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Abstract

This paper studies products of independent but non-identically distributed random network matrices

that arise as weight matrices in distributed consensus-type computation and inference procedures in

peer-to-peer multi-agent networks. The non-identically distributed matrices studied in this paper model

various application scenarios in which the agent communication network is time-varying, either naturally

or engineered to achieve communication efficiency in computational procedures. First, under broad

conditions on the statistics of the network matrix sequence, the product of the sequence is shown

to converge almost surely to the consensus matrix and explicit large deviations rate of convergence

are obtained. Specifically, given the admissible graph of interconnections modeling the base network

topology, it is shown that the large deviations rate of consensus equals the minimum limiting value
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of the fluctuating graph cuts, where the edge costs are assigned through the current probabilities of

the inter-agent communications. Secondly, an application of the above large deviations principle is

studied in the context of distributed detection in time-varying networks with sequential observations.

By adopting a consensus+innovations type distributed detection algorithm, as a by-product of this result,

error exponents are obtained for the performance of distributed detection. It is shown that slow starts

(slow increase) of inter-agent communication probabilities yield the same asymptotic error rate – and

hence the same distributed detection performance, as if the communications were at their nominal levels

from the beginning. As an important special case it is shown that when all the intermittent graph cuts have

a link the probability of which increases to one, the performance of distributed detection is asymptotically

optimal - i.e., equivalent to a centralized setup having access to all network data at all times.

Index Terms

Distributed inference, stochastic matrices, error exponents, inaccuracy rates, large deviations, con-

sensus.

I. INTRODUCTION

Motivated by application domains dominated by wireless networking, communication efficiency has

naturally become an increasingly prominent aspect of study in the area of distributed algorithms. Some

exemplary fields concerned with this aspect include distributed inference, e.g., [1], [2], [3], distributed

optimization, e.g., [4], [5], [6], distributed learning, e.g., [7], [8], [9], etc. The generic setup of study

involves a group of entities, often called agents, enabled with computation and potentially also sensing

capabilities, that collaborate to achieve a task at hand – find the global optimum from local objectives,

discover the true hypothesis/parameter from local sensor measurements, or find the model that best

describes the data held by different entities. To achieve the benefits resulting from collaboration, such as

increased accuracy, without affecting adversely other performance metrics, communication between the

agents should be performed efficiently.

Most common approaches for efficient communication are compression and sparse transmissions. With

the former, the idea is to use efficient representations of the messages to be exchanged, e.g., in the sense

of the numbers of bits transmitted; see, e.g., [7], [8], for distributed optimization, [10], [11], for distributed

hypothesis testing (non-Bayesian social learning). Our work belongs to the body of works that adopt the

second approach – sparse transmissions where the general idea is to let the agents iteratively perform

local computations while selecting times for message exchanges sparsely. Similarly as with compressed

transmission, this approach has also been extensively studied in the literature, e.g., in distributed opti-

mization [4], [5], [12], distributed learning [13], [14], [15], distributed estimation [16], [17], distributed
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hypothesis testing [18], [19], [20] distributed statistical inference [21] [22], social learning [23], [24], [25]

etc.

An assumption that is often made in the mentioned lines of work is that the links over which

the agents communicate are fully reliable. In this paper we study communication-efficient algorithms

for distributed inference over networks with random links. The class of algorithms that we study is

consensus+innovations algorithms [26], [27], [28] where merging of information occurs through DeGroot

averaging [29], specifically, through a sequence of the so called weight matrices Wij,t defining the weight

that agent i assigns to the opinion of agent j at time t (see eq. (6) further ahead). Motivating applications

are distributed detection, estimation and learning in modern IoT systems or social networks, where

interactions are naturally intermittent (e.g., in social networks, or edge computing due to the applied

communication protocol such as gossip) and/or are prone to failures (e.g., in wireless sensor networks/IoT

systems).

Many previous works studied performance of DeGroot-based distributed estimation, typically in the

sense of mean square error (MSE), showing that the network effect for the MSE metric is captured

by the spectral properties of either the expected weight matrix E[Wt] or E[W 2
t ] [28]. These results

stand in sharp contrast with the results in the literature on distributed detection, where the spectrum of

E[W 2
t ] (specifically, the second largest eigenvalue in modulus) provides only a loose bound for the error

exponents. A critical property that this bound is not able to capture is that, in the deterministic case, the

network effect plays no role in the error exponents - i.e., all error exponents across the network nodes

are equal to the error exponent of a hypothetical fusion center. As shown in the previous works, the

quantity that can properly capture the network effect and, in particular, “see” the latter property is the

rate of convergence in probability of products Wt · · ·W1:

lim
t→+∞

1

t
logP (∥Wt · · ·W1 − J∥ ≥ ϵ) , (1)

for an arbitrary ϵ ∈ (0, 1]. The quantity in (1) is also referred to as the large deviations rate of consensus.

Besides distributed detection, the preceding quantity is also applicable for distributed estimation, where

instead of the MSE performance, one is concerned with the inaccuracy rates [30], [31].

Convergence of weighted averaging (linear consensus) over random networks has also been extensively

studied in the past, for the case of independent and identically distributed (i.i.d.) weight matrices,

e.g., [32], [33], [34] and also for non-i.i.d., stationary matrices, e.g., [35] (stationary and ergodic), [36]

(Markov-chain based switching topologies), [37] (independent, cut-balanced and strongly aperiodic).

Typically addressed convergence criteria are the mean-square and the almost sure convergence. In contrast

with the referenced works, assuming non-stationary matrices, we study convergence of products of weight
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matrices in the sense of large deviations, considering the sequence of events that the matrix products stay

away from consensus, as in (1). If almost sure convergence were known a priori, the probabilities of

such events would be guaranteed to converge to zero. However, the exact convergence rate (1) would not

be possible to establish neither from the almost sure nor from the mean-square convergence. In this paper

we find the exact rate of convergence of such events. As a special case, we show, by the Borel-Cantelli

lemma, that whenever the rate (1) is non-zero, almost sure convergence of consensus is implied. However,

the impact and the applicability of the rate (1) is much broader, as we show in this paper.

In terms of large deviations study of distributed inference, a closely related reference to this aspect of

our work here is [19]. Reference [19] studies distributed hypothesis testing or social learning where, to

decide on the right hypothesis, distributed entities over time incorporate new observations and collaborate

with peers. This algorithm adopts a similar weighted averaging scheme of the nodes’ iterates, called

beliefs, updated by incorporating the newly arrived observations, through their (log-)likelihood values, and

subsequently by weighted averaging of beliefs across nodes’ local neighborhoods. Assuming deterministic

networks, [19] shows that the nodes’ beliefs converge to the 0/1 vector corresponding to the true

hypothesis and also establish that the beliefs obey the large deviations principle. The respective large

deviations rate is expressed through the rank-one limit of the weight matrix powers. Effectively, the same

large deviations rate obtains if the process was throughout the iterations run with the weights replaced by

their corresponding limits. This is due to the fact that the averaging process induced by the matrix powers

converges at a much faster, geometric rate than the process incorporating new observations. This stands

in sharp contrast with the case when the underlying topologies are random where such property no longer

holds (e.g., for networks with randomly occurring links, it suffices to note that the products of weight

matrices can remain block-disjoint for arbitrarily long periods of time, thus preventing network-wide

dissemination of observations, and hence preventing the desired performance of the employed distributed

inference algorithm). This cannot be seen from the typically used generalizations of the weight matrix

such as E[Wt] or E[W 2
t ]. The metric that is able to capture the impact of communication randomness on

large deviations performance of distributed inference is the exponent of the convergence in probability

of consensus (1).

Problem statement and contributions. In this paper our goal is to derive communication-efficient

distributed inference algorithms that are able to achieve asymptotic optimality of deterministic networks

with much less communications. Specifically, we assume that each of the links has a time varying

probability of occurrence converging to a certain number, where we make no assumptions on the speed

of this convergence. Under this general setup, we compute the rate of consensus in (1) and show that
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it is given by the minimum edge cut of the graph underlying the weight matrices, with edge weights

defined through the limiting edge probabilities. This result extends and generalizes our previous results

in [38],[18] in several important directions. In [38], we consider the setup where the statistics of link

occurrences are constant over time, while in [18] we consider a setup where nodes, rather than edges,

appear intermittently over time. Furthermore, [18] assumes monotonously increasing probabilities, the

rate of which is assumed to be sufficiently large. Here, we consider randomness in the edge sense

(thus subsuming also the vertex randomness), but we make no restrictions neither on the speed nor on

the monotonicity of the convergence. In the technical sense, the current paper adopts novel techniques

to cope with the generality of the link probability sequences, which, in particular, induce fluctuating

minimum cuts over time. The fluctuating probabilities of edge cuts in the current paper incur additional

technical challenges with respect to [38],[18], as they cannot be directly connected with the probability

of the maximal asymptotic cut (i.e., the solution) that corresponds to the limiting probabilities – which

are exploited both in [38] and [18]. This required novel analysis techniques provided here. Furthermore,

in this work we allow for the probabilities of edges to converge to one, the case that is not supported by

the technique adopted in [18]. Finally, as an important special case, we show that whenever the limiting

graph is connected, the rate of consensus equals +∞ and hence the network effect asymptotically vanishes

yielding distributed inference equivalent to the centralized one. All theoretical results are illustrated and

corroborated with numerical simulations.

Paper organization. Section II describes our model and gives preliminary results. Section III states the

main results of the paper. Section IV presents motivating applications. Section V provides proofs of

the results from Section III, while Section VI gives results of numerical simulations for the application

examples from Section IV. Section VII concludes the paper.

Notation. We denote by: Aij or [A]ij the entry in ith row and jth column of a matrix A; Al and Al the

l-th row and column, respectively; I and J := (1/N)11⊤ the identity matrix, and the ideal consensus

matrix, respectively; 1 and ei the vector with unit entries, and ith canonical vector (with the ith entry equal

to 1 and the rest being zeros), respectively. Further, for a vector a, the inequality a > 0 is understood

component wise; log denotes the natural logarithm. We denote by N (m,σ2) Gaussian distribution with

mean m and standard deviation σ. By ∥ · ∥ we denote the spectral norm.

II. MODEL AND PRELIMINARIES

Random links’ activation and random matrix model. The network is modeled as an undirected graph

G = (V,E), where V is the set of nodes, and E is the set of communication links between nodes.

We assume that G is connected. During network operation, communication links activate at random with
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certain probabilities that we assume are different for different links. To each link {i, j} ∈ E we associate,

for each time t = 1, 2, . . . , a Bernoulli random variable ξij,t, which is equal to 1 if {i, j} is active at

time t, and otherwise equals 0. Let pij,t = P(ξij,t = 1) ∈ (0, 1) denote the probability that {i, j} is active

at time t and let Et collect all the communication links in E active at time t. Let Gt = (V,Et), i.e. Gt

is the subgraph of G collecting all the communication links that are active at time t.

We now state our assumptions on the network randomness and on the weight matrices Wt.

Assumption 1 (Communication links).

1) For any two links {i, j}, {k, l} ∈ E, {i, j} ≠ {k, l}, and for any two time instants t, s ≥ 1, t ̸= s,

the Bernoulli variables ξij,t and ξkl,s are independent.

2) For each link {i, j}, for each t, pij,t∈ (0, 1) and the respective sequence converges to pij ∈ (0, 1],

as t → +∞.

It is easy to see from Assumption 1 that the topologies Gt, t ≥ 1, are independent.

We associate with each graph Gt an N × N doubly stochastic matrix Wt. We make the following

assumptions on the weight matrices Wt.

Assumption 2 (Weight matrices).

1) The weight matrices Wt, t ≥ 1, are independent.

2) For each t, each realization of Wt is symmetric, stochastic and has positive diagonals, and it

conforms to the structure of Gt, i.e., for each t, [Wt]ij = 0 if and only if {i, j} /∈ Et, for i ̸= j.

3) There exists δ > 0 such that, for each t, [Wt]ij > δ whenever [Wt]ij > 0.

We provide several examples of distributed learning scenarios where matrices Wt are symmetric. This

occurs in any scenario (e.g., wireless sensor networks, multi-robot systems, etc.) where the communication

between agents happens over an undirected, generic connected graph. For example, in wireless sensor

networks, the graph is induced by the geographical proximity of agents, so that there is a link between

a pair of agents within a distance less than a radius that relates with the protocol in question, transmit

power, etc. The time-varying and random nature of graphs on top of such “backbone” graph arises, due

to, e.g., movement of agents, or physical obstacles that may appear on a communication path between

certain pairs of agents. Clearly, the distance and obstacle effects lead to symmetric communication links.

Given an undirected graph, it is easy to construct a weight matrix that is symmetric on top of such

graph. For example, one can use the Metropolis choice, or assign to all non-zero off-diagonal Wij,t’s a

pre-determined, fixed value, for example any lower bound on quantity 1/dmax or 1/N , where dmax is the

maximal degree of the backbone graph. Also, on top of a “backbone” symmetric graph, one can utilize a
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symmetric randomized protocol to construct randomized instances of Wt, such as, e.g., the randomized

gossip protocol [39]. In addition, as explained in Section IV further ahead, a variant of federated learning

with partial (or full) participation also leads symmetric matrices Wt’s. We also mention that a random,

symmetric model of Wt’s has been extensively used in the literature (see Section IV), like with different

instances of innovation + consensus algorithm where we assume that if communication exists from one

agent to another, that communication back is also possible.

The requirement that the diagonal of Wt is strictly positive is essentially mild, as an agent can always

associate a non-zero weight to itself. There is still a non-trivial requirement here, because Wii,t should

also be positive (negative values are not allowed), and hence the weights that agent i assigns to neighbors

should be small enough, so that “a room” is left for Wii,t to be positive, in view of the fact that the

row-sums of Wt must be equal to one. This is however easily achieved in practice by using, e.g., the

Metropolis weights, or letting each non-zero off-diagonal weight be small enough, equal to a lower bound

on 1/dmax.

Theoretically, positive diagonals of Wt are important, in order to achieve “continuous information

flow” and “averaging” among agents. Basically, they ensure that, if for a product Φ(t, 1), an element at

position (i, j) is non-zero, then, irrespective of graph Gt+1, the (i, j)-th element of Φ(t + 1, 1) is also

non-zero.

We are interested in the behavior of products Wt · · ·W1. As detailed ahead in Section IV, these matrix

products arise with a number of applications in distributed learning, inference and optimization. For future

analysis, it will be useful to introduce the following concepts.

Union graph Γ(t, 1). For a collection of graphs H on the set of vertices V , we denote by Γ(H) the

graph that contains all the edges of all the graphs in H, Γ(H) = (V,∪H∈HE(H)), where by E(H) we

denote the set of edges of a graph H ∈ H. We call such a graph union graph (of the graphs in H). With

a slight abuse of notation, we use the same symbol Γ for the union of subsequent realizations of Gr over

any given time window s ≤ r ≤ t:

Γ(t, s) =

(
V,

t⋃
r=s

E(Gr)

)
; (2)

in this case we call Γ(t, s) the union graph from time s until time t.

Similarly, we define Φ(t, s) as the product of the weight matrices that occur from time s until time t,

for 1 ≤ s ≤ t, i.e., Φ(t, s) = Wt · · ·Ws. To facilitate the presentation, it is also of interest to introduce the

error matrix Φ̃(t, s) = Φ(t, s)− J , a norm of which quantifies how close the product is to the one-shot

averaging matrix J .
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Fig. 2: Graphs realizations G1, G2, and G3, with corresponding matrices W1,W2, and W3

Here, we add some examples to illustrate the introduced concepts. In Figure 1 we can see an example

of graph G = (V,E). In Figure 2 we have the first three realizations of graphs Gt. Figure 3 illustrates

the union graph Γ(t, s), for s = 1 and t = 3.

Fig. 1: Simulated graph G

Fig. 3: Union graph Γ(3, 1)
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Sequence of stopping times. Using the notion of the union graph Γ, we define the sequence of times

Ti, i = 1, 2 . . . , that mark time instances when Γ gets connected:

Ti = min{t ≥ Ti−1 + 1 : Γ(t, Ti−1 + 1) is connected},

for i ≥ 1, where T0 ≡ 0. It is well-known that for every time window [s, t] over which the occurred

edges accumulate to a connected graph, the spectral norm of the error matrix Φ̃(t, s) constructed over

the same time window drops below one, see, e.g., [38]. Hence, the sequence of times {Ti}i≥1 therefore

defines the times when the averaging process makes an improvement and gets closer to matrix J .

Number of improvements. For any fixed t ≥ 1, we introduce the random variable counting the number

of improvements until time t, denoted by Mt,

Mt = max{i ≥ 0 : Ti ≤ t}.

In other words, if the number of improvements until time t is Mt = m, then there exist times t1 < t2 < · · · < tm ≤ t,

such that the consecutive graphs Γ(t1, 1),Γ(t2, t1 + 1), . . . ,Γ(tm, tm−1 + 1) are all connected; also, if

tm is strictly smaller than t, then Γ(t, tm + 1) is not connected.

For the future analysis it will be of interest to introduce the notion of Edge cut.

Edge cut. For an arbitrary graph G = (V,E), let X be a subset of V . Edge cut of G associated with X

is the set of all edges of G with one end in X and the other in V \X . By C(G), we denote the set of

all edge cuts associated with some nonempty proper subset of G. For any C ∈ C(G), the graph G\C is

obtained from the initial graph G by removing all the edges that belong to C, i.e. G\C = (V,E \C). If

each edge {i, j} ∈ E is assigned a cost cij ∈ R, then, the minimal edge cut is defined as the edge cut

C ⊂ E such that the sum of costs of edges in C is minimal among all edge cuts C ∈ C(G). We denote

the associated cost by

MC(G, {cij}{i,j}∈E) = min
C∈C(G)

 ∑
{i,j}∈C

cij

 . (3)

III. MAIN RESULT

This Section states and proves the main result of the paper on the large deviations rate of consensus (1).

A. Rate of consensus

Firtst, we recall that limt→+∞ pij,t = pij and state the main result.
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Theorem 3. Let Assumptions 1 and 2 hold. Let G⋆ = (V,E⋆), where E⋆ = {{i, j} ∈ E : pij = 1}.

Then, for any ϵ ∈ (0, 1]:

lim
t→+∞

−1

t
logP (∥Wt · · ·W1 − J∥ ≥ ϵ)

= MC(G, {cij}{i,j}∈E), (4)

where qij = 1− pij and

cij =

− log qij , for {i, j} ∈ E \ E∗

+∞, otherwise,
.

Theorem 3 characterizes analytically the rate of convergence (1) under a general model of time varying

link activation probabilities defined in Assumptions 1 and 2. The theorem shows that there are two distinct

cases for the rate (1), which are differed by the graph G⋆ that collects links that are “asymptotically

certain”. From a practical viewpoint, the information flow over G⋆ becomes increasingly reliable (without

bound), and, in a sense, one can think of G⋆ as the (asymptotic) backbone of G. Specifically, when G⋆

is connected, the theorem proves that the large deviations rate of consensus (1) is infinite. This result

relates to and generalizes the previous results in the literature for connected, static topologies, including

static weight matrices the topology of which is connected. Intuitively, when the topology is static and

connected, the information flow is guaranteed at each time instant, and under mild assumptions (e.g.,

Assumption 2), the products Wt · · ·W1 are guaranteed to converge to J exponentially fast, e.g., [40].

Hence, the probabilities in (1) reach zero in finite time, yielding the rate (1) to be equal to infinity. The

model assumed in this paper generalizes this result by allowing the static backbone graph to be reached

only asymptotically, and moreover at an arbitrary rate.

Furthermore, the condition that G⋆ is connected is not only sufficient but also necessary for the rate

of consensus to be infinite. When G⋆ is not connected, we prove that the rate of consensus (1) is finite

and we moreover provide its analytical form as the minimum cut on G with edge costs defined through

the limiting probabilities qij of edge absences.

We also relate Theorem 3 with the theory of Markov chains. Essentially, Wt acts as a probability

transition matrix of a Markov chain, and the vector 1
N 1 acts as a stationary distribution of a Markov

chain. There is a subtle difference in general, as, with Markov chains, we consider right matrix products,

while in our case, we deal with left matrix products. This difference is lost when the transition matrices

of the Markov chain are symmetric or doubly stochastic, as is the case here. Therefore, one can indeed

draw the analogy. In this context, we deal with a Markov chain where the transition probability matrix

itself is random and with a time-varying distribution of its realizations. However, we point out that,
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despite the connection with Markov chains, our results are novel. Indeed, exponential rates of decay for

inhomogenuous Markov chains in random environments have not been derived before.

We further provide an intuitive explnation of why J is the limit of the Wt-products, by drawing the

connection with Markov chains theory. We do this only in the expected (mean) convergence sense, which

is a weak result but nonetheless is useful as an illustration. Taking the expectation over the dynamics of the

products Φ(t, 1) = Wt · · ·W1, we obtain the following deterministic, time-varying dynamics: pt+1 = At pt

where At is the expectation of Wt. The dynamics above is precisely the probability transition dynamics

of a Markov chain with a deterministic, time-varying, transition matrix, that is symmetric, with strictly

positive diagonal, and has a connected support graph. By standard results in Markov chains theory, this

Markov chain is stochastic, indecomposable, aperiodic (SIA) [41], and therefore it has a unique stationary

distribution that is also uniform.

We also note that this connection with Markov chains helps with the intuition, but only shows

convergence in the mean sense. Existing results like [42] show stronger claims, namely that under the

condition that E[Wt] is connected, the Wt · · ·W1 → 1vT , when t → +∞, almost surely (not only in

the mean sense). As a consequence of their results, the special case is when all the weight matrices Wt

are doubly stochastic, then v = 1
N 1. On top of those existing results, as highlighted in the paper, we

establish exact rates of exponential convergence.

Using the Theorem 3 it can be shown that, under Assumptions 1 and 2, the product of the weight

matrices Φ(t, 1) converges to its limit J almost surely.

Remark 4. Let Assumptions 1 and 2 hold. Then the matrix Φ(t, 1) converges to J almost surely as

t → +∞, i.e.,

P
(

lim
t→+∞

Φ(t, 1) = J

)
= 1. (5)

The proof can be found in the Appendix.

IV. MOTIVATION AND APPLICATION EXAMPLES

We demonstrate practical relevance of Theorem 3 by illustrating the relevance of matrix products

Φ(t, 1) = Wt · · ·W1 in several applications: consensus+innovations algorithms and social learning, and

distributed learning.

Communication model. In each of the examples to follow, we consider a network of N agents

connected by an arbitrary communication topology. Similarly as in Section II, the topology is represented

by an undirected graph G = (V,E), where V is the set of agents, and E is the set of possible

communication links between agents. Realization of the communication topology at time slot t is denoted
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by Gt = (V,Et), for t = 1, 2, . . . where Et is the set of links that are online at time t. For an agent i,

we let Oi,t denote the set of neighbors of i at time t, Oi,t = {j ∈ V : {i, j} ∈ Et}.

Consensus+innovations. The agents collaborate over time in a joint detection, estimation, or learning

task by intertwining innovation steps – in which new measurements are acquired and incorporated,

and consensus steps – where the updated agents’ states are communicated to immediate neighbors

and subsequently mixed at each via De-Groot averaging [29]. Specifically, at each time t, each agent

i, computes the convex combination (i.e., De-Groot averaging) between its own and the neighbors’

intermediate states X̂j,t:

Xi,t =
∑

j∈Oi,t∪{i}

Wij,tX̂j,t, (6)

where the intermediate states are obtained by X̂j,t = t−1
t Xj,t−1 + 1

tZj,t, Zj,t is the measurement

(innovation) of node j at time t and Wij,t is the weight that agent i at time t assigns to the estimate of agent

j. The preceding algorithm gives rise to the recursive form in (7) [26],[27], where the relevance of the

stochastic matrix products that this work studies is evident and has been exploited, e.g., in (7) [26],[27]:

Xi,t =
1

t

t∑
s=1

[Φ(t, s)]ijZj,s. (7)

Specific instantiations and widely studied applications of algorithm (6) are distributed detection and

distributed estimation. For example, in distributed detection based on algorithm (7), Theorem 3 is a key

step to establish the error exponent for the detection error probability, see [26] for details.

Social learning. The idea of social learning is for a group of people to distinguish between M different

hypotheses, through local updates and collaborative information exchange [43]. Each node i over time

draws observations Yi,t from (the true) distribution fi,M (hypothesis HM ). The remaining M−1 candidate

distributions at node i in hypothesis testing are fi,m (hypothesis Hm), m = 1, . . . ,M − 1. The algorithm

starts at each node with initial private belief value qmi,t > 0, m = 1, . . .M − 1. Upon receiving new local

observation Yi,t, the nodes compute their public belief values by:

bmi,t =
fi,m(Yi,t)q

m
i,t−1∑M

l=1 fi,l(Yi,t)q
l
i,t−1

, (8)

for each m = 1, . . . ,M . Each node then sends its updated public belief vector to its neighbors. Upon

receiving the neighbors’ (public) beliefs, the node updates its private beliefs as follows:

qmi,t =
e
∑

j∈Oi,t
Wij,t log bmi,t∑M

l=1 e
∑

j∈Oi,t
Wij,t log bli,t

, (9)

for each m = 1, . . . ,M . It is easy to show (the details can be found in [44]) that the preceding algorithm

admits the recursive representation of the consensus+innovations algorithm in (7), with
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Zm
i,t = log

fi,m(Yi,t)

fi,M (Yi,t)
, (10)

X̂m
i,t =

1

t
log

qmi,t

qMi,t
, (11)

Xm
i,t =

1

t
log

bmi,t

bMi,t
. (12)

Hence, the results of this work are of direct relevance for social learning in which the interactions

between the social agents are random and with rates of interactions varying over time.

Distributed multiagent optimization and learning. We now consider standard multi-agent consensus

optimization problem, where the agents in a connected network collaboratively solve the following

unconstrained problem:

minimize f(x) :=

N∑
i=1

fi(x). (13)

Here, fi : Rd 7→ R is a local agent i’s loss function, for example, an empirical loss for the considered

machine learning model (linear regression, logistic loss, hinge loss, etc.) based on agent i’s training data.

While a number of distributed multi-agent optimization algorithms have been proposed, a simple widely

considered method is the decentralized (sub)gradient descent (DGD) [45]. For t = 0, 1, ..., DGD works

as follows:

Xi,t+1 =
∑

j∈Oi,t

Wij,tXj,t − αt∇fi(Xi,t). (14)

Here, Xi,t ∈ Rd is agent i’s solution estimate at iteration t, ∇fi(Xi,t) is the gradient (or an arbitrary

sub-gradient) of fi evaluated at Xi,t, αt > 0 is the step-size, and the Wij,t’s and Oi,t’s are the averaging

weights and agents’ neighborhoods, as before.

In the context of the analysis of (14) and similar methods, the analysis of products Φ(t, s) can play an

important role. Specifically, they determine the dynamics of the disagreement estimates X̃i,t = Xi,t−Xt,

where Xt =
1
N

∑N
i=1Xi,t is the (hypothetical) global average of the agents’ solution estimates. That is,

the analysis of the dynamics of X̃i,t is an important intermediate step when establishing convergence

of (14), see, e.g., [45], [46]. Namely, the analysis of (14) will typically consist of two steps: 1) show

that X̃i,t → 0, almost surely (consensus); and 2) show that f(Xt) − f⋆ → 0, almost surely, where

f⋆ = infx f(x) (convergence of function values). In other words, the analysis considers that the following

two conditions need to be fulfilled: 1) the agents need to reach a consensus; and 2) the point at which
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the consensus is reached is optimal in terms of the objective function value. For the first, consensus

condition, the matrix products Φ(t, s) play an important role. Namely, it can be shown that [45], [46]1

X̃t+1 = (Wt − J)X̃t + αt gt, (15)

where X̃t = (X̃t,1, ..., X̃t,N )⊤, gt = (I − J)ht, and ht = (∇f1(X1,t), ...,∇fN (XN,t))
⊤. By unwinding

the recursion (15), we obtain:

X̃t =

t−1∑
s=0

(Φ(t, s)− J)αs gs. (16)

Under a common uniformly bounded gradients assumption, (16) implies:

∥X̃t∥ ≤ G
√
N

t−1∑
s=0

∥Φ(t, s)− J∥αs. (17)

where G = maxi=1,...,N supx ∥∇fi(x)∥. From (17), we can see that, by studying the behavior of quantities

∥Φ(t, s)− J∥ (available thanks to this paper’s results), we can provide estimates of the disagreement size

∥X̃t∥. Detailed derivations are left for future work.

Error exponent (distributed detection). When large number of observations is needed to reach the

desired accuracy, detection performance is typically measured through error exponents; for example,

with the Bayesian hypothesis testing one is interested in the exponential decay rate R of the expected

error probability, and similarly, for the Neyman-Pearson hypothesis testing, the decay rates of the prob-

ability of false alarm and the probability of missed detection. It is well known that, under Bayesian

hypothesis testing, the error exponent R for the centralized hypothesis testing is given by the Chernoff

information computed from the distributions of the network-wide vector measurements under the two

hypotheses. However, this optimal rate is not guaranteed with distributed algorithms. Specifically, when

the communication links are intermittent, the information flow, enabled through local averaging in (6),

can be cut for arbitrary long periods. This would prevent the new measurements to propagate, and disable

averaging out the measurement noise. To understand the practical importance of the rate R for distributed

detection, adopting, for large T , the approximate expression for the Bayesian error2 (say, at an arbitrary

network node) Pe ≈ e−TR. We obtain that the minimal number of observations T needed to achieve a

given target accuracy (e.g., Pe = 0.05) equals

T ⋆ ≈ − log(0.05)/R. (18)

Hence, the higher the exponent R, the faster is the target accuracy achieved.

1For notational simplicity, we let here d = 1, while the analysis can be extended for any d > 1.
2The Bayesian error probability Pe can be expressed as Pe = κT e

−TR, where the first factor 1
T
log κT vanishes with T .

Hence, 1
T
log κT /(RT ) → 1, as T → +∞, motivating the above approximation for large T .
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Previous works have investigated analytically the exponent R for distributed detection (6) for both

deterministic and stochastic networks, showing that the large deviations rate of consensus (4) plays a

critical role in determining the value of R. Specifically, for deterministic networks, it has been shown

that the error exponent R is always equal to the optimal, centralized error exponent, independent of the

topology and the averaging coefficients (weight matrices) used. This is in accordance with the result

of Theorem 3, which asserts the infinite rate of consensus in the deterministic case hence guaranteeing

infinitely fast information flow in the error exponent sense. For stochastic networks, the above works

provided analytical conditions for asymptotic optimality of distributed detection, defined in terms of

system parameters, such as the number of nodes N and local Chernoff information Ch. Specifically,

for Gaussian observations with distributions N (m0, σ
2) and N (m1, σ

2), the condition has the following

form

MC ≥ N(N − 1)Ch, (19)

where Ch = (m1 −m0)
2/(8σ2) is the nodes’ individual Chernoff information and MC is the minimum

cut value from Theorem 3 – when (19) holds, algorithm (6) achieves the optimal error exponent, equal

to R = NCh, at each node in the network. Relating with (18), when (19) holds, the desired detection

accuracy is reached at the earliest possible time.

Inaccuracy rates (distributed learning). Similarly as with error exponents, to characterize the speed

of convergence of the solution estimates Xi,t to x⋆, one can consider a confidence interval around

x⋆, ∥Xi,t − x⋆∥ < ϵ, seeking for the earliest possible time when the probability that the parameter

estimates Xi,t belong to this region of Rd, reaches the desired value. It can be shown that the probabilities

of the complement (large deviation) event ∥Xi,t − x⋆∥ ≥ ϵ decay exponentially fast, e.g., [44]. The

corresponding exponents are known in the literature as inaccuracy rates [30], [31]. For De-Groot based

distributed estimation, as shown in Chapter 4.6 of [47], they are, similarly to distributed detection,

critically determined by the large deviations rate of consensus (1), albeit with a more complex relation.

We omit here the detailed treatment as it is out of scope of the current paper. For large deviations analysis

of learning algorithms, we point to recent reference [48].

Federated learning. Interestingly, matrix products Φ(t, 1) also arise in other applications where an

explicit form of graph sequence does not appear. An example is a server-clients federated learning system

with either full or partial clients participation [49]. Therein, each client has a loss function fi : Rd 7→ R,

and the goal is to minimize the sum of the clients’ losses. To be specific, we consider the FedAvg

method that works as follows. At each iteration t, a subset of K out of N clients is selected uniformly

at random. We denote by Xt the global model available at the server, and by Xi,t the local model at
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client i, i = 1, ..., N . The selected clients i receive a global model Xt from the server, and then make

the following update:

Xi,t+1 = Xt − α∇fi(Xt), (20)

where α > 0 is a step-size and ∇ denotes the gradient operator.3 The remaining clients j stay idle,

meaning that Xj,t+1 = Xj,t. All active clients sent their Xi,t+1’s to the server that subsequently averages

the received vectors. This procedure can be modeled via graphs Gt introduced in Section II in the

following way. Each client is a node in Gt, while the server is formally not a part of the graph. The

graph Gt has as a subgraph a K-node complete graph that includes precisely the clients that participate

in communication with the server at iteration t, and the graph Gt has no other links. The weight matrix

Wt has its K × K submatrix at the positions that correspond to the active clients equal to JK , while

the remaining off-diagonal blocks are zero, and the remaining diagonal blocks equal the identity. Letting

d = 1 for simplicity, and collecting all the Xi,t’s in a N × 1 vector Xt = (X1,t, ..., XN,t)
⊤, the FedAvg

update rule can be written as Xt+1 = Wt (Xt − αZt ⊙ gt), where gt = (∇f1(X1,t), ...,∇fN (XN,t))
⊤,

⊙ is the Hadamard product, and Zt is a random zero-one vector that has non-zero elements precisely

at the positions of active clients. The example in Figure 4 illustrates Gt and Wt for a toy example of a

five-node federated learning setup where nodes 2-4 active, while nodes 1 and 5 are idle.

Fig. 4: Gt and Wt in an example of federated learning setup.

Spatial autoregression. Finally, the model that we consider is related to spatial autoregression. Therein,

Xi,t corresponds to a spatial field’s value at time t for a specific location, while matrix Wt captures the

random variable dependencies at time t among the Xi,t’s, e.g., according to geographical proximity [50].

A. Application example: Sparsifying communication

In this section, we are concerned with the distributed detection application and whether the optimality

of error exponents can be achieved with fewer communications. To motivate the approach, we consider

3For simplicity, we let the number of local gradient updates equal to one.
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the following example. Suppose we are given a network G = (V,E), with N nodes, which run the algo-

rithm (6) and where each link {i, j} ∈ E occurs with probability pij , e.g., due to imperfect communication

channels. We assume that the measurements are Gaussian and the minimum cut MC = MC({pij}{i,j}∈E)

satisfies the condition (19) so that the error exponent at each node equals R = NCh. To reach the target

accuracy Pe = η, it is sufficient to perform T = − log(η)/R rounds of iterations. Each iteration incurs

the expected number of communications equal to E
[∑

{i,j}∈E 1{i,j}

]
=
∑

{i,j}∈E pij , leading to the

expected cumulative number of communications at iteration T equal to:

Cconst = T
∑

{i,j}∈E

pij . (21)

Theorem 3 on the other hand asserts that the same asymptotic rate of consensus MC and the same error

exponent NCh, are guaranteed as long as the probability of each link pij,t converges to the same limit pij .

Specifically, the same rates, MC and NCh, will be achieved for the case when pij,t = pij(1−ot), where

ot is an arbitrary function that decays to zero (e.g., ot = 1/t2, t ≥ 1). The term (1− ot) decreasing the

communication probability can be practically realized by a random variable ηij , generated independently

at each link, which censors transmissions across the respective link with probability ot. The total number

of communications until time T for the sparsifying scheme is then given by:

Csparse =

T∑
t=1

∑
{i,j}∈E

pij(1− ot) (22)

= Cconst

(
1−

∑T
t=1 ot
T

)
, (23)

leading to the savings potentially equal to Cconst

∑T
t=1 ot
T . In Subsection VI-B we compare numerically

the number of communications for the constant and the sparsifying communication protocol needed to

achieve target error probability.

V. PROOF OF THE MAIN RESULT

In this Section we prove Theorem 3. We first show that the rate of consensus (1) equals −MC for

the case when G∗ is not connected, in Subsection V-A. In Subsection V-B we show that the rate of

consensus (1) diverges to negative infinity, when G∗ is connected.

A. Finite rate case

In this Subsection we prove Theorem 3 for the case when G∗ is not connected by showing the lower

and the upper large deviation bound:
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lim inf
t→+∞

1

t
logP

(
∥Φ̃(t, 1)∥ ≥ ϵ

)
≥ −MC, (24)

lim sup
t→+∞

1

t
logP

(
∥Φ̃(t, 1)∥ ≥ ϵ

)
≤ −MC, (25)

where MC = MC(G, {cij}{i,j}∈E).

Lower bound.

Observe that, since ϵ ∈ (0, 1]:

P
(
∥Φ̃(t, 1)∥ ≥ ϵ

)
≥ P

(
∥Φ̃(t, 1)∥ = 1

)
.

We have that sufficient condition for event {∥Φ̃(t, 1)∥ = 1} is that Γ(t, 1) is not connected (see e.g.

Lemma 5 in [38]). Using the fact that G⋆ is not connected, we conclude that there must be at least

one edge cut with all edges whose limiting probability pij is strictly less than 1, i.e., they all belong to

E \E⋆. Let Cµ denote the minimal edge cut of G, where the link costs are assigned as in the claim of

the theorem. Sufficient condition for Γ(t, 1) not to be connected is that all the links in Cµ were inactive

over the time interval from time 1 to t. Thus,

P
(
∥Φ̃(t, 1)∥ ≥ ϵ

)
≥ P (Er ∩ Cµ = ∅, r = 1, . . . , t)

=

t∏
r=1

∏
{i,j}∈Cµ

qij,r, (26)

where qij,r = 1 − pij,r and the equality follows by the first and the second part of the Assumption 1.

Computing the logarithm and dividing by t, we obtain

1

t
logP

(
∥Φ̃(t, 1)∥ ≥ ϵ

)
≥ 1

t

∑
{i,j}∈Cµ

t∑
r=1

log qij,r =
∑

{i,j}∈Cµ

1

t

t∑
r=1

log qij,r. (27)

Recall that, for each {i, j} ∈ E, qij,r converges to qij , when r → +∞. By the Cesàro means theorem

(see Theorem 50 in [51]), we thus have that, as t → +∞, 1
t

∑t
r=1 log qij,r converges to log qij for each

{i, j} ∈ Cµ. Thus, taking the limit in (27) completes the proof of the lower bound (24).

Upper bound.

We start with Lemma 5 borrowed from [38], which asserts that, if the number of improvements until

time t scales linearly with t, then, starting from some finite time t0, the events
{
∥Φ̃(t, 1)∥ ≥ ϵ

}
have

zero probabilities.
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Lemma 5. Consider the sequence of events {Mt ≥ βt}, where β ∈ (0, 1], t = 1, 2, . . . . For every

β, ϵ ∈ (0, 1], there exists sufficiently large t0 = t0(β, ϵ) such that

P
(
∥Φ̃(t, 1)∥ ≥ ϵ,Mt ≥ βt

)
= 0, ∀t ≥ t0(β, ϵ). (28)

Using the preceding result, it is easy to see that, when t is large enough, for any fixed β ∈ (0, 1), a

necessary condition for ∥Φ̃(t, 1)∥ ≥ ϵ is that Mt < βt. Thus, we have that for each β ∈ (0, 1), there

holds for all t ≥ t0(β, ϵ):

P
(
∥Φ̃(t, 1)∥ ≥ ϵ

)
= P

(
∥Φ̃(t, 1)∥ ≥ ϵ,Mt < βt

)
(29)

≤ P (Mt < βt) . (30)

Now,

P (Mt < βt) =

⌈βt⌉−1∑
m=0

P(Mt = m)

=

⌈βt⌉−1∑
m=0

∑
1≤t1≤···≤tm≤t

P(Tl = tl, for 1 ≤ l ≤ m,Tm+1 > t), (31)

where in the second equality we consider all possible realizations of improvement times Tl, l ≤ m. We

focus on one arbitrary allocation Tl = tl, 1 ≤ l ≤ m, Tm+1 > t, and the respective probability of which

is P(Tl = tl, for l ≤ m,Tm+1 > t). By the construction of the sequence Tl, for each l ≤ m, we know

that the uniongraph Γ(tl − 1, tl−1) is not connected. Also, the condition Tm+1 > t implies that Γ(t, Tm)

is not connected. Denoting t0 = 0 and tm+1 = t+ 1 for compact representation, we have

P(Tl = tl, for l ≤ m,Tm+1 > t)

≤
m+1∏
l=1

P(Γ(tl − 1, tl−1 + 1) not connected), (32)

where we used Assumption 1, i.e. the independence of the graph realizations. Note that, for arbitrary

ta > tb, the event that supergraph Γ(ta, tb) is not connected can be represented as the union of events

that all edges from an arbitrary edge cut of G were inactive over time window ta ≤ r ≤ tb, i.e.

{Γ(tb, ta) not connected}

= ∪C∈C(G) {Er ∩ C = ∅, ta ≤ r ≤ tb} . (33)
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Applying (33) to each of the intervals tl−1 + 1 ≤ r ≤ tl − 1 and computing the probabilities, we get

by the union bound

P(Γ(tl − 1, tl−1 + 1) not connected)

≤
∑

C∈C(G)

P(Er ∩ C = ∅, tl−1 + 1 ≤ r ≤ tl − 1)

=
∑

C∈C(G)

∏
tl−1+1≤r≤tl−1

∏
{i,j}∈C

qij,r (34)

≤
∑

C∈C(G)

∏
tl−1+1≤r≤tl−1

QC,r, (35)

where QC,r =
∏

{i,j}∈C qij,r, for all r ≥ 1. Introducing now Qr = maxC∈C(G)QC,r for r ≥ 1, we have,

P(Γ(tl − 1, tl−1 + 1) not connected)

≤ |C(G)|
∏

tl−1+1≤r≤tl−1

Qr.

The preceding bound applies to each of the terms in (32), hence we obtain

P(Tl = tl, for l ≤ m,Tm+1 > t)

≤ |C(G)|m+1
m+1∏
l=1

∏
tl−1+1≤r≤tl−1

Qr. (36)

Now, since for each link {i, j}, qij,r converges to qij = 1− pij , we know that for each C ∈ C(G), QC,r

converges to

QC :=
∏

{i,j}∈C

qij . (37)

The latter quantity is either greater than 0, if all the links in the respective cut are from E \E⋆, or it is

equal to 0 if there is a link in the cut that belongs to E⋆. We note further that, since Cµ is the minimal

edge cut of G with the link cost assignment as in the claim of the theorem, we have that QC ≤ QCµ
,

for all C ∈ C(G). By the convergence of QC,r to QC , for each cut C (including QCµ
), it must be that

there exists r1 ∈ N such that for all r ≥ r1, QC,r ≤ QCµ,r for all C ∈ C(G). This implies that for all

r ≥ r1, Qr = maxC∈C(G)QC,r = QCµ,r. Also, for all 0 < ξ < 1 − QCµ
, there exists r2 ∈ N such that

for all r ≥ r2, QCµ,r ≤ QCµ
+ ξ. Thus for all r ≥ r0 := max{r1, r2} we have,

Qr = QCµ,r ≤ QCµ
+ ξ. (38)

Maximal product, Qr, over all cuts, after a certain iteration r1 is always equal to the product QCµ,r

associated with the cut Cµ, and after r2, that product is in ξ vicinity of its limit. Taking maximum of

those two times, we get the upper bound (38) for Qr.
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Using the fact that Qr ≤ 1 for all r ≤ r0, applying (38) for all r ≥ r0, and using fact that at most m

factors were excluded between r0 and t from (36) we have:

P(Tl = tl, for l ≤ m,Tm+1 > t)

≤ |C(G)|m+1(QCµ
+ ξ)t−r0−m. (39)

We know that for fixed m, equation (39) holds for any possible realisations of times t1, . . . , tm and by

Stirlings approximation
(
t
m

)
≤ ( tem)m, combining (39) and (31) we obtain:

P (Mt < βt)

≤
⌈βt⌉−1∑
m=0

(
t

m

)
|C(G)|m+1(QCµ

+ ξ)t−r0−m

≤
⌈βt⌉−1∑
m=0

(
te

m

)m

|C(G)|m+1(QCµ
+ ξ)t−r0−m.

We claim that the function f(x) = ( tex )
x is increasing on the interval (0, t). Specifically, let g(x) =

log f(x) = x log t + x − x log x. We have that g′(x) = log t − log x ≥ 0, for x ∈ (0, t). Using the

fact that composition of the increasing fuctions is increasing, the claim follows. Further, since |C(G)| is

integer, we have |C(G)|m+1 ≤ |C(G)|βt+1 and since for ξ sufficiently small, QCµ
+ ξ ∈ (0, 1), we have

(QCµ
+ ξ)t−r0−m ≤ (QCµ

+ ξ)t−r0−βt. Summarising, we have

P (Mt < βt) ≤ (βt)

(
te

βt

)βt

|C(G)|βt+1(QCµ
+ ξ)t−r0−βt.

Computing the logarithm and dividing by t, we have

1

t
logP (Mt < βt) ≤ 1

t
log(βt) + β log(

e

β
)

+ (β +
1

t
) log |C(G)|+ (1− r0 − βt

t
) log

(
QCµ

+ ξ
)
.

Taking the limit t → +∞ we have

lim
t→+∞

1

t
logP (Mt < βt)

≤ β log(
e

β
) + β log |C(G)|+ (1 + β) log

(
QCµ

+ ξ
)
. (40)

We note that (40) holds for each β ∈ (0, 1] and any ξ suficiently small. Taking the infimum of both

sides with respect to β we have

inf
β

lim
t→+∞

1

t
logP (Mt < βt) ≤ log

(
QCµ

+ ξ
)
.
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Finally, taking the infimum with respect to ξ > 0, the upper bound (25) follows. This concludes the

case of Theorem 3, when G∗ is not connected.

B. Infinite rate case

Now we prove Theorem 3 for the case when G⋆ is connected, for which the rate is infinite. Reapplying

the steps in (29)-(33) we focus on:

P(Γ(tl − 1, tl−1 + 1) not connected)

≤
∑

C∈C(G)

∏
tl−1+1≤r≤tl−1

∏
{i,j}∈C

qij,r. (41)

Since G⋆ is connected, every C ∈ C(G) contains at least one link {i⋆, j⋆} ∈ E⋆. Note also that, from

the fact that qij,r ≤ 1, which holds for all r ≥ 1 and all {i, j} ∈ E, we have
∏

{i,j}∈C qij,r ≤ qi∗j∗,r.

Introducing now qr := max{i,j}∈E⋆ qij,r, from (41) we obtain

P(Γ(tl − 1, tl−1 + 1) not connected)

≤
∑

C∈C(G)

∏
tl−1+1≤r≤tl−1

qi∗j∗,r

≤ |C(G)|
∏

tl−1+1≤r≤tl−1

qr.

The preceding inequality holds for each of the terms in (32), hence we obtain

P(Tl = tl, for l ≤ m,Tm+1 > t)

≤ |C(G)|m+1
m+1∏
l=1

∏
tl−1+1≤r≤tl−1

qr.

Now, let Lt := ⌈log t⌉ and define q̂t := maxLt≤r≤t qr, for all t ≥ 1. Using the same arguments as in

the case when G∗ is not connected (eq. (39)), we have

P(Tl = tl, for l ≤ m,Tm+1 > t) ≤ |C(G)|m+1q̂t
t−Lt−m.

Hence, in (31), we obtain

P (Mt < βt) ≤
⌈βt⌉−1∑
m=0

(
t

m

)
|C(G)|m+1q̂t

t−Lt−m

≤
⌈βt⌉−1∑
m=0

(
te

m

)m

|C(G)|m+1q̂t
t−Lt−m

≤ (βt)

(
te

βt

)βt

|C(G)|βt+1q̂t
t−Lt−βt.
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Further, computing the logarithm and dividing by t, we have

1

t
logP (Mt < βt) ≤ 1

t
log(βt) + β log(

e

β
)

+ (β +
1

t
) log |C(G)|+ (1− Lt + βt

t
) log q̂t. (42)

Before taking the limit we prove the Lemma 6 which regards the convergence of the sequence q̂t.

Lemma 6. Sequence q̂t converges to 0, when t → +∞.

Proof By the definition of E∗, for all {i, j} ∈ E∗, qij,r converges to 0, hence it is easy to see that qr

converges to 0 as well. Now, we define ̂̂qt := maxr≥Lt
qr. For each ε > 0 there is r0 such that for all

r ≥ r0, qr < ε. Hence, for t ≥ t0 = ⌈er0⌉ we have:

Lt = ⌈log t⌉ ≥ ⌈log⌈er0⌉⌉ ≥ ⌈log er0⌉ = r0.

Furthermore, for t ≥ t0 ̂̂qt ≤ max
r≥r0

{qr} ≤ ε.

Now, using the convergence of ̂̂qr and the fact that 0 ≤ q̂t ≤ ̂̂qt we prove the lemma. □

Taking the limit t → +∞ and infimum with respect to β > 0 and using the result of Lemma 6 in (42),

we conclude the proof of the second case of Theorem 3. □

VI. NUMERICAL RESULTS

We use Monte Carlo simulations for two sets of numerical experiments. First, we estimate in Sub-

section VI-A the probability P(∥Wt · · ·W1 − J∥ ≥ ϵ) through time t, for both the constant and the

time-varying model.

Then in Subsection VI-B, we estimate the probability of error for distributed detection algorithm

described in Section IV. Here, we also make a comparison between the constant and the time-varying

model.

A. Estimating the probability P(∥Wt · · ·W1 − J∥ ≥ ϵ)

We first describe the simulation setup. We consider a geometric network with N = 7 sensors, shown

in Figure 5. The total number of (undirected) links is seven. Each of these seven links is active, at time

t, with probability pij,t. There are two types of links, the ones for which the limiting probability of

activation is pij = 1, shown in Figure 5 in green; for the remaining links, shown in Figure 5 in red, the

limiting probability of activation is pij = 0.2.
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We simulated numerically two different models: the time varying and the constant model. With the

time-varying model, the sequence of probabilities pij,t is converging to its limit pij with speed 1
t2 ,

pij,t = pij − 1
(t+2)2 , where pij = 1 for the green links and pij = 0.2 for the red links. For the constant

model, the sequence of link failure probabilities is constant throughout iterations, and equals pij .

Fig. 5: Graph G with 7 nodes and 7 links; The links in G⋆ are colored in green (pij = 1), while the

remaining links in G are colored in red (pij = 0.2)

For the averaging weights, we use Metropolis weights, i.e., if link {i, j} ∈ E is online, we assign

Wij,t = 1/(1 + max{di,t, dj,t}), where di,t is the degree of node i at time t and Wij,t = 0 otherwise.

Also, Wii,t = 1−
∑

j Wij,t.

We show the results in Figure 6. The green curve plots a straight line MCt with the theoretical rate

from Theorem 3, equal to the minimum cut MC = log 0.8 = −0.223. The orange and the blue curves

plot logP(∥Wt · · ·W1 − J∥ ≥ ϵ), for the time-varying and constant models, respectively. It can be seen

from the figure that the slopes of the blue and the orange curve approach their theoretical limit MC. We

can also see that the orange curve is slightly worse (higher) than the blue one. This result is expected

as the activation probabilities start slowly, hence the interactions are sparser at the beginning, and they

gradually increase to their limiting values as the iterations progress, as can be observed from the figure.

B. Estimating the probability of error

For the distributed detection problem in Section IV we consider a geometric network with N = 10

sensors. We place the sensors uniformly over a unit square, and connect those sensors whose Euclidean

distance is less than a radius (r = 0.5). The total number of (undirected) links is 23. The network is

shown in Figure 7. There are two types of links, with limiting probabilities of activation equal to pij = 1

shown in green, and pij = 0.5 shown in red. With the time-varying model, the sequence of probabilities
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Fig. 6: Estimated probability (in the log scale), logP(∥Wt · · ·W1 − J∥ ≥ ϵ), with constant activation

probabilities (blue), time-varying activation probabilities (orange) and MC · t (green) versus time t.

pij,t is converging to its limit pij with the speed 1
log(t) , i.e., pij,t = pij(1−1/ log(t+3)). For the constant

model, the sequence of link activation probabilities is constant throughout iterations, and for a given link

{i, j} ∈ E, equals pij .

To define the weight matrices Wt, we use the Metropolis weights, which were described in previous

subsection. For the distributed detection problem we consider two Gaussian distributions N0(−0.1, 1)

and N1(0.1, 1) and we estimate the probability of detection error of each sensor.

We plot the results in Figures 8 and 9. The curves plot the probability of error estimated through Monte

Carlo simulations, and averaged over all sensors (P̂ av
e,t = 1

N

∑
i P̂

i
e,t), versus the number of iterations in

Figure 8, and the expected number of communications in Figure 9. The orange curve represents the

time-varying and the blue one the constant model. We can see that the probability of error for the time-

varying model is approaching the constant model when the number of iterations is increasing, but it is

better (lower) plotted versus the number of expected communications. For any given number of expected

communications, the time-varying model has a lower probability of error. For example, for target detection

accuracy 10−6, the proposed scheme reduces the expected number of communications from about 1300

to 900, i.e., by approximately 30%, while incurring a negligible overhead iteration-wise.
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Fig. 7: Simulated graph G with 10 nodes and 23 links; The links with pij = 1 colored in green, and

links with pij = 0.5 colored in red.

VII. CONCLUSION

We studied the large deviations rate of products of stochastic matrices, or the rate of consensus, for

time-varying probabilities of the underlying topologies. We showed that, if the graph induced by the

limiting probabilities contains a connected subgraph, then the rate of consensus is the best possible, and

equals infinity. In the opposite case, the rate is given by the minimum edge cut of the limiting graph with

costs defined through the limiting link failure probabilities. As a corollary to this result, we proved that

the product of the weight matrices Φ(t, 1) converges to consensus matrix J almost surely. Theoretical

findings are corroborated numerically by showing that the estimated exponential rate of probabilities

in (4), obtained by Monte Carlo simulations, approaches the theoretical asymptotic limit.
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APPENDIX

Proof of the Remark 4: We will prove (5) by showing that the error matrix Φ̃(t, 1) = Φ(t, 1) − J

converges almost surely to the matrix of all zeros ON×N . We do this by considering separately the cases

when G⋆ is connected and when G⋆ is not connected.

Assume first that G⋆ is not connected. From Theorem 3, we have that for each ζ > 0, there exists

t0 = t0(ζ) ∈ N, such that for all t ≥ t0

1

t
logP

(
∥Φ̃(t, 1)∥ ≥ ϵ

)
≤ −MC + ζ,

P
(
∥Φ̃(t, 1)∥ ≥ ϵ

)
≤ e−t(MC−ζ).
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Summing over all t ≥ 1, we get,
+∞∑
t=1

P
(
∥Φ̃(t, 1)∥ ≥ ϵ

)

≤
t0−1∑
t=1

P
(
∥Φ̃(t, 1)∥ ≥ ϵ

)
+

+∞∑
t=t0

e−t(MC−ζ).

Since ζ can be chosen arbitrarily, we choose ζ = MC/2, hence
+∞∑
t=1

P
(
∥Φ̃(t, 1)∥ ≥ ϵ

)

≤
t0−1∑
t=1

P
(
∥Φ̃(t, 1)∥ ≥ ϵ

)
+

+∞∑
t=t0

e−tMC/2

≤
t0−1∑
t=1

P
(
∥Φ̃(t, 1)∥ ≥ ϵ

)
+ e−t0MC/2

+∞∑
t=0

e−tMC/2

≤
t0−1∑
t=1

P
(
∥Φ̃(t, 1)∥ ≥ ϵ

)
+

e−t0MC/2

1− e−MC/2
< +∞.

Now, using Borel–Cantelli lemma, from the boundedness of
∑+∞

t=1 P
(
∥Φ̃(t, 1)∥ ≥ ϵ

)
, we have that

the probability that only finitely many of the events A
(ϵ)
n = {∥Φ̃(t, 1)∥ ≥ ϵ} occur, is 1 for all ϵ ∈ (0, 1].

Hence P{limt→+∞ ∥Φ̃(t, 1)∥ = 0} = 1, and thus we have (5).

Suppose now that G⋆ is connected. From Theorem 3, we know that limt→+∞
1
t logP

(
∥Φ̃(t, 1)∥ ≥ ϵ

)
=

−∞. Thus, for each M > 0, there is t0 ∈ N, such that for all t ≥ t0

1

t
logP

(
∥Φ̃(t, 1)∥ ≥ ϵ

)
≤ −M.

The rest of the proof is analogous to the proof in the case when G⋆ is not connected. □
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