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Abstract. We consider distributed recursive estimation of an unknown vector parameter5
θ∗ ∈ RM in the presence of impulsive communication noise. That is, we assume that inter-agent6
communication is subject to an additive communication noise that may have heavy-tails or is con-7
taminated with outliers. To combat this effect, within the class of consensus+innovations distributed8
estimators, we introduce for the first time a nonlinearity in the consensus update. We allow for a9
general class of nonlinearities that subsumes, e.g., the sign function or component-wise saturation10
function. For the general nonlinear estimator and a general class of additive communication noises –11
that may have infinite moments of order higher than one – we establish almost sure (a.s.) convergence12
to the parameter θ∗. We further prove asymptotic normality and evaluate the corresponding asymp-13
totic covariance. These results reveal interesting tradeoffs between the negative effect of “loss of14
information” due to incorporation of the nonlinearity, and the positive effect of communication noise15
reduction. We also demonstrate and quantify benefits of introducing the nonlinearity in high-noise16
(low signal-to-noise ratio) and heavy-tail communication noise regimes.17
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1. Introduction. We consider distributed inference in networked systems, whe-21

re each agent in a generic network continuously (over time instances t = 0, 1, ...,)22

makes noisy linear observations of an unknown vector parameter θ∗ ∈ RM . Each23

agent, at each time t, generates a local estimate of θ∗ through the so-called consen-24

sus+innovations strategy, i.e., by 1) weight-averaging its current solution estimate25

with those of its neighbors, and 2) assimilating its new observation.26

In this paper, we are interested in consensus+innovations distributed estimation27

in the presence of an impulsive communication noise, e.g., when the communication28

noise that corresponds to inter-neighbor communications is heavy-tailed or contami-29

nated with outliers. It is highly relevant to consider impulsive communication noise30

in many application scenarios. For example, edge devices in Internet of Things (IoT)31

systems or sensor networks can be subject to impulsive noise distributions that may32

not have finite moments of order higher than one, e.g., [8, 32, 13, 37, 12, 9]. In this33

work, we allow the communication noise to be a zero-mean random variable that34

may have infinite moments of order α, for any α > 1. In particular, communication35

noise may have an infinite variance. To the best of our knowledge, such scenarios36

have not been studied in the past work, wherein communication noise in consen-37

sus+innovations inference is always assumed to have a finite moment of at least second38

order (finite variance). Actually, as demonstrated ahead in the paper, existing con-39
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sensus+innovation estimators – that are always linear in the consensus update part –40

can fail to converge under a heavy-tail communication noise. To combat the effect of41

the (impulsive or high variance) communication noise, we introduce for the first time42

a general nonlinearity in the consensus update. More precisely, we apply a nonlinear43

operator (e.g., a sign function, a saturation-like function, or a sigmoid function) on44

the difference between an agent’s current iterate and a noisy version of its neighbor’s45

iterate, for every agent in the neighborhood set. We establish, under a general setting46

for the nonlinearity and the additive communication noise, almost sure (a.s.) conver-47

gence of the nonlinear estimator to the true parameter θ∗. We also prove asymptotic48

normality and evaluate the corresponding asymptotic covariance in terms of the un-49

derlying network topology, observation noise, communication noise, and the employed50

nonlinearity. The results reveal interesting interplay among these different problem51

dimensions. Most notably, we show that, provided that the nonlinearity has uniformly52

bounded outputs, the nonlinear estimator converges a.s. and achieves a finite asymp-53

totic covariance, even when the communication noise has no finite moments of order54

α for any α > 1. We then demonstrate that, in the same regime, the corresponding55

linear consensus+innovations estimator has an infinite asymptotic covariance. We56

further provide several studies in the finite communication noise variance case that57

highlight the regimes where employing the nonlinearity strictly improves performance58

of consensus+innovations estimation over linear schemes. Typically, there is a thresh-59

old on the communication noise variance above which the nonlinear scheme achieves60

a strictly better performance over a linear counterpart.61

We now review existing literature to help us contrast our contributions with re-62

spect to existing work. There has been extensive work on consensus+innovation63

distributed estimation, e.g., [17, 15, 16] and related distributed estimation methods,64

e.g., [20, 22, 23, 27, 31, 24, 38]. For example, reference [17] derives distributed estima-65

tors for both linear and nonlinear observation models, and establishes a.s. convergence66

and asymptotic normality of the methods under a general setting for inter-agent com-67

munication and observation noises. Specifically, their network model accounts for68

random link failures and dithered quantization, which, from the analysis perspective,69

effectively translates into an additive communication noise. Reference [15] considers70

consensus+innovations distributed estimation in the presence of random link fail-71

ures without quantization or additive noise and develops estimators that are asymp-72

totically efficient, i.e., that achieve the best achievable asymptotic covariance. The73

authors of [16] propose adaptive asymptotically efficient estimators, wherein the inno-74

vation gains are adaptively learned during the algorithm progress. There have been75

several recent works that consider robust distributed estimation in the presence of76

impulsive observation (sensing) noise; see [26] for a very recent survey and the ref-77

erences therein. To develop robust estimators, various techniques have been utilized,78

including, e.g., distributed estimators based on Wilcoxon norm, e.g., [19], Huber loss,79

e.g., [21], and mean error minimization, e.g., [36], and novel robust variants of gradi-80

ent descent [30]. Reference [1] also considers distributed recursive estimation in the81

presence of heavy-tail (impulsive) sensing (observation) noiseand develops a distrib-82

uted estimator that seeks the unknown parameter while at the same time identifying83

the optimal error nonlinearity. Reference [6] considers distributed estimation under84

measurement attacks. In this setting, the authors develop a consensus+innovations85

estimator that employs a saturation nonlinearity in the innovations update. Refer-86

ences [1, 6] utilize nonlinearities in the innovations update to combat the observation87

attacks or heavy-tail noise. This is in contrast with the current paper that employs a88

general nonlinearity in the consensus update to combat the heavy-tail communication89
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noise. Reference [7] (see also [35]) considers robust distributed estimation methods90

based on adaptive subgradient projections. They are also not concerned with com-91

bating the effect of heavy-tail inter-agent communication noise. There have also been92

several works on consensus+innovations and related distributed detection methods,93

e.g., [25, 3, 2, 14] . In particular, reference [14] considers consensus+innovations94

distributed detection in the presence of Gaussian additive communication noise. In95

summary, with respect to existing work on consensus+innovations distributed infer-96

ence, we employ for the first time a general nonlinearity in the consensus update, we97

allow for the first time for heavy-tail additive communication noise, and establish for98

the considered setting strong convergence guarantees, namely a.s. convergence and99

asymptotic normality.100

The idea of employing a nonlinearity into a “baseline” linear scheme has also been101

used in nonlinear versions of the standard average consensus algorithm, e.g., [18, 33, 9].102

Average consensus is a distributed algorithm that compute a network-wide average103

of scalar values, e.g. [5, 10, 11]. In more detail, the authors of [18] introduce a104

trigonometric nonlinearity into a standard linear consensus dynamics and show an105

improved dependence of the method on initial conditions. References [33, 9] employ a106

general nonlinearity in the linear consensus dynamics and show that it improves the107

method’s resilience to additive communication noise. The above works are different108

from ours as they focus on the average consensus problem, where the observations are109

given to agents beforehand; the corresponding consensus algorithms hence involve only110

a consensus step and not an innovation step in the iterative update rule. In contrast,111

we consider here the consensus+innovations framework, where new observations are112

assimilated at each time instant (algorithm iteration). This technically leads to a113

very different analysis with respect to [18, 33, 9], and to qualitatively very different114

results. For example, asymptotic performance of the nonlinear consensus+innovations115

estimators is determined by an interplay between the effects of network topology,116

observation noise and communication noise; observation noise is a model dimension117

not present in standard average consensus.118

There have also been works that employ a specific nonlinearity in the consensus119

update within distributed optimization problems. In this context, the authors of [34]120

modify the linear consensus update by taking out from the averaging operation the121

maximal and minimal estimates among the estimates from all neighbors of an agent.122

Reference [4] employs the sign nonlinearity in the consensus update part for distrib-123

uted consensus optimization. The works [4, 34] contrast from ours in that they employ124

a specific nonlinearity, while we consider a general nonlinearity class. Furthermore,125

these works assume deterministic functions in the corresponding distributed consen-126

sus optimization problem, that effectively translates into having the observation data127

available beforehand. On the other hand, we consider a streaming data scenario that128

corresponds to the innovations update part in the algorithm we study.129

Paper organization. Section 2 describes the distributed estimation model that130

we consider and presents the nonlinear consensus+innovations estimator that we pro-131

pose. Section 3 explains our main results on the almost sure convergence and the132

asymptotic normality of the proposed distributed estimator. Section 4 provides sev-133

eral analytical and numerical examples that demonstrate benefits of the proposed134

nonlinear estimator over the linear counterpart in high and heavy-tail noise regimes.135

Finally, Section 5 concludes the paper.136

Notation. We denote by R the set of real numbers and by Rm the m-dimensional137

Euclidean real coordinate space. We use normal lower-case letters for scalars, lower138

case boldface letters for vectors, and upper case boldface letters for matrices. Further,139
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to represent a vector a ∈ Rm through its component, we write a = [a1,a2, ...,am]⊤140

and we denote by: ai or [a]i, as appropriate, the i-th element of vector a; Aij or141

[A]ij , as appropriate, the entry in the i-th row and j-th column of a matrix A; A⊤142

the transpose of a matrix A; ⊗ the Kronecker product of matrices. Further, we use143

either a⊤b or ⟨a, b⟩ for the inner products of vectors a and b. Next, we let I, 0,144

and 1 be, respectively, the identity matrix, the zero vector, and the column vector145

with unit entries. Further, Diag(a) is the diagonal matrix whose diagonal entries are146

the elements of vector a; Tr(A) the trace of matrix A; J the N × N matrix J :=147

(1/N)11⊤. When appropriate, we indicate the matrix or vector dimension through148

a subscript. Next, A ≻ 0 (A ⪰ 0) means that the symmetric matrix A is positive149

definite (respectively, positive semi-definite). We further denote by: ∥ · ∥ = ∥ · ∥2 the150

Euclidean (respectively, spectral) norm of its vector (respectively, matrix) argument;151

λi(·) the i-th smallest eigenvalue; g′(v) the derivative evaluated at v of a function152

g : R → R; ∇h(w) and ∇2h(w) the gradient and Hessian, respectively, evaluated at153

w of a function h : Rm → R, m > 1; P(A) and E[u] the probability of an event A and154

expectation of a random variable u, respectively; and by sign(a) the sign function,155

i.e., sign(a) = 1, for a > 0, sign(a) = −1, for a < 0, and sign(0) = 0. Finally, for two156

positive sequences ηn and χn, we have: ηn = O(χn) if lim supn→∞
ηn

χn
< ∞.157

2. Model and Algorithm. Subsection 2.1 explains the network and observa-158

tion models that we assume. Subsection 2.2 presents the nonlinear consensus+inno-159

vations distributed estimator that we propose and states the technical assumptions160

needed for subsequent analysis presented in Section 3.161

2.1. Problem model. Consider a network of N agents (sensors). Each agent i162

at each time t = 0, 1, ..., collects a linear transformation of the parameter of interest163

θ∗ ∈ RM , corrupted by noise, as follows:164

zti = h⊤
i θ

∗ + nt
i.(2.1)165166

Here, zti ∈ R is the observation, hi ∈ RM is the deterministic, non-zero linear trans-167

formation vector and nt
i ∈ R is a scalar zero-mean noise. The above update in (2.1)168

can be written in a compact form as follows:169

zt = H (1N ⊗ θ∗) + nt.(2.2)170171

Here, zt = [zt1, z
t
2, ..., z

t
N ]⊤ ∈ RN is the observation vector. H is the N × (MN)172

matrix whose i-th row vector equals [0, ...,0,h⊤
i ,0, ..,0] ∈ RMN , where the i-th173

block of size M equals h⊤
i , and the other M -size blocks are zero vectors; and nt =174

[nt
1, n

t
2, ..., n

t
N ]⊤ ∈ RN is the noise vector at time t.175

The agents constitute a network G = (V,E), where V = {1, ..., N} is the set of agents,176

and E is the set of (undirected) inter-agent communication links (edges) {i, j}. For177

future reference, introduce theN×N graph Laplacian matrix L, defined by L = D−A,178

whereD is the degree matrix andA is the adjacency matrix. That is, D = Diag({di}),179

where di is the degree (number of neighbors) of agent i, and A is a zero-one symmetric180

matrix with zero diagonal, such that, for i ̸= j, Aij = 1 if and only if {i, j} ∈ E. Also,181

denote by Ωi the set of neighbors of agent i (excluding i). For an undirected edge182

{i, j} ∈ E, we denote by (i, j) the arc that points from j to i, and similarly, (j, i) is183

the arc that points from i to j. Following this convention, the communication noise184

injected when agent j communicates to agent i will be indexed by subscript ij (see185

ahead (2.3)).186

2.2. Proposed algorithm and technical assumptions. The agents perform187

an iterative consensus+innovations distributed algorithm to collaboratively estimate188

the unknown vector parameter θ∗ ∈ RM in the presence of noisy communication links.189
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We assume that communication noise may be heavy-tailed, e.g., [8, 32, 13, 37, 12, 9].190

To combat the heavy-tail communication noise, we introduce for the first time a191

nonlinear consensus step in consensus+innovations-type methods. More precisely,192

the proposed distributed estimator is as follows. At each time t = 0, 1, ..., each agent193

i updates its estimate xt
i ∈ RM of the parameter θ∗ in the following fashion:194

xt+1
i = xt

i − αt

 b

a

∑
j∈Ωi

Ψ
(
xt
i − xt

j + ξtij
)
− hi

(
zti − h⊤

i x
t
i

) .(2.3)195

196

Here, αt = a/(t + 1) is a step-size, a, b > 0 are constants, ξtij ∈ RM is a zero-mean197

additive communication noise that models the imperfect communication from agent198

j to agent i. Next, Ψ : RM → RM is a non-linear map that operates component-wise199

on any vector as follows:200

Ψ(y1,y2, ...,yM ) = [Ψ(y1),Ψ(y2), ...,Ψ(yM )]⊤,201202
where, abusing notation, Ψ : R → R is a component-wise non-linear function. With203

algorithm (2.3), upon reception of the noisy version of agent j’s parameter estimate204

x̂t
ij = xt

j − ξtij , agent i applies the nonlinearity Ψ : RM → RM on the consensus205

contribution
(
xt
i − x̂t

ij

)
. Intuitively, the role of Ψ is to combat the communication206

noise effect (e.g., truncate large values) while maintaining sufficient useful information207

flow. When in algorithm (2.3) we set Ψ : RM → RM to be the identity map, we208

recover the LU (linear estimator) in [17].209

For future reference, we write algorithm (2.3) in compact form.210

Let xt = [xt
1,x

t
2, ...,x

t
N ]⊤ ∈ RMN . Furthermore, for x = [x1,x2, ...,xN ]⊤ ∈ RMN and211

ξ = [ξ1, ξ2, ..., ξN ]⊤ ∈ RMNN , where ξi = [ξi1, ξi2, ..., ξiN ]⊤ ∈ RMN and ξij = 0 if212

j /∈ Ωi, define LΨ(x, ξ) by213

LΨ(x, ξ) =


...∑

j∈Ωi

Ψ(xi − xj + ξij)

...

 .214

215

That is, the map LΨ(x, ξ) : RMN × RMNN → RMN stacks the N vectors of size M ,216 ∑
j∈Ωi

Ψ(xi − xj + ξij), i = 1, 2, ..., N , one on top of another. Then, algorithm (2.3)217

can be written as:218

xt+1 = xt − αt

(
b

a
LΨ(xt, ξt)−H⊤ (zt −Hxt

))
,(2.4)219

220
for t = 0, 1, ... .221

We make the following assumptions on the underlying network, non-linear map, ob-222

servation noise, and communication noise. The assumed nonlinearity class is similar223

to that in [29].224

Assumtion 2.1. Network model:225

Graph G = (V,E) is undirected, simple and static.226

Assumtion 2.2. Nonlinearity Ψ:227

The non-linear function Ψ : R → R satisfies the following properties:228

1. Function Ψ is odd, i.e., Ψ(a) = −Ψ(−a), for any a ∈ R;229

2. Ψ(a) > 0, for any a > 0;230

3. Function Ψ is a monotonically nondecreasing function;231

4. Ψ is continuous, except possibly on a point set with Lebesque measure of232

zero. Moreover, Ψ is piecewise differentiable.233

Also, Ψ : R → R satisfies one of the following two properties:234
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5. |Ψ(a)| ≤ c1(1 + |a|), for any a ∈ R, for some constant c1 > 0;235

5′. |Ψ(a)| ≤ c2, for some constant c2 > 0.236

There are many interesting examples of nonlinearities that satisfy Assumption 2.2,237

including, e.g., the following:238

• (NL1) Sign function: Ψ(a) = sign(a);239

• (NL2) Saturation or clipping function: Ψ(a) = a, for |a| ≤ m; and Ψ(a) =240

m sign(a), for |a| > m, for some constant m > 0;241

• (NL3) Relay function with insensitivity zone: Ψ(a) = 0, for |a| ≤ r; and242

Ψ(a) = sign(a), for |a| > r, for some constant r > 0.243

Assumtion 2.3. Observation model:244

1. For each agent i = 1, ..., N , the observation noise sequence {nt
i} in (2.1), is245

zero-mean and independent identically distributed (i.i.d.);246

2. Random variables nt
i and ns

j are mutually independent whenever the tuple247

(i, t) is different from (j, s);248

3. Random variable nt
i has a finite variance equal to σ2

obs, for any t = 0, 1, ...249

and for any i = 1, ..., N ;250

4. The matrix
∑N

i=1 hih
⊤
i is invertible.251

The condition 4 in Assumption 2.3 is a standard global observability assumption,252

see. e.g. [17]; if it does not hold, then a central estimator that collects all observations253

according to (2.1) for each t = 0, 1, ... and for each i = 1, ..., N , is not able to provide254

a consistent sequence of estimates over times t = 0, 1, ...255

Assumtion 2.4. Communication noise:256

1. Additive communication noise {ξtij}, ξ
t
ij ∈ RM in (2.3), is i.i.d. in time t,257

independent of the observation noise family {nt
i}, i = 1, ..., N , t = 0, 1..., and258

independent across different arcs (i, j) of graph G;259

2. Each random variable [ξtij ]ℓ, for each t = 0, 1..., for each arc (i, j), for each260

entry ℓ = 1, ...,M , has the same cumulative distribution function Φ;261

3. The distribution function Φ is symmetric, i.e., for all a ∈ R we have that262

Φ(a) = 1− Φ(−a), and has strictly positive second moment.263

We assume that at least one of the conditions 4. or 4′. below holds.264

4. Function Ψ is strictly increasing (from Assumption 2.2) and functions Φ and265

Ψ have a common growth point, i.e.,266

Ψ(a0 + ε) ≥ Ψ(a0 − ε),267

[Φij ]l(a0 + ε) ≥ [Φij ]l(a0 − ε),268269
for some a0 ∈ R and all ε > 0;270

4′. Distribution Φ has a pdf p(u), p : R → R, that is strictly unimodal, i.e., there271

holds p(0) < +∞ and p(u1) < p(u2) for |u1| > |u2|;272

5. There holds that
∫
|a|dΦ(a) < ∞, and the communication noise is zero-mean,273

i.e.,
∫
adΦ(a) = 0;274

6. If part 5 of Assumption 2.2 holds, then we additionally require that commu-275

nication noise has a finite variance, i.e.:276 ∫
a2dΦ(a) < ∞;277

7. Distribution Φ has a well-defined pdf p : R → R in the vicinity of discontinuity278

points of function Ψ : R → R from Assumption 2.2.279

For notational simplicity and a clearer presentation, we assume that the com-280

munication noise has the same distribution Φ across all arcs (i, j) such that {i, j} ∈281

E. We additionally assume that each element of communication noise vector [ξtij ]ℓ,282
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ℓ = 1, 2, ...,M , has the same cumulative distribution function Ψ, and that [ξtij ]ℓ and283

[ξtij ]s are mutually independent for ℓ ̸= s. Extensions to heterogeneous choices of284

nonlinearity Ψ across links and heterogeneous communication noises with mutually285

dependent [ξtij ]ℓ and [ξtij ]s for ℓ ̸= s, are presented in Remark 1 in Section 3.1 (see also286

Supplementary material C). Similarly, we assume that the observation noise has the287

same variance across all agents i; analogous extensions to different agents’ observation288

noise variances can be performed as well.289

3. Main results. Subsection 3.1 states and proves almost sure convergence of290

the proposed nonlinear consensus+innovations distributed estimator in (2.3). Sub-291

section 3.2 establishes asymptotic normality of the estimator and evaluates the cor-292

responding asymptotic variance.293

3.1. Almost sure convergence. We have the following Theorem.294

Theorem 3.1 (Almost sure convergence). Let Assumptions 2.1-2.4 hold. Then,295

for each agent i = 1, ..., N , the sequence of iterates {xt
i} generated by algorithm (2.3)296

converges almost surely to the true vector parameter θ∗.297

Theorem 3.1 establishes, for a nonlinearity Ψ with bounded outputs (e.g., the298

nonlinearities NL1-3 introduced in Section 2), almost sure convergence of the pro-299

posed algorithm (2.3) under heavy-tail communication noise that may not have finite300

moments of order greater than one. In contrast, it can be shown that the correspond-301

ing linear LU scheme in [17] (obtained by taking Ψ to be the identity function in (2.3))302

generates a sequence of iterates with unbounded second moments for all t = 1, 2, ...303

(see Supplementary material B). The Theorem also establishes almost sure conver-304

gence of (2.3) for nonlinearities with unbounded outputs, more precisely, those that305

satisfy part 5 of Assumption 2.2, when the communication noise has finite second306

moment. As a special case, by taking Ψ to be the identity map, we recover for the307

letter case almost sure convergence of the linear estimator (the LU algorithm) in [17].308

Setting up the proof. We next outline our strategy for proving Theorem 3.1.309

We base our analysis on stochastic approximation arguments. More precisely, we310

use Theorem 29 in [17] adapted from [28] (see also Theorem 3 in the supplementary311

material) to establish a.s. convergence of xt to 1N ⊗ θ∗ by verifying assumptions312

B1–B5 of Theorem 29 in [17].313

The proof strategy is as follows. We first prove a.s. convergence of algorithm (2.3)314

for the case without communication noise, i.e., by setting ξtij ≡ 0 in (2.3). In this315

setting, we first prove the result assuming a continuous function Ψ : R 7→ R. Then, we316

handle the case with discontinuous Ψ by additionally assuming that we can associate317

to Ψ : R 7→ R a “lower bound” surrogate function Ψ : R 7→ R that is continuous,318

satisfies assumption 2.2, and the following holds:319

(3.1) |Ψ(a)| ≥ |Ψ(a)|, for any a ∈ R.320

This enables us to complete the proof for the noiseless case. To transition to the noisy321

communications case, a key argument is to consider an auxiliary function φ : R → R,322

defined by323

φ(a) =

∫
Ψ(a+ w)dΦ(w).(3.2)324

325
Intuitively, φ : R → R is a convolution-like transformation of nonlinearity Ψ : R → R,326

where the convolution is taken with respect to the communication noise cumulative327

distribution function Φ.328

As we will demonstrate ahead, function φ : R → R in the noisy communications case329

effectively plays the role that function Ψ : R → R has in the noiseless case. Moreover,330
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function φ inherits all the key properties of function Ψ. More precisely, we exploit331

the following Lemma in [29] (see Lemmas 1-6 in [29]).332

Lemma 3.2 ([29]). Consider function φ in (3.2), where function Ψ : R → R,333

satisfies Assumption 2.2. Then, the following holds:334

1. φ is odd;335

2. If |Ψ(ν)| ≤ c1, for any ν ∈ R, then |φ(a)| ≤ c′2, for any a ∈ R, for some336

c′1 > 0;337

3. If |Ψ(ν)| ≤ c2(1+ |ν|), for any ν ∈ R, then |φ(a)| ≤ c′2(1+ |a|), for any a ∈ R,338

for some c′2 > 0;339

4. φ(a) is monotonically nondecreasing;340

5. φ(a) > 0, for any a > 0.341

6. φ is continuous at zero;342

7. φ is differentiable at zero, with a strictly positive derivative at zero, equal to:343

φ′(0) =

s∑
i=1

(Ψ(νi + 0)−Ψ(νi − 0)) p(νi) +

s∑
i=0

∫ νi+1

νi

Ψ′(ν)p(ν)dν,(3.3)344

where νi, i = 1, ..., s are points of discontinuity of Ψ such that ν0 = −∞345

and νs+1 = +∞, and we recall that p(u) is the pdf of distribution Φ (see346

Assumption 2.2).347

Lemma 3.2 allows that the treatment of the noisy case becomes completely analogous348

to the noiseless case, by replacing function Ψ with φ. Finally, to address the case349

when φ may not be continuous over R, we make use of the following Lemma that is350

a trivial corollary of Lemma 3.2.351

Lemma 3.3. Consider φ in (3.2). Then, there exists a positive constant ξ such352

that |φ(a)| ≥ 1
2φ

′(0) |a|, for |a| ≤ ξ.353

Lemma 3.3 allows us to define a continuous function φ : R 7→ R,354

φ(a) =

{
1
2φ

′(0) a , |a| ≤ ξ
ξ sign(a) , else

,355
356

that satisfies Assumption 2.2 and obeys the property:357

(3.4) |φ(a)| ≥ |φ(a)|, for any a ∈ R.358

Function φ will then clearly play the role of function Ψ in (3.1) in the noiseless case.359

We are now ready to prove Theorem 3.1.360

Proof. (Proof of Theorem 3.1)361

Step 1: No communication noise. We start the proof by verifying conditions362

B1–B5 of Theorem 29 in [17] for the case without communication noise. We use the363

following Lyapunov function V : RMN → R, V (x) = ||x − 1N ⊗ θ∗||2. For this, only364

for condition B3, we need to analyze separately the case with continuous Ψ and the365

case when Ψ may not be continuous. Also, it can be shown that (2.3) can be put in366

the form required by Theorem 29 in [17] (see also (36) in the supplementary material)367

by letting368

r(x) = −H⊤H (x− 1N ⊗ θ∗)− b

a
LΨ(x,0),(3.5)369

γ(t+ 1,x, ω) = H⊤nt,(3.6)370371
where ω denotes an element of the underlying probability space.372

Consider the filtration Ft, t = 1, 2, ..., where Ft is the σ- algebra generated by {ns}t−1
s=0.373

Denote by (Ω,F ,P) the underlying probability space that generates random vectors374

nt, t = 0, 1, 2, ..., and by ω ∈ Ω its arbitrary element. Clearly, for each t, function375

γ(t+1, ·, ·) is BMN ⊗F measurable, where BMN is the Borel sigma algebra on RMN .376
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Also, r(·) is BMN measurable. Hence, condition B1 holds. Further, the family of377

random vectors γ(t+ 1,x, ω) is Ft measurable, zero-mean and independent of Ft−1.378

Thus, condition B2 holds.379

We now inspect condition B3. Assume first that function Ψ : R 7→ R is contin-380

uous. The gradient of V equals ∇V (x) = 2 (x− 1N ⊗ θ∗). Clearly, function V (·)381

is twice continuously differentiable and has uniformly bounded second order partial382

derivatives. We consider383

S = sup
∥x−1N⊗θ∗∥∈(ϵ,1/ϵ)

⟨r(x),∇V (x)⟩, .(3.7)384

385

We will show that S < 0, thus verifying condition B3. We have, for any x ∈ RMN :386

⟨r(x),∇V (x)⟩ = −2 (x− 1N ⊗ θ∗)
⊤
(
H⊤H (x− 1N ⊗ θ∗) +

b

a
LΨ(x)

)
387

= −2
(
(x− 1N ⊗ θ∗)

⊤
H⊤H (x− 1N ⊗ θ∗)

)
︸ ︷︷ ︸

T1(x)

−2
b

a
(x− 1N ⊗ θ∗)

⊤
LΨ(x)︸ ︷︷ ︸

T2(x)

.(3.8)388

389
Clearly T1 = T1(x) ≥ 0. We will also show that T2 = T2(x) ≥ 0. Utilizing the fact390

that, Ψ(·) is an odd function, we have that,391

T2 =
∑

{i,j}∈E, i<j

(xi − xj)
⊤
Ψ (xi − xj) ≥ 0,(3.9)392

393
as for g = (xi − xj), we have that,394

(xi − xj)
⊤
Ψ (xi − xj) =

M∑
ℓ=1

gℓΨ(gℓ) ≥ 0,(3.10)395

396
because gℓ and Ψ (gℓ) have the same sign, by Assumption 2.2. Therefore,397

⟨r(x),∇V (x)⟩ = −2T1 − 2
b

a
T2 ≤ 0,398

399

for any x ∈ RMN .400

We will further show that S in (3.7) is strictly less than 0. First, consider the set401

C = {x ∈ RMN : ∥x−1N ⊗θ∗∥ ∈ [ϵ, 1/ϵ]}. Note that set C is nonempty and compact.402

Clearly, we have that:403

(3.11) S ≤ SC := sup
x∈C

⟨r(x),∇V (x)⟩,404

It is thus sufficient to show that SC < 0. Suppose the contrary is true, i.e., suppose405

that SC = 0. As set C is compact and function x 7→ ⟨r(x),∇V (x)⟩ is continuous, by the406

Weierstrass theorem, we have that SC = 0 is equivalent to having ⟨r(x•),∇V (x•)⟩ = 0,407

for some point x• ∈ C. In this case, x• has to be of the form, x• = 1N⊗m, where m ∈408

RM . As otherwise, we would have that, T2 is strictly positive. But then, we have, T1 =409 (
(x• − 1N ⊗ θ∗)

⊤
H⊤H (x• − 1N ⊗ θ∗)

)
= (m− θ⋆)

⊤
(∑N

i=1 hih
⊤
i

)
(m− θ⋆) > 0,410

which is a contradiction in view of (3.7). Hence, we conclude that, for a continuous411

function Ψ, it holds that S < 0, and that condition B3 holds, i.e.,412

sup
∥x−1N⊗θ∗∥∈(ϵ,1/ϵ)

⟨r(x),∇V (x)⟩ < 0.413

414
Now, we verify condition B3 for function Ψ that is not continuous but to which we can415

associate function Ψ that obeys Assumption 2.2 and for which condition (3.1) holds.416

Then, the verification of condition B3 follows analogously to the case with continuous417

Ψ by replacing T2 in (3.9) with the following lower bound of T2418

(3.12) T 2 =
∑

{i,j}∈E, i<j

(xi − xj)
⊤
Ψ (xi − xj) ,419

where Ψ(a) = [Ψ(a1),Ψ(a2), ...,Ψ(aM )]⊤. Hence, condition B3 is verified.420

This manuscript is for review purposes only.



10 D. JAKOVETIC, M. VUKOVIC, D. BAJOVIC, A. K. SAHU AND S. KAR

We next verify condition B4. Recalling the definition of r(x) in (3.5), we have,421

∥r(x)∥2 ≤ c3V (x) + c4 ∥Ψ(x)∥2 ,(3.13)422423

where c3 = 2a2
∥∥H⊤H

∥∥2 and c4 = 2b2 ∥L∥2.424

We also have that,425

∥Ψ(x)∥ ≤ c5
∑

{i,j}∈E

(|xi − θ∗|+ |xj − θ∗|) + c6 ≤ c7 ∥x− 1N ⊗ θ∗∥+ c6,426

427
for some positive constants c5, c6, c7. Therefore, we have428

∥Ψ(x)∥2 ≤ 2c7V (x) + 2c28,(3.14)429430
for some positive constant c8.431

Thus, we have that,432

∥r(x)∥2 ≤ c9V (x) + c10,433434
form some positive constants c9, c10. Recall γ(t + 1,x, ω) in (3.6). Using the bound-435

edness of the second moment of the observation noise, we finally have that,436

∥r(x)∥2 + E
[∥∥γ(t+ 1,xt, ω)

∥∥2] ≤ c11 (V (x) + 1) ,437
438

for some positive constant c11. Hence, condition B4 is satisfied. Finally, condition B5439

clearly holds. Therefore, we conclude that xt → 1N ⊗ θ∗, almost surely.440

Step 2: The case with communication noise. We proceed by considering algo-441

rithm (2.3) under communication noise.442

We clarify the steps needed to transition from the noiseless to the noisy case. If we443

write444

Ψ(xt
i − xt

j + ξtij) = φ(xt
i − xt

j) + ηt
ij ,445446

where ηt
ij =

[
Ψ(xt

i−xt
j+ξtij)−φ(xt

i−xt
j)
]
and φ : RM → RM is component-wise map447

defined as φ(x1,x2, ...,xM ) = [φ(x1), φ(x2), ..., φ(xM )]⊤. We will see that quantity448

ηt
ij is a key ingredient of γ(t+ 1,x, ω) in Theorem 29 in [17] (see also Theorem 3 in449

the supplementary material).450

The algorithm (2.3) can be written in compact form:451

xt+1 = xt − αt

(
b

a
Lφ(x

t)−HT (zt −Hxt) +
b

a
ηt

)
.(3.15)452

453
Here,454

Lφ(x
t) =


...∑

j∈Ωi

φ(xt
i − xt

j)

...

 ∈ RMN , ηt =


...∑

j∈Ωi

ηt
ij

...

 ∈ RMN ,(3.16)455

456
where the M×1 blocks

∑
j∈Ωi

φ(xt
i−xt

j) and
∑

j∈Ωi

ηt
ij are stacked one on top of another457

for j = 1, ..., N .458

The differences of (3.15) with respect to the case without additive communication459

noise are that Lφ replaces LΨ and the term b
a αt η

t is added.460

We define the Lyapunov function V : RMN → R, and quantities rφ(x) and γφ(t,x, ω)461

as follows:462

V (x) = ||x− 1N ⊗ θ∗||2(3.17)463

rφ(x) = −HTH(x− 1N ⊗ θ∗)− b

a
Lφ(x),(3.18)464

γφ(t+ 1,x, ω) = H⊤nt − b

a
ηt,(3.19)465

466
Now, make the following identification with respect to the transition from the noiseless467

to the noisy case. Quantity H⊤nt in the noiseless case is replaced with quantity468
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H⊤nt − b
aη

t in the noisy case. The map LΨ(·,0) : RMN → RMN in (2.4) is replaced469

with the map Lφ : RMN → RMN given in (3.16).470

The proof proceeds analogously by again verifying Assumptions B1–B5. We only471

clarify the differences in verifying these conditions with respect to the noiseless case.472

The filtration Ft is replaced with the filtration Gt, t = 1, 2, ...,, which is generated473

not only by {ns}t−1
s=0 but also by {ξsij}t−1

s=0 for (i, j) ∈ E. Clearly, for each t, function474

γφ(t+1; ·; ·) is BMN⊗F measurable. Also, rφ(·) is BMN measurable. Hence, condition475

B1 holds. Further, the family of random vectors γφ(t + 1,x, ω) is Ft measurable,476

zero-mean and independent of Ft−1. Thus, condition B2 holds. As function φ is477

odd, non-decreasing, strictly positive for its positive arguments, and has a positive478

derivative at zero by Lemma 3.2, condition B3 is derived analogously to the noiseless479

case. Conditions B4 and B5 hold analogously to the noiseless case. Thus, the result480

is verified.481

Remark 1: Theorem 3.1 continues to hold under the following generalizations:482

• A different nonlinear function Ψij,ℓ : R → R is assigned to each arc (i, j) and483

to each element ℓ = 1, ...,M of the communication noise [ξtij ]ℓ. Each function484

Ψij,ℓ obeys Assumption 2.2.485

• The observation noise σ2
obs,i is different for each agent i = 1, 2, ..., N .486

• The communication noise ξtij has the joint cumulative distribution function487

Φij such that:488 ∫
a∈RM

∥a∥dΦij(a) < ∞,

∫
a∈RM

adΦij(a) = 0,489

490

and Φij(a) = 1−Φij(−a), for all a ∈ RM .491

All the remaining assumptions in 2.1-2.4 continue to hold.492

Note that the above means that the communication noise ξtij may have mutually493

dependent elements [ξtij ]ℓ, for ℓ = 1, ...,M .494

For the above generalization, it can be shown that Theorem 3.1 continues to hold (see495

Supplementary material C).496

3.2. Asymptotic normality. We now present our results on asymptotic nor-497

mality of estimator (2.3).498

Theorem 3.4 (Asymptotic normality). Let Assumptions 2.1 − 2.4 hold. Con-499

sider algorithm (2.3) with step-size αt = a/(t + 1), t = 0, 1, ..., a > 0. Then, the500

normalized sequence of iterates {
√
t+ 1(xt −1N ⊗ θ∗)} converges in distribution to a501

zero-mean multivariate normal random vector, i.e., the following holds:502 √
t+ 1(xt − 1N ⊗ θ∗) ⇒ N (0,S),503504

where the asymptotic covariance matrix S equals:505

(3.20) S = a2
∞∫
0

eΣvS0e
Σ⊤vdv.506

Here, S0 = σ2
obs H

⊤H+ b2

a2 σ
2 Diag ({di IM}), where we recall that di is the degree of507

agent i; σ2 =
∫
|Ψ(w)|2dΦ(w) is the effective communication noise variance after508

passing through the nonlinearity Ψ; we recall the observation matrix H in (2.2); the509

observation noise variance σ2
obs in (2.1); function ϕ in (3.2); and Σ = 1

2I−a(H⊤H+510
b
aφ

′(0)(L⊗ IM )), where a is taken large enough such that matrix Σ is stable (i.e., real511

parts of Σ’s eigenvalues are negative).512

Theorem 3.4 shows that, for the communication noise with finite variance and un-513
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bounded nonlinearities that satisfy part 5 of Assumption 2.2, the variance with the514

proposed nonlinear estimator (2.3) decays (in the weak convergence sense) at (the best515

achievable) rate O(1/t). In particular, by taking Ψ to be the identity function, we516

recover the asymptotic normality result in [17] of the corresponding linear estimator517

(the LU scheme in [17]). Note also that the asymptotic variance expression in (3.20)518

for the indentity function Ψ(a) = a coincides with that in [17] for the LU scheme.519

Theorem 3.4 further demonstrates that, even under a heavy-tailed communication520

noise (with unbounded variance) with a bounded nonlinearity (e.g., nonlinearities521

NL1-3 in Section 2), the variance with algorithm (2.3) still decays at rate O(1/t). In522

contrast, the corresponding linear scheme (obtained by taking Ψ in (2.3) to be the523

identity function) generates a sequence with unbounded variances for each t = 1, 2, ...524

More precisely, we then have that E[||xt − 1N ⊗ θ∗||2] = ∞, for any t = 1, 2, ... (see525

Supplementary material C).526

Theorem 3.4 explicitly quantifies asymptotic variance of (2.3). This also allows, in527

the finite communication noise regime, to compare the nonlinear versus the linear528

scheme (when both schemes achieve a finite asymptotic variance). See Subsection 4.1529

for details.530

Theorem 3.4 also reveals an interesting tradeoff when including the nonlinearity Ψ531

into the consensus update. On the one hand, nonlinearity makes a beneficial effect in532

that the communication noise plays the role only through the effective variance σ2 =533 ∫
|Ψ(w)|2dΦ(w). In contrast, with the linear scheme, σ2 is replaced with

∫
w2dΦ(w)534

that is infinite under a heavy tail setting. On the other hand, the nonlinearity Ψ535

makes a negative effect in that it “reduces quality” of matrix Σ through the quantity536

φ′(0) that is typically less than one with a nonlinear scheme and equal to one with the537

linear scheme. Clearly, the tradeoff goes in favor of the nonlinear scheme in the heavy538

tail setting (finite variance with the nonlinear estimator versus infinite variance with539

the linear estimator). In the finite communication noise variance setting, the nonlinear540

scheme typically improves performance under a sufficiently low communication signal541

to noise ratio (SNR); see also Subsection 4.1. We are now ready to prove Theorem542

3.4.543

Proof. (Proof of Theorem 3.4) We establish asymptotic normality by verifying544

assumptions C1-C5 of Theorem 29 in [17] (see also Theorem 3 in the supplementary545

material). Firstly, we show that condition C1 hold. Since function φ is differentiable546

at zero, we have that547

φ(a) = φ(0) + φ′(0)a+∆(a) = φ′(0)a+∆(a),(3.21)548549

where for the function ∆ : R → R, we have that lim
a→0

∆(a)
a = 0. Hence, the function550

rφ(x) admits representation as in Theorem 29 of [17] (see also (37) of Theorem 3 in551

the supplementary material), with matrix552

B = −HTH− b

a
φ′(0)

[
L⊗ IM

]
,553

554

and function δ : RMN → RMN , given with δ(x) = − b
aL∆(x). Here, function L∆(x) :555

RMN → RMN is defined by556

L∆(x) =


...∑

j∈Ωi

∆(xi − xj)

...

 ,557

558

where function∆ : RM → RM is defined by (3.21),∆(y1,y1, ...,yM ) = [∆(y1),∆(y2), ...,∆(yM )]⊤,559

y ∈ RM .560
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Condition C2 trivially holds, if we use that αt =
a

t+1 . Furthermore, Σ = aB + 1
2I is561

stable if a is large enough, because matrix −B is positive definite (see [17]). Thus,562

condition C3 also holds.563

For A(t,x) = E
[
γφ(t + 1,x, ω)γφ

⊤(t + 1,x, ω)
]
, using the Lebesgue’s dominated564

convergence theorem, it can be shown that565

lim
t→∞,x→θ∗

A(t,x) = σ2
obsH

⊤H+ σ2 Diag ({di IM}) .566
567

Therefore, condition C4 also holds. It remains to verify condition C5. Recall quantity568

γφ(t+1,x, ω) in (3.19). Note that this condition is equivalent to saying that the family569

of random variables {∥γφ(t + 1,x, ω)∥2}t=0,1,..., ∥x−θ⋆∥<ϵ is uniformly integrable. If570

the condition 5 in Assumption 2.2 holds (the case with finite communication noise571

variance and the nonlinearity with unbounded outputs), then:572

∥γφ(t+ 1, x, ω)∥2 ≤ c12 + c13∥nt∥2 + c14 ∥ηt∥2,(3.22)573

for some positive constants c12, c13, c14.574

Consider the family {g̃(t+ 1,x, ω)}t=0,1,...,∥x−θ⋆∥<ϵ, with575

(3.23) g̃(t+ 1,x, ω) = c12 + c13∥nt∥2 + c14 ∥ηt∥2.576

Clearly, g̃(t + 1, x, ω) is integrable, for any t = 0, 1, ..., for any ϵ > 0, due to577

the finite second moment of sensing and observation noises. The family {g̃(t +578

1, x, ω)}t=0,1,...,∥x−θ⋆∥<ϵ is i.i.d. and hence it is uniformly integrable. The family579

{∥γφ(t + 1, x, ω)∥2}t=0,1,...,∥x−θ⋆∥<ϵ is dominated by {g̃(t + 1, x, ω)}t=0,1,...,∥x−θ⋆∥<ϵ580

that is uniformly integrable, and hence {∥γφ(t+1, x, ω)∥2}t=0,1,...,∥x−x⋆∥<ϵ is also uni-581

formly integrable. An analogous argument can be applied if condition 5′ in Assump-582

tion 2.2 holds (bounded nonlinearity, communication noise with infinite variance).583

Hence, condition C5 holds; thus, the result.584

4. Analytical and numerical examples. Subsection 4.1 provides analytical585

examples, and Subsection 4.2 provides simulation examples, that illustrate the main586

results presented in Section 3.587

4.1. Analytical examples. We provide several analytical examples that illus-588

trate Theorem 3.4. The examples demonstrate that, in the considered setting, the589

proposed nonlinear method in (2.3) achieves a lower asymptotic variance than the590

corresponding linear scheme, for a low SNR regime, i.e., for the case when the com-591

munication noise variance is above a threshold. We also consider optimization of the592

nonlinearity Ψ for a given nonlinearity class; more precisely, for the given analytical593

example, we consider optimization of parameter B for the NL2 nonlinearity class in594

Section 2.595

Example 1: We follow a setup similar to [17], but we consider the nonlinear con-596

sensus+innovations scheme in (2.3), with the non-linear operator Ψ : R → R of the597

following form (the NL2 nonlinearity):598

Ψ(w) =

 w , |w| ≤ B
+B , w > B
−B , w < B

,(4.1)599

600
for some parameter B > 0. Notice that letting B → ∞ in (4.1) leads to the linear601

consensus+innovations LU scheme in [17].602

Each agent i observes a scalar parameter θ∗ ∈ R according to:603

zi(t) = hθ∗ + nt
i,604605

where h ̸= 0 and nt
i is i.i.d. in time and across sensors with variance σ2

obs and zero606

mean. Communication noise is i.i.d. across arcs and in time and is independent of607

{nt
i}, for all i = 1, 2, ..., N. Assume that the communication noise has a probability608
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distribution function f(w) that is strictly positive in the vicinity of zero. Denote the609

eigenvalues of L by 0 = λ1 < λ2 ≤ · · · ≤ λN . Let the graph be regular, for simplicity,610

with degree d. Using Theorem 3.4, we have that the asymptotic covariance matrix611

equals:612

S = a2
∞∫
0

eΣvS0e
Σvdv.613

614

Here, S0 =
(
h2σ2

obs +
b2

a2 dσ
2
)
I; also, recall σ2 =

∞∫
−∞

|Ψ(w)|2f(w)dw, the effective615

communication noise per link. We assume that f(w) has a zero mean and variance616

σ2
comm =

∞∫
−∞

w2f(w)dw that is finite. Also,617

Σ =
1

2
I− a

(
h2I+

b

a
φ′(0)L

)
,618

619
where φ is given in (3.2). For the nonlinearity considered here, we have that620

σ2 = 2

+B∫
0

w2f(w)dw +B2

(
1− 2

∫ +B

0

f(w)dw

)
,621

φ′(0) = 2

+B∫
0

f(w)dw.622

623

Denote by σ2
B = 1

N Tr(S) the average per-agent asymptotic variance. Analogously to624

(76)-(86) in [17], for a > 1
2h2 we get:625

σ2
B =

a2h2σ2
obs + b2dσ2

N (2ah2 − 1)
+

a2h2σ2
obs + b2dσ2

N

N∑
i=2

1

2bλiφ′(0) + (2ah2 − 1)
626

627

We next analyze the values of σ2
B as B → 0 and B → +∞.628

For B → 0, we have that σ2 → 0, φ′(0) → 0 and629

σ2
B → a2h2σ2

obs

2ah2 − 1
=: σ2

0 .630
631

That is, when B → 0, we effectively have the case that each agent is working in632

isolation, hence not seeing the effect of the communication noise.633

For B → +∞, we have that φ′(0) → 1, σ2 → σ2
comm and634

σ2
B → a2h2σ2

obs + b2dσ2
comm

N (2ah2 − 1)
+

a2h2σ2
obs + b2dσ2

comm

N

N∑
i=2

1

2bλi + (2ah2 − 1)
=: σ2

∞.635

636
This is the asymptotic variance of the linear LU scheme in [17]. Note that, for any637

set of values of system parameters and any a > 1
2h2 and b > 0, there holds that638

σ2
∞ > σ2

0(4.2)639640
for a sufficiently large σ2

comm.641

Assume from now on that (4.2) holds. It can be shown that there exists an optimal642

B, i.e., there exists B∗ such that B∗ ∈ (0,+∞) and inf
B∈(0,+∞)

σ2
B = σ2

B∗ (see Supple-643

mentary material D).644

Note that the above analysis generalizes also to the case when645

σ2
comm =

+∞∫
−∞

w2f(w)dw = +∞,646

647
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i.e., when the noise variance is +∞. In this case, we have that σ2
∞ = +∞, for the648

linear scheme and σ2
0 =

a2h2σ2
obs

2ah2−1 for the isolation scheme. It can be shown that649

inf
B∈(0,+∞)

σ2
B is achieved at some B∗ ∈ (0,+∞) (see Supplementary material D).650

In order to demonstrate the results above, we minimize σ2
B and calculate B∗ for a651

specific numerical example (see Figure 1a). We consider a sensor (agents) network652

with N = 8 agents, where the underlying topology is given by a regular graph with653

degree d = 3. We set innovation and consensus constants as a = b = 1, the observation654

parameter h = 1, and the true parameter θ∗ = 1. The observation noise for each655

sensor’s measurements is standard normal, and the communication noise for each656

communication link has the following pdf657

f(w) =
β − 1

2 (1 + |w|)β
,(4.3)658

659
with β = 2.05. (This pdf’s distribution has the infinite variance.) Figure 1b shows660

performance of the nonlinear consensus+innovations estimator (2.3) in terms of the661

estimated per-sensor mean squared error (MSE) across iterations, for the optimal B∗662

and for some sub-optimal choices of B, obtained through a Monte Carlo simulation.663

We can see that the scheme with B∗ performs better than for the considered sub-664

optimal choices of B. Figure 1c shows that Monte Carlo estimate of the per-agent665

asymptotic variance, i.e., Ŝ = 1
N ∥xt − 1N ⊗ θ∗∥2 t matches well the corresponding666

theoretical value as per Theorem 3.4.667

(a) (b) (c)

Fig. 1. (a) Per-agent asymptotic variance σ2
B versus B for the nonlinear consensus+ inno-

vations estimator and the NL2 nonlinearity. (b) Monte Carlo-estimated per-sensor MSE error on
logarithmic scale for the nonlinear consensus+innovations estimator with the NL2 nonlinearity for
different choices of B. (c) Monte Carlo estimate of the per-agent asymptotic variance, and the
corresponding theoretical value as per Theorem 3.4.

Example 2: We consider the same network and sensing models as in Example 1 and668

the heavy-tail communication noise distribution in (4.3). Furthermore, we assume669

that Ψ(w) = sign(w) (the NL3 nonlinearity). For the LU scheme, it can be shown670

that (see Supplementary material E):671

σ2 = σ2
comm =

2

(β − 3)(β − 2)
,672

φ′(0) = 1.673674

It can be shown here that the average per-agent asymptotic variance σ2
L = 1

N Tr(S)675

for the LU scheme is equal to676
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σ2
L =


∞ , 2 < β ≤ 3,

a2h2σ2
obs+b2dσ2

N(2ah2−1) +
a2h2σ2

obs+b2dσ2

N

N∑
i=2

1
2bλi+(2ah2−1) , β > 3.

(4.4)677

678

For β > 3, quantity σ2
L can be written as679

σ2
L = AL +BL

1

(β − 3)(β − 2)
,(4.5)680

681
where682

AL =
a2h2σ2

obs

N(2ah2 − 1)
+

a2h2σ2
obs

N

N∑
i=2

1

2bλi + (2ah2 − 1)
,683

BL = 2

(
b2d

N(2ah2 − 1)
+

b2d

N

N∑
i=2

1

2bλi + (2ah2 − 1)

)
.684

685
We next consider the nonlinear consensus+innovations scheme with the nonlinearity686

Ψ(w) = signw. We have that687

σ2 = 1,688

φ(a) = 2

a∫
0

f(w)dw,689

690
which means that φ′(a) = 2f(a) and φ′(0) = 2f(0) = (β − 1). Hence, we have that691

the average per-agent asymptotic variance for the nonlinear scheme σ2
NL = 1

N Tr(S)692

is given by:693

σ2
NL =

a2h2σ2
obs + b2dσ2

N (2ah2 − 1)
+

a2h2σ2
obs + b2dσ2

N

N∑
i=2

1

4bλif(0) + (2ah2 − 1)
,(4.6)694

695
which can be written in the form696

σ2
NL = ANL +BNL

PN−2(β)
N∏
i=2

(β − βi)

,(4.7)697

698
where699

ANL =
a2h2σ2

obs + b2d

N (2ah2 − 1)
,700

BNL =
a2h2σ2

obs + b2d

N
N∏
i=2

2bλi

,701

PN−2(β) =

N∑
i=2

N∏
j=2
j ̸=i

2bλj(β − βj).702

βi = 1− 2ah2 − 1

2bλi
, i = 2, ..., N.703

704
We next compare the average per-agent asymptotic variances for the linear consen-705

sus+innovations scheme and the nonlinear consensus+innovations scheme. From (4.4)706

it is obvious that σ2
NL < σ2

L for β ∈ (2, 3]. For β > 3, if AL ≫ ANL (see Supplemen-707

tary material E), the linear scheme is worse than the nonlinear scheme for all β > 3.708

It is obvious that σ2
L decreases on interval (3,∞) and σ2

NL decreases on the interval709

(βm,∞), where βm = max
i=2,...,N

βi < 1 is closest βi to 1. Function σ2
L = σ2

L(β) has an710

asymptote at β = 3, and function σ2
NL = σ2

NL(β) at β = βm, where βm < 3, also,711
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AL and ANL are horizontal asymptotes for σ2
L and σ2

NL, respectively. Therefore, if712

AL is much larger than ANL, σ
2
L is above σ2

NL for all β > 3. Moreover, if AL < ANL713

there exists β∗ > 3 such that the average per-agent asymptotic variance is still better714

for the nonlinear than for the linear scheme for β ∈ (2, β∗]. Defining k =
σ2
L

σ2
NL

, it is715

possible to show that k → ∞ as β → 3, and k → AL

ANL
as β → ∞. Therefore, if716

AL < ANL, there exists β∗ such that σ2
NL < σ2

L for all β ∈ (2, β∗). In other words,717

there exists a threshold value β∗ > 3, such that the nonlinear scheme outperforms the718

linear scheme for the “heavy-tail regime” β ∈ (2, β∗), and the linear scheme performs719

better for β > β∗. To summarize, in Example 2, depending on sensing and network720

parameters, it holds that either the nonlinear scheme outperforms the linear one for721

all β, or there exists a threshold value β∗ such that the nonlinear scheme is better722

than the linear one for β ∈ (2, β∗). Figure 2 shows the ratio k =
σ2
L

σ2
NL

versus β for723

the same sensing and network parameters as in Example 1. As it can be seen, there724

exists a threshold β∗, that here approximately equals β∗ = 3.9, such that k > 1 for725

β ∈ (2, β∗). On the other hand, for β > β∗, the ratio becomes smaller than one, which726

means that for the given numerical parameters, the linear scheme performs better for727

β > β∗. This is in accordance with the analysis that we provided above.728

Fig. 2. Ratio k =
σ2
L

σ2
NL

versus β for Example 2.

4.2. Simulation examples. In this section, we illustrate the performance of729

the proposed nonlinear consensus+innovations estimator for two different choices of730

the non-linear operator Ψ. For both nonlinearity choices, our method is compared731

with the corresponding linear consensus+innovations estimator LU in [17], when the732

communication noise has probability distribution function given by (4.3).733

We consider a sensor network with N = 40 agents. The underlying topology is an734

instance of a random geometric graph. We use the same initialization x0 = 0 and same735

step sizes αt = 1
t+1 , a = 1, b = 1, for both the linear and the nonlinear estimators.736

Also, we assume that the observation noise is normally distributed, i.e., nt
i ∼ N (0, 1),737

for each t, for each i. The true parameter θ∗ ∈ R10 is generated randomly, where738

the entries of θ∗ are drawn mutually independently from the uniform distribution739

on [-10,10]. The observation vectors hi ∈ R10 are also generated at random, for740

which the condition 4 of Assumption 2.3 is true. We use the communication noise741

pdf in (4.3) with β = 2.05. Note that, in this case, the communication noise has an742

infinite variance.743

Figure 4 compares the linear LU estimator in [17] with the nonlinear estima-744

tor (2.3) with Ψ(w) given in (4.1) for B = 5. Figure 3 shows the comparison between745

LU and [17] with Ψ(w) = sign(w). Both Figures show the iteration counter t at the746
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x-axis and a Monte-Carlo estimate of the average mean square error (MSE) across747

agents on the y-axis. We can see that, as predicted by our theory, the nonlinear748

estimator, for both nonlinearity choices, persistently decreases MSE along iterations,749

despite the fact that the communication noise has an infinite variance. At the same750

time, LU fails to produce a useful estimation result.751

(a) (b)

Fig. 3. Monte-Carlo average per-agent MSE estimate versus iteration counter on logarithmic
scale for the proposed nonlinear estimator (2.3) with the nonlinearity in (4.1) for B = 5 and the
linear LU scheme in [17].

(a) (b)

Fig. 4. Monte-Carlo average per-agent MSE estimate versus iteration counter on logarithmic
scale for the proposed nonlinear estimator (2.3) with the nonlinearity Ψ(w) = sign(w) and the linear
LU scheme in [17].

5. Conclusion. We studied consensus+innovations distributed estimation in the752

presence of impulsive, heavy-tail communication noise. To combat the impulsive753

communication noise, we introduce for the first time a general nonlinearity in the754

consensus update for consensus+innovations distributed estimation. We establish al-755

most sure convergence of the nonlinear consensus+innovations estimator to the true756

parameter, prove its asymptotic normality, and explicitly evaluate the corresponding757

asymptotic variance. We compare the proposed nonlinear estimator with conventional758

consensus+innovation estimators that utilize linear consensus update. Analytical and759
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numerical examples demonstrate significant gains of introducing consensus nonlinear-760

ity in low SNR (high communication noise) regimes. Most notably, we demonstrate761

that, when the communication noise has infinite variance, the proposed nonlinear con-762

sensus+innovations estimator is strongly consistent (converges almost surely), while763

the corresponding linear counterpart provides a sequence of estimators with infinite764

variance.765
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