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DISTRIBUTED RECURSIVE ESTIMATION UNDER HEAVY-TAIL
COMMUNICATION NOISE

DUSAN JAKOVETIC*, MANOJLO VUKOVICT, DRAGANA BAJOVIC!, ANIT KUMAR
SAHUS, AND SOUMMYA KARY

Abstract. We consider distributed recursive estimation of an unknown vector parameter
0* € RM in the presence of impulsive communication noise. That is, we assume that inter-agent
communication is subject to an additive communication noise that may have heavy-tails or is con-
taminated with outliers. To combat this effect, within the class of consensus+innovations distributed
estimators, we introduce for the first time a nonlinearity in the consensus update. We allow for a
general class of nonlinearities that subsumes, e.g., the sign function or component-wise saturation
function. For the general nonlinear estimator and a general class of additive communication noises —
that may have infinite moments of order higher than one — we establish almost sure (a.s.) convergence
to the parameter 8*. We further prove asymptotic normality and evaluate the corresponding asymp-
totic covariance. These results reveal interesting tradeoffs between the negative effect of “loss of
information” due to incorporation of the nonlinearity, and the positive effect of communication noise
reduction. We also demonstrate and quantify benefits of introducing the nonlinearity in high-noise
(low signal-to-noise ratio) and heavy-tail communication noise regimes.

Key words. Distributed inference; distributed estimation; recursive estimation; heavy-tail
noise; consensus-innovations; stochastic approximation.

AMS subject classifications. 93E10, 93E35, 60G35, 94A13, 62MO05

1. Introduction. We consider distributed inference in networked systems, whe-
re each agent in a generic network continuously (over time instances ¢ = 0,1,...,)
makes noisy linear observations of an unknown vector parameter 8° € RM. Each
agent, at each time t, generates a local estimate of 8" through the so-called consen-
sus-Hnnovations strategy, i.e., by 1) weight-averaging its current solution estimate
with those of its neighbors, and 2) assimilating its new observation.

In this paper, we are interested in consensus+innovations distributed estimation
in the presence of an impulsive communication noise, e.g., when the communication
noise that corresponds to inter-neighbor communications is heavy-tailed or contami-
nated with outliers. It is highly relevant to consider impulsive communication noise
in many application scenarios. For example, edge devices in Internet of Things (IoT)
systems or sensor networks can be subject to impulsive noise distributions that may
not have finite moments of order higher than one, e.g., [8, 32, 13, 37, 12, 9]. In this
work, we allow the communication noise to be a zero-mean random variable that
may have infinite moments of order «, for any a > 1. In particular, communication
noise may have an infinite variance. To the best of our knowledge, such scenarios
have not been studied in the past work, wherein communication noise in consen-
sus+innovations inference is always assumed to have a finite moment of at least second
order (finite variance). Actually, as demonstrated ahead in the paper, existing con-
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2 D. JAKOVETIC, M. VUKOVIC, D. BAJOVIC, A. K. SAHU AND S. KAR

sensus+innovation estimators — that are always linear in the consensus update part —
can fail to converge under a heavy-tail communication noise. To combat the effect of
the (impulsive or high variance) communication noise, we introduce for the first time
a general nonlinearity in the consensus update. More precisely, we apply a nonlinear
operator (e.g., a sign function, a saturation-like function, or a sigmoid function) on
the difference between an agent’s current iterate and a noisy version of its neighbor’s
iterate, for every agent in the neighborhood set. We establish, under a general setting
for the nonlinearity and the additive communication noise, almost sure (a.s.) conver-
gence of the nonlinear estimator to the true parameter 8*. We also prove asymptotic
normality and evaluate the corresponding asymptotic covariance in terms of the un-
derlying network topology, observation noise, communication noise, and the employed
nonlinearity. The results reveal interesting interplay among these different problem
dimensions. Most notably, we show that, provided that the nonlinearity has uniformly
bounded outputs, the nonlinear estimator converges a.s. and achieves a finite asymp-
totic covariance, even when the communication noise has no finite moments of order
« for any a > 1. We then demonstrate that, in the same regime, the corresponding
linear consensus+innovations estimator has an infinite asymptotic covariance. We
further provide several studies in the finite communication noise variance case that
highlight the regimes where employing the nonlinearity strictly improves performance
of consensus+innovations estimation over linear schemes. Typically, there is a thresh-
old on the communication noise variance above which the nonlinear scheme achieves
a strictly better performance over a linear counterpart.

We now review existing literature to help us contrast our contributions with re-
spect to existing work. There has been extensive work on consensus+innovation
distributed estimation, e.g., [17, 15, 16] and related distributed estimation methods,
e.g., [20, 22, 23, 27, 31, 24, 38]. For example, reference [17] derives distributed estima-
tors for both linear and nonlinear observation models, and establishes a.s. convergence
and asymptotic normality of the methods under a general setting for inter-agent com-
munication and observation noises. Specifically, their network model accounts for
random link failures and dithered quantization, which, from the analysis perspective,
effectively translates into an additive communication noise. Reference [15] considers
consensus+innovations distributed estimation in the presence of random link fail-
ures without quantization or additive noise and develops estimators that are asymp-
totically efficient, i.e., that achieve the best achievable asymptotic covariance. The
authors of [16] propose adaptive asymptotically efficient estimators, wherein the inno-
vation gains are adaptively learned during the algorithm progress. There have been
several recent works that consider robust distributed estimation in the presence of
impulsive observation (sensing) noise; see [26] for a very recent survey and the ref-
erences therein. To develop robust estimators, various techniques have been utilized,
including, e.g., distributed estimators based on Wilcoxon norm, e.g., [19], Huber loss,
e.g., [21], and mean error minimization, e.g., [36], and novel robust variants of gradi-
ent descent [30]. Reference [1] also considers distributed recursive estimation in the
presence of heavy-tail (impulsive) sensing (observation) noiseand develops a distrib-
uted estimator that seeks the unknown parameter while at the same time identifying
the optimal error nonlinearity. Reference [6] considers distributed estimation under
measurement attacks. In this setting, the authors develop a consensus+innovations
estimator that employs a saturation nonlinearity in the innovations update. Refer-
ences [1, 6] utilize nonlinearities in the innovations update to combat the observation
attacks or heavy-tail noise. This is in contrast with the current paper that employs a
general nonlinearity in the consensus update to combat the heavy-tail communication
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DISTRIBUTED RECURSIVE ESTIMATION: HEAVY-TAIL COMMUNICATION NOISE 3

noise. Reference [7] (see also [35]) considers robust distributed estimation methods
based on adaptive subgradient projections. They are also not concerned with com-
bating the effect of heavy-tail inter-agent communication noise. There have also been
several works on consensus—+innovations and related distributed detection methods,
e.g., [25, 3, 2, 14] . In particular, reference [14] considers consensus+innovations
distributed detection in the presence of Gaussian additive communication noise. In
summary, with respect to existing work on consensus+innovations distributed infer-
ence, we employ for the first time a general nonlinearity in the consensus update, we
allow for the first time for heavy-tail additive communication noise, and establish for
the considered setting strong convergence guarantees, namely a.s. convergence and
asymptotic normality.

The idea of employing a nonlinearity into a “baseline” linear scheme has also been
used in nonlinear versions of the standard average consensus algorithm, e.g., [18, 33, 9].
Average consensus is a distributed algorithm that compute a network-wide average
of scalar values, e.g. [5, 10, 11]. In more detail, the authors of [18] introduce a
trigonometric nonlinearity into a standard linear consensus dynamics and show an
improved dependence of the method on initial conditions. References [33, 9] employ a
general nonlinearity in the linear consensus dynamics and show that it improves the
method’s resilience to additive communication noise. The above works are different
from ours as they focus on the average consensus problem, where the observations are
given to agents beforehand; the corresponding consensus algorithms hence involve only
a consensus step and not an innovation step in the iterative update rule. In contrast,
we consider here the consensus+innovations framework, where new observations are
assimilated at each time instant (algorithm iteration). This technically leads to a
very different analysis with respect to [18, 33, 9], and to qualitatively very different
results. For example, asymptotic performance of the nonlinear consensus+innovations
estimators is determined by an interplay between the effects of network topology,
observation noise and communication noise; observation noise is a model dimension
not present in standard average consensus.

There have also been works that employ a specific nonlinearity in the consensus
update within distributed optimization problems. In this context, the authors of [34]
modify the linear consensus update by taking out from the averaging operation the
maximal and minimal estimates among the estimates from all neighbors of an agent.
Reference [4] employs the sign nonlinearity in the consensus update part for distrib-
uted consensus optimization. The works [4, 34] contrast from ours in that they employ
a specific nonlinearity, while we consider a general nonlinearity class. Furthermore,
these works assume deterministic functions in the corresponding distributed consen-
sus optimization problem, that effectively translates into having the observation data
available beforehand. On the other hand, we consider a streaming data scenario that
corresponds to the innovations update part in the algorithm we study.

Paper organization. Section 2 describes the distributed estimation model that
we consider and presents the nonlinear consensus+innovations estimator that we pro-
pose. Section 3 explains our main results on the almost sure convergence and the
asymptotic normality of the proposed distributed estimator. Section 4 provides sev-
eral analytical and numerical examples that demonstrate benefits of the proposed
nonlinear estimator over the linear counterpart in high and heavy-tail noise regimes.
Finally, Section 5 concludes the paper.

Notation. We denote by R the set of real numbers and by R™ the m-dimensional
Fuclidean real coordinate space. We use normal lower-case letters for scalars, lower
case boldface letters for vectors, and upper case boldface letters for matrices. Further,
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to represent a vector a € R™ through its component, we write a = [a;,as, ..., a,,]
and we denote by: a; or [a];, as appropriate, the i-th element of vector a; A;; or
[A];;, as appropriate, the entry in the i-th row and j-th column of a matrix A; AT
the transpose of a matrix A; ® the Kronecker product of matrices. Further, we use
either a'b or (a, b) for the inner products of vectors a and b. Next, we let I, 0,
and 1 be, respectively, the identity matrix, the zero vector, and the column vector
with unit entries. Further, Diag(a) is the diagonal matrix whose diagonal entries are
the elements of vector a; Tr(A) the trace of matrix A; J the N x N matrix J :=
(1/N)11T. When appropriate, we indicate the matrix or vector dimension through
a subscript. Next, A = 0(A > 0) means that the symmetric matrix A is positive
definite (respectively, positive semi-definite). We further denote by: || - || = || - ||2 the
Euclidean (respectively, spectral) norm of its vector (respectively, matrix) argument;
Ai(+) the i-th smallest eigenvalue; ¢’(v) the derivative evaluated at v of a function
g:R — R; Vhi(w) and V2h(w) the gradient and Hessian, respectively, evaluated at
w of a function h : R™ — R, m > 1; P(A) and E[u] the probability of an event A and
expectation of a random variable u, respectively; and by sign(a) the sign function,
i.e., sign(a) =1, for a > 0, sign(a) = —1, for a < 0, and sign(0) = 0. Finally, for two
positive sequences 7, and x,, we have: 1, = O(x,,) if limsup,,_, ., ;]TZ < 00.

2. Model and Algorithm. Subsection 2.1 explains the network and observa-
tion models that we assume. Subsection 2.2 presents the nonlinear consensus+inno-
vations distributed estimator that we propose and states the technical assumptions
needed for subsequent analysis presented in Section 3.

2.1. Problem model. Consider a network of N agents (sensors). Each agent ¢

at each time t = 0,1, ..., collects a linear transformation of the parameter of interest
0* € RM corrupted by noise, as follows:
(2.1) 2t =h/ 0" +nl.

Here, z! € R is the observation, h; € RM is the deterministic, non-zero linear trans-
formation vector and n! € R is a scalar zero-mean noise. The above update in (2.1)
can be written in a compact form as follows:

(2.2) z' =H(ly ®0") +n".

Here, z' = [24,25,...,24]7 € RY is the observation vector. H is the N x (MN)
matrix whose i-th row vector equals [0,...,0,h;,0,..,0] € RMY  where the i-th
block of size M equals h,, and the other M-size blocks are zero vectors; and n =
[nt,nb,....,n%]T € RV is the noise vector at time ¢.

The agents constitute a network G = (V, E), where V = {1, ..., N} is the set of agents,
and F is the set of (undirected) inter-agent communication links (edges) {7, j}. For
future reference, introduce the NV x N graph Laplacian matrix L, defined by L = D—A,
where D is the degree matrix and A is the adjacency matrix. That is, D = Diag({d,}),
where d; is the degree (number of neighbors) of agent 4, and A is a zero-one symmetric
matrix with zero diagonal, such that, for i # j, A;; = 1 if and only if {7, j} € E. Also,
denote by €; the set of neighbors of agent i (excluding ¢). For an undirected edge
{i,j} € E, we denote by (i,j) the arc that points from j to ¢, and similarly, (j,¢) is
the arc that points from ¢ to j. Following this convention, the communication noise
injected when agent j communicates to agent ¢ will be indexed by subscript ij (see
ahead (2.3)).

2.2. Proposed algorithm and technical assumptions. The agents perform
an iterative consensus+innovations distributed algorithm to collaboratively estimate
the unknown vector parameter 8* € RM in the presence of noisy communication links.
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We assume that communication noise may be heavy-tailed, e.g., [8, 32, 13, 37, 12, 9].
To combat the heavy-tail communication noise, we introduce for the first time a
nonlinear consensus step in consensus+innovations-type methods. More precisely,

the proposed distributed estimator is as follows. At each time ¢t =0, 1, ..., each agent
i updates its estimate xt € RM of the parameter 8* in the following fashion:
b
(2.3) X = xt — - Z U (x} —x! +¢&};) —h; (2 —h/x))
JEQ;

Here, oy = a/(t + 1) is a step-size, a,b > 0 are constants, £§j € RM is a zero-mean
additive communication noise that models the imperfect communication from agent
j to agent i. Next, ¥ : RM — RM is a non-linear map that operates component-wise
on any vector as follows:

C(y1,y2, - ym) = [Y(y1), ¥(y2), ., U(ym)]
where, abusing notation, ¥ : R — R is a component-wise non-linear function. With
algorithm (2.3), upon reception of the noisy version of agent j’s parameter estimate
ﬁfJ = x§. — Eﬁj, agent i applies the nonlinearity ¥ : RM — RM on the consensus
contribution (Xf — fj) . Intuitively, the role of ¥ is to combat the communication
noise effect (e.g., truncate large values) while maintaining sufficient useful information
flow. When in algorithm (2.3) we set ¥ : RM — RM to be the identity map, we
recover the LU (linear estimator) in [17].
For future reference, we write algorithm (2.3) in compact form.
Let x* = [x!,x5,...,x%] T € RMN. Furthermore, for x = [x1,X2,...,xy]|" € RMY and
&= [&.& -, En]" € RMYN where &; = [€;1,€5r, - &in] T € RMY and &;; = 0 if
j ¢y, define Ly (x, &) by

X

Ly (x,£) = je% U(x; —x; +&;5)

That is, the map Lg(x,&) : RMN x RMNN 3 RMN gtacks the N vectors of size M,
> P(x; — x5 + €;;), i =1,2,.., N, one on top of another. Then, algorithm (2.3)
JEQ
can be written as:

b

(2.4) xT =xt — oy (L\p(xt,ﬁt) -HT (z' - th)) ,

a
fort=0,1,....
We make the following assumptions on the underlying network, non-linear map, ob-
servation noise, and communication noise. The assumed nonlinearity class is similar
to that in [29].

Assumtion 2.1. Network model:
Graph G = (V, F) is undirected, simple and static.

Assumtion 2.2. Nonlinearity W:
The non-linear function ¥ : R — R satisfies the following properties:
1. Function ¥ is odd, i.e., ¥(a) = —¥(—a), for any a € R;
2. ¥(a) > 0, for any a > 0;
3. Function ¥ is a monotonically nondecreasing function;
4. W is continuous, except possibly on a point set with Lebesque measure of
zero. Moreover, W is piecewise differentiable.
Also, ¥ : R — R satisfies one of the following two properties:
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6 D. JAKOVETIC, M. VUKOVIC, D. BAJOVIC, A. K. SAHU AND S. KAR

5. |¥(a)] < c1(1+]al]), for any a € R, for some constant ¢; > 0;
5. |¥(a)| < cq, for some constant ¢y > 0.

There are many interesting examples of nonlinearities that satisfy Assumption 2.2,
including, e.g., the following:
e (NL1) Sign function: ¥(a) = sign(a);
e (NL2) Saturation or clipping function: ¥(a) = a, for |a] < m; and ¥(a) =
msign(a), for |a| > m, for some constant m > 0;
e (NL3) Relay function with insensitivity zone: ¥(a) = 0, for |a| < r; and
U(a) = sign(a), for |a] > r, for some constant r > 0.

Assumtion 2.3. Observation model:

1. For each agent ¢ = 1,..., N, the observation noise sequence {n}} in (2.1), is
zero-mean and independent identically distributed (i.i.d.);

2. Random variables n} and nj are mutually independent whenever the tuple
(i,t) is different from (7, s);

3. Random variable n! has a finite variance equal to ogbs, for any t = 0,1, ...
and for any ¢ =1, ..., N;

4. The matrix Zfil h;h/ is invertible.

The condition 4 in Assumption 2.3 is a standard global observability assumption,
see. e.g. [17]; if it does not hold, then a central estimator that collects all observations
according to (2.1) for each t = 0,1, ... and for each i = 1, ..., N, is not able to provide
a consistent sequence of estimates over times t =0, 1, ...

Assumtion 2.4. Communication noise:

1. Additive communication noise {£};}, &; € RM in (2.3), is i.i.d. in time ¢,
independent of the observation noise family {nt}, i =1,....N, ¢ =0,1..., and
independent across different arcs (4, j) of graph Gj

2. Each random variable [Eﬁj]g, for each t = 0, 1..., for each arc (i, j), for each
entry £ =1, ..., M, has the same cumulative distribution function ®;

3. The distribution function ® is symmetric, i.e., for all a € R we have that
®(a) =1 — ®(—a), and has strictly positive second moment.

We assume that at least one of the conditions 4. or 4’. below holds.
4. Function ¥ is strictly increasing (from Assumption 2.2) and functions ® and
¥ have a common growth point, i.e.,
\I/(CLQ + 5)
[®3;]i(a0 +€)
for some ag € R and all € > 0;
4'. Distribution ® has a pdf p(u), p : R — R, that is strictly unimodal, i.e., there
holds p(0) < 400 and p(u1) < p(ug) for |ui| > |usl;

5. There holds that [ |a|d®(a) < oo, and the communication noise is zero-mean,
ie., [ad®(a) = 0;

6. If part 5 of Assumption 2.2 holds, then we additionally require that commu-
nication noise has a finite variance, i.e.:

a’d®(a) < oo;

\I/(ao — 5),

>
> [@ij]i(ao — ¢),

7. Distribution ® has a well-defined pdf p : R — R in the vicinity of discontinuity
points of function ¥ : R — R from Assumption 2.2.

For notational simplicity and a clearer presentation, we assume that the com-
munication noise has the same distribution ® across all arcs (4, ) such that {i,j} €
E. We additionally assume that each element of communication noise vector [£§j] 3
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£ =1,2,...,M, has the same cumulative distribution function ¥, and that [£’fj] ¢ and
[Efj]s are mutually independent for ¢ # s. Extensions to heterogeneous choices of
nonlinearity ¥ across links and heterogeneous communication noises with mutually
dependent [Eﬁj]g and [Efj]é for £ # s, are presented in Remark 1 in Section 3.1 (see also
Supplementary material C). Similarly, we assume that the observation noise has the
same variance across all agents i; analogous extensions to different agents’ observation
noise variances can be performed as well.

3. Main results. Subsection 3.1 states and proves almost sure convergence of
the proposed nonlinear consensus+innovations distributed estimator in (2.3). Sub-
section 3.2 establishes asymptotic normality of the estimator and evaluates the cor-
responding asymptotic variance.

3.1. Almost sure convergence. We have the following Theorem.

THEOREM 3.1 (Almost sure convergence). Let Assumptions 2.1-2.4 hold. Then,
for each agent i = 1,..., N, the sequence of iterates {x'} generated by algorithm (2.3)
converges almost surely to the true vector parameter 0.

Theorem 3.1 establishes, for a nonlinearity ¥ with bounded outputs (e.g., the
nonlinearities NL1-3 introduced in Section 2), almost sure convergence of the pro-
posed algorithm (2.3) under heavy-tail communication noise that may not have finite
moments of order greater than one. In contrast, it can be shown that the correspond-
ing linear £U scheme in [17] (obtained by taking ¥ to be the identity function in (2.3))
generates a sequence of iterates with unbounded second moments for all ¢ = 1,2, ...
(see Supplementary material B). The Theorem also establishes almost sure conver-
gence of (2.3) for nonlinearities with unbounded outputs, more precisely, those that
satisfy part 5 of Assumption 2.2, when the communication noise has finite second
moment. As a special case, by taking ¥ to be the identity map, we recover for the
letter case almost sure convergence of the linear estimator (the £ algorithm) in [17].
Setting up the proof. We next outline our strategy for proving Theorem 3.1.
We base our analysis on stochastic approximation arguments. More precisely, we
use Theorem 29 in [17] adapted from [28] (see also Theorem 3 in the supplementary
material) to establish a.s. convergence of x! to 1y ® 8 by verifying assumptions
B1-B5 of Theorem 29 in [17].

The proof strategy is as follows. We first prove a.s. convergence of algorithm (2.3)
for the case without communication noise, i.e., by setting ffj = 0 in (2.3). In this
setting, we first prove the result assuming a continuous function ¥ : R — R. Then, we
handle the case with discontinuous ¥ by additionally assuming that we can associate
to U : R — R a “lower bound” surrogate function ¥ : R +— R that is continuous,
satisfies assumption 2.2, and the following holds:

(3.1) | (a)| > |¥(a)|, for any a € R.
This enables us to complete the proof for the noiseless case. To transition to the noisy
communications case, a key argument is to consider an auxiliary function ¢ : R — R,

defined by
(3.2) ola) = /\Il(a + w)d®(w).

Intuitively, ¢ : R — R is a convolution-like transformation of nonlinearity ¥ : R — R,
where the convolution is taken with respect to the communication noise cumulative
distribution function ®.

As we will demonstrate ahead, function ¢ : R — R in the noisy communications case
effectively plays the role that function ¥ : R — R has in the noiseless case. Moreover,
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8 D. JAKOVETIC, M. VUKOVIC, D. BAJOVIC, A. K. SAHU AND S. KAR

function ¢ inherits all the key properties of function W. More precisely, we exploit
the following Lemma in [29] (see Lemmas 1-6 in [29]).

LEMMA 3.2 ([29]). Consider function ¢ in (3.2), where function ¥ : R — R,
satisfies Assumption 2.2. Then, the following holds:
1. ¢ is odd;
2. If |¥(v)| < e, for any v € R, then |p(a)| < &, for any a € R, for some
cy > 0;
3. If|U(v)| < ca(14|v]), for any v € R, then |p(a)| < ch(1+|al), for any a € R,
for some cb > 0;

4. o(a) is monotonically nondecreasing;
5. p(a) >0, for any a > 0.
6. ¢ is continuous at zero;
7. ¢ is differentiable at zero, with a strictly positive derivative at zero, equal to:
S S Vit1
(33) PO = Y (W0i+0) - v -0)p) + Y [ VeI,
i=1 i=0 Y Vi
where v;,i = 1,...,s are points of discontinuity of ¥ such that vy = —o0

and vs11 = +oo, and we recall that p(u) is the pdf of distribution ® (see
Assumption 2.2).

Lemma 3.2 allows that the treatment of the noisy case becomes completely analogous
to the noiseless case, by replacing function ¥ with ¢. Finally, to address the case
when ¢ may not be continuous over R, we make use of the following Lemma that is
a trivial corollary of Lemma 3.2.

LEMMA 3.3. Consider ¢ in (3.2). Then, there exists a positive constant & such
that |p(a)] > 5¢'(0) |al, for |a] < €.
Lemma 3.3 allows us to define a continuous function ¢ : R — R,

Lo(0)a , |a| <
pla) = { ggg(rl()a) , | e|lse£ ’

that satisfies Assumption 2.2 and obeys the property:
(3.4) le(a)| > |¢(a)], for any a € R.
Function ¢ will then clearly play the role of function ¥ in (3.1) in the noiseless case.
We are now ready to prove Theorem 3.1.

Proof. (Proof of Theorem 3.1)

Step 1: No communication noise. We start the proof by verifying conditions
B1-B5 of Theorem 29 in [17] for the case without communication noise. We use the
following Lyapunov function V : RMN — R V(x) = ||x — 15 ® 8*||2. For this, only
for condition B3, we need to analyze separately the case with continuous ¥ and the
case when ¥ may not be continuous. Also, it can be shown that (2.3) can be put in
the form required by Theorem 29 in [17] (see also (36) in the supplementary material)
by letting

(3.5) r(x)=-H H((x -1y ®0*) - qul(X, 0),

(3.6) ~(t+1,x,w) =H n',

where w denotes an element of the underlying probability space.

Consider the filtration F;, t = 1,2, ..., where F is the o- algebra generated by {n® 2;%).
Denote by (2, F,P) the underlying probability space that generates random vectors
n’, t =0,1,2,..., and by w € € its arbitrary element. Clearly, for each ¢, function
~(t+1,-,-) is BYN @ F measurable, where BM¥ is the Borel sigma algebra on RM¥.
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Also, r(-) is BMN measurable. Hence, condition B1 holds. Further, the family of
random vectors (¢t + 1,x,w) is F; measurable, zero-mean and independent of F;_1.
Thus, condition B2 holds.
We now inspect condition B3. Assume first that function ¥ : R — R is contin-
uous. The gradient of V equals VV(x) = 2(x — 1y ® 6*). Clearly, function V(-)
is twice continuously differentiable and has uniformly bounded second order partial
derivatives. We consider
(3.7 S = sup (r(x), VV(x)),.

[[x—1n®R60*| E(e,1/¢€)
We will show that S < 0, thus verifying condition B3. We have, for any x €

r(x),VV(x)) = -2 (x — 1y ®6%)" <HTH (x—1y ©0") + ZLW(X))

RMN.

(3.8) = -2 ((x 1y ®6) H H(x -1y ® 0*)) 722 (x -1y ®6") Lg(x).

T (x)

T1(x)
Clearly Ty = T1(x) > 0. We will also show that T = T»(x) > 0. Utilizing the fact
that, ¥(-) is an odd function, we have that,
(39) T2 = Z (Xi — Xj)T ‘I’ (Xi — Xj) Z 07
{i,j}€E,i<j
as for g = (x; — x;), we have that,

M
(3.10) (i =) T (xi —x;) = Y ge¥ (ge) >0,
=1
because gy and ¥ (g,) have the same sign, by Assumption 2.2. Therefore,

b
(r(x),VV(x))=—-2T1 —2-T» <0,

a
for any x € RMN,
We will further show that S in (3.7) is strictly less than 0. First, consider the set
C={xeRMN: |x—1y®0"| € [¢,1/e]}. Note that set C is nonempty and compact.
Clearly, we have that:
(3.11) S < Se :=sup(r(x), VV(x)),

xeC

It is thus sufficient to show that S¢ < 0. Suppose the contrary is true, i.e., suppose

that S¢ = 0. Asset C is compact and function x — (r(x), VV(x)) is continuous, by the
Weierstrass theorem, we have that Se = 0 is equivalent to having (r(x*), VV(x*)) = 0,
for some point x* € C. In this case, x* has to be of the form, x* = 1y ®m, where m €
RM . As otherwise, we would have that, T, is strictly positive. But then, we have, T} =
((x- 1y @0 THTHEX — 1y ® e*)) = (m—6)" (zjvzl hih;r) (m — 6*) > 0,
which is a contradiction in view of (3.7). Hence, we conclude that, for a continuous
function ¥, it holds that S < 0, and that condition B3 holds, i.e.,
sup (r(x),VV(x)) < 0.
[x—1n®6*[|E(e,1/€)
Now, we verify condition B3 for function ¥ that is not continuous but to which we can
associate function ¥ that obeys Assumption 2.2 and for which condition (3.1) holds.
Then, the verification of condition B3 follows analogously to the case with continuous
U by replacing T5 in (3.9) with the following lower bound of T,
(3.12) Ty= Y, (%) ¥(xi—x),
{i,JY€EE,i<]
where ¥(a) = [¥(a;), ¥(az), ..., ¥(ay)] . Hence, condition B3 is verified.
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We next verify condition B4. Recalling the definition of r(x) in (3.5), we have,
(3.13) IeGON* < eV () + ea | B ()|
where c3 = 2a? HHTHH2 and ¢; = 202 |L|]*.
We also have that,
e <es Y (i = 07| +1x; = 07]) +c6 < er |x — 1y @ 07 + cs,
{i,j}€E
for some positive constants cs, cg, c7. Therefore, we have
(3.14) % (x)||” < 27V (x) + 23,
for some positive constant cg.
Thus, we have that,
()" < V(%) + eao,
form some positive constants cg, c19. Recall v(¢t + 1, x,w) in (3.6). Using the bound-
edness of the second moment of the observation noise, we finally have that,
) I* + B [yt + 1% 0)[*] < en (Vix) +1),
for some positive constant ;1. Hence, condition B4 is satisfied. Finally, condition B5
clearly holds. Therefore, we conclude that x! — 1y ® 8%, almost surely.
Step 2: The case with communication noise. We proceed by considering algo-
rithm (2.3) under communication noise.
We clarify the steps needed to transition from the noiseless to the noisy case. If we
write
@(X27X§+£t) (X 7X)+nz]7
where n!; = [®(x! —x}+&;)—p(x! —x})] and ¢ : RM — RM is component-wise map
defined as cp(xl,x27...,xM) [o(x1), p(x2), .., p(xar)] 7. We will see that quantity
n}; is a key ingredient of (¢ + 1,x,w) in Theorem 29 in [17] (see also Theorem 3 in
the supplementary material).
The algorithm (2.3) can be written in compact form:

b b
(3.15) Xt =x'—ay <aL¢(Xt) — H7(z' — Hx') + arf) :
Here,
. t t
£y _ p(xt —xt MN t_ nt MN
(3.16) Lo (x!) = jEZQi (xi =%5)| e RMN, gt = jze 5 M| eRMY,

where the M x 1 blocks 3 ¢(x} —x%) and }_ m}; are stacked one on top of another
€€ €Q;

for j=1,..., V. ’ ’

The differences of (3.15) with respect to the case without additive communication

noise are that L, replaces Ly and the term %at nt is added.

We define the Lyapunov function V : RMY — R, and quantities r.,(z) and Yot %, w)

as follows:

(3.17) V(x)=||x — 1y @ 67|
b
(3.18) ro(x) = -H'H(x -1y ®0*) — aL(P(x),
b
(3.19) Yot +1,x,w)=Hn’ - gnf,

Now, make the following identification with respect to the transition from the noiseless
to the noisy case. Quantity H n? in the noiseless case is replaced with quantity
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DISTRIBUTED RECURSIVE ESTIMATION: HEAVY-TAIL COMMUNICATION NOISE 11

H'n' — 2n! in the noisy case. The map Lg(-,0) : RMN — RMN in (2.4) is replaced
with the map L, : RMN — RMN given in (3.16).

The proof proceeds analogously by again verifying Assumptions B1-B5. We only
clarify the differences in verifying these conditions with respect to the noiseless case.
The filtration F; is replaced with the filtration G, t = 1,2, ...,, which is generated
not only by {n®*}._{ but also by 37 }2§ for (i,4) € E. Clearly, for each t, function
Yo (t+1; ) is BN @F measurable. Also, ry(-) is BMY measurable. Hence, condition
B1 holds. Further, the family of random vectors 'yq,(t + 1,x,w) is JF; measurable,
zero-mean and independent of F;_;. Thus, condition B2 holds. As function ¢ is
odd, non-decreasing, strictly positive for its positive arguments, and has a positive
derivative at zero by Lemma 3.2, condition B3 is derived analogously to the noiseless
case. Conditions B4 and B5 hold analogously to the noiseless case. Thus, the result
is verified. O

Remark 1: Theorem 3.1 continues to hold under the following generalizations:
e A different nonlinear function ¥;;, : R — R is assigned to each arc (i, j) and
to each element ¢ = 1, ..., M of the communication noise [¢;,],. Each function
W;;.0 obeys Assumption 2.2.
e The observation noise ngs,i is different for each agent ¢ = 1,2,..., N.
e The communication noise £fj has the joint cumulative distribution function
®,; such that:

/ ald®;(a) < oo, / ad®,;(a) = 0,
acRM acRM
and ®;;(a) = 1 — ®;;(—a), for all a € RM.
All the remaining assumptions in 2.1-2.4 continue to hold.
Note that the above means that the communication noise Efj may have mutually
dependent elements [éfj]g, for{=1,...,. M.
For the above generalization, it can be shown that Theorem 3.1 continues to hold (see
Supplementary material C).

3.2. Asymptotic normality. We now present our results on asymptotic nor-
mality of estimator (2.3).

THEOREM 3.4 (Asymptotic normality). Let Assumptions 2.1 — 2.4 hold. Con-
sider algorithm (2.3) with step-size oz = a/(t +1), t = 0,1,..., a > 0. Then, the
normalized sequence of iterates {v/t + 1(x* — 15 ® 8")} converges in distribution to a
zero-mean multivariate normal random vector, i.e., the following holds:

Vi+1(x"' =1y ® 0") = N(0,8S),

where the asymptotic covariance matrix S equals:
o0

(3.20) S= a2/62”SOeET”dv.

0

2

Here, Sg = 02, H'H* 2, 0% Diag ({d;In}), where we recall that d; is the degree of
agent i; 0 = [|U(w)|?d®(w) is the effective communication noise variance after
passing through the nonlinearity U; we recall the observation matriz H in (2.2); the
observation noise variance o2, in (2.1); function ¢ in (3.2); and ¥ = 31— a(H TH+
2(0)(L®1Iar)), where a is taken large enough such that matriz 2 is stable (i.e., real
parts of X’s eigenvalues are negative).

Theorem 3.4 shows that, for the communication noise with finite variance and un-
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12 D. JAKOVETIC, M. VUKOVIC, D. BAJOVIC, A. K. SAHU AND S. KAR

bounded nonlinearities that satisfy part 5 of Assumption 2.2, the variance with the
proposed nonlinear estimator (2.3) decays (in the weak convergence sense) at (the best
achievable) rate O(1/t). In particular, by taking ¥ to be the identity function, we
recover the asymptotic normality result in [17] of the corresponding linear estimator
(the LU scheme in [17]). Note also that the asymptotic variance expression in (3.20)
for the indentity function ¥(a) = a coincides with that in [17] for the LU scheme.
Theorem 3.4 further demonstrates that, even under a heavy-tailed communication
noise (with unbounded variance) with a bounded nonlinearity (e.g., nonlinearities
NL1-3 in Section 2), the variance with algorithm (2.3) still decays at rate O(1/t). In
contrast, the corresponding linear scheme (obtained by taking ¥ in (2.3) to be the
identity function) generates a sequence with unbounded variances for each t = 1,2, ...
More precisely, we then have that E[||x! — 1y ® 0*||*] = oo, for any ¢t = 1,2, ... (see
Supplementary material C).

Theorem 3.4 explicitly quantifies asymptotic variance of (2.3). This also allows, in
the finite communication noise regime, to compare the nonlinear versus the linear
scheme (when both schemes achieve a finite asymptotic variance). See Subsection 4.1
for details.

Theorem 3.4 also reveals an interesting tradeoff when including the nonlinearity ¥
into the consensus update. On the one hand, nonlinearity makes a beneficial effect in
that the communication noise plays the role only through the effective variance o2 =
J ¥ (w)[?d®(w). In contrast, with the linear scheme, o2 is replaced with [ w?d®(w)
that is infinite under a heavy tail setting. On the other hand, the nonlinearity ¥
makes a negative effect in that it “reduces quality” of matrix 3 through the quantity
©'(0) that is typically less than one with a nonlinear scheme and equal to one with the
linear scheme. Clearly, the tradeoff goes in favor of the nonlinear scheme in the heavy
tail setting (finite variance with the nonlinear estimator versus infinite variance with
the linear estimator). In the finite communication noise variance setting, the nonlinear
scheme typically improves performance under a sufficiently low communication signal
to noise ratio (SNR); see also Subsection 4.1. We are now ready to prove Theorem
3.4.

Proof. (Proof of Theorem 3.4) We establish asymptotic normality by verifying
assumptions C1-C5 of Theorem 29 in [17] (see also Theorem 3 in the supplementary
material). Firstly, we show that condition C1 hold. Since function ¢ is differentiable
at zero, we have that

(3.21) p(a) = ¢(0) + ¢'(0)a+ Ala) = ¢'(0)a + A(a),
where for the function A : R — R, we have that lir% ¥ = 0. Hence, the function

a—r
r,(x) admits representation as in Theorem 29 of [17] (see also (37) of Theorem 3 in
the supplementary material), with matrix

B=-H"H- %p’(o) L ®In],

and function § : RMN — RMN | given with §(x) = —2La(x). Here, function La (x) :
RMN _ RMN ig defined by

where function A : RM — RM is defined by (3.21), A(y1,¥1, ..., yar) = [A(y1), A(y2), ..., Alya)] " B
y € RM,

This manuscript is for review purposes only.
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561 Condition C2 trivially holds, if we use that ay = 7. Furthermore, 3 = aB + %I is
562  stable if a is large enough, because matrix —B is positive definite (see [17]). Thus,
563 condition C3 also holds.

564 For A(t,x) = E[’yv(t + 1, x,w)v, | (t + 1,x,w)], using the Lebesgue’s dominated
565 convergence theorem, it can be shown that

566 lim  A(t,x) = 04 H"H + ¢ Diag ({d; Ins}) .

567 t—o0,x—0* s
568 Therefore, condition C4 also holds. It remains to verify condition C5. Recall quantity
569 Ye(t+1,%x,w) in (3.19). Note that this condition is equivalent to saying that the family
of random variables {||v,(f + 1,%x,w)||*}+=01,..., |x—6* | <e is uniformly integrable. If
the condition 5 in Assumption 2.2 holds (the case with finite communication noise
variance and the nonlinearity with unbounded outputs), then:

(3.22) Ve (t + Loz, w0)|* < erz + caz|n||* + cra I,

for some positive constants cis, ¢13, C14.

Consider the family {g(t + 1,%,w)}i—01,...,|x—6%| <, With

(3.23) g(t+1,x,w) = c12 + |0’ |* + caa [0

Clearly, g(t + 1,z,w) is integrable, for any ¢t = 0,1,..., for any ¢ > 0, due to
the finite second moment of sensing and observation noises. The family {g(t +
L,w,w)b—0,1,...,|x—6*||<e 18 i.i.d. and hence it is uniformly integrable. The family
{”'ch(t + 17wi)”z}t:(),l,...,l\x—e*H<e is dominated by {g(t + 1»xvw)}t:O,l,...,\|x—9*|\<e
that is uniformly integrable, and hence {||v,(t+1, z,w) ||2}t:0,1,---7|\m7z*|\<6 is also uni-

en)

v Ot Ot Ot Ut Ot

~N ~J 4 4 3

U W N =

©

0 1 =1 =1 =
B 3

oo

[S,IIN¢; G, BNG) BNV, G, B, BN, NG} |
Q0

1
82 formly integrable. An analogous argument can be applied if condition 5’ in Assump-
83 tion 2.2 holds (bounded nonlinearity, communication noise with infinite variance).
84 Hence, condition C5 holds; thus, the result. 0
585 4. Analytical and numerical examples. Subsection 4.1 provides analytical

586 examples, and Subsection 4.2 provides simulation examples, that illustrate the main
587 results presented in Section 3.

588 4.1. Analytical examples. We provide several analytical examples that illus-
589 trate Theorem 3.4. The examples demonstrate that, in the considered setting, the
590 proposed nonlinear method in (2.3) achieves a lower asymptotic variance than the
591 corresponding linear scheme, for a low SNR regime, i.e., for the case when the com-
592 munication noise variance is above a threshold. We also consider optimization of the
593 nonlinearity ¥ for a given nonlinearity class; more precisely, for the given analytical
594 example, we consider optimization of parameter B for the NL2 nonlinearity class in
595  Section 2.

5906 Example 1: We follow a setup similar to [17], but we consider the nonlinear con-
597 sensus-+innovations scheme in (2.3), with the non-linear operator ¥ : R — R of the
598 following form (the NL2 nonlinearity):

w o, |w<B
599 (4.1) V(w)y=¢ +B , w>B |,
-B , w<B

1 for some parameter B > 0. Notice that letting B — oo in (4.1) leads to the linear
2 consensus—+innovations £U scheme in [17].
;03 Each agent ¢ observes a scalar parameter 8* € R according to:

4 2i(t) = h0* + nl,
6 where h # 0 and n! is i.i.d. in time and across sensors with variance o2, and zero
607 mean. Communication noise is i.i.d. across arcs and in time and is independent of
608 {nt}, for all i = 1,2,..., N. Assume that the communication noise has a probability
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distribution function f(w) that is strictly positive in the vicinity of zero. Denote the
eigenvalues of L by 0 = A\; < A3 < --- < An. Let the graph be regular, for simplicity,
with degree d. Using Theorem 3.4, we have that the asymptotic covariance matrix

equals:
o0

S = az/ezq’soez”dv.
0

obs

Here, Sy = <h202 + Z—zda2> I; also, recall 02 = [ |¥(w)|*f(w)dw, the effective

communication noise per link. We assume that f(w) has a zero mean and variance

(o)
02mm = J w?f(w)dw that is finite. Also,

1 b
S=_TI-a(R*T+ ¢ (0L
5 a( +a<p(0)),

where ¢ is given in (3.2). For the nonlinearity considered here, we have that

P +B
o? :2/w2f(w)dw—|—32 <1—2 f(w)dw> ,
0

Denote by 0 = % Tr(S) the average per-agent asymptotic variance. Analogously to
(76)-(86) in [17], for a > 51> we get:

a’h?c?,  +b*do?®  a’h?o?. + b do? al 1

N@a?—1) N 2 9529/ (0) + (2ah? — 1)
We next analyze the values of 04 as B — 0 and B — +0o0.
For B — 0, we have that 02 — 0, ¢'(0) — 0 and
272 2
2 s

Op — Wi—ol = UO.
That is, when B — 0, we effectively have the case that each agent is working in
isolation, hence not seeing the effect of the communication noise.

o} =

For B — +00, we have that ¢'(0) — 1, 02 — o2, and
2 a2h20§bs + bZdagomm a2h20§bs + deagomm a 1 2
2 Z =105.
N (2ah? — 1) N i=2 2b; + (2ah? —1)

This is the asymptotic variance of the linear £U scheme in [17]. Note that, for any
set of values of system parameters and any a > # and b > 0, there holds that

(4.2) o2 >0

for a sufficiently large 02, ..

Assume from now on that (4.2) holds. It can be shown that there exists an optimal

B, i.e., there exists B* such that B* € (0,+00) and  inf 0% = 0%. (see Supple-
Be(0,+00)

mentary material D).
Note that the above analysis generalizes also to the case when
+oo

Ugomm = / wzf(w)dw = +00,

— 00
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i.e., when the noise variance is +0o. In this case, we have that o2 = +oo, for the
a’h?o?,
2ah?2—1

inf 0% is achieved at some B* € (0,+0o0) (see Supplementary material D).
Be(0,+00)

In order to demonstrate the results above, we minimize 0% and calculate B* for a
specific numerical example (see Figure 1a). We consider a sensor (agents) network
with N = 8 agents, where the underlying topology is given by a regular graph with
degree d = 3. We set innovation and consensus constants as a = b = 1, the observation
parameter h = 1, and the true parameter 6* = 1. The observation noise for each
sensor’s measurements is standard normal, and the communication noise for each
communication link has the following pdf
8—1
with 8 = 2.05. (This pdf’s distribution has the infinite variance.) Figure 1b shows
performance of the nonlinear consensus+innovations estimator (2.3) in terms of the
estimated per-sensor mean squared error (MSE) across iterations, for the optimal B*
and for some sub-optimal choices of B, obtained through a Monte Carlo simulation.
We can see that the scheme with B* performs better than for the considered sub-
optimal choices of B. Figure lc shows that Monte Carlo estimate of the per-agent
& 1

asymptotic variance, i.e., S = +|x’ — 1y ® 0| ¢ matches well the corresponding

theoretical value as per Theorem 3.4.

linear scheme and o7 = for the isolation scheme. It can be shown that

5 4 0 16
—Non-linear scheme B=B ° —Simulation estimate
w —Non-linear scheme B=10 —Thi = toti
» 2 —Non-linear scheme B=100 8 coryAeymprore
= Non-linear scheme B=1000 o
S 14
Q0 8
825 E s
-2 8
b 212
S-4 5
0 5 10
0 25 5 0 1 2 0 1000 2000
B iterations  10* iterations
(a) (b) (c)

Fic. 1. (a) Per-agent asymptotic variance a% versus B for the nonlinear consensus+ inno-

vations estimator and the NL2 nonlinearity. (b) Monte Carlo-estimated per-sensor MSE error on
logarithmic scale for the nonlinear consensus+innovations estimator with the NL2 nonlinearity for
different choices of B. (c¢) Monte Carlo estimate of the per-agent asymptotic variance, and the
corresponding theoretical value as per Theorem 3.4.

Example 2: We consider the same network and sensing models as in Example 1 and
the heavy-tail communication noise distribution in (4.3). Furthermore, we assume
that ¥U(w) = sign(w) (the NL3 nonlinearity). For the £U scheme, it can be shown
that (see Supplementary material E):

2
2 2
g = Ucomm = I’
(B—=3)(B-2)
¢'(0) =1
It can be shown here that the average per-agent asymptotic variance O'% = % Tr(S)

for the LU scheme is equal to
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00 , 2<pB<3,
(44) of = a?h202, 4b2do® | a’h0?, 4b2do? 1
NGah?=T) N 122 snTeae—n 0 B>3
For 8 > 3, quantity 0’% can be written as
1
4.5 of = AL+ BLr—— 5+
4 : B-36-2)
where
A = a’h?c?, n a’h?c?, iv: 1
N(2ah? — 1) N =20 + (2ah? — 1)’
b2d b2d & 1
BL=2|——+— .
b (N(zahz )TN ; 2b); + (2ah — 1)

We next consider the nonlinear consensus+innovations scheme with the nonlinearity
U(w) = signw. We have that
2

pla) =2 [ f(w)dw,
/

which means that ¢'(a) = 2f(a) and ¢’(0) = 2f(0) = (8 — 1). Hence, we have that
the average per-agent asymptotic variance for the nonlinear scheme o%; = % Tr(S)
is given by:

N

(4.6) Jl%IL _ a2h2ozbs + b2do? n a2h203bs + b2do? Z 1 7
N (2ah? — 1) N p 4bX; f(0) + (2ah? — 1)
which can be written in the form
2 PN72(6)
(47) UNL = ANL + BNLN77
11(5 - 3)
where
A — a’h?c?,  + bd
NN (2ah2 = 1)
a2h2o2b +b3d
Bny = ———,
N IT 2b)\;
i=2
N N
Py o(8) = [ 262(8 - 8))-
i=2 j=2
JjFi
2ah? — 1
=1 — , =2, ..., N.
/81 2bA,L b Z ) )

We next compare the average per-agent asymptotic variances for the linear consen-
sus+innovations scheme and the nonlinear consensus+innovations scheme. From (4.4)
it is obvious that 0%; < of for 8 € (2,3]. For 8 > 3, if A, > Anyp, (see Supplemen-
tary material E), the linear scheme is worse than the nonlinear scheme for all § > 3.
It is obvious that o decreases on interval (3,00) and o; decreases on the interval

(Bm, 00), where 3, = max Bi < 1is closest 8; to 1. Function 0 = 07 (3) has an

yeeey

asymptote at 3 = 3, and function 0%; = 0% (8) at 8 = By, where 3, < 3, also,
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Ay, and Any, are horizontal asymptotes for of and 0%y, respectively. Therefore, if
Ar, is much larger than Ay, JE is above UIQ\IL for all g > 3. Moreover, if A;, < AnL
there exists 8* > 3 such that the average per-agent asymptotic variance is still better

2
for the nonlinear than for the linear scheme for 8 € (2,*]. Defining k = :TL, it is

NL
AL

possible to show that k — oo as § — 3, and k — % as § — oco. Therefore, if
Ap, < Any, there exists 8* such that o%; < of for all 8 € (2,8%). In other words,
there exists a threshold value 8* > 3, such that the nonlinear scheme outperforms the
linear scheme for the “heavy-tail regime” 8 € (2, 8*), and the linear scheme performs
better for 8 > g*. To summarize, in Example 2, depending on sensing and network
parameters, it holds that either the nonlinear scheme outperforms the linear one for
all B, or there exists a threshold value 8* such that the nonlinear scheme is better

than the linear one for § € (2,5*). Figure 2 shows the ratio k = % versus 3 for
the same sensing and network parameters as in Example 1. As it can be seen, there
exists a threshold *, that here approximately equals g* = 3.9, such that £ > 1 for
B € (2,5%). On the other hand, for 8 > *, the ratio becomes smaller than one, which
means that for the given numerical parameters, the linear scheme performs better for
B > [*. This is in accordance with the analysis that we provided above.

10 T

2, 2
—O'L/O'NL
8 -1
26
N Z
8
P
© 4
2
0
3 3.5 4 4.5 5

2
FIG. 2. Ratio k = —— versus 3 for Example 2.
L

]
N

4.2. Simulation examples. In this section, we illustrate the performance of

the proposed nonlinear consensus+innovations estimator for two different choices of
the non-linear operator ¥. For both nonlinearity choices, our method is compared
with the corresponding linear consensus-+innovations estimator £/ in [17], when the
communication noise has probability distribution function given by (4.3).
We consider a sensor network with N = 40 agents. The underlying topology is an
instance of a random geometric graph. We use the same initialization x° = 0 and same
step sizes oy = tj%l,a = 1,b = 1, for both the linear and the nonlinear estimators.
Also, we assume that the observation noise is normally distributed, i.e., nf ~ N(0,1),
for each t, for each i. The true parameter 8° € R is generated randomly, where
the entries of §* are drawn mutually independently from the uniform distribution
on [-10,10]. The observation vectors h; € R! are also generated at random, for
which the condition 4 of Assumption 2.3 is true. We use the communication noise
pdf in (4.3) with 8 = 2.05. Note that, in this case, the communication noise has an
infinite variance.

Figure 4 compares the linear LU estimator in [17] with the nonlinear estima-
tor (2.3) with ¥(w) given in (4.1) for B = 5. Figure 3 shows the comparison between
LU and [17] with ¥U(w) = sign(w). Both Figures show the iteration counter t at the
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z-axis and a Monte-Carlo estimate of the average mean square error (MSE) across
agents on the y-axis. We can see that, as predicted by our theory, the nonlinear
estimator, for both nonlinearity choices, persistently decreases MSE along iterations,
despite the fact that the communication noise has an infinite variance. At the same
time, LU fails to produce a useful estimation result.

12 - 2.8 N
—Linear scheme —Non-linear scheme
u 10 —Non-linear scheme Wwog
) ()]
= 8 =
g w 024
£ E
= 22
S 4 ©
= )]
k] o ~~
2 = 2 T
0 1.8
0 5000 10000 0 5000 10000
iterations iterations
(a) (b)

Fic. 3. Monte-Carlo average per-agent MSE estimate versus iteration counter on logarithmic
scale for the proposed monlinear estimator (2.3) with the nonlinearity in (4.1) for B = 5 and the
linear LU scheme in [17].
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< 4 ©
8) 8) \.
—_— 2 . —_ 2 ~— —

0 ‘ S —

0 5000 10000 0 5000 10000
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Fic. 4. Monte-Carlo average per-agent MSE estimate versus iteration counter on logarithmic

scale for the proposed nonlinear estimator (2.3) with the nonlinearity ¥(w) = sign(w) and the linear
LU scheme in [17].

5. Conclusion. We studied consensus+innovations distributed estimation in the
presence of impulsive, heavy-tail communication noise. To combat the impulsive
communication noise, we introduce for the first time a general nonlinearity in the
consensus update for consensus—+innovations distributed estimation. We establish al-
most sure convergence of the nonlinear consensus+innovations estimator to the true
parameter, prove its asymptotic normality, and explicitly evaluate the corresponding
asymptotic variance. We compare the proposed nonlinear estimator with conventional
consensus+innovation estimators that utilize linear consensus update. Analytical and
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numerical examples demonstrate significant gains of introducing consensus nonlinear-
ity in low SNR (high communication noise) regimes. Most notably, we demonstrate
that, when the communication noise has infinite variance, the proposed nonlinear con-
sensus+innovations estimator is strongly consistent (converges almost surely), while
the corresponding linear counterpart provides a sequence of estimators with infinite
variance.
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