisfies962

αt > 0,
∑
t≥0

αt = ∞,
∑
t≥0

α2
t < ∞.963

964
C1: The function r(x) admits the representation965

r(x) = B(x− x∗) + δ(x),(6.2)966967
where968

lim
x→x∗

||δ(x)||
||x− x∗||

= 0.(6.3)969
970

(Note, in particular, if δ(x) ≡ 0 then (6.3) is satisfied.)971

C2: The weight sequence {αt}t≥0 is of form972

αt =
a

t+ 1
,∀t ≥ 0,(6.4)973

974
where a > 0 is a constant (note that C2 implies B5).975

C3: Let I be the l× l identity matrix and a,B as in (6.4) and (6.2), respectively.976

Then, the matrix Σ = aB+ 1
2I is stable.977

C4: The entries of the matrices, ∀t ≥ 0, x ∈ Rl,978

A(t,x) = E[γ(t,x, ω)γ⊤(t,x, ω)],979980
are finite, and the following limit exists:981

lim
t→∞,x→x∗

A(t,x) = S0.982
983

C5: There exists ϵ > 0, such that984

lim
R→∞

sup
||x−x∗||<ϵ

sup
t≥0

∫
||γ(t+1,x,ω)||>R

||γ(t+ 1,x, ω)||2dP = 0985

986
Let Assumptions B1–B5 hold for {x(t)}t≥0 in (6.1). Them, starting from an arbitrary987

initial state, the Markov process, {xt}t≥0, converges a.s. to x∗. In other words,988

P[ lim
t→∞

xt = x∗] = 1.989
990

The normalized process, {
√
t(xt − x∗)}t≥0, is asymptotically normal if, besides As-991
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sumptions B1–B5, Assumptions C1–C5 are also satisfied. In particular, as t → ∞992 √
t(xt − x∗) ⇒ N (0,S),(6.5)993994

where ⇒ denotes convergence in distribution (weak convergence). Also, asymptotic995

variance, S, in (6.5) is996

S = a2
∞∫
0

eΣvS0e
Σ⊤vdv997

998

B. Additional results on nonlinearity φ. We present some properties of the999

function φ defined in (4.1). As it is stated in [15], we can intuitively see function φ as1000

a convolution-like transformation of nonlinearity Ψ : R → R, where the convolution1001

is taken with respect to the probability density function p of random value w. If w is1002

generated by the underlying probability space (Ω,F ,P), we have that expectation of1003

v = Ψ(a+ w)− φ(a)(6.6)10041005
is equal to zero, i.e., E[v] = 0. Here, the expectation is taken with respect to F .1006

Hence, for all t = 0, 1, ..., we have that expectation of both of the sequences ζt, ηt1007

defined in (4.3) is equal to zero, due to the fact that communication noise ξt and1008

observation noise nt, t = 0, 1, ..., are generated by underlying probability space.1009

We have following Lemma (see [29], see also [15]).1010

Lemma 6.2 ([29]). Consider function φ in (4.1), where function Ψ : R → R,1011

satisfies Assumption 3.1. Then, the following holds:1012

1. φ is odd;1013

2. If |Ψ(ν)| ≤ c1, for any ν ∈ R, then |φ(a)| ≤ c′1, for any a ∈ R, for some1014

c′1 > 0;1015

3. φ(a) is monotonically nondecreasing;1016

4. φ(a) > 0, for any a > 0.1017

5. φ is continuous at zero;1018

6. φ is differentiable at zero, with a strictly positive derivative at zero, equal to:1019

φ′(0) =

s∑
i=1

(Ψ(νi + 0)−Ψ(νi − 0)) p(νi) +

s∑
i=0

∫ νi+1

νi

Ψ′(ν)p(ν)dν,(6.7)1020

where νi, i = 1, ..., s are points of discontinuity of Ψ such that ν0 = −∞ and1021

νs+1 = +∞, and we recall that p(u) is the pdf of random variable w.1022

From Lemma 6.2, we have that φ(a) = 0 if and only if a = 0. Moreover, there exists1023

a function δ : R → R, which is continuous in the vicinity of zero, such that1024

φ(a) = φ(0) + φ′(0)a+ δ(a) = φ′(0)a+ δ(a),(6.8)10251026

and lim
a→0

δ(a)
a = 0.1027

We now prove boundedness of the function r(·) in equation (4.10). If condition 21028

of Lemma 6.2 is satisfied for both functions φc and φo, then the right hand side1029

of (4.10) would be lesser or equal to some positive constant c, which would led to1030

∥r(x)∥2 ≤ c1(1 + V (x)). Suppose now that condition 3 of Lemma 6.2 is satisfied for1031
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the function φc, then there exists some positive constant c1 such that1032 ∥∥∥∥ baLφc
(x− 1N ⊗ θ∗)

∥∥∥∥2 =

(
b

a

)2 N∑
i=1

∥∥∥∥∥∥
∑
j∈Ωi

φc(xi − xj)

∥∥∥∥∥∥
2

1033

≤
(
b

a

)2 N∑
i=1

∑
j∈Ωi

∥φc(xi − xj)∥21034

≤
(
b

a

)2 N∑
i=1

∑
j∈Ωi

(
c
(
1 + ∥xi − xj∥2

))
1035

≤
(
b

a

)2 N∑
i=1

∑
j∈Ωi

(
c
(
1 + ∥xi − θ⋆∥2 + ∥xj − θ⋆∥2

))
1036

≤ c1(1 + V (x)),10371038

since we have that ∥xi − θ⋆∥2 ≤ ||x − 1N ⊗ θ∗||2 = V (x) for all i = 1, 2, ..., N. If we1039

assume that condition 3 of Lemma 6.2 is satisfied for the function φo, we will get that1040 ∥∥H⊤φo (H (x− (1N ⊗ θ∗)))
∥∥2 ≤ ∥H∥2 ∥φo (H (x− (1N ⊗ θ∗)))∥21041

≤ ∥H∥2 c
(
1 + ∥H (x− (1N ⊗ θ∗))∥2

)
1042

≤ ∥H∥2 c
(
1 + ∥H∥2 ∥x− 1N ⊗ θ∗∥2

)
.1043

1044

Therefore,
∥∥H⊤φo (H (x− (1N ⊗ θ∗) ≤))

∥∥2 ≤ c1(1 + V (x)), for some positive con-1045

stant c1. Hence, inequality in (4.10) is proven.1046

Next we prove boundedness of E
[
∥γ(t+ 1,xt, ω)∥2

]
in (4.12). If the function Ψ1047

in (4.1) satisfies condition 5’ of Assumption 3.1, whether w in (4.1) has finite or1048

infinite variance, v in (6.6) is bounded, i.e.,1049

|v|2 ≤ |Ψ(a+ w)|2 + |φ(a)|2 ≤ c,10501051
for some positive constant c. If the function Ψ in (4.1) satisfies condition 5 of As-1052

sumption 3.1 and w has finite variance, we get that variance of v in (6.6) is bounded1053

with c (1 + |a|2) for some positive constant c, i.e.,1054

E[|v|2] ≤ E[|Ψ(a+ w)|2 + |φ(a)|2] ≤ E[c1(1 + |a+ w|2) + c′1(1 + |a|2)]1055

≤ c1(1 + |a|2 + E[|w|2]) + c′1(1 + |a|2) ≤ c (1 + |a|2),10561057
where c1 and c2 are some positive constants. Thus, whether condition 5 or 5’ is1058

satisfied for the function Ψ in (4.1), variance of v in (6.6) is bounded with c (1+ |a|2)1059

for some positive constant c. Hence, we have that for ζt, ηt defined in (4.3)1060

E[ζt] ≤ c′(1 + V (x))1061

E[ηt] ≤ c′′(1 + V (x)),10621063
for all t = 0, 1, ..., where c′ and c′′ are some positive constants.1064

C. Mutually dependent observation noise and mutually dependent com-1065

munication noise. In this subsection we relax assumptions on observation and com-1066

munication noises and show that Theorems 4.2 and 4.3 continue to hold. We let As-1067

sumptions 1–6 still hold except those which overlap with the following generalizations:1068

• The observation noise nt has the joint probability density function po such1069

that:1070 ∫
a∈RN

∥a∥po(a)da < ∞,

∫
a∈RN

a po(a)da,1071

1072
and po(a) = po(−a), for all a ∈ RN .1073
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• A (possibly) different nonlinear function Ψo,i : R → R is assigned to each1074

agent i. Each function Ψo,i obeys Assumption 3.1.1075

• The communication noise ξtij has the joint probability density function pc,ij1076

such that:1077 ∫
a∈RM

∥a∥pc,ij(a)da < ∞,

∫
a∈RM

a pc,ij(a)da = 0,1078

1079
and pc,ij(a) = pc,ij(−a), for all a ∈ RM .1080

• A different nonlinear function Ψc,ij,ℓ : R → R is assigned to each arc (i, j) ∈1081

Ed and to each element ℓ = 1, ...,M of the communication noise [ξtij ]ℓ. Each1082

function Ψc,ij,ℓ obeys Assumption 3.1.1083

This means that observation noises of agents i and j can be mutually dependent.1084

Moreover, the communication noises ξtij may have mutually dependent elements [ξtij ]ℓ,1085

for ℓ = 1, ...,M . Further, here, for simplicity, we assume that observation and com-1086

munication noises are mutually independent.1087

Let us define functions φo,i : R → R for i = 1, 2, ..., N and φij,ℓ : R → R for (i, j) ∈ E1088

and ℓ = 1, 2, ...,M in the same manner as in (4.1), i.e.,1089

φo,i(a) =

∫
Ψo,i(a+ w)po,i(w)dw,(6.9)1090

φc,ij,ℓ(a) =

∫
Ψc,ij,ℓ(a+ w)pc,ij,ℓ(w)dw.(6.10)1091

1092
Here, po,i and pc,ij,ℓ are the marginal probability density functions of random variables1093

nt
i and [ξtij ]ℓ, respectively. Following same steps as in the proofs of Theorems 4.21094

and 4.3, almost sure convergence and asymptotic normality can be shown. In the1095

following, we emphasize only differences. First of all, algorithm (4.4) gets replaced by1096

xt+1 = xt − αt

(
b

a
L̂φc

(xt)−H⊤φo

(
H
(
(1N ⊗ θ∗)− xt

))
−H⊤ζt +

b

a
ηt

)
.1097

1098

Now, the map L̂φc
: RMN → RMN is1099

L̂φc
(x) =


...∑

j∈Ωi

φc,ij(xi − xj)

...

 ,1100

1101
for any x ∈ RMN , where for all (i, j) ∈ E, function φc,ij : RM → RM is given1102

with φc,ij(y1,y2, ...,yM ) = [φc,ij,1(y1), φc,ij,2(y2), ..., φc,ij,M (yM )]⊤, for y ∈ RM ,1103

functions φc,ij,ℓ(a) for (i, j) ∈ E and ℓ = 1, 2, ...,M are given by (6.10). More-1104

over, for y ∈ RN , the map φo : RN → RN is now given with φo(y1,y2, ...,yN ) =1105

[φo,1(y1), φo,2(y2), ..., φo,N (yN )]⊤. Using the same notation, sequences ζt ∈ RN and1106

ηt ∈ RMN are appropriate versions of the sequences defined in (4.3). If we define1107

quantities r̂(x) and γ̂(t+ 1,x, ω) as follows1108

r̂(x) = − b

a
L̂φc

(x)−H⊤φo (H (x− (1N ⊗ θ∗))) ,(6.11)1109

γ̂(t+ 1,x, ω) = − b

a
ηt +H⊤ζt,(6.12)1110

1111
it is easy to see that all conditions B1–B5 and C1–C5 from Theorem 6.1 still hold1112

(see [15]). The only difference occurs in the asymptotic covariance matrix S, i.e., in1113

S0, which is now given by1114

S0 =
b2

a2
Kη +H⊤KζH,1115

1116
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where Kη ∈ RN×N and Kζ ∈ RMN×MN are the effective covariance matrices of com-1117

munication and observation noises after passing through the appropriate nonlinearities1118

(analogously defined as cross-covariance matrix Kc,o in Theorem 4.3).1119

D. Heavy-tailed noise and identity function. In this subsection, we show1120

that the algorithm (3.1) does not converge in the presence of heavy-tailed observation1121

and communication noise if at least one of the nonlinearities Ψo and Ψc is the identity1122

function. This means that in the presence of heavy-tailed observation and communi-1123

cation noises, the algorithms from [15, 18] do not converge, in fact, they exhibit an1124

infinite variance solution sequence.1125

Theorem 6.3 (Infinite variance). For the sequence of iterates {xt}, t = 1, 2, ...,1126

generated by (3.1), we have that E[∥xt − 1N ⊗ θ⋆∥2] = ∞, t = 1, 2, ..., if at least one1127

of the following statements is true.1128

1. Function Ψo is the identity function, i.e., Ψo(a) = a and the observation1129

noise has infinite variance, i.e.,
∫
a2dΦo = +∞.1130

2. Function Ψc is the identity function, i.e., Ψc(a) = a and the communication1131

noise has infinite variance, i.e.,
∫
a2dΦc = +∞.1132

Proof. For simplicity, we assume that if statement 1 holds there is no communi-1133

cation noise, i.e. ξij ≡ 0 for all (i, j) ∈ Ed , and vice versa, if statement 2 holds we1134

assume that there is no observation noise, i.e., n ≡ 0. If statement 1 holds, in the1135

absence of communication noise, the algorithm (3.2) can be written as1136

xt+1 = xt − αt

(
b

a
LΨc

(x)−H⊤ (zt −Hxt
))

1137

= xt − αt

(
b

a
LΨc

(x)−H⊤ (H(1⊗ θ⋆) + nt −Hxt
))

.1138
1139

If we define et = xt − 1N ⊗ θ⋆, t = 1, 2, ..., we have that et+1 = Ft(et) + αtH
⊤nt,1140

where function Ft : RMN → RMN is given by Ft(y) = (I+ αtH
⊤H)y − αt

b
aLΨc

(y),1141

for y ∈ RMN . Therefore, we have that1142

∥et+1∥2 = ∥Ft(et)∥2 + 2αt(F
t(et))⊤H⊤nt + α2

t ∥H⊤nt∥21143

≥ 2αt(HFt(et))⊤nt + α2
t ∥H⊤nt∥2,11441145

and using the fact that et and nt are independent, we have that1146

E[∥et+1∥2] ≥ α2
tE[∥H⊤nt∥2] = ∞,11471148

which completes the proof of statement 1. Proof of statement 2 follows directly from1149

Appendix B in [15].1150

E. Hypothetical variant of algorithm from [1]. Firstly, we give an overview1151

of algorithm that is proposed in [1], for more information see [1]. They considered1152

a network of N agents where each agent i = 1, 2, ..., N at each time t ≥ 0 collects a1153

linear transformation of unknown vector parameter w0 ∈ RM corrupted by noise as1154

follows1155

di(t) = ui,tw
0 + vi(t),11561157

where ui,t ∈ RM is a row regression vector and vi(t) ∈ R is wide-sense stationary zero-1158

mean impulsive noise process with variance σ2
v,i. They introduced an agent-dependent1159

and time-varying error nonlinearity, hi,t(ei(t)), into the adaptation step and proposed1160

following algorithm1161

ψi,t = wi,t−1 + µiu
⊤
i,thi,t(ei(t)),

wi,t =
∑
ℓ∈Ni

aℓiψℓ,t,
(6.13)1162
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where µi is a step size parameter, Ni is the set of agents connected to agent i including1163

himself and aℓi are weighting coefficients. For the error nonlinearity hi,t(ei(t)), they1164

set to be a linear combination of Bi ≥ 1 preselected sign-preserving basis functions,1165

i.e., hi,t(ei(t)) = α⊤
i,tφi,t(ei(t)). As it is said in [1], if agent i were to run the sand-1166

alone counterpart of the adaptive filter in (6.13), then the optimal nonlinearity that1167

minimizes i-th agent MSE is given by hopt
i,t (x) = −p′

e(x)
pe(x)

in terms of the pdf of the1168

error signal.1169

Even though the pdf is not available in practice, for the purpose of comparing algo-1170

rithms in the specific numerical example when we know pdf, we introduce hypothetical1171

variant of algorithm, by finding optimal αopt
i,t , for each agent i at each time t, i.e.,1172

αopt
i,t = argmin

αi,t

E[hopt
i,t (ei(t))− hi,t(ei(t))]

21173

F. Derivations and numerical illustrations for Example 1. Derivation for1174

the average per-agent asymptotic variance σ2
B = 1

N Tr(S) follows1175

σ2
B =

1

N
Tr(a2

+∞∫
0

eΣvS0e
Σvdv) =

1

N
a2σ2

oh
2

+∞∫
0

Tr(e2Σvdv)1176

=
1

N
a2σ2

oh
2

+∞∫
0

Ne(1−2ah2φ′
o(0))vdv =

a2σ2
oh

2

2ah2φ′
o(0)− 1

.1177

1178
Integral in the last equality converge for a > 1

2h2φ′
o(0)

.1179

If a = a(B) = 1
2h2φ′

o(0)(B) + ϵ, for some constant ϵ > 0, we have that1180

σ2
B =

(
1

2h2φ′
o(0)

+ ϵ
)2

σ2
oh

2

2
(

1
2h2φ′

o(0)
+ ϵ
)
h2φ′

o(0)− 1
=

(
1+2h2φ′

o(0)ϵ
2h2φ′

o(0)

)2
σ2
oh

2

2
(

1
2h2φ′

o(0)
+ ϵ
)
h2φ′

o(0)− 1
1181

=

(
1+2h2φ′

o(0)ϵ
2h2φ′

o(0)

)2
σ2
oh

2

1 + 2h2φ′
o(0)ϵ− 1

=

(
1 + 2h2φ′

o(0)ϵ
)2

σ2
o

8h4φ′
o(0)

3ϵ
.1182

1183

Next, we validate that lim
B→0+

σ2
B = +∞. It is suffice to show that lim

B→0+

σ2
o

φ′
o(0)

3 = +∞,1184

since σ2
B =

σ2
o

8h4φ′
o(0)

3ϵ +
4h2ϵσ2

o

8h4φ′
o(0)

2ϵ +
4h4ϵ2σ2

o

8h4φ′
o(0)ϵ

.1185

lim
B→0+

σ2
o

φ′
o(0)

3
= lim

B→0+

B2
+∞∫
−∞

tanh2(wB )f(w)dw(
+∞∫
−∞

1
cosh2(w

B )
f(w)dw

)3 = [
w

B
= t, dw = dt]1186

= lim
B→0+

B2
+∞∫
−∞

tanh2(wB )f(w)dw

B3

(
+∞∫
−∞

1
cosh2(w)

f(Bw)dw

)31187

= lim
B→0+

+∞∫
−∞

tanh2(wB )f(w)dw

B

(
+∞∫
−∞

1
cosh2(w)

f(Bw)dw

)3 = +∞,1188

1189
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since lim
B→0+

+∞∫
−∞

tanh2(wB )f(w)dw = 1 and lim
B→0+

=
+∞∫
−∞

1
cosh2(w)

f(Bw)dw < +∞.1190

We now prove that both of the functions σ2
o and φ′

o(0) are increasing function with1191

respect to B. Suppose that B1 < B2, then we have that1192

B2
1 tanh

2(
w

B1
) < B2

2 tanh
2(

w

B2
),1193

1

cosh2( w
B1

)
<

1

cosh2( w
B2

)
,1194

1195
for all w ∈ R. Moreover, since f(w) ≥ 0 for all w ∈ R, we have that1196

B2
1 tanh

2(
w

B1
)f(w) < B2

2 tanh
2(

w

B2
)f(w),1197

1

cosh2( w
B1

)
f(w) <

1

cosh2( w
B2

)
f(w),1198

1199
for all w ∈ R. Therefore, we have that1200

σ2
o(B1) =

+∞∫
−∞

B2
1 tanh

2(
w

B1
)f(w)dw <

+∞∫
−∞

B2
2 tanh

2(
w

B2
)f(w)dw = σ2

o(B2),1201

φ′
o(0)(B1) =

+∞∫
−∞

1

cosh2( w
B1

)
f(w)dw <

+∞∫
−∞

1

cosh2( w
B2

)
f(w)dw = φ′

o(0)(B2).1202

1203
We now compare, in the presence of heavy-tailed observation noise with pdf as in (5.3)1204

for β = 2.05, the proposed algorithm (5.2) for the optimal choice of B⋆ with the1205

method from [1] and its hypothetical variant (see Appendix E). For those methods we1206

set that Bi = 2, ϕi,1(x) = x and ϕi,2(x) = tanh(x) for all agents. Furthermore, we set1207

that weighting coefficients are chosen according to aij =
Ãij∑

ℓ∈Ni

Ãℓi
, where Ã = A + I.1208

Moreover, for the smoothing recursions, zero initial conditions are assumed, νi is set1209

to 0.9 for every agent i and ϵ = 10−2.1210

Figure 5a shows Monte Carlo estimation of MSE for step size αt =
0.5
t+1 and the1211

Figure 5b shows Monte Carlo estimation of MSE for step size αt = 1
t+1 . As it can1212

be seen, the hypothetical variant of the method from [1] outperforms the proposed1213

one in both of the scenarios. However, that is because with the hypothetical variant1214

of [1] we optimize the choice of the nonlinearity for each agent at each time, whereas1215

the proposed algorithm (5.2) is optimized only by average per-agent asymptotic vari-1216

ance. Moreover, we see that the method from [1] is not as robust as the proposed1217

algorithm (5.2) with respect to the choice of the step size αt (constant a).1218

G. Proof of the assertion in Remark 4.13. Here, we modify Theorem 3.11219

from [8] and make it applicable to probability density functions that satisfy Assump-1220

tion 2.2. We will show that1221

sup
p∈PM

1+ϵ

P

|θ̂t − θ⋆| >

(
8

1
ϵM

2
ϵ ln 2δ

t(ln 2δ − 1)

) ϵ
1+ϵ

 ≥ δ,(6.14)1222

1223
for any θ⋆ ∈ R, δ ∈ (0, 1

2 ), where PM
1+ϵ ⊆ P denotes the subclass of all pdfs from1224

P such that 1 + ϵ-central moment equals M for ϵ ∈ (0, 1). Therefore, using Markov1225

inequality, we get1226

sup
p∈PM

1+ϵ

tE[|θ̂t − θ⋆|2] ≥ c1t
1−ϵ
1+ϵ ,1227

1228
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(a) (b)
Fig. 5. (a) Monte Carlo-estimated per-sensor MSE error on logarithmic scale for the algo-

rithm (5.2) for optimal B⋆ and for algorithm and its hypothetical variant from [1] for a = 0.5 (b)
Monte Carlo-estimated per-sensor MSE error on logarithmic scale for the algorithm (5.2) for opti-
mal B⋆ and for algorithm and its hypothetical variant from [1] for a = 1

for c1 = δ

(
8

1
ϵ M

2
ϵ ln 2δ

ln 2δ−1

) 2ϵ
1+ϵ

. Using that PM
1+ϵ ⊆ P and taking the supremum with1229

respect to t we get (4.23).1230

To show that (6.14) holds, we follow the same idea as in [8]. Let us consider the1231

class P+,− = {p+, p−} of probability density function p+ and p− such that p+ and p−1232

are probability density functions of uniform random variables on [p
2−p
2 , p2+p

2 ] and on1233

[−p2−p
2 , p−p2

2 ], respectively, for p ∈ (0, 1). It is easy to see that means of probability1234

density functions p+ and p− are θ+ = p2

2 and θ− = −p2

2 , respectively. Moreover,1235

1 + ϵ-th central moment of both pdfs is equal to1236

M =
pϵ+1

2ϵ+1(ϵ+ 2)
.(6.15)1237

1238
Let (Xj , Yj), j = 1, 2, .., t be i.i.d. pairs random variables such that p+ is pdf of1239

X1, and Y1 = X1 if X1 ∈ I = [p
2−p
2 , p−p2

2 ] and Y1 = −X1 if X1 /∈ I. Notice that1240

probability density function of Y1 is p−. Since we have that P{X1 ∈ I} = 1 − p, for1241

Xt = (X1, X2, ..., Xt) and Y t = (Y1, Y2, ..., Yt), we have that1242

P{Xt = Y t} = (1− p)t.12431244

Using that 1 − p ≥ e
−p
1−p , we have that P{Xt = Y t} = (1 − p)t ≥ 2δ, if p ≤ ln 2δ

ln 2δ−t .1245

Setting that p := ln 2δ
t(ln 2δ−1) , we have that p ∈ (0, 1) for all t = 1, 2, ... and δ ∈ (0, 1

2 ).1246

Let θ̂t = θ̂t(·) be any estimator, then we have that1247

max

(
P
{
|θ̂t(Xt)− θ+| >

p2

2

}
,P
{
|θ̂t(Y t)− θ−| >

p2

2

})
1248

≥ 1

2
P
{
|θ̂t(Xt)− θ+| >

p2

2
or |θ̂t(Y t)− θ−| >

p2

2

}
1249

≥ 1

2
P{θ̂t(Xt) = θ̂t(Y

t)}1250

≥ 1

2
P{Xt = Y t} ≥ δ.1251

1252
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Finally, using (6.15) we get that

(
p2

2

) ϵ+1
2

2
√
2

≥
(

p2

2

) ϵ+1
2

2
ϵ+1
2 (ϵ+1)

= M ≥ Mp
ϵ
2 , which gives us1253

that p2

2 ≥
(
8

1
ϵM

2
ϵ p
) ϵ

ϵ+1

and therefore we have that1254

max

P
{
|θ̂t(Xt)− θ+| >

(
8

1
ϵM

2
ϵ ln 2δ

t(ln 2δ − 1)

) ϵ
1+ϵ }

,1255

P
{
|θ̂t(Y t)− θ−| >

(
8

1
ϵM

2
ϵ ln 2δ

t(ln 2δ − 1)

) ϵ
1+ϵ } ≥ δ.1256

1257
Since we have that P+,− ⊆ PM

1+ϵ, it follows that (6.14) also holds.1258

H. Proof of extensions in Remark 4.14. For compact notation, we set1259

that H and H̃t are the N × (MN) matrices whose i-th row vectors are equal to1260

[0, ...,0, (hi)
⊤,0, ...,0] and [0, ...,0, (h̃t

i)
⊤,0, ...,0], respectively. Hence, for Ht =1261

H
t
+ H̃t, we have that (4.24) can be written, in compact form, as1262

zt = Ht (1N ⊗ θ∗) + nt = H (1N ⊗ θ∗) + H̃t (1N ⊗ θ∗) + nt.(6.16)12631264
Under this setting, we modify algorithm (3.1) such that, at each time t = 0, 1, ..., ,,1265

each agent i updates its estimate xt
i according to1266

xt+1
i = xt

i − αt

 b

a

∑
j∈Ωi

Ψc

(
xt
i − xt

j + ξ
t
ij

)
− hiΨo

(
zti − h

⊤
i x

t
i

) .(6.17)1267

1268
Assuming that all Assumptions 2.1-3.1 still hold (except those which overlap and1269

are hence replaced with assumptions in Remark 4.14), we show that the results in1270

subsections 4.2, 4.3 and 4.4 continue to hold for algorithm (6.17). Following the same1271

idea as in Section 4, we write algorithm (6.17), in compact form, by:1272

xt+1 = xt − αt

(
b

a
LΨc

(x)−H
⊤
Ψo

(
zt −Hxt

))
.(6.18)1273

1274
Substituting (6.16) into (6.18), we get that1275

xt+1 = xt − αt

(
b

a
LΨc

(x)−H
⊤
Ψo

(
H (1N ⊗ θ∗) + H̃t (1N ⊗ θ∗) + nt −Hxt

))
1276

= xt − αt

(
b

a
LΨc(x)−H

⊤
Ψo

(
H
(
1N ⊗ θ∗ − xt

)
+ H̃t (1N ⊗ θ∗) + nt

))
.1277

1278
Recalling ηt ∈ RMN from (4.3) and defining ζt ∈ RN by1279

ζt = Ψo

(
H
(
1N ⊗ θ∗ − xt

)
+ H̃t (1N ⊗ θ∗) + nt

)
−φo

(
H
(
(1N ⊗ θ∗)− xt

))
1280
1281

algorithm (6.18) can be written by1282

xt+1 = xt − αt

(
b

a
Lφc

(xt)−H
⊤
φo

(
H
(
(1N ⊗ θ∗)− xt

))
−H

⊤
ζt +

b

a
ηt

)
,(6.19)1283

1284

Since random variable H̃t (1N ⊗ θ∗) + nt satisfies Lemma 6.2, the rest of the proofs1285

are same as in the Section 4.1286
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