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1 Methods Description 

Here we present the methods descriptions for all teams who took place in the Fetal 

Tissue Annotation (FeTA) 2022 Challenge.  

1.1 ajoshiusc 

Team Members: Anand A Joshi*, Haleh Akrami, Wenhui Cui, John C Wood, Krish-

na N Nayak*, Richard M. Leahy*  

*authors included in paper 

 

GPU training was performed on. NVIDIA 2060, P100.  

 

Software used. Pytorch (1.10.2), SimpleITK (2.1.1), nilearn (0.9.1) 

 

Model Architecture. We adopted a 3-dimensional CNN called TransUNet [1] using 

2D slices as input as our backbone model. The 2D slices for training were extracted 

from 3D image scans and resized to 256*256 and normalized to unit magnitude This 

model combines U-Net [2] and Transformer [3] networks. TransUNet is based on an 

encoder-decoder structure and takes advantage of Transformer to learn not only local 

context information but also global semantic correlations.  

The specific model architecture we used is a combination of ResNet-50 [4] and 

ViT [5], denoted as “R50-ViT” [1]. The loss function we used was cross entropy. 

Based on our previous work, we also used robust cross entropy based on beta diver-

gence as the loss function, so the model can be trained in the presence of errors in the 

training data [6]–[8]. We trained the model with SGD optimizer with learning rate 

0.01, momentum 0.9 and weight decay 1e-4 and the batch size set to 4. The training 

takes 5-6 hours on Nvidia 2060 GPU. 

We used data from only 1 collection (University Children's Hospital Zurich (Kis-

pi)). The training set was 80 scans. We used 75 scans for training and 5 scans for 

validation during development. We performed 150 epochs of training of TransUNet 

and evaluated the model performance on the 5 validation scans. The average dice 

coefficient was computed for the validation data and the epoch with best performance 

on the validation data was chosen for deployment in the docker. 

The source code for our implementation is available at 

https://github.com/ajoshiusc/brainseg/tree/main/feta2022 

1.2 Blackbean 

Team Members: Haoyu Wang*, Ziyan Huang*, Jin Ye*, Zhongying Deng, 

Chenglong Ma, Can Tu, Junjun He, Yuncheng Yang, Shiyi Du 

*authors included in paper 

 

Training was performed on Tesla A100 GPU using Pytorch 1.12.  
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Network Architecture. We trained two networks (a modified U-Net and a ViT-

Adaptor) on all the training cases for the final submission.  

Model 1: Our modified U-Net has an encoder-decoder architecture with five layers 

like the default U-Net. The number of feature channels for the first layer are set 32 

instead of 64. At each step, the number of channels is doubled.  

Model 2: We trained a 3D version of ViT-Adaptor, a state-of-the-art transformer 

architecture proposed by [9]. The ViT-Adaptor contains a vanilla 3D Vision Trans-

former (ViT) for general feature extraction and some additional vision-specific mod-

ules to improve the performance via introducing inductive biases.  

 

Training Settings. For most settings, we follow the default settings of nnUNet. Addi-

tionally, we adjust the gamma range of the random gamma transform from (0.7,1.5) to 

(0.1, 3.0). For the training of ViT-Adaptor, we adopt SGD optimizer with the default 

learning rate 0.01 and weight decay 0.0001. The batch size is 2 and loss function is 

the average of Dice loss and BCE loss. We conducted only the 3D input. The models 

submitted in the docker file are all trained on the full training set (all training cases). 

No extra post-processing steps are used.  

 

Test-time Augmentation (TTA). Instead of the flipping augmentation for TTA (8x 

inference time), we adopt a multi-scale TTA strategy (1.5x inference time) in our 

docker file. During the inference, we resample the 3D images into two different spac-

ings: 1.0 and 1.2 times the default statistical spacing from nnUNet. Predictions for the 

two volumes are resized to the original shape and ensembled by simply averaging the 

softmax.  

1.3 BlueBrune 

Team Members:  Niccolò McConnell*, Mark Nchongmaje, Alina Miron*, Yongmin 

Li* 

*authors included in paper 

 

GPU training was performed on. NVIDIA A6000  

 

Software used. Pytorch 11.12 

 

Description of Method. The key novelty of our method lies in utilizing a domain 

adversarial approach [10] for the training of the network component of the nnUNet 

framework [11]. We therefore newly integrate a domain adversarial approach into 

nnUNet which utilizes both a 3D UNet architecture [2] as the segmentation network 

and a vanilla convolutional neural network as the domain discriminator network. The 

segmentation network outputs the segmentation maps, while the discriminator is 

tasked with recognising from which domain, hospital 1 or hospital 2, its input origi-

nates from, with the two networks trained in an adversarial fashion. 
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The aim of this approach is to train the UNet to learn features which are domain 

invariant between the two hospitals in the training set, and which would then allow 

improved performance on hospitals not included in the training dataset. 

 

Segmentation Network Architecture. The adopted UNet inspired architecture is 

illustrated in Fig. 1, with the network having a depth of six. The nnUNet utilizes a 3D 

encoder-decoder UNet inspired network. 3D convolutions with kernel size 3x3x3 are 

utilized for feature extraction, upsampling is performed via transposed convolutions 

while downsampling is performed via strided convolutions with stride 2. The net-

work’s convolutional blocks consist of a convolutional layer followed by instance 

normalisation, and finally a LeakyReLU activation function is applied with gradient 

0.01. We also note that deep supervision is utilized [12]. 

 

 

Fig. 1. Utilised UNet Inspired Segmentation Network. 

 

 

Domain Adversarial Approach. The discriminator aims to recognize from which 

domain the input originates from i.e. from hospital 1 or hospital 2. We utilized two 

different models with the key difference being the location from which the feature 

maps from the segmentation network are inputted to the discriminator network. 

In model 1 the input to the Discriminator-Net-1 is the outputted feature map from 

theSegmentation-Net-1 just before the soft-max layer. The architecture for Discrimi-

nator-Net-1 is illustrated in Fig. 2. Model 1 aims to allow Segmentation-Net-1 to learn 

domain invariant features throughout the UNet. 

In model 2 the input to the Discriminator-Net-2 is outputted feature map from the 

bottleneck layer (just before first upsampling block) of Segmentation-Net-2. The ar-

chitecture for Discriminator-Net-2 is illustrated in Fig. 3; we note that Discriminator-

Net-2 is shallower than Discriminator-Net-1 as the inputted feature map originates 
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from deeper in the UNet and is hence at a coarser scale. Model 2 aims to allow Seg-

mentation-Net-2 to learn domain invariant features in the UNet’s encoder. 

 

 

Fig. 2. Illustration of Model 1. Discriminator-Net-1 takes as input feature maps outputted just 

before softmax layer of Segmentation-Net-1. 

 

 

Fig. 3. Illustration of Model 2. Discriminator-Net-2 takes as input feature maps outputted from 

bottleneck layer of Segmentation-Net-2. 

 

Training and Loss Function. The two models are trained separately using a training 

procedure similar to what is described by Ganin et al [10]. The main difference is that 

instead of training the classification network (in our case a segmentation network) 

using cases where only a single domain has class labels, we utilize the ground-truth 

labels in all cases from both domains. We hence aim to train the segmentation net-
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work to perform optimally on both provided hospitals while also training it to learn 

domain invariant features. 

The segmentation network utilizes a cross entropy and dice loss function as shown 

in Eqn.1. The discriminator network utilizes a custom loss function which is based on 

the weighted cross entropy function – we used a weight of 2 due to hospital 1 contain-

ing twice as many cases as hospital 2. The key difference of our custom loss function 

is the replacement of log function with a function inspired by the Witch of Agnesi 

function as shown in Eqn. 2. The overall objective function is shown in Eqn.3, where 

λ varies with training according to Eqn.4. 

 

ℒ𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 =  ℒ𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦 − ℒ𝑑𝑖𝑐𝑒        (1) 

 

𝑓(𝑋) =  
8⋅(0.73279)3

(𝑥)2+4⋅(0.73279)2 − 1                      (2) 

 

 

min ℒ𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = min[ℒ𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 − 𝜆 ⋅ ℒ𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟]           (3) 

 

𝜆 =  
2

1+exp (−10 ⋅ 
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑒𝑝𝑜𝑐ℎ

1000
)

− 1                  (4) 

 

Effectively, during training the input image/patch is passed to the segmentation-net 

which will output the segmentation map. The discriminator-net will take as input a 

feature map from the segmentation-net and will output domain class labels. Important 

note: there is a gradient reversal layer inserted just before the discriminator-net 

(shown in Fig. 2 and Fig. 3) which will make the gradient passing to the segmenta-

tion-net negative during backpropagation – this ensures that the networks train adver-

sarially. The outputs from both Discriminator-Net and Segmentation-Net are passed 

to the loss function shown in Eqn.3, and then backpropagation is executed. 

 

Inference and Ensemble Approach. During Inference only the segmentation net-

works will be utilised, with the discriminators being disregarded i.e. only Segmenta-

tion-Net-1 and Segmentation-Net-2 utilised. Our overall method uses an ensemble 

approach to combine methods 1 and 2 described earlier. Segmentation-Net-1 and 

Segmentation-Net-2 will each output softmax predictions, which are then averaged in 

order to produce the final output as illustrated in Fig. 4. 
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Fig. 4. Visualisation of overall approach. Adverserially trained segmentation networks each 

predict the output which is then ensembled using a softmax averaging approach. 

 

Summary of Framework Details. We utilized the nnUNet framework [11] for our 

submission to FeTA2022. For the segmentation network, we utilized the 3D UNet 

exclusively with all inputs being 3D. We did not do any hyperparameter optimization 

beyond what is automatically done by nnUNet and did not use cross-validation. The 

following are some of the key requested details: 

• Preprocessing: We maintain the preprocessing steps conducted by nnUNet frame-

work automatically. This includes use of intensity normalization via z-scoring 

(subtract mean and divide by stdev). A input patch size of 128x160x128 was uti-

lised. For the resampling, third-order spline interpolation was utilized with the 

spacing was kept the same at 0.5039x0.5039x0.5039. 

• Data Augmentation: We maintained the standard data augmentation utilized by the 

nnUNet framework. Augmentation hence includes: Rotations, scaling, Gaussian 

noise, Gaussian blur, brightness, contrast, simulation of low resolution, gamma 

correction and mirroring. 

• Post-Processing: As discussed in the Inference and Ensemble Approach section, 

we train 2 networks Model 1 and Model 2 and use and ensemble approach for final 

prediction. The ensemble approach consists of averaging outputted softmax proba-

bilities and then outputting the max. We do not utilize post-processing. 

• Initialization: Kaiming He. 

• Optimizer: Stochastic Gradient Descent with Nesterov momentum (μ = 0.99). 

• Number of epochs: 1000 (250 mini-batch runs per epoch). 

• Number of trainable parameters: Approximately 30,500,000 per model; therefore, 

approximately 61,000,000 in total. 

• Learning Rate and Schedule: Initially set to 0.1 and decays according to following 

schedule: (1 −
𝑒𝑝𝑜𝑐ℎ

1000
)0.9 

• Batch Size: Two. 

• External Dataset: No External dataset used. 

• Training time: Approximately 72 hours per model. 

• Training/validation/testing data splits: 96/24/0 (we did not utilize test set for final 

prediction). 

• Cases included: We included all cases and tried to roughly maintain same ratio 

(hospital 1 : hospital 2 ) in both training and validation set. 

1.4 Deepsynth 

Team Members:  Romain Valabregue* 

*authors included in paper 
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We use, a standard 3D unet with residual connections implemented in pytorch 

(source https://github.com/romainVala/unet which is a modified forked of  

https://github.com/fepegar/unet).  

We used 5 blocks of 3 convolutions with increasing number of output channels 

(24, 48, 96, 192, 384] for the encoder, and the symmetric decreasing order for the 

decoder.  We used residual connection and a 3D kernel size of 2 with a dropout of 

10% after each convolution layers. The input size for the training were 3D patches of 

dimension 128x128x128. This leads to 21 684 000 trainable parameters. We trained 

from random initialized weights with the Adam optimizer and a learning rate of 1e-4. 

The loss function is the mean dice score (average over the dice of each tissue label). 

The training strategy follow the proposition of [13] to train on synthetic data. We 

did not add any original work to it, our contribution is more how to adapt the method 

for the FeTA Challenge. We re-implement the method within the torchio environ-

ment, and thus did different choice for the generative model.   

We use the label from the dHCP dataset, with only the 80 youngest subjects. We 

used the desc-drawem9_dseg, segmentation files, that contains 9 tissues classes, the 

same that the Feta challenge plus the hippocampi and Amygdala. (this label will be 

merge to Cortical Gray matter, for inference on FeTA data). 

For the generative data synthesis, was perform with torchio [14] transform we use 

the following step: 

• Random contrast: mean tissue intensity is chosen from U([0.1 0.9] ) and a standard 

deviation randomly chosen from U([0 0.001]). 

• Random Affine (translation [-10 10] scales [0.9 1.1] rotation [-20 20] 

• Random Anisotropy (with a probability of 0.5) the resolution in one of the third 

direction is re-slice to a slice thickness randomly chosen for U([1 6])  

• Random BiasField (default torchio parameters) 

• Random Noise global gaussian noise is added, with 0 mean, and a standard devia-

tion from U([0.01 0.1]) 

• Rescale Intensity: min and max value are set to [0 1] 

 

Because we did not have any labels for the body part outside the brain, we could 

not generate non brain tissue. We then adapt the synthetic generation to take the 

background from the T2 images. Doing so we lose the random contrast (for non-brain 

tissue only) but we had non-brain tissue (with T2 contrast). 

For the training, each label generates a specific synthetic data with previously de-

scribe steps. Then 8 random patches of size 128x128x128 are extracted and used (af-

ter shuffle) for training with a batch size of 4 

We first train with 200 000 iterations (with an iteration containing a batch size of 

4). this took around 6 days. Then we fine-tune the model with a training on real T2 

volume from the 80 first HCP subject. We perform only 80*8=640 iterations with a 

batch size of 1. Finally, we also fine tune the model with a training on the 80 subjects 

of the feta data set. Again, we perform only 80*8=640 iterations with a batch size of 

1. 

https://github.com/fepegar/unet)
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For the inference, all volumes (256x256x256) are processed at once, with a unique 

pre-processing step to rescale intensity between 0 and 1. Since we learned on the 9 

dHCP labels, we further merged the hippocampi and amygdala with cortical gray 

matter 

 

1.5 Dolphins: Coarse-to-Fine Models for FeTA2022 Segmentation 

Team Members: Moona Mazher*, Abdul Qayyum*, Domenec Puig, Mohamed Ab-

del-Nasser 

*authors included in paper 

 

The main finding of the challenge is 

1. Developed 3DResUNet with deep supervision for coarse segmentation 

2. Use nnUNet for fine segmentation 

3. Proposed 3DResUNet with deep supervision used for coarse segmentation and 

concatenated the output of coarse segmentation with nnUNet to get the fine seg-

mentation output. 
4. Two institutions dataset were used for training and validation of our proposed ap-

proach 

The detailed description is shown in Fig. 5. The proposed solution consisted of two 

models, the first model in Stage 1 provided the coarse segmentation output and the 

second model used this coarse segmentation output coming from the Model 1.  

3D-ResUnet with Deep Supervision: A framework of the proposed model is pre-

sented as an encoder, a decoder, and a baseline module. The 1x1 convolutional layer 

with softmax function has been used at the end of the proposed model. The 3D strides 

convolutional layer has been used to reduce the input image spatial size. The convolu-

tional block consists of convolutional layers with Batch-Normalization and ReLU 

activation function to extract the different feature maps from each block on the en-

coder side. In the encoder block, the spatial input size has been reduced with an in-

creasing number of feature maps and on the decoder side, the input image spatial size 

will increase using a 3D Conv-Transpose layer. The input features’ maps that are 

obtained from every encoder block are concatenated with every decoder block feature 

map to reconstruct the semantic information. The convolutional (3x3x3conv-BN-

ReLu) layer used the input feature maps extracted from every convolutional block on 

the encoder side and further passed these feature maps into the proposed residual 

module. The spatial size doubled at every decoder block and feature maps are halved 

at each decoder stage of the proposed model. The residual Bloch has been inserted at 

each encoder block with skip connection. The feature concatenation has been done at 

every encoder and decoder block except the last 1x1 convolutional layer. The three-

level deep-supervision technique is applied to get the aggregate loss between ground 

truth and prediction. We have used nnUNet with cross-validation and selected the best 

fold for FeTA 2022 segmentation, we have modified training and optimization pa-
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rameters as compared to the original nnUNet.  The batch size in nnUNet was 

128x128x128 using 500 epochs. 

 

 

Fig. 5. The proposed solution for the feta2022 segmentation model. 

Model Details  

• Model architecture: we have used coarse and fine segmentation approaches, in 

course segmentation, the proposed 3DResUNet model is trained and for fine seg-

mentation, the nnUNet has been used for feta segmentation 

• Number of layers: 10 numbers blocks were used and each block consisted of 3 

layers (Conv-batch-relu) 10x3=30 layers for each encoder and decoder and 15 lay-

ers for residual blocks, hence the total number of layers is 45 

• Convolution kernel size: 3x3 and 5x5 
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• Initialization: “he” normal initialization 

• Optimizer: Adam optimizer 

• Cross-validation used: 5k fold cross validation and select the best one based on 

validation score 

• Number of epochs: 200 epochs for coarse and 500 for fine segmentation model 

• Number of trainable parameters: 23,889,221 

• Learning Rate and schedule: None 

• Loss Function: BCE+Dice for coarse and fine model 

• Dimensionality of input/output (3D) 3D/3D 

• Batch Size: 2 for coarse and fine models 

• Preprocessing steps used: normalized data between 0 and 1, patch-size 

128x128x128 for coarse and 128x128x128 for fine segmentation models 
• Data Augmentation steps: HorizontalFlip (p=0.5), VerticalFlip (p=0.5), Random-

Gamma (p=0.8) 

• The external dataset used? No 

• Framework: nnUNet 

• Number of models trained for final submission: two models 

• Post-Processing Steps: None 

• Training/validation/testing data splits: 80 % for training and 20% for validation 

• Hyperparameter tuning performed: No 

• Training time: 4 hours for coarse and 15 hours for fine model 

We have trained our proposed 3DResUNet from scratch for coarse segmentation 

and used existing nnUNet (https://github.com/MIC-DKFZ/nnUNet) for fine segmen-

tation. We have used all cases belonging to both institutions for training.  

 

Implementation Details. Environments and requirements: The proposed deep learn-

ing model is implemented in PyTorch and other libraries based on python are used for 

preprocessing and analysis of the datasets. The SimpleITK is used for reading and 

writing the nifty data volume. The ITK-SNAP is used for data visualization. The envi-

ronments and requirements of the proposed method are shown in Error! Reference 

source not found.. 

Table 1. Environments and requirements. 

CPU Intel(R) Core (TM) i9-7900X CPU@3.30GHz 

RAM 16×2GB 

GPU Nvidia V100 

CUDA version 11 

Programming language Python3.7 

Deep learning framework Pytorch (Torch 1.7.0, torchvision 0.2.2) 

Specification of dependencies SimpleITK, Numpy, Skimage, Scipy, Nibabel, ITK-SNAP 
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Training protocols. The learning rate of 0.0004 with Adam optimizer has been for 

training the proposed model. The binary cross-entropy function is used as a loss func-

tion between the output of the model and the ground-truth sample. 48 batch-size with 

200 epochs has been used with 20 early stopping steps. The best model weights have 

been saved for prediction in the validation phase. The 256x256x96 input image size 

was used for training and prediction resample with the original input size at prediction 

using the nearest-neighbor interpolation method. The Pytorch library is used for mod-

el development, training, optimization, and testing. The V100 tesla NVidia-GPU ma-

chine is used for training and testing the proposed model. The data augmentation 

methods mentioned in Table.2. are used to further improve the results. The dataset 

cases have different intensity ranges. The dataset is normalized between 0 and 1 using 

the max and min intensity normalization method. The detail of the training protocol is 

shown in Table.2 

Table 2. Training protocols. 

Data augmentation methods HorizontalFlip (p=0.5), VerticalFlip (p=0.5), 

RandomGamma (p=0.8) 

Initialization of the network “he” normal initialization 

Patch sampling strategy None 

Batch size 2 

Patch size 128x128x128 

Total epochs 200 

Optimizer Adam 

Initial learning rate 0.0001 

Learning rate decay sched-

ule 

None 

Stopping criteria, and opti-

mal model selection criteria 

The stopping criterion is reaching the maxi-

mum number of epochs (1000). 

Training time 10 hours 

Initialization of the network “he” normal initialization 

 

Testing protocols. The same preprocessing has been applied at testing time. The train-

ing size of each image is fixed (128x128x128) and used linear interpolation method to 

resample the prediction mask to the original shape for each validation volume. The 

prediction mask produced by our proposed model has been resampled such that it has 

the same size and spacing as the original image and copies all of the meta-data, i.e., 

origin, direction, orientation, etc. 

1.6 FeTA-Imperial-TUM Team (FIT_1) – FIT-nnU-Net 

Team Members:  Liu Li*, Maik Dannecker, Chen Chen*, Cheng Ouyang*, Zeju Li, 

Benjamin Hou, Qingjie Meng, Bernhard Kainz, Daniel Rueckert 
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*authors included in paper 

 

Model architecture. In this submission, we employ 1) data augmentation-based do-

main generalization for improving model robustness on test images from unseen do-

mains; 2) a network ensemble mechanism that combines the predictions from differ-

ent segmentation models. These models are trained on aforementioned data augmen-

tation strategies; 3) an output-level denoising autoencoder (DAE) [15] that corrects 

implausible predicted segmentations. 

Specifically, we first trained 5 models separately with different data augmentation 

strategies to cover much as possible the distributions of potential target domain da-

tasets. The detailed data augmentation strategies we used are described in the Prepro-

cessing section. All of the models implemented are based on nnU-Net pipeline [11] 

with patch-based input. After that, we ensemble the segmentation results from differ-

ent models by averaging the logit predictions and then choosing the category with the 

largest value as the ensemble prediction. In addition, to ensure the quality of final 

prediction when confronted with hard testing samples, we further employ a DAE-

based post-processing strategy for further rectifying implausible target prediction 

results. Whether the predictions post-processed by DAE are adopted or not is depend-

ent on the similarity of the predictions before and after DAE. Details about this post-

processing strategy is discussed in the Postprocessing Section.  

 

Number of layers. The final ensemble model comprises of 6 individual nnU-Net 

models, as highlighted in Table 3. Models 1 to 5 are used for segmentation, whereas 

model 6 is used for post-processing. All models share the same U-Net-like structure, 

with 5 stages of down sampling and 5 stages of up sampling. However, models 2-6 

adopt the default nnU-Net architecture (two convolutions per resolution), whereas 

model 1 has three convolutions per resolution instead. 

 

Convolution kernel size. All kernel sizes are set as 3 × 3 × 3 (default nnU-Net set-

ting [11]). 

 

Initialization. All models use random Kaiming initialization for weights (default 

nnU-Net setting [11], [16]). 

 

Optimizer. All the models are optimized using stochastic gradient descent (SGD) 

with Nesterov momentum (μ = 0.99), same as the default nnU-Net setting [11]. 

 

Cross-validation. Instead of cross-validation, we split 20% samples (24 samples) for 

validation at the hyper-parameter tuning stage. Note, to fairly evaluate the generaliza-

tion ability of our model, we further generate three challenging synthetic out-of do-

main validation sets based on these 24 samples. To this end we adopt nnUNet default 

data augmentation [11], random style augmentation [17] and random bias-field aug-

mentation [18], respectively. 
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Number of epochs. The default setting in nnU-Net is 1000 epochs per model [11]. 

However, with strong data augmentation such as random-network-based augmenta-

tion [19] and style augmentation [17], these model cannot fully converge within 1000 

epochs and thus the maximum epoch is set to 2000 epochs for models involving these 

augmentations, as shown in Table 3. 

 

Number of trainable parameters. The numbers of trainable parameters for each 

models are shown in Table 3. As shown, model 2-6 that share default nnU-Net struc-

ture have 31.2M parameters, while model 1 that uses 3 convolutions per resolution 

has more parameters than model 2-6. 

 

Learning Rate and schedule. All models are trained with a polynomial learning rate 

schedule, with an initial value of 0.01 [11]. 

Table 3. Model settings. 

Model Stage Data Augmentation No. Trainable 

Parameters (M) 

Epochs Time 

(hours) 

1 Segmentation default [11] 44.2 2000 74.3 

2 Segmentation default [11] + random bias 

[18] 

31.2 1000 51.8 

3 Segmentation default [11] + random bias 

[18] + random style [17] 

31.2 2000 100.4 

4 Segmentation default [11] + random network 

[19] 

31.2 2000 72.2 

5 Segmentation default [11] + random motion 

[14] 

31.2 1000 62.5 

6 Post-Processing None 31.2 1000 30.3 

 

Loss Function. All models are trained using a combination of cross-entropy and soft 

Dice loss, as per the default setting in nnU-Net [11]. 

 

Dimensionality. All the models are trained in 3D, with an input patch size of 

128×128×128. 

 

Batch Size. Batch size is set to 5 for each model to satisfy memory constraints of a 

24GB GPU. 

 

Preprocessing. We follow the default preprocessing process of nnU-Net with intensi-

ty normalization, voxel resampling, (using a resampling factor based on the heuristics 

of all volumes in the training data set) and foreground-focused patch extraction [11]. 

 

Data Augmentation. As shown in Table 3, we trained 5 models with different data 

augmentation strategies. For models 1-5 (segmentation networks), we employ default 

data augmentations as those in nnU-Net, including rotations, scaling, additive Gaussi-
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an noise, Gaussian blurring, brightness, contrast, simulation of low resolution, gamma 

correction and mirroring [11]. For model 2, we additionally include random bias-field 

augmentation [18]. Here we only use the basic random bias field augmentation func-

tion instead of the adversarial augmentation due to unfavourable cost-benefit ratio of 

hyper-parameter searching. The hyperparameter that controls the range of value for 

the multiplicative bias field is ϵ = 0.8. From our validation results, we find this aug-

mentation will preserve the performance on source domain while benefit the perfor-

mance on our synthetic out-of-domain validation sets. 

For model 3, we further include style augmentation [17] in addition to default and 

random bias-field augmentation. Here we use a style generator that is pretrained on 

ImageNet as an offline augmentation method. 

For model 4, we utilize random networks [19] for photometric augmentation. From 

our synthetic out-of-domain validation set, we find that this method is most robust to 

the out-of-domain data, although with a slight side-effect on the source domain. 

For model 5, we cover MRI-specific motion artifacts from the moving subjects. 

Here the motion artifacts are simulated by TorchIO [14], with hyperparameter set as 

translation=20, number transforms=2. 

All 5 trained models are ensembled, based on average logit predictions (see the 

Postprocessing Section for details). 

 

External dataset. No external dataset is used in our training. 

 

Framework. We used nnU-Net as our framework [11]. 

 

Number of models trained for final submission. We trained 6 models for fetal brain 

segmentation, i.e., 5 basic segmentation models with different data augmentations, 

and 1 model for DAE post-processing, as shown in Table 3. 

 

Post-Processing. In this submission, we have two stages of post-processing. Model 

ensemble: The first stage is model ensemble for 5 segmentation networks. Given the 

5 pretrained segmentation models, we first run inference individually and got 5 logit 

predictions. Then, all the logit predictions are averaged and further passed by an 

argmax layer to get the final discrete segmentation result. Rule-based post-

processing with DAE: The second stage is a rule-based post-processing using a de-

noising autoencoder (DAE). The DAE is designed to correct implausible predicted 

segmentation. The input to the DAE is the output prediction of the first stage, in the 

form of 8-channel one hot variables, and the output is a refined segmentation predic-

tion. In order to train the DAE while avoid learning identity mappings only, we first 

generated a dataset with noisy segmentation, by running an inference of model 1 to 5 

and randomly dropping out features from the encoders and the bottleneck layer of U-

Nets. Empirically, we set the dropout ratio equals to 0.90 to get a visually noisy but 

not too damaged segmentation. 

We noticed that this DAE would only improve the segmentation performance 

when the input prediction has low visual quality, by making well-observable correc-

tions to implausible segmentations. However, it may slightly hurt the performance on 
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high-quality predictions that are already sufficiently accurate, and the changes in pre-

diction before and after the DAE are slight. Based on the amount of changes in pre-

dictions before and after DAE, to achieve desirable accuracy on both high-quality and 

low-quality predictions, we apply the following empirical rule: We only trust predic-

tions after DAE when large changes in predictions have been made, compared to the 

original predictions, i.e., the Dice similarity between pre-DAE prediction and post-

DAE prediction is lower than 0.70 𝐷𝐼𝐶𝐸𝑆𝐼𝑀 <= 0.70. Otherwise, the original predic-

tion (pre-DAE) from the first stage is trusted. 

 

Original work. Our originality are two-folds: 1) we proposed data-augmentation 

based model ensemble for domain generalization, as discussed in the Preprocessing 

Section and 2) we further included a rule-based post-processing method for correcting 

implausible predictions, as discussed in the Post-processing Section. 

 

Citations and packages. In this submission, the basic develop is based on the official 

release of nnUNet [11] (https://github.com/MIC-DKFZ/nnUNet). Besides, we used 

the data augmentation codes from [18] (https://github.com/cherise215/AdvBias), [19] 

(https://github.com/cheng-01037/Causality-Medical-Image-Domain-Generalization) , 

[17] and TorchIO [14] (https://github.com/fepegar/torchio) for random bias-field, 

random-network-based, style and motion augmentation, respectively. 

 

Which FeTA cases were included in the training and testing. In the first hyperpa-

rameters tuning stage, we randomly split 24 samples (20%) from FeTA and Vienna 

datasets as validation set. Both pathological and normal cases are in the training and 

validation set. 

 

Training/validation/testing data splits. After hyperparameter tuning and selecting 

the augmentation strategy, we use the full data (80 from FeTA and 40 from Vienna) 

for training. 

 

Hyperparameter tuning. To adapt nnU-Net to our task, we changed several hy-

perparameters of nnU-Net, including number of epochs (from 1000 to 2000), number 

of convolutions per resolution stage (from 2 to 3), number of base features (from 32 

to 48). Also, we tried different combination of data augmentation techniques and 

tuned their hyperparameters to balance the performance in both source domain and 

out-of-domain validation sets. 

 

Training time. In our submission, we have 5 models for ensemble and 1 model for 

post-processing. Our experiment is conducted based on a single NVIDIA RTX A5000 

GPU. The training time of the 6 models are listed in Table 3. 

1.7 FeTA-Imperial-TUM Team (FIT_2) – FIT-SwinUNETR; 

Team Members:  Liu Li, Maik Dannecker*, Chen Chen*, Cheng Ouyang*, Zeju Li, 

Benjamin Hou, Qingjie Meng, Bernhard Kainz, Daniel Rueckert 

https://github.com/MIC-DKFZ/nnUNet
https://github.com/cherise215/AdvBias
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*authors included in paper 

 

GPU training was performed on:. Nvidia A5000/ A6000/ GTX 3080 

Model architecture. In this submission, we proposed a transformer-based segmenta-

tion model, using the Swin UNETR architecture [20], [21] with MRI specific aug-

mentation techniques from the library TorchIO [14]. Swin UNETR is a U-shaped 

segmentation model with a transformer-based encoder acting on multiple resolutions. 

The multiresolution outputs are fed to a Fully Convolutional Neural Network (FCNN) 

decoder. Additionally, we used a skull stripping model, based on the SynthStrip mod-

el [22], to separate the fetal brain from irrelevant background structure, such as the 

mother’s womb. This helped the segmentation model to focus on the region of inter-

est, and furthermore, to drastically reduce the required training time. Since the pro-

vided pre-trained SynthStrip model did not achieve satisfying results on fetal brain 

MRI, we fine-tuned the model on the data provided by the FeTA2022 Challenge, 

using cross entropy loss and soft Dice loss. 

Number of layers.  

Swin UNETR: The transformer consists of 4x2 layers with 3, 6, 12, and 24 atten-

tion heads, respectively. The FCNN consists of 5x2 convolutional layers, 5 upsam-

pling layers and a segmentation head. 

Synthstrip: 7x2 layers for encoder and 6x2 layer for decoder + 1 output layer.  

 

Convolution kernel size. For both models, all kernel sizes are set to 3×3×3. 

 

Initialization. We use random initialization for the Swin UNETR model and Xavier 

initialization for the Synthstrip model. 

 

Optimizer. All the models use AdamW as optimizer. 

 

Cross-validation. We didn’t do cross validation in our setting. 

 

Number of epochs. We trained the Swin UNETR model for 2000 epochs, and the 

SynthStrip model for 200 epochs. 

 

Number of trainable parameters. The Swin UNETR model has around 97M traina-

ble parameters, whereas the SynthStrip model has around 2M trainable parameters. 

 

Learning Rate and schedule. The learning rate is set to 1e-4 for both models and we 

used linear warmup and cosine annealing for 100 epochs. 

 

Loss Function. We used the default loss function for Swin UNETR, a combination of 

weighted cross entropy loss and soft Dice loss. For the SynthStrip model we also used 

a combined cross entropy and soft Dice loss for the fine tuning on MRI of fetal brains. 

 

Dimensionality. Both models used 3D input. Swin UNETR uses an input patch size 

of 64x64x64. 
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Batch Size. Batch size was set to 2 for both models. 

 

Pre-processing. We reoriented the input image to RAS coding, resampled the image 

to an isotropic spacing of 1 mm, and applied intensity normalization. 

 

Data Augmentation. Applied data augmentation included flipping, rotation and Tor-

chIO [14] augmentations (affine+elastic transformation, noise, blur, gamma, ghosting, 

spike, motion, bias, blur, anisotropy). 

 

External dataset. For training, neonate subjects of the dHCP data [23] 

(http://www.developingconnectome.org/) was used. 

 

Framework. We used Swin UNETR from MONAI (https://monai.io) as framework. 

 

Number of models trained for final submission: For final submission, we trained 

one Swin UNETR model and one skull stripping model. 

 

Post-Processing. We resampled the image to the original spacing and orientation. 

 

Original work. Existing work: SynthStrip [22] model and Swin UNETR [20], [21] 

model are publicly available Original work: the constructed pipeline of skull stripping 

+ MRI specific data-augmentation, using the TorchIO [14] library, to segment fetal 

brains. 

 

Citations and packages. 

• Swin UNETR [20], [21] 

• SynthStrip [22] 

• TorchIO [14]  

 

Which FeTA cases were included in the training and testing (i.e. – all cases, only 

pathological, only 1 institution, etc.). All cases were used for training and valida-

tion. 

 

Training/validation/testing data splits. 98 for training and 22 for validation, uni-

formly sampled. 

 

Hyperparameter tuning performed. We tuned feature size, warm-up epochs, and 

data-augmentation intensity/probability. 

 

Training time: 5h training of skull stripping network, 24h pre-training transformer 

network, 24h training transformer network. 
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1.8 FMRSK 

Team Members:  Maria Deprez, Alena Uus*, Irina Grigorescu*, Paula Ramirez Gil-

liland* 

*authors included in paper 

 

GPU training was performed on. NVIDIA Titan XP, NVIDIA GeForce RTX 3090 

 

Software used. Pytorch v1.10.2, MONAI v0.9.0, TorchIO v0.18.73 [14] 

 

Model architecture. Attention UNet based on Otkay et al. "Attention U-Net: Learn-

ing Where to Look for the Pancreas" https://arxiv.org/abs/1804.03999, the MONAI 

implementation [24] 

 

Number of layers. 5 layers with 32, 64, 128, 256, and 512 channels respectively 

 

Convolution kernel size. 3x3x3 

 

Initialization. He initialization 

 

Optimizer. AdamW with default parameters and a weight decay of 0.00001 

 

Cross-validation used. No 

 

Number of epochs. 300 

 

Number of trainable parameters:. 23.6 M 

 

Learning Rate and scheduler:. lr=0.001 with a linearly decaying scheduler 

 

Loss Function:. a combination of Dice and Cross Entropy loss (DiceCELoss from 

MONAI) 

 

Dimensionality of input/output. 3D 

 

Batch Size. 2 

 

Preprocessing steps used.  

• We trained a standard 3D UNet from MONAI (https://github.com/Project-

MONAI/MONAI) to perform brain extraction on all the training data and we use it 

as a preprocessing step in the Docker.  

• All image and label volumes are resampled on the same 128x128x128 grid, and 

transformed to the standard atlas space 

• Intensity normalisation between 0 and 1 
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Data Augmentation. 

• Motion artifacts (-6 -> +6 degrees rotations, -6 -> +6 voxels translations) 

• MR Spike 

• Bias field 

• Affine transforms (scaling between 0.7 and 1.2, rotations between –60 degrees to 

+60 degrees) 

• Noise (mean = 0.0, std between 0.001 and 0.05) 

• Blurring (std between 0.2 and 1.0) 

• Gamma (log_gamma between -0.4 and 0.4) 

• Random intensity shifts 

External dataset used. dHCP neonates: 19 dHCP neonates with 23.7 -- 30.7 weeks 

gestational age at birth, and 26.6 -- 32.4 weeks postmenstrual age at scan (dHCP pub-

lic release http://www.developingconnectome.org/ [25]); Spina bifida atlases [26] 

 

Framework. Attention UNet part of MONAI v0.9.0 

 

Number of models trained for final submission. 2 models 

 

Post-Processing Steps. We average the predictions of our 2 models 

 

Original work. We used a semi-supervised approach to training our networks.  

As a first step, we manually checked the training data provided and scored each 

volume based on the quality of the labels. We then used only the high-quality fetal 

label data to train an initial Attention UNet (MONAI, same as for our final model) to 

produce labels for the remaining datasets. The predicted labels were then manually 

corrected, and the process was repeated 3 times until we were satisfied with the quali-

ty of labels for the entire training dataset. 

For the training of the final two models, on top of the on-the-fly augmentation ex-

plained above, we augmented the training dataset in two ways: 1) we smoothed the 

brain masks to create two types of images of the same subject: one with the original 

brain extraction, and one with an enlarged mask that encompasses more of the sur-

rounding structures; and 2) we flipped the images and labels along the left-right direc-

tion. 

 

Which FeTA cases were included in the training and testing. All cases except for 

low quality labels (sub-007, sub-022, sub-029, sub-035, sub-108, sub-119, sub-120, 

sub-134), and one subject (sub-125) which did not have a label; in total 111 FeTA 

cases 

 

Training/validation/testing data splits. The final models are trained on all cases 

 

Hyperparameter tuning performed. No 

 

Training time. 23 hours 

http://www.developingconnectome.org/
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1.9 fudan_zmic 

Team Members:  Yibo Gao*, Hangqi Zhou*, Shangqi Gao* 

*authors included in paper  

 

Model Description. Our method implements BayeSeg [27] based on nnUNet [11] 

framework. The code is published at https://github.com/o00O00o/nnBayeSeg. 

 

 

Fig. 6. Network Architecture of BayeSeg 

BayeSeg is composed of two stages as shown in Fig. 6. In the inference stage, two 

inference branches are implemented to infer the distribution of contour and basis (i.e., 

q(c) and q(b)) respectively. Then, we sample c and b from the inferred distributions. 

In the segmentation stage, the sampled c is fed to a segmentation network to obtain 

the predicted mask. It is worth noting that the output of the segmentation network is 

also a distribution (i.e., q(m)). The final prediction is a random sample from q(m). The 

framework is optimized by minimizing cross-entropy, dice loss and the weighted 

variational loss. The weight λ is set to 50 and the variational loss is elaborated in [27]. 

The contour inference branch consists of 10 residual blocks, and each block has a 

structure of “Conv + ReLU + Conv”. The output of this branch has two channels. One 

is the element-wise mean of the contour, and the other is its element-wise variance. 

The contour c in the figure denotes a random sample from q(c). The basis inference 

branch consists of 6 residual blocks, and each block has a structure of “Conv + BN + 

ReLU + Conv + BN”. Similarly, this branch will output the mean and variance of the 

basis, and the basis n is randomly sampled from its variational posterior distribution. 

At the segmentation stage, the segmentation network in the figure is automatically 

generated by nnUNet framework. It is a UNet with instance normalization and leaky 

ReLU following every convolution layer. The UNet infers the variational posterior of 

the label z, i.e., q(z). The output of this U-Net has 2K channels. The first K channels 

denote the element-wise mean of the label, and the left channels represent its element-

wise variance. The label q(z) in Fig. 6 is a random sample from the resulting posterior 

distribution, and it will be taken as a stochastic segmentation for training. 
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Training Method. Our framework is based on nnUNet [11], which is publicly avail-

able at https://github.com/MIC DKFZ/nnUNet. Training was done on TITAN RTX 

with Pytorch 1.12.0.  

Training inputs are 2D images which are randomly sampled from training cases 

and the patch size of 224x192 is selected, with 24 batch size. Before fed into the net-

work, all the training images need to be cropped according to the foreground. We also 

use Z score (mean subtraction and division by standard deviation) per image followed 

by cropping for data normalization. During training, randomly initialized network is 

optimized by Adam optimizer with 0.0001 initial learning rate is used. The learning 

rate annealing strategy is the default one in nnUNet. The maximum training epoch is 

1000, and one epoch is defined as 250 iterations. Each epoch costs about 160s. We 

use all cases of FeTA dataset and an extra cardiac ACDC dataset for cutmix. We split 

the dataset into 5 folds so that we can run a 5 folds cross validation.  

During validation, we found that when training on institution 1 dataset and testing 

on institution 2, the segmentation results degraded a lot. We supposed that the reason 

might be that the background of institution 2 images is much more complicated than 

that of institution 1 images. Thus, we added an extra cardiac cutmix augmentation to 

enrich the background. We randomly cut out the center of FeTA images with a ran-

dom side length ratio sampled from uniform distribution between 0.6-0.9, and then 

paste it in the same position in ACDC cardiac images. The probability of cardiac cut-

mix is 0.5. Except for cardiac cutmix augmentation, other default augmentation tech-

niques in nnUNet are also implemented. More details can be seen in [11]. 

For FeTA challenge, we have trained 5 models via a 5 folds cross validation. And 

all the 5 models were selected to run ensembling. 

1.10 hilab 

Team Members:  Jia Fu*, Guiming Dong*, Guotai Wang* 

*authors included in paper 

 

Model Description: Our approach is based on the nnUNet (https://github.com/MIC-

DKFZ/nnUNet) [11], which is implemented with Pytorch. To segment the fetal brain 

tissue, we propose a coarse-to-fine framework inspired by [28], which divides the 

segmentation process into two stages. In the first stage, we use 3D U-Net [2] to seg-

ment the seven tissues simultaneously. The regions of interest (ROIs) for each tissue 

are generated by the coarse segmentation results from the first stage. In the second 

stage, we train seven residual 3D U-Net models [4] separately based on the ROIs to 

achieve fine segmentation of brain tissues. 

In the coarse and fine stages, the 3D U-Net and residual 3D U-Net share a similar 

architecture. The detailed structure of 3D U-Net in the first stage is shown in Fig. 7. 

The residual 3D U-Net uses residual blocks in the encoder to substitute the convolu-

tion blocks of 3D U-Net. The residual block is implemented as conv-IN-LeakyReLU-

conv-IN-LeakyReLU, where the residuals are added before the last LeakyReLU acti-

vation [29]. 
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Fig. 7. The network architecture of the 3D U-Net for coarse stage 

Data Preprocessing and augmentation. In the first stage, we first cropped the non-

zero region of each reconstructed fetal brain image. Then, each volume was normal-

ized by Z-score and used as the input of 3D U-Net. Standard data augmentation strat-

egies were used, including rotation and scaling, Gaussian noise, Gaussian blur, 

brightness and contrast adjustment, simulation of low resolution, gamma augmenta-

tion, and mirroring. The patch size was 128×128×128.  

In the second stage, we cropped the ROIs of each tissue according to the coarse 

segmentation result in the first stage. Specifically, the whole non-zero regions were 

selected as the ROIs of external cerebrospinal fluid, grey matter, and white matter 

without further cropping. For the ventricles, cerebellum, deep grey matter, and brain-

stem, the ROIs were determined by the segmentation results of 3D U-Net with a bias 

of 10. The data augmentation methods used in the second stage were the same as in 

the first stage. 

 

Implementation Details. We used all provided data of the FeTA 2022 dataset and 

did not use any external dataset. We split all the training data randomly into 96 train-

ing cases and 24 test cases for all models. 

All the model parameters were initialized randomly. In the two stages, we used the 

combination of cross-entropy and dice loss to train the segmentation networks. We 

used the Adam optimizer with an initial learning rate of 1e-3 and decreased it to zero 

at the end of the final epoch using Nesterov momentum (μ = 0.99). The weight decay 

was set as 3e-5, and the batch size was 2. 

We trained the networks for 400 epochs at most, and we only saved the models 

with the highest dice coefficient on the test dataset in the two stages. In the first stage, 

each epoch cost about 120 s. In the second stage, each epoch cost about 140 s for the 

segmentation task of ventricles, while each epoch cost 50~80 s for the segmentation 

task of other tissues. 

Our algorithm was implemented in Python 3.8.13 using Pytorch 1.12.0 framework. 

Experiments were performed on one NVIDIA GeForce RTX 2080 Ti or NVIDIA 

GeForce RTX 3090.  
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Inference and Post-processing. In the inference stage, the segmentation result is 

produced by the ensemble of the saved model of the second stage. If there is an over-

lap of segmentation masks for different tissues, the result produced by the saved mod-

el of the first stage is treated as the predicted label for the overlapping region. 

1.11 Neurophet 

Team Members: ZunHyan Rieu*, HyeonSik Yang*, Minwoo Lee, Jimin Kang, 

Minho Lee* 

*authors included in paper 

 

Model Description. We used three-dimensional (3D) U-Net [30] as the baseline ar-

chitecture of our model. Since the actual image data with fetal tissue have various 

resolutions depending on the institutions, we chose patch-based training with the in-

put voxel size of 64x64x64. Our model consists of 5 encoding blocks with residual 

blocks. We applied a probability-based sampling method to make our model focus on 

the fetal tissue regions instead of the zero-padded regions.  

 

Training Method. The entire training was conducted using Python 3.8 [31] using 

PyTorch 1.8 [32] as our main deep learning framework. For data augmentation pro-

cess, we utilized torchIO [14], MONAI [33] and Kornia [34]. We strictly used the 

provided dataset from the challenge, which means neither an additional dataset nor 

pre-trained model weights for our training process. Since the quality of MRI was 

unidentified, we initially performed the visual inspection to define the poor and good 

quality of MRI from the dataset and distributed them equally to the training and vali-

dation dataset. For the pre-processing, we performed intensity normalization from 0 to 

1 with a percentile cutoff of (0, 100). For data augmentation, we performed the spatial 

augmentations (horizontal flip, rotation, and affine transformation) and intensity aug-

mentation (Gaussian blur). 
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Fig. 8. Model Architecture 

All models were trained on GPUs (RTX3090 24GB x 4 / CUDA 11.1) with the fol-

lowing parameters: 

• Optimizer: AdamW [35] 

• Number of epochs: 300 (weights saved on minimum validation loss) 

• Number of trainable parameters: 314,999,688 

• Learning Rate and schedule: 2e-4 

• Loss Function: DiceCELoss (custom weight) 

• Batch Size: 24 

• Samples per volume: 64 

We trained the following 3 individual models: 

 

1. Head only model (used the dataset of Institution 1 ONLY) 

2. Head with body model (used the dataset of Institution 2 ONLY) 

3. Combined model (Institution 1 & Institution 2) 

Inference Method. We initially found that models A and B performed the best on 

their trained institution dataset yet couldn't work vice-versa. However, model C, 

trained with institutions 1 and 2 datasets, could work vice-versa with mediocre per-

formance. Therefore, to find the best yet safe segmentation result for the unknown 

input MRI, we designed a method to decide the best-performed model with the seg-

mented volume. 

From the input MRI, we perform inferences for all 3 models with the patch overlap 

size of 48x48x48. After that, we measure the non-zero voxels for the segmented re-

sults for all labels, which works like the intracranial volume (ICV). Once the non-zero 

voxels for all models are measured, we compare the volumes for Case 1 (1 - (A/C)) 

and Case 2 (1-(B/C)). For example, if the absolute difference of either case 1 or case 2 
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is less than 0.07, we set that case as True, or else False. At last, the algorithm decides 

the best-performed model using the following decision matrix and outputs the result. 

Table 4. Results 

 Case 1 Case 2 Output 

Decision Algorithm True False Model A 

False True Model B 

True True Model C 

False False Model C 

 

 

 

Fig. 9. Inference Examples 

 
 

1.12 NVAUTO 

Team Members:  Md Mahfuzur Rahman Siddiquee*, Dong Yang, Yufan He, Da-

guang Xu*, Andriy Myronenko* 

*authors included in paper 

 

GPU training was performed on. V100 16GB (each model was trained on 8 GPUs) 

 

Software used. Pytorch 

 

Method.  

The Network. We implemented our approach with MONAI 

(https://github.com/Project-MONAI/MONAI) [33]. We use the encoder-decoder 

backbone based on [36] with an asymmetrically larger encoder to extract image fea-

tures and a smaller decoder to reconstruct the segmentation mask [2], [37], [38].  
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Encoder part: The encoder part uses ResNet [39] blocks. We have used 5 stages of 

down-sampling, each stage has 1, 2, 2, 4, and 4 convolutional blocks, respectively. 

We have used batch normalization and ReLU. Each block’s output is followed by an 

additive identity skip connection. We follow a common CNN approach to progres-

sively downsize image dimensions by 2 and simultaneously increase feature size by 2. 

For downsizing, we use strided convolutions. All convolutions are 3x3x3 with an 

initial number of filters equal to 32. The encoder is trained with 224 × 224 × 144 in-

put region. 

Decoder part: The decoder structure is similar to the encoder one, but with a single 

block per each spatial level. Each decoder level begins with upsizing with transposed 

convolution: reducing the number of features by a factor of 2 and doubling the spatial 

dimension, followed by the addition of encoder output of the equivalent spatial level. 

The end of the decoder has the same spatial size as the original image, and the number 

of features equal to the initial input feature size, followed by a 1x1x1 convolution into 

8 channels and a softmax. 

 

Training Method.  

Dataset. We have used the FeTA dataset [40] only for training the model. We have 

randomly split the entire dataset into 5-folds and trained a model for each. 

 

Loss. We have used Dice Focal loss for training. 

 

Optimization. We use the AdamW optimizer with an initial learning rate of 2e−4 and 

decrease it to zero at the end of the final epoch using the Cosine annealing scheduler. 

We have used a batch size of 8. The model is trained of 8 GPUs, each GPU optimiz-

ing for a batch size of 1. However, we have calculated batch normalization across all 

the GPUs. We have ensembled 15 models for submission. All the models were trained 

for 1000 epochs. All of these models were trained with deep supervision. 

 

Regularization. We use L2 norm regularization on the convolutional kernel parame-

ters with a weight of 1e−5. 

 

Data preprocessing and augmentation. We normalize all input images to have zero 

mean and unit std (based on nonzero voxels only). We have applied random rotation, 

random zoom on each axis, random Gaussian smoothing, and random Gaussian noise 

with a probability of 0.2. We have also applied random flip on each axis and random 

contrast adjustment with a probability of 0.5. 

 

Initialization. Kaiming uniform 

 

Number of trainable parameters. 87 million 

 

Training/validation/testing data splits. 80%/20% (training/validation) split 

 

Hyperparameter tuning performed. Manually 
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Training time. 8 hours 

 

Results on Cross-Validation. Our cross-validation results on the 5-folds can be 

found in Table 5. 

Table 5. Average DICE among classes using 5-fold cross-validation. 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

0.8453 0.8532 0.8362 0.8301 0.8568 0.8431 

1.13 Pasteur DBC 

Team Members:   Jean-Baptiste Masson*, Astrid Nilsson*, Charlotte Godard* 

*authors included in paper 

 

All the required information is listed below: 

• GPU training was performed on: 4 tesla V100 GPUS (32GB of VRAM) with 

CUDA version 11.4 

• Software used: PyTorch (1.12), cudatoolkit (11.3), numpy (1.22), nibabel (4.0) 

• Model architecture: ensemble of 3 two-dimensional UNets fed respectively with 

image along the coronal, facial and sagittal axis + majority vote on the models pre-

dictions 

• Number of layers: 10 convolutional blocks + 10 deconvolutional blocks per model 

• Convolution kernel size: 3 x 3 

• Initialization: Random without bias 

• Optimizer: Adam algorithm 

• Cross-validation used? No 

• Number of epochs: 1000 

• Number of trainable parameters: 166K x3 

• Learning Rate and schedule: 0.001, no scheduler 

• Parameters of the Adam optimizer: momentum = 0.9, weight_decay = 1e-6 

• Loss Function: CrossEntropy 

• Dimensionality of input/output (ie: 2D,3D, 2D+, etc.) : inputs are 3D images split 

in slices and fed to the models. Outputs are 2D slices stacked together to form a 3D 

segmentation 

• Batch Size: 32 

• Preprocessing steps used: Images normalisation + contrast adjustment 

• Data Augmentation steps: noise + blur + 2D rotations + 2D translations + 2D hori-

zontal flip + zoom 

• External dataset used? Yes: fetal-brain-atlas-serag, fetal_brain_atlas Gholipour 

(2017) were used for self-supervised tasks 

• Framework (ie – MONAI, nnUNet, etc.) Pytorch 

• Number of models trained for final submission: 3 
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• Post-Processing Steps (ie – ensemble network, voting, label fusion) : majority vot-

ing on models prediction maps 

• Clearly state which aspects are original work (if any) or already existing work: 

using self-supervised learning (SSL) for model pretraining 

• Which FeTA cases were included: all cases were included in the training set 

• Training/validation/testing data splits: 80/20/0 

• Hyperparameter tuning performed: No 

• Training time: 3 days 

1.14 Sano 

Team Members:  Szymon Płotka*, Michał K. Grzeszczyk*, Arkadiusz Sitek* 

*authors included in paper 

 

Model description. We used Swin UNETR [20] as our base model. We used an orig-

inal implementation from the official MONAI repository (https://monai.io/). We used 

Swin UNETR configuration as follows. As input, we fed 128×128×128 patch size to 

the network. Embedding dimension is set to 768, feature size to 60, number of blocks 

= [2, 2, 2, 2], window size = [7, 7, 7], and number of heads = [3, 6, 12, 24]. 

 

Training method. Dataset: For training, we used only FeTA 2022 dataset. The da-

taset consists of 120 T2-weighted fetal brain reconstructions from two different insti-

tutions: University Children’s Hospital Zurich and General Hospital Vienna/Medical 

University of Vienna with a corresponding label map that was manually segmented 

into 7 different tissues/labels: 1. External Cerebrospinal Fluid, 2. Grey Matter, 3. 

White Matter, 4. Ventricles, 5. Cerebellum, 6. Deep Grey Matter, 7. Brainstem, and 

background. 

Optimization: We used the AdamW optimizer with an initial learning rate of 2e−4 

and decrease it to zero at the end of the final epoch using the Cosine annealing sched-

uler. As regularization, we used L2 with a weight of 1e−5. We used a batch size of 2. 

We implemented our solution using PyTorch and MONAI (https://monai.io/). We 

trained our method using 2 × NIVIDA A100 80GB GPUs. We have ensembled 5 

models for the submission. All the models were trained for 800 epochs. 

Loss function: We used a sum of Cross Entropy Loss and Dice Loss for training de-

fined as: 

ℒ𝑠𝑢𝑚 =  𝜆1ℒ𝐶𝐸 +  𝜆2ℒ𝐷𝑖𝑐𝑒 (1) 

where 𝜆1  = 𝜆2 = 1.  

Data pre-processing and augmentation: First of all, we normalize the input data. 

Then, we scale each input to the same spacing: 0.8×0.8×0.8. Finally, we apply the 

data augmentation as follows: Crop Foreground (p=1.0), Random spatial crop 
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(p=1.0), Random zoom (p=0.3), Random rotate (p=0.3), Random Gaussian Noise 

(p=0.2), Random Adjust Contrast (p=0.3), Random Flip on each axis (p=0.5). 

 

Results. We used 5-fold Cross-Validation (CV) to validate the effectiveness and effi-

ciency of our solution. The results are presented in Table 6. 

Table 6. Average Dice among classes on FeTA 2022 challenge dataset 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

0.867 0.845 0.863 0.845 0.860 0.856 

 

 

1.15 symsense 

Team Members:  Valentin Comte*, Mireia Alenyà*, Oscar Camara*, Miguel Angel 

Gonzalez Ballester, Gemma Piella 

*authors included in paper 

Model description. The baseline segmentation model we used for this challenge is 

the well-known nnU-Net [11]. The overall architecture of the model has not been 

changed, but we implemented a generalized Dice Loss proposed by [41] which ac-

counts for the volume of segmented structures (Section Loss Function). We also per-

formed data augmentation techniques to increase the size of our data set and make our 

model more robust to domain changes (Sections Data Augmentation: warping; Data 

Augmentation: GIN-IPA). 

Model architecture: The model architecture is based on U-Net, the most popular CNN 

for image segmentation, which was introduced by [2]. It is an autoencoder-like CNN, 

made of a “contracting path” and an “expansive path”, or analysis path and synthesis 

path, respectively. The analysis path is composed by a succession of convolutional 

layers followed by ReLU activations and max pooling layers, this set of stacked lay-

ers being repeated four times. The synthesis path uses up-sampling layers followed by 

up-convolution layers, the output is then concatenated with the corresponding skipped 

feature map from the contracting path, and two successive convolutional layers, each 

followed by a ReLU activation. 
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Fig. 10. Architecture of the nnUNet. 

Training Method: To train the network all cases provided (80 from Zurich and 40 

from Vienna) were used. The dataset was enlarged by warping these cases with the 

method described in Section 1.4.2) and adding the 40 early-neonatal cases from the 

Development Human Connectome Project (dHCP - 

https://data.developingconnectome.org/)  (Section Additional Datasets). 

Model details 

• The used network is 3D-nnU-Net with full resolution 

• All five folds were run a total of 900 epochs 

• The number of trainable parameters of the model is: 31200448 

• Inference is done through five-fold cross-validation 

• Dimensionality of inputs/outputs: 3D with one extra channel (See Section 1.4.3) 

• Preprocessing: cropping, resampling and data normalization (z-normed) 

• Batch size: 2 

• Patch size: [128 128 128] 

• Pool kernel sizes: [[2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 

• Convolution kernel sizes: [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]] 

• Stride [1, 1, 1] or [2, 2, 2] and padding [1, 1, 1] 

• Initial loss rate: 0.01 

• Optimizer: Stochastic gradient descent (SGD) with Nesterov momentum (μ = 0.99) 

• Activation function: LeakyReLU with negative slope 0.01 

• Instance normalization with parameters: eps=10−5, momentum=0.1, affine=True 

• No Post-Processing Steps are performed 

https://data.developingconnectome.org/
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Initialization of model parameters: The initialization of model parameters is fully 

optimized by the network after extracting the dataset fingerprint (a set of dataset-

specific properties such as image sizes, voxel spacings, intensity information, etc). 

Data Augmentation Strategies: The following data augmentation features have been 

applied: 

• Rotation along each axis, range (-15º, 15º) 

• Elastic deformation 

• Scaling, range (0.85, 1.25) 

• Add Gaussian noise, range (0, 0.1) 

• Add Gaussian blur, range (0.5, 1) 

• Gamma Transform, range (0.7, 1.5) 

• Mirror along all axes 

• Additive brightness transform, range (0.75, 1.25) 

• Contrast transform, range (0.75, 1.25) 

• Simulate low resolution transform, zoom range (0.5, 1) 

• Warping of images (See Section 1.4.2) 

• GIN-IPA (See Section 1.4.3) 

1.2.4 Software and training time 

• Python 3.8 

• CUDA 11.4 

• Pytorch 1.11 

• batchgenerators 0.24 

• SimpleITK 2.1.1 

• GPU: Quadro RTX 6000 (Turing), 24 GB 

• Training time: 12-13h per fold /(each epoch 150s) 

Additional data sets: 40 early neonatal cases from the publicly available dHCP data-

base were included in the training dataset. 

Our contribution. Loss function: Generalized dice + cross-entropy. The submitted 

model presents a modification in the computation of the loss function. It still uses 

Dice and cross entropy terms as the original network does, but the former has been 

modified to be a generalized Dice as presented in [41]. This new Dice metric assesses 

multi-label segmentations with a unique score, assigning a different weight for each 

structure according to its volume, and can be expressed as follows: 

 

𝐷𝐼𝐶𝐸𝑚𝑙 =  
2𝑇𝐶𝑚𝑙

𝑇𝐶𝑚𝑙 + 1
 , 𝑇𝐶𝑚𝑙 =  

∑ 𝛼𝑙 ∑ min (𝐺𝑇𝑙,𝑖 , 𝑋𝑙,𝑖)𝑖𝑙

∑ 𝛼𝑙 ∑ max (𝐺𝑇𝑙,𝑖 , 𝑋𝑙,𝑖)𝑖𝑙

, 𝛼𝑙 =  
1

𝑉𝑙

 

 

where 𝑇𝐶𝑚𝑙 is the multilabel Tanimoto coefficient [11], 𝐺𝑇𝑙,𝑖 is the value of the 

ground-truth segmentation of voxel 𝑖 for label 𝑙, 𝑋𝑙,𝑖 is the analogous for the predicted 
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one, 𝛼𝑙 =  
1

𝑉𝑙
 is the label-specific weighting factor that affects how much each struc-

ture 𝑙 contributes to the overlap accumulated over all labels; and 𝑉𝑙  is the volume of 

each label 𝑙. 

Data augmentation: warping: The first data augmentation step that we performed was 

to warp the input images and labels using a mixture of random 3D Gaussians, as de-

scribed by: 

𝒢(𝑥, 𝑦, 𝑧) =  ∑ 𝐴𝑖exp (
(𝑥 − 𝑥0,𝑖)

2

2𝜎𝑥,𝑖
2 + 

(𝑦 − 𝑦0,𝑖)
2

2𝜎𝑦,𝑖
2 +  

(𝑧 − 𝑧0,𝑖)
2

2𝜎𝑧,𝑖
2 )

𝑁

𝑖

 

 

where 𝑁 is the number of Gaussians, 𝐴𝑖 the amplitudes, 𝑥0,𝑖 , 𝑦0,𝑖 , 𝑧0,𝑖 are the center 

positions of the peaks, and 𝜎𝑥,𝑖 ,  𝜎𝑦,𝑖 , 𝜎𝑧,𝑖 are the standard variations. Given a input of 

size (𝐷, 𝐻, 𝑊),the deformation field formed by the Gaussian mixture with size 

(𝐷3, , 𝐻, 𝑊) is applied to the input to generate a warped image, as shown on Fig. 11. 

 

 

Fig. 11. Example of an input image and labels (left), warped by three random Gaussian defor-

mation fields (right). 

Data augmentation: GIN-IPA: The other data augmentation step that we performed is 

inspired by [19]. It consists of Global Intensity Non-linear (GIN) transformation of 

the input by a convolutional network with randomly sample weights, which randomly 

alters the textures and intensities of the input. Next, the Hadamard products of two 

random GIN-augmented images and pseudo-correlation maps are added together (In-

terventional Pseudo-correlation Augmentation) to form an image cleared of its do-

main specific spurious correlations (See Fig. 12). The original algorithm proposed by 

[19] was extended to 3D images and implemented as a preprocessing step, such that it 

forms an additional “modality” of the input image. 
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Fig. 12. The GIN-IPA augmentation. 

1.16 UNIANDES 

Team Members:  Santiago Usma*, María Fernanda Peñuela, Luisa Vargas Daza*, 

Maria Camila Escobar, Angela Castillo, Pablo Arbelaez*  

*authors included in paper 

 

Model architecture. We use a model termed ROG proposed for the medical segmen-

tation decathlon (MSD). ROG has an initial module with four convolutions, the main 

lattice of processing nodes, and a segmentation head with two convolutions. They 

organize the nodes in a triangular lattice with four scales, but unlike UNet++ it con-

nects each node with both upper and lower-level nodes and removes the dense con-

nections.  

 

GPU training was performed on. Quadro RTX 8000 

 

Software used. Pytorch 1.11.0 cuda11.3 

 

Number of layers. 8 layers  

 

Convolution kernel size. 3x3x3 

 

Initialization. Random  

 

Optimizer. Adam – weight decay 1e-5 

 

Cross-validation used.  Yes. We used 2-fold cross-validation 

 

Number of epochs.  398 epochs for fold 0, 615 epochs for fold 1  

 

Number of trainable parameters.  2596507 parameters 
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Learning Rate and schedule: We used a ReduceLROnPlateau scheduler with a 

learning rate of 1e-3 and a patience of 50  

 

Loss Function. A combination of the Dice Loss and Cross-Entropy Loss  

 

Dimensionality of input/output (ie: 2D,3D, 2D+, etc.). 3D 

 

Batch Size. 2 

 

Preprocessing steps used (ie data normalization, creation of patches, etc.). Clip-

ping the intensities to the [0.5, 99.5] percentiles of the foreground values and perform 

z-score normalization. 

 

Data Augmentation steps (ie – rotation, flipping, scaling, blur, noise, etc.). Spatial 

Transform (random rotation and scaling), Mirror Transform and gamma correction. 

 

External dataset used? No  

 

Framework (ie – MONAI, nnUNet, etc.). ROG  

 

Number of models trained for final submission. 7 experiments with ROG, and 15 

experiments with a 2D and 2D+ approach with Mask2Former. 

 

Post-Processing Steps. We perform a closure and then an opening of grays in the 

segmentation map with a structuring element with 1s of dimension [4,4,2]  

 

Original work/Existing work. This work was based on a previous work that pro-

posed a single-architecture model for RObust Generic segmentation (ROG) [42] 

(https://github.com/BCV-Uniandes/ROG). We experimented by varying some param-

eters until we found the best performance. 

 

Which FeTA cases were included:. We split the data making sure to maintain simi-

lar distributions in both folds on the variables of gestational age, institution and pa-

thology. 

Fold 0. 60 volumes for training and 60 volumes for validation 

Neurotypical: 0.53 Pathological 0.47 

Zurich: 0.63, Vienna: 0.37 

G1: 0.23, G2: 0.22, G3: 0.27, G4: 0.28 

Fold 1. 60 volumes for training and 60 volumes for validation 

Neurotypical: 0.53 Pathological 0.47 

Zurich: 0.7, Vienna: 0.3 

G1: 0.27, G2: 0.28, G3: 0.23, G4: 0.22 

 

Training/validation/testing data splits. In each fold we use a 50/50 split between 

training and validation.  
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Hyperparameter tuning performed. No.  

 

Training time. 6 hours per fold approx. 

 

 

1.17 xinlab-scut-iai-ahu  

Team Members:  Wenying Lu*, Wenhao Zhang*, Jing Liang*, JiaHui Wang, Chao 

Yang, Hao Mei, A/Prof. Xin Zhang, A/Prof. Qin Xu, A/Prof. Xiaofen Xing, Prof. 

Xiangming Xu 

*authors included in paper 

 

GPU training was performed on NVIDIA GTX 1080ti. Software used: Pytorch 

1.11.0+cu102, MONAI 0.9.0. 

 

Model architecture. The constructed model is dedicated in solving problems from 

the following two aspects: One is to do segmentation on fetal brains, another is to 

generalize the segmentation model to different domains such as data collected from 

different institutions. The framework of our model is shown in Fig. 13. 

 

 

Fig. 13. Model Framework 

For segmentation, we apply a two-stages training method named coarse-to-fine to 

achieve accurate segmentation. In the coarse stage, we try to make the model learn 

whether a voxel belongs to a fetal brain or background. For a unique voxel, it is a 

binary-classification task, then before the fine stage. We multiply the output of the 

coarse stage and the corresponding original image to remove noise from the back-

ground. In the coarse stage, we make our efforts to teach the model to categorize an 

unique voxel to different brain tissues. 

For domain generalization, we use a method named Domain Generalization using 

Causal Matching (MatchDG) [43], which aims at making the similarity of the same 

kind of brain tissues across domains as high as possible. There are also two stages in 

this method. On the one hand, we need a contrastive learning stage to give higher 

similarity between same kind of brain tissues, and we can acquire a match matrix 

from this stage according to the similarity, through this matrix, there is a base domain 

which contains the most number of samples, and samples from other domains are 

matched with the samples from the base domain. In other words, it is a many-to-one 



42 

match. On the other hand, we need not only to classify the samples from base domain 

accurately, but also to classify the samples from other domains in an accurate way, so 

while we use samples from the base domain to train the model. We also sample the 

samples of other domains from the match matrix to train the model to achieve a more 

accurate classification. The process of domain generalization is shown in Table 7. 

 

Table 7. Domain Generalization 

Algorithm MatchDG 

In:Dataset(𝑑𝑖𝑥𝑖 , 𝑦𝑖)𝑖=1
𝑛 from m domains,𝜏,t 

Out:Function 𝑓: 𝜒 → 𝛾 

Create random pairs 𝛺𝑌 

Build a p*q data matrix 𝑀 

Phase I 

While not converged do 

For batch ~ 𝑀 do 

    Minimize contrastive loss 

       End for 

       If epoch % t == 0 then 

           Update match pairs using  𝛷𝑒𝑝𝑜𝑐ℎ 

       End if 

End while 

Phase II 

Compute matching based on 𝛷 

Minimize the loss with learnt match function 𝛷 to obtain 𝑓  

 

We insert the domain generalization between the coarse stage and the fine stage to 

let the model in the fine stage learn anatomical features of fetal brains to perform 

better generalization on segmentation. More concretely speaking, we train the encoder 

of the fine stage in the stage of domain generalization. Furthermore, as for the input of 

domain generalization stage, we set the background that does not contain a concrete 

fetal brain tissue to 0, and one image only contains one kind of brain tissues. We 

achieve this process by the annotation of segmentation.   

During the coarse stage, we use DynUNet [44] to achieve our primary segmenta-

tion. The input size of our model is (1,64,64,64), where 1 denotes the input channel 

number of the model and 64 denotes the size of the image of our input, noting that the 

input spatial dimensions of our model are 3. We set our convolutional kernel size as 

3*3*3 during the down-sampling stage while the kernel size of the transposed convo-

lution during the up-sampling is set to 2*2*2. As the conventional UNet architecture, 

our DynUNet contains four down-sampling blocks whose output channel are 

(128,256,512,1024) with stride 2, and the output channel of the input block is 64 be-

fore down-sampling. 

During the stages of domain generalization and fine-segmentation, we apply Swin 

Transformer [45] as our backbone to extract abundant semantic information. The 
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main idea of the domain generalization stage is to train the Swin Transformer encoder 

to seize the domain-invariant features better. 

Finally, we apply SwinUNETR [20], [21] to achieve finer segmentation, the pa-

rameters trained during the domain generalization stage will remain unchanged while 

other parameters will be updated during the training stage of the fine segmentation. 

The architecture of SwinUNETR is shown in Fig. 14. 

 

Fig. 14. This picture and caption are derived from [20].  

The configurations of our SwinUNETR remains the same as the original paper as 

shown in Fig. 15. 

 

Fig. 15.  This table of configurations taken from [20] 

Data Processing. There is no extra open-source data used for our training. The data 

we have used is those provided by FeTA challenge, and we use all of the data cases in 

order to find a result as satisfying as possible. 

In order to acquire more diversity from the given data, some efforts of preprocessing 

and augmentation have been made (Table 8). 
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Table 8. Data Augmentation 

Measures Functionality 

Orientation Change the input image’s orientation into the 

specified axis 

Spacing Change the resolution of the input image 

CropForeground Crop only the foreground object of the ex-

pected images 

RandCropByPosNegLabel Crop random fixed sized regions with the 

center being a foreground or background voxel 

based on the Pos Neg Ratio. 

RandFlipd Randomly flip the image along a specified axis 

RandRotate90 Randomly rotate the input image by 90 de-

grees along a specified axis 

ToTensor Convert the data to pytorch tensor 

 

The process of optimization. The settings of the optimization process in our experi-

ment are in Table 9. 

Table 9. Optimization Process 

Stage Optimizer Learning Rate Learning Rate Scheduler 

Coarse stage AdamW 1e-4 Warmup cosine 

Domain gen-

eralization 

stage 

SGD 1e-4 None 

Fine stage AdamW 1e-4 Warmup cosine 

 

As for warmup cosine scheduler, there is a parameter called warmup steps. The 

formula of the learning rate is as follows: 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =  {𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑒𝑝 ×
1

𝑚𝑎𝑥 (1, 𝑤𝑎𝑟𝑚𝑢𝑝 𝑠𝑡𝑒𝑝𝑠)
, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑒𝑝

< 𝑤𝑎𝑟𝑚𝑢𝑝 𝑠𝑡𝑒𝑝𝑠 𝑚𝑎𝑥 (1,0.5 ×

𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜔𝜋
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑒𝑝 − 𝑤𝑎𝑟𝑚𝑢𝑝 𝑠𝑡𝑒𝑝

(1, 𝑒𝑝𝑜𝑐ℎ𝑠 − 𝑤𝑎𝑟𝑚𝑢𝑝 𝑠𝑡𝑒𝑝) 
) ) , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑒𝑝

> 𝑤𝑎𝑟𝑚𝑢𝑝 𝑠𝑡𝑒𝑝𝑠  

The number of the parameters we have trained is listed in Table 10. 
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Table 10. Number of parameters 

 

Model Number of Parameters 

DynUNet 90285890 

Swin Transformer Encoder(contrastive learning 

stage) 

2172234 

Swin Transformer Encoder(empirical risk mini-

mization) 

2172234 

Swin UNETR(exclude the encoder) 54124951 

 

 The loss functions we try to optimize and epochs we have run to train the model 

are in Table 11. 

Table 11. Loss Functions and Epochs 

Stage Loss Function Epochs 

Coarse segmentation Dice loss 2000 

Domain generalization(contrastive learning 

stage) 

Contrastive loss 50 

Domain generalization(empirical risk minimiza-

tion ) 

Cross Entropy loss and 

l2 

50 

Fine segmentation Dice loss 3000 

 

Training strategy. In order to make our training process stable and to ensure the 

GPU can work smoothly, we set the batch size 4 among all of our stages. 

The training strategy we apply to train our models is 5-fold cross validation, and 

our data splits are in Table 12.  

Table 12. Training Strategy 

Split Institution 1 - Train Institution 1 –  

Validation 

Institution 2 - Train Institution 2 –  

Validation 

0 Sub001-sub064 Sub065-sub080 Sub101-sub0132 Sub133-sub140 

1 Sub001-

sub048,sub065-sub080 

Sub049-sub064 Sub101-

sub124,sub133-sub140 

Sub125-sub132 

2 Sub001-

sub032,sub049-sub080 

Sub033-sub048 Sub101-

sub116,sub125-sub140 

Sub117-sub124 

3 Sub001-

sub016,sub033-sub080 

Sub017-sub032 Sub101-

sub108,sub033-sub080 

Sub109-sub116 

4 Sub017-sub080 Sub001-sub016 Sub109-sub140 Sub101-sub108 

 

Implementation. After the preparation referred above done, we need to achieve our 

ideas, and we use the framework MONAI to implement our experiments. 
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In the aspect of codes, we used the matchDG algorithm from Domain Generaliza-

tion using Causal Matching and the APIs of DynUNet, SwinUNETR and some other 

functions developed by MONAI. 

 

Some measure and ideas after training the models. We didn’t do any post-

processing after the training process finished. 

Our work aims at guiding the model to learn domain-invariant features and no ex-

tra prior knowledge required during the input stage. 

The original work of MatchDG is used to solve classification problems among 

multi-domains, and we use it to train an encoder that can extract proper semantic in-

formation to perform better in segmentation among multi-domains. The original paper 

didn’t include training of a Swin Transformer or a 3D model, and we make efforts to 

combine all of them to create better domain-invariant model that can solve 3D imag-

ing problems. In our design, the model of coarse stage is to remove the influence of 

the noise of the background, and the model trained under the guidance of the domain 

generalization stage to achieve finer segmentation on the basis of the coarse stage.  
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3 Benchmarking report for multiTaskChallengeDice_global 

created by challengeR v1.0.2 

15 September, 2022 

 

This document presents a systematic report on the benchmark study “multiTask-

ChallengeDice_global”. Input data comprises raw metric values for all algorithms and 

cases. Generated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

3.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 1120 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 
Dice_mean rank 

FIT_1 0.8160333 1 

symsense 0.8133240 2 

BlueBrune 0.8120447 3 

Blackbean 0.8120351 4 

NVAUTO 0.8101497 5 

FMRSK 0.8082458 6 

dolphines 0.8059784 7 

FIT_2 0.7980703 8 

Institut_Pasteur_DBC 0.7886576 9 
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fudan_zmic 0.7881991 10 

hilab 0.7735566 11 

Neurophet 0.7393895 12 

Sano 0.7094107 13 

Uniandes 0.6521017 14 

xinlab-scut-iai-ahu 0.4940798 15 

deepsynth 0.4334837 16 

ajoshiusc 0.3185059 17 

3.2 Visualization of raw assessment data 

 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

 

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.972 0.9705882 0.9558824 0.9852941 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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4 Benchmarking report for multiTaskChallengeHD_global 

created by challengeR v1.0.2 

15 September, 2022 

 

This document presents a systematic report on the benchmark study “multiTask-

ChallengeHD_global”. Input data comprises raw metric values for all algorithms and 

cases. Generated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

4.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 1120 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 
Hausdorff_mean rank 

FIT_1 2.346567 1 

BlueBrune 2.377450 2 

Institut_Pasteur_DBC 2.386752 3 

FMRSK 2.394580 4 

Blackbean 2.506427 5 

NVAUTO 2.607866 6 

symsense 2.660439 7 

FIT_2 3.420916 8 

dolphines 4.520666 9 

fudan_zmic 4.720102 10 

Sano 7.171492 11 

Neurophet 10.287913 12 

Uniandes 11.366165 13 

hilab 13.007935 14 

xinlab-scut-iai-ahu 23.149739 15 

deepsynth 36.652885 16 

ajoshiusc 56.597947 17 
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4.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. 
Please use `guides(<scale> = 

## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummy-

Task 

0.9451471 0.9411765 0.9264706 0.9595588 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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5 Benchmarking report for multiTaskChallengeVolSim_global 

created by challengeR v1.0.2 

15 September, 2022 

This document presents a systematic report on the benchmark study “multiTask-

ChallengeVolSim_global”. Input data comprises raw metric values for all algorithms 

and cases. Generated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

5.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 1120 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Volume_Similarity_mean rank 

FMRSK 0.9196037 1 

NVAUTO 0.9151729 2 

FIT_2 0.9132729 3 

FIT_1 0.9100900 4 

Blackbean 0.9085861 5 

BlueBrune 0.9080167 6 

symsense 0.9071442 7 

dolphines 0.9051963 8 

fudan_zmic 0.9029493 9 

Insti-

tut_Pasteur_DBC 

0.9012806 10 

hilab 0.8865124 11 

Neurophet 0.8435172 12 

Sano 0.8173689 13 

Uniandes 0.8137897 14 

xinlab-scut-iai-ahu 0.7308521 15 

deepsynth 0.6041642 16 

ajoshiusc 0.4797518 17 
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5.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Please use 

`guides(<scale> = 

## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummy-

Task 

0.9739853 0.9705882 0.9705882 0.9852941 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 

 

5.3 References 
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6 Benchmarking report for Dice Metrics – In Domain 

created by challengeR v1.0.2 

07 July, 2023 

This document presents a systematic report on the benchmark study “Dice Metrics 

– In Domain”. Input data comprises raw metric values for all algorithms and cases. 

Generated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 560 cases. 0 missing cases have been 

found in the data set. 

6.1 Ranking: 

 Dice_mean rank 

FIT_1 0.8052332 1 

symsense 0.8046716 2 

NVAUTO 0.8041635 3 

Neurophet 0.8035026 4 

Blackbean 0.8029271 5 

BlueBrune 0.8015985 6 

FIT_2 0.7965051 7 

dolphines 0.7960548 8 

FMRSK 0.7888039 9 

fudan_zmic 0.7879124 10 

Insti-

tut_Pasteur_DBC 

0.7798630 11 

hilab 0.7655387 12 

Uniandes 0.6835894 13 

Sano 0.6578728 14 

xinlab-scut-iai-ahu 0.5781840 15 

deepsynth 0.5768365 16 

ajoshiusc 0.4553186 17 
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6.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. 
Please use `guides(<scale> = 

## "none")` instead. 

 
  



79 

Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummy-

Task 

0.9468088 0.9411765 0.9264706 0.9705882 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 

 

6.3 References 
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7 Benchmarking report for Hausdorff Metrics – In Domain 

created by challengeR v1.0.2 

07 July, 2023 

This document presents a systematic report on the benchmark study “Hausdorff 

Metrics – In Domain”. Input data comprises raw metric values for all algorithms and 

cases. Generated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

7.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 560 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Hausdorff_mean rank 

FIT_2 2.310282 1 

Insti-

tut_Pasteur_DBC 

2.403996 2 

NVAUTO 2.463725 3 

Neurophet 2.467510 4 

BlueBrune 2.472739 5 

Blackbean 2.498323 6 

FIT_1 2.520732 7 

FMRSK 2.738572 8 

symsense 2.828475 9 

fudan_zmic 3.520624 10 

dolphines 4.091324 11 

Uniandes 6.239195 12 

Sano 10.399105 13 

hilab 13.285462 14 

xinlab-scut-iai-ahu 18.562777 15 

deepsynth 22.226778 16 

ajoshiusc 41.175303 17 
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7.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. 
Please use `guides(<scale> = 

## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummy-

Task 

0.9277794 0.9411765 0.8970588 0.9558824 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 

 

7.3 References 

Wiesenfarth, M., Reinke, A., Landman, B.A., Eisenmann, M., Aguilera Saiz, L., 
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8 Benchmarking report for Volume Similarity Metrics – In 

Domain 

created by challengeR v1.0.2 

07 July, 2023 

 

This document presents a systematic report on the benchmark study “Volume Sim-

ilarity Metrics – In Domain”. Input data comprises raw metric values for all algo-

rithms and cases. Generated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

8.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 560 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Volume_Similarity_mean rank 

NVAUTO 0.9141931 1 

symsense 0.9099799 2 

FIT_2 0.9099546 3 

FIT_1 0.9092761 4 

BlueBrune 0.9091471 5 

Blackbean 0.9090229 6 

Neurophet 0.9085816 7 

Insti-

tut_Pasteur_DBC 

0.9079917 8 

dolphines 0.9060934 9 

fudan_zmic 0.9048224 10 

FMRSK 0.9028394 11 

hilab 0.8802276 12 

Uniandes 0.8361667 13 

Sano 0.7797989 14 

xinlab-scut-iai-ahu 0.7769642 15 

deepsynth 0.7271838 16 

ajoshiusc 0.6107316 17 
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8.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. 
Please use `guides(<scale> = 

## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummy-

Task 

0.8518824 0.8529412 0.8235294 0.8970588 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 

 

8.3 References 

Wiesenfarth, M., Reinke, A., Landman, B.A., Eisenmann, M., Aguilera Saiz, L., 

Cardoso, M.J., Maier-Hein, L. and Kopp-Schneider, A. Methods and open-source 

toolkit for analyzing and visualizing challenge results. Sci Rep 11, 2369 (2021). 

https://doi.org/10.1038/s41598-021-82017-6 

M. J. A. Eugster, T. Hothorn, and F. Leisch, “Exploratory and inferential analysis 

of benchmark experiments,” Institut fuer Statistik, Ludwig-Maximilians-Universitaet 

Muenchen, Germany, Technical Report 30, 2008. [Online]. Available: 

http://epub.ub.uni-muenchen.de/4134/. 

  

https://doi.org/10.1038/s41598-021-82017-6
http://epub.ub.uni-muenchen.de/4134/


98 

9 Benchmarking report for Dice Metrics – Out of Domain 

created by challengeR v1.0.2 

07 July, 2023 

This document presents a systematic report on the benchmark study “Dice Metrics 

– Out of Domain”. Input data comprises raw metric values for all algorithms and cas-

es. Generated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

9.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 560 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Dice_mean rank 

FMRSK 0.8276876 1 

FIT_1 0.8268333 2 

BlueBrune 0.8224908 3 

symsense 0.8219764 4 

Blackbean 0.8211430 5 

NVAUTO 0.8161359 6 

dolphines 0.8159020 7 

FIT_2 0.7996354 8 

Insti-

tut_Pasteur_DBC 

0.7974522 9 

fudan_zmic 0.7884858 10 

hilab 0.7815745 11 

Sano 0.7609486 12 

Neurophet 0.6752764 13 

Uniandes 0.6206139 14 

xinlab-scut-iai-ahu 0.4099756 15 

deepsynth 0.2901309 16 

ajoshiusc 0.1816931 17 
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9.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. 
Please use `guides(<scale> = 

## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummy-

Task 

0.9722353 0.9705882 0.9558824 0.9852941 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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10 Benchmarking report for Hausdorff Metrics – Out of Domain 

created by challengeR v1.0.2 

07 July, 2023 

 

This document presents a systematic report on the benchmark study “Hausdorff 

Metrics – Out of Domain”. Input data comprises raw metric values for all algorithms 

and cases. Generated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

10.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 560 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Hausdorff_mean rank 

FMRSK 2.050589 1 

FIT_1 2.172403 2 

BlueBrune 2.282161 3 

Insti-

tut_Pasteur_DBC 

2.369508 4 

symsense 2.492404 5 

Blackbean 2.514531 6 

NVAUTO 2.752006 7 

Sano 3.943880 8 

FIT_2 4.531551 9 

dolphines 4.950009 10 

fudan_zmic 5.919579 11 

hilab 12.730408 12 

Uniandes 16.493135 13 

Neurophet 18.108315 14 

xinlab-scut-iai-ahu 27.736702 15 

deepsynth 51.078992 16 

ajoshiusc 72.020591 17 
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10.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. 
Please use `guides(<scale> = 

## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummy-

Task 

0.9721029 0.9705882 0.9558824 0.9852941 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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11 Benchmarking report for Volume Similarity Metrics – Out of 

Domain 

created by challengeR v1.0.2 

07 July, 2023 

 

This document presents a systematic report on the benchmark study “Volume Sim-

ilarity Metrics – Out of Domain”. Input data comprises raw metric values for all algo-

rithms and cases. Generated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

11.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 560 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Volume_Similarity_mean rank 

FMRSK 0.9363680 1 

FIT_2 0.9165913 2 

NVAUTO 0.9161527 3 

FIT_1 0.9109040 4 

Blackbean 0.9081494 5 

BlueBrune 0.9068862 6 

symsense 0.9043084 7 

dolphines 0.9042991 8 

fudan_zmic 0.9010763 9 

Insti-

tut_Pasteur_DBC 

0.8945695 10 

hilab 0.8927971 11 

Sano 0.8549389 12 

Uniandes 0.7914127 13 

Neurophet 0.7784528 14 

xinlab-scut-iai-ahu 0.6847400 15 

deepsynth 0.4811447 16 

ajoshiusc 0.3487719 17 
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11.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 

 
  



118 

Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. 
Please use `guides(<scale> = 

## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummy-

Task 

0.9610882 0.9705882 0.9411765 0.9705882 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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12 Evaluation Metrics per Label 

The following figures were created by the ChallengeR Tool, but were edited for 

brevity. To obtain the full ChallengeR reports by label, contact the authors.  
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12.1 Global Evaluation Metrics per Label 

Dice Similarity Coefficient 

External Cerebrospinal Fluid 

 Dice_mean rank 

BlueBrune 0.8002536 1 

FIT_1 0.8002142 2 

symsense 0.7996112 3 

Blackbean 0.7975261 4 

NVAUTO 0.7942006 5 

hilab 0.7940044 6 

dolphines 0.7883823 7 

fudan_zmic 0.7853473 8 

FIT_2 0.7806497 9 

FMRSK 0.7754985 10 
Institut_Pasteur_DBC 0.7738600 11 

Neurophet 0.7552054 12 

Uniandes 0.6863355 13 

Sano 0.6808355 14 

deepsynth 0.5570726 15 

ajoshiusc 0.4753010 16 

xinlab-scut-iai-ahu 0.4186531 17 
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Grey Matter 

 Dice_mean rank 

NVAUTO 0.7465990 1 

FIT_1 0.7390611 2 

Blackbean 0.7322551 3 

FMRSK 0.7322542 4 

symsense 0.7316994 5 

BlueBrune 0.7311050 6 
dolphines 0.7260992 7 

FIT_2 0.7213431 8 

hilab 0.7168561 9 

fudan_zmic 0.7167084 10 

Neurophet 0.6982392 11 

Institut_Pasteur_DBC 0.6978033 12 

Uniandes 0.6600978 13 

Sano 0.6377675 14 

deepsynth 0.4188469 15 

xinlab-scut-iai-ahu 0.4143335 16 

ajoshiusc 0.3460518 17 
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White Matter 

 Dice_mean rank 

FIT_1 0.8886578 1 

NVAUTO 0.8874888 2 

symsense 0.8871385 3 

Blackbean 0.8861978 4 

BlueBrune 0.8851404 5 

dolphines 0.8820585 6 
FMRSK 0.8813707 7 

fudan_zmic 0.8767395 8 

FIT_2 0.8756532 9 

hilab 0.8665794 10 

Institut_Pasteur_DBC 0.8645161 11 

Neurophet 0.8396351 12 

Sano 0.7976742 13 

Uniandes 0.7865351 14 

xinlab-scut-iai-ahu 0.6476109 15 

deepsynth 0.5587658 16 

ajoshiusc 0.4817301 17 
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Ventricles 

 Dice_mean rank 

FIT_1 0.8669385 1 

symsense 0.8668682 2 

NVAUTO 0.8646941 3 

Blackbean 0.8636322 4 

BlueBrune 0.8623484 5 

fudan_zmic 0.8569926 6 
hilab 0.8554609 7 

FMRSK 0.8526819 8 

dolphines 0.8516589 9 

Institut_Pasteur_DBC 0.8479540 10 

FIT_2 0.8249273 11 

Neurophet 0.8001492 12 

Sano 0.7968522 13 

Uniandes 0.7078457 14 

xinlab-scut-iai-ahu 0.5577158 15 

deepsynth 0.5027161 16 

ajoshiusc 0.2791750 17 
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Cerebellum 

 Dice_mean rank 

FIT_1 0.8616184 1 

BlueBrune 0.8596306 2 

symsense 0.8580273 3 

Blackbean 0.8567526 4 

dolphines 0.8547840 5 

FMRSK 0.8495308 6 
NVAUTO 0.8379790 7 

FIT_2 0.8282533 8 

Institut_Pasteur_DBC 0.8219894 9 

fudan_zmic 0.8066828 10 

Sano 0.7431538 11 

Neurophet 0.7424658 12 

hilab 0.7242887 13 

Uniandes 0.6628640 14 

xinlab-scut-iai-ahu 0.4366765 15 

deepsynth 0.3205607 16 

ajoshiusc 0.2580985 17 
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Deep Grey Matter 

 Dice_mean rank 

FIT_1 0.7970376 1 

Blackbean 0.7921152 2 

symsense 0.7919593 3 

NVAUTO 0.7899541 4 

BlueBrune 0.7890816 5 

FMRSK 0.7858984 6 
dolphines 0.7840985 7 

FIT_2 0.7823788 8 

fudan_zmic 0.7682912 9 

Institut_Pasteur_DBC 0.7655669 10 

hilab 0.7654387 11 

Sano 0.6987481 12 

Neurophet 0.6901062 13 

Uniandes 0.6270504 14 

xinlab-scut-iai-ahu 0.5547655 15 

deepsynth 0.3713239 16 

ajoshiusc 0.1719423 17 
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Brainstem 

 Dice_mean rank 

FMRSK 0.7804857 1 

FIT_2 0.7732864 2 

FIT_1 0.7587051 3 

symsense 0.7579639 4 

BlueBrune 0.7567531 5 

Blackbean 0.7557665 6 
dolphines 0.7547676 7 

NVAUTO 0.7501320 8 

Institut_Pasteur_DBC 0.7489135 9 

fudan_zmic 0.7066320 10 

hilab 0.6922677 11 

Neurophet 0.6499254 12 

Sano 0.6108436 13 

Uniandes 0.4339832 14 

xinlab-scut-iai-ahu 0.4288033 15 

deepsynth 0.3050998 16 

ajoshiusc 0.2172425 17 
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95th percentile Hausdorff Distance 

External Cerebrospinal Fluid 

 Hausdorff_mean rank 

FIT_2 2.007029 1 

Institut_Pasteur_DBC 2.310762 2 

NVAUTO 2.683908 3 

BlueBrune 2.716403 4 

FMRSK 2.733759 5 

FIT_1 2.840592 6 
symsense 3.042505 7 

Blackbean 3.128235 8 

hilab 3.260556 9 

fudan_zmic 3.705524 10 

dolphines 4.587188 11 

Uniandes 5.265143 12 

Neurophet 5.684216 13 

Sano 6.540178 14 

deepsynth 14.186533 15 

xinlab-scut-iai-ahu 15.411957 16 

ajoshiusc 16.757040 17 
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Grey Matter 

 Hausdorff_mean rank 

FIT_2 1.324447 1 

FIT_1 1.466889 2 

NVAUTO 1.471739 3 

BlueBrune 1.509236 4 

Blackbean 1.518263 5 

FMRSK 1.522801 6 
symsense 1.530787 7 

Institut_Pasteur_DBC 1.705699 8 

hilab 1.835026 9 

dolphines 2.692176 10 

fudan_zmic 3.025552 11 

Uniandes 3.563289 12 

Neurophet 4.982318 13 

Sano 5.539338 14 

xinlab-scut-iai-ahu 14.806309 15 

deepsynth 26.390935 16 

ajoshiusc 27.821770 17 
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White Matter 

 Hausdorff_mean rank 

FIT_2 1.663723 1 

FIT_1 1.731898 2 

Blackbean 1.787248 3 

symsense 1.793332 4 

NVAUTO 1.826043 5 

FMRSK 1.826570 6 
BlueBrune 1.833102 7 

Institut_Pasteur_DBC 1.936338 8 

hilab 2.580569 9 

fudan_zmic 3.900536 10 

dolphines 3.951597 11 

Uniandes 4.757142 12 

Neurophet 5.459811 13 

Sano 5.925676 14 

xinlab-scut-iai-ahu 14.380733 15 

deepsynth 17.517663 16 

ajoshiusc 29.377441 17 
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Ventricles 

 Hausdorff_mean rank 

FIT_1 1.278630 1 

BlueBrune 1.355978 2 

hilab 1.531157 3 

NVAUTO 1.564612 4 

FMRSK 1.571398 5 

symsense 1.719535 6 
Blackbean 1.843204 7 

Institut_Pasteur_DBC 1.862322 8 

fudan_zmic 3.031148 9 

FIT_2 3.423573 10 

dolphines 4.324883 11 

Sano 5.289352 12 

Neurophet 7.347408 13 

Uniandes 7.702073 14 

deepsynth 16.979665 15 

xinlab-scut-iai-ahu 19.254743 16 

ajoshiusc 94.309559 17 
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Cerebellum 

 Hausdorff_mean rank 

FIT_1 1.756305 1 

Blackbean 1.828592 2 

BlueBrune 1.840775 3 

Institut_Pasteur_DBC 1.994657 4 

NVAUTO 2.397171 5 

FMRSK 2.497374 6 
symsense 3.108596 7 

dolphines 5.069591 8 

FIT_2 7.422129 9 

fudan_zmic 7.906044 10 

Sano 10.087596 11 

Neurophet 10.673282 12 

Uniandes 18.745689 13 

hilab 42.248560 14 

xinlab-scut-iai-ahu 44.732221 15 

ajoshiusc 64.650575 16 

deepsynth 70.043637 17 

 

 
 

 

 



135 

Deep Grey Matter 

 Hausdorff_mean rank 

FIT_1 3.141916 1 

symsense 3.172609 2 

Blackbean 3.210812 3 

BlueBrune 3.277840 4 

FMRSK 3.290733 5 

Institut_Pasteur_DBC 3.428397 6 
NVAUTO 3.889540 7 

dolphines 4.609755 8 

FIT_2 5.017189 9 

fudan_zmic 5.760197 10 

Sano 8.962917 11 

Uniandes 11.831873 12 

Neurophet 12.841321 13 

xinlab-scut-iai-ahu 20.594101 14 

hilab 21.215602 15 

deepsynth 26.387147 16 

ajoshiusc 137.363660 17 
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Brainstem 

 Hausdorff_mean rank 

FIT_2 3.088323 1 

FMRSK 3.319428 2 

Institut_Pasteur_DBC 3.469085 3 

BlueBrune 4.108818 4 

FIT_1 4.209740 5 

Blackbean 4.228637 6 
symsense 4.255712 7 

NVAUTO 4.422046 8 

fudan_zmic 5.711710 9 

dolphines 6.409475 10 

Sano 7.855387 11 

hilab 18.384073 12 

Neurophet 25.027032 13 

ajoshiusc 25.905584 14 

Uniandes 27.697947 15 

xinlab-scut-iai-ahu 32.868111 16 

deepsynth 85.064616 17 
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Volume Similarity 

External Cerebrospinal Fluid 

 Volume_Similarity_mean rank 

BlueBrune 0.9181480 1 

Institut_Pasteur_DBC 0.9172483 2 

NVAUTO 0.9164660 3 

fudan_zmic 0.9139644 4 

symsense 0.9133753 5 

FIT_1 0.9129024 6 
Blackbean 0.9123308 7 

FMRSK 0.9105632 8 

dolphines 0.9101116 9 

hilab 0.9001898 10 

FIT_2 0.8992279 11 

Neurophet 0.8862415 12 

Uniandes 0.8406884 13 

Sano 0.8112722 14 

deepsynth 0.7908622 15 

ajoshiusc 0.7049072 16 

xinlab-scut-iai-ahu 0.6709563 17 
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Grey Matter 

 Volume_Similarity_mean rank 

NVAUTO 0.9493876 1 

Uniandes 0.9463811 2 

FIT_2 0.9325960 3 

FMRSK 0.9185032 4 

FIT_1 0.9154207 5 

Neurophet 0.9136929 6 
fudan_zmic 0.9119098 7 

dolphines 0.9114815 8 

Blackbean 0.9110063 9 

BlueBrune 0.9093676 10 

Institut_Pasteur_DBC 0.9041263 11 

symsense 0.9035745 12 

hilab 0.8811402 13 

Sano 0.8521231 14 

xinlab-scut-iai-ahu 0.7920461 15 

deepsynth 0.6377564 16 

ajoshiusc 0.5880742 17 
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White Matter 

 Volume_Similarity_mean rank 

FMRSK 0.9677088 1 

FIT_2 0.9670448 2 

NVAUTO 0.9637872 3 

Institut_Pasteur_DBC 0.9571928 4 

Blackbean 0.9554196 5 

FIT_1 0.9554103 6 
BlueBrune 0.9552884 7 

symsense 0.9550764 8 

hilab 0.9548579 9 

dolphines 0.9546843 10 

fudan_zmic 0.9484207 11 

Uniandes 0.9469805 12 

Neurophet 0.9332439 13 

Sano 0.8761791 14 

xinlab-scut-iai-ahu 0.8232146 15 

deepsynth 0.7630108 16 

ajoshiusc 0.5630531 17 
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Ventricles 

 Volume_Similarity_mean rank 

NVAUTO 0.9531792 1 

symsense 0.9489486 2 

fudan_zmic 0.9485503 3 

FIT_1 0.9477089 4 

Blackbean 0.9466208 5 

BlueBrune 0.9463388 6 
Institut_Pasteur_DBC 0.9439894 7 

dolphines 0.9360979 8 

FMRSK 0.9349780 9 

FIT_2 0.9315541 10 

hilab 0.9256832 11 

Neurophet 0.8885335 12 

Sano 0.8813197 13 

Uniandes 0.8609946 14 

xinlab-scut-iai-ahu 0.7104980 15 

deepsynth 0.6432755 16 

ajoshiusc 0.3401671 17 
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Cerebellum 

 Volume_Similarity_mean rank 

FMRSK 0.9236694 1 

FIT_1 0.9236319 2 

BlueBrune 0.9229350 3 

Blackbean 0.9219461 4 

dolphines 0.9208316 5 

symsense 0.9199382 6 
FIT_2 0.9129599 7 

fudan_zmic 0.8992646 8 

NVAUTO 0.8971479 9 

Institut_Pasteur_DBC 0.8911547 10 

Sano 0.8248674 11 

hilab 0.8045768 12 

Neurophet 0.7903950 13 

Uniandes 0.7812908 14 

xinlab-scut-iai-ahu 0.6697599 15 

deepsynth 0.4530265 16 

ajoshiusc 0.4287538 17 
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Deep Grey Matter 

 Volume_Similarity_mean rank 

FIT_2 0.8731193 1 

hilab 0.8656961 2 

NVAUTO 0.8643086 3 

FMRSK 0.8634168 4 

FIT_1 0.8627724 5 

Blackbean 0.8611927 6 
fudan_zmic 0.8563904 7 

symsense 0.8556097 8 

dolphines 0.8512317 9 

BlueBrune 0.8509714 10 

Institut_Pasteur_DBC 0.8321411 11 

Uniandes 0.7850371 12 

Sano 0.7690705 13 

Neurophet 0.7530849 14 

xinlab-scut-iai-ahu 0.7188615 15 

deepsynth 0.5323868 16 

ajoshiusc 0.1948204 17 
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Brainstem 

 Volume_Similarity_mean rank 

FMRSK 0.9183866 1 

FIT_2 0.8764088 2 

hilab 0.8734426 3 

Institut_Pasteur_DBC 0.8631117 4 

NVAUTO 0.8619337 5 

symsense 0.8534867 6 
BlueBrune 0.8530674 7 

FIT_1 0.8527837 8 

dolphines 0.8519354 9 

Blackbean 0.8515866 10 

fudan_zmic 0.8421453 11 

Neurophet 0.7394286 12 

xinlab-scut-iai-ahu 0.7306282 13 

Sano 0.7067502 14 

ajoshiusc 0.5384863 15 

Uniandes 0.5351554 16 

deepsynth 0.4088315 17 
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12.2 In-Domain Evaluation Metrics per Label 

Dice Similarity Coefficient 

External Cerebrospinal Fluid 

 Dice_mean rank 

BlueBrune 0.7686780 1 

Neurophet 0.7685598 2 

symsense 0.7672718 3 

FIT_1 0.7666795 4 

NVAUTO 0.7659438 5 

Blackbean 0.7655063 6 

dolphines 0.7562437 7 

hilab 0.7548995 8 

fudan_zmic 0.7548893 9 

FIT_2 0.7528382 10 
Institut_Pasteur_DBC 0.7475852 11 

FMRSK 0.7357067 12 

Uniandes 0.6881726 13 

deepsynth 0.6297376 14 

Sano 0.6199991 15 

ajoshiusc 0.5269903 16 

xinlab-scut-iai-ahu 0.4745736 17 
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Grey Matter 

 Dice_mean rank 

FIT_1 0.7263488 1 

NVAUTO 0.7249598 2 

Neurophet 0.7237017 3 

symsense 0.7217628 4 

Blackbean 0.7215964 5 

BlueBrune 0.7194684 6 
dolphines 0.7133646 7 

hilab 0.7126315 8 

FIT_2 0.7122103 9 

fudan_zmic 0.7115305 10 

FMRSK 0.7052036 11 

Institut_Pasteur_DBC 0.6860686 12 

Uniandes 0.6420362 13 

Sano 0.5633247 14 

deepsynth 0.4930486 15 

xinlab-scut-iai-ahu 0.4518581 16 

ajoshiusc 0.4414023 17 
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White Matter 

 Dice_mean rank 

FIT_1 0.8845329 1 

symsense 0.8830143 2 

Blackbean 0.8821324 3 

NVAUTO 0.8818510 4 

BlueBrune 0.8799348 5 

Neurophet 0.8783639 6 
dolphines 0.8783167 7 

fudan_zmic 0.8740668 8 

FMRSK 0.8734803 9 

FIT_2 0.8734289 10 

hilab 0.8695814 11 

Institut_Pasteur_DBC 0.8572237 12 

Uniandes 0.7630115 13 

xinlab-scut-iai-ahu 0.7581536 14 

Sano 0.7177692 15 

deepsynth 0.6507174 16 

ajoshiusc 0.5778724 17 
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Ventricles 

 Dice_mean rank 

NVAUTO 0.8892620 1 

symsense 0.8890340 2 

FIT_1 0.8879099 3 

Blackbean 0.8874693 4 

Neurophet 0.8869914 5 

BlueBrune 0.8850628 6 
fudan_zmic 0.8840325 7 

hilab 0.8810722 8 

dolphines 0.8801130 9 

Institut_Pasteur_DBC 0.8779373 10 

FIT_2 0.8767312 11 

FMRSK 0.8756877 12 

Sano 0.7802861 13 

Uniandes 0.7702485 14 

deepsynth 0.7048879 15 

xinlab-scut-iai-ahu 0.7005004 16 

ajoshiusc 0.4640130 17 
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Cerebellum 

 Dice_mean rank 

NVAUTO 0.8354476 1 

Neurophet 0.8347703 2 

FIT_1 0.8315482 3 

BlueBrune 0.8291744 4 

symsense 0.8289905 5 

Blackbean 0.8272752 6 
FIT_2 0.8270983 7 

dolphines 0.8261006 8 

FMRSK 0.8179780 9 

Institut_Pasteur_DBC 0.8069207 10 

fudan_zmic 0.7959490 11 

Uniandes 0.7080635 12 

Sano 0.6809247 13 

hilab 0.6729231 14 

deepsynth 0.5425873 15 

xinlab-scut-iai-ahu 0.5172309 16 

ajoshiusc 0.4643438 17 
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Deep Grey Matter 

 Dice_mean rank 

FIT_1 0.7672281 1 

symsense 0.7653231 2 

Blackbean 0.7647831 3 

NVAUTO 0.7626383 4 

Neurophet 0.7610775 5 

FIT_2 0.7605443 6 
BlueBrune 0.7591993 7 

dolphines 0.7555571 8 

fudan_zmic 0.7553751 9 

FMRSK 0.7502340 10 

hilab 0.7484796 11 

Institut_Pasteur_DBC 0.7413080 12 

xinlab-scut-iai-ahu 0.6673670 13 

Uniandes 0.6620491 14 

Sano 0.6197778 15 

deepsynth 0.5283210 16 

ajoshiusc 0.3363208 17 
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Brainstem 

 Dice_mean rank 

symsense 0.7773051 1 

FIT_2 0.7726848 2 

FIT_1 0.7723850 3 

Blackbean 0.7717269 4 

Neurophet 0.7710532 5 

BlueBrune 0.7696722 6 
NVAUTO 0.7690416 7 

FMRSK 0.7633371 8 

dolphines 0.7626881 9 

Institut_Pasteur_DBC 0.7419974 10 

fudan_zmic 0.7395436 11 

hilab 0.7191834 12 

Sano 0.6230278 13 

Uniandes 0.5515445 14 

deepsynth 0.4885560 15 

xinlab-scut-iai-ahu 0.4776047 16 

ajoshiusc 0.3762880 17 
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95th percentile Hausdorff Distance 

External Cerebrospinal Fluid 

 Hausdorff_mean rank 

FIT_2 2.550676 1 

Institut_Pasteur_DBC 2.897667 2 

Neurophet 3.337199 3 

BlueBrune 3.597053 4 

fudan_zmic 3.642080 5 

FMRSK 3.877877 6 
NVAUTO 3.955686 7 

symsense 4.144267 8 

Blackbean 4.175199 9 

FIT_1 4.366167 10 

Uniandes 4.826249 11 

dolphines 5.069797 12 

hilab 5.079362 13 

deepsynth 8.299171 14 

xinlab-scut-iai-ahu 9.569984 15 

Sano 10.509291 16 

ajoshiusc 11.549493 17 
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Grey Matter 

 Hausdorff_mean rank 

NVAUTO 1.363050 1 

FIT_2 1.412666 2 

Institut_Pasteur_DBC 1.458434 3 

Blackbean 1.463699 4 

FMRSK 1.464376 5 

FIT_1 1.466031 6 
BlueBrune 1.514074 7 

symsense 1.514167 8 

Neurophet 1.562734 9 

fudan_zmic 1.663988 10 

hilab 1.811408 11 

Uniandes 2.363587 12 

dolphines 2.566244 13 

xinlab-scut-iai-ahu 9.023032 14 

Sano 9.271346 15 

deepsynth 14.372962 16 

ajoshiusc 24.888738 17 
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White Matter 

 Hausdorff_mean rank 

NVAUTO 1.598410 1 

FIT_1 1.637384 2 

Institut_Pasteur_DBC 1.677778 3 

Blackbean 1.703644 4 

symsense 1.735831 5 

FMRSK 1.759075 6 
FIT_2 1.763586 7 

BlueBrune 1.835771 8 

Neurophet 1.893040 9 

fudan_zmic 2.300537 10 

hilab 2.609709 11 

Uniandes 3.052682 12 

dolphines 3.052907 13 

xinlab-scut-iai-ahu 9.003149 14 

Sano 9.609853 15 

deepsynth 11.123079 16 

ajoshiusc 29.318986 17 
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Ventricles 

 Hausdorff_mean rank 

FIT_1 1.160982 1 

NVAUTO 1.161848 2 

symsense 1.182994 3 

Blackbean 1.197736 4 

BlueBrune 1.203656 5 

Neurophet 1.287276 6 
hilab 1.338571 7 

FMRSK 1.347198 8 

Institut_Pasteur_DBC 1.361136 9 

FIT_2 1.516389 10 

fudan_zmic 2.171975 11 

dolphines 3.237673 12 

Uniandes 4.589975 13 

Sano 8.203408 14 

deepsynth 10.833369 15 

xinlab-scut-iai-ahu 13.851894 16 

ajoshiusc 70.784358 17 
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Cerebellum 

 Hausdorff_mean rank 

Blackbean 1.744056 1 

Neurophet 1.747662 2 

NVAUTO 1.773582 3 

BlueBrune 1.786421 4 

FIT_1 1.786947 5 

FIT_2 1.864141 6 
Institut_Pasteur_DBC 1.952694 7 

FMRSK 3.102060 8 

symsense 4.092692 9 

dolphines 4.452882 10 

fudan_zmic 6.458242 11 

Uniandes 8.678721 12 

Sano 15.465972 13 

deepsynth 31.286949 14 

ajoshiusc 34.073063 15 

xinlab-scut-iai-ahu 39.960761 16 

hilab 43.174712 17 
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Deep Grey Matter 

 Hausdorff_mean rank 

FIT_1 3.527885 1 

symsense 3.533101 2 

Blackbean 3.545642 3 

FIT_2 3.567668 4 

NVAUTO 3.610600 5 

BlueBrune 3.686621 6 
Neurophet 3.707675 7 

Institut_Pasteur_DBC 3.786003 8 

FMRSK 3.870988 9 

fudan_zmic 4.373367 10 

dolphines 4.717370 11 

Uniandes 7.442582 12 

Sano 11.782041 13 

deepsynth 13.463711 14 

xinlab-scut-iai-ahu 18.490138 15 

hilab 20.111739 16 

ajoshiusc 96.340616 17 
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Brainstem 

 Hausdorff_mean rank 

FIT_2 3.496845 1 

symsense 3.596271 2 

Blackbean 3.658285 3 

BlueBrune 3.685579 4 

Institut_Pasteur_DBC 3.694259 5 

FIT_1 3.699724 6 
Neurophet 3.736987 7 

FMRSK 3.748431 8 

NVAUTO 3.782899 9 

fudan_zmic 4.034180 10 

dolphines 5.542392 11 

Sano 7.951822 12 

Uniandes 12.720568 13 

hilab 18.872729 14 

ajoshiusc 21.271864 15 

xinlab-scut-iai-ahu 30.040479 16 

deepsynth 66.208206 17 
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Volume Similarity 

External Cerebrospinal Fluid 

 Volume_Similarity_mean rank 

Institut_Pasteur_DBC 0.9085632 1 

FIT_2 0.9065663 2 

BlueBrune 0.8921795 3 

Neurophet 0.8893738 4 

NVAUTO 0.8877628 5 

fudan_zmic 0.8828154 6 
Blackbean 0.8822232 7 

symsense 0.8810547 8 

FIT_1 0.8807766 9 

dolphines 0.8803072 10 

FMRSK 0.8704519 11 

deepsynth 0.8622139 12 

hilab 0.8538392 13 

Uniandes 0.8353976 14 

ajoshiusc 0.7865949 15 

Sano 0.7465081 16 

xinlab-scut-iai-ahu 0.7392403 17 
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Grey Matter 

 Volume_Similarity_mean rank 

FIT_1 0.9530493 1 

BlueBrune 0.9527876 2 

NVAUTO 0.9514285 3 

dolphines 0.9508445 4 

Blackbean 0.9502379 5 

symsense 0.9467269 6 
Neurophet 0.9467147 7 

fudan_zmic 0.9463077 8 

Institut_Pasteur_DBC 0.9433058 9 

Uniandes 0.9408114 10 

hilab 0.9333762 11 

FIT_2 0.9292147 12 

FMRSK 0.9009435 13 

xinlab-scut-iai-ahu 0.8273008 14 

Sano 0.8254385 15 

deepsynth 0.7229728 16 

ajoshiusc 0.6822188 17 
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White Matter 

 Volume_Similarity_mean rank 

FMRSK 0.9756578 1 

NVAUTO 0.9721781 2 

hilab 0.9687652 3 

FIT_2 0.9679916 4 

FIT_1 0.9674281 5 

Neurophet 0.9672782 6 
Institut_Pasteur_DBC 0.9670964 7 

Blackbean 0.9667710 8 

BlueBrune 0.9666252 9 

symsense 0.9659575 10 

dolphines 0.9658533 11 

fudan_zmic 0.9621530 12 

Uniandes 0.9380243 13 

xinlab-scut-iai-ahu 0.8769402 14 

deepsynth 0.8385679 15 

Sano 0.7977872 16 

ajoshiusc 0.6463211 17 
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Ventricles 

 Volume_Similarity_mean rank 

NVAUTO 0.9702868 1 

Neurophet 0.9661515 2 

fudan_zmic 0.9632481 3 

symsense 0.9621225 4 

FIT_2 0.9616560 5 

Blackbean 0.9602027 6 
dolphines 0.9590036 7 

FIT_1 0.9588118 8 

Institut_Pasteur_DBC 0.9585284 9 

BlueBrune 0.9580399 10 

FMRSK 0.9550511 11 

hilab 0.9420679 12 

Uniandes 0.8782691 13 

Sano 0.8577305 14 

deepsynth 0.8211856 15 

xinlab-scut-iai-ahu 0.7863451 16 

ajoshiusc 0.5103154 17 
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Cerebellum 

 Volume_Similarity_mean rank 

NVAUTO 0.8997494 1 

FIT_1 0.8931584 2 

FMRSK 0.8922363 3 

BlueBrune 0.8913910 4 

symsense 0.8911255 5 

dolphines 0.8904698 6 
Blackbean 0.8896161 7 

FIT_2 0.8882053 8 

Neurophet 0.8879441 9 

Institut_Pasteur_DBC 0.8832012 10 

fudan_zmic 0.8795568 11 

Uniandes 0.8335002 12 

Sano 0.7809725 13 

hilab 0.7520474 14 

xinlab-scut-iai-ahu 0.7026824 15 

deepsynth 0.6633126 16 

ajoshiusc 0.6296582 17 
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Deep Grey Matter 

 Volume_Similarity_mean rank 

symsense 0.8298686 1 

NVAUTO 0.8296028 2 

Blackbean 0.8287232 3 

FIT_1 0.8279880 4 

fudan_zmic 0.8239713 5 

Neurophet 0.8210637 6 
FIT_2 0.8191854 7 

dolphines 0.8186769 8 

BlueBrune 0.8183607 9 

hilab 0.8161053 10 

Institut_Pasteur_DBC 0.8156715 11 

FMRSK 0.8121560 12 

Uniandes 0.7777304 13 

xinlab-scut-iai-ahu 0.7697305 14 

Sano 0.7014797 15 

deepsynth 0.5953164 16 

ajoshiusc 0.3616672 17 

 

 
 

 

 



164 

Brainstem 

 Volume_Similarity_mean rank 

FMRSK 0.9133793 1 

FIT_2 0.8968626 2 

hilab 0.8953920 3 

symsense 0.8930038 4 

NVAUTO 0.8883429 5 

Blackbean 0.8853860 6 
BlueBrune 0.8846456 7 

FIT_1 0.8837207 8 

Neurophet 0.8815451 9 

Institut_Pasteur_DBC 0.8795756 10 

dolphines 0.8774987 11 

fudan_zmic 0.8757044 12 

Sano 0.7486758 13 

xinlab-scut-iai-ahu 0.7365100 14 

ajoshiusc 0.6583459 15 

Uniandes 0.6494336 16 

deepsynth 0.5867176 17 
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12.3 Out-of-Domain Evaluation Metrics per Label 

Dice Similarity Coefficient 

External Cerebrospinal Fluid 

 Dice_mean rank 

FIT_1 0.8337490 1 

hilab 0.8331093 2 

symsense 0.8319507 3 

BlueBrune 0.8318292 4 

Blackbean 0.8295458 5 

NVAUTO 0.8224574 6 

dolphines 0.8205208 7 

fudan_zmic 0.8158054 8 

FMRSK 0.8152904 9 

FIT_2 0.8084611 10 
Institut_Pasteur_DBC 0.8001349 11 

Neurophet 0.7418510 12 

Sano 0.7416720 13 

Uniandes 0.6844984 14 

deepsynth 0.4844075 15 

ajoshiusc 0.4236117 16 

xinlab-scut-iai-ahu 0.3627327 17 
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Grey Matter 

 Dice_mean rank 

NVAUTO 0.7682381 1 

FMRSK 0.7593048 2 

FIT_1 0.7517735 3 

Blackbean 0.7429138 4 

BlueBrune 0.7427417 5 

symsense 0.7416361 6 
dolphines 0.7388338 7 

FIT_2 0.7304760 8 

fudan_zmic 0.7218863 9 

hilab 0.7210807 10 

Sano 0.7122103 11 

Institut_Pasteur_DBC 0.7095380 12 

Uniandes 0.6781594 13 

Neurophet 0.6727766 14 

xinlab-scut-iai-ahu 0.3768089 15 

deepsynth 0.3446453 16 

ajoshiusc 0.2507014 17 
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White Matter 

 Dice_mean rank 

NVAUTO 0.8931265 1 

FIT_1 0.8927828 2 

symsense 0.8912627 3 

BlueBrune 0.8903460 4 

Blackbean 0.8902632 5 

FMRSK 0.8892611 6 
dolphines 0.8858002 7 

fudan_zmic 0.8794122 8 

FIT_2 0.8778776 9 

Sano 0.8775791 10 

Institut_Pasteur_DBC 0.8718085 11 

hilab 0.8635775 12 

Uniandes 0.8100587 13 

Neurophet 0.8009063 14 

xinlab-scut-iai-ahu 0.5370683 15 

deepsynth 0.4668142 16 

ajoshiusc 0.3855877 17 
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Ventricles 

 Dice_mean rank 

FIT_1 0.8459670 1 

symsense 0.8447024 2 

NVAUTO 0.8401262 3 

Blackbean 0.8397951 4 

BlueBrune 0.8396340 5 

fudan_zmic 0.8299527 6 
hilab 0.8298495 7 

FMRSK 0.8296761 8 

dolphines 0.8232049 9 

Institut_Pasteur_DBC 0.8179707 10 

Sano 0.8134183 11 

FIT_2 0.7731233 12 

Neurophet 0.7133069 13 

Uniandes 0.6454430 14 

xinlab-scut-iai-ahu 0.4149313 15 

deepsynth 0.3005444 16 

ajoshiusc 0.0943369 17 
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Cerebellum 

 Dice_mean rank 

FIT_1 0.8916886 1 

BlueBrune 0.8900868 2 

symsense 0.8870642 3 

Blackbean 0.8862300 4 

dolphines 0.8834674 5 

FMRSK 0.8810837 6 
NVAUTO 0.8405104 7 

Institut_Pasteur_DBC 0.8370581 8 

FIT_2 0.8294083 9 

fudan_zmic 0.8174166 10 

Sano 0.8053829 11 

hilab 0.7756544 12 

Neurophet 0.6501613 13 

Uniandes 0.6176645 14 

xinlab-scut-iai-ahu 0.3561221 15 

deepsynth 0.0985342 16 

ajoshiusc 0.0518532 17 
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Deep Grey Matter 

 Dice_mean rank 

FIT_1 0.8268471 1 

FMRSK 0.8215627 2 

Blackbean 0.8194472 3 

BlueBrune 0.8189640 4 

symsense 0.8185955 5 

NVAUTO 0.8172699 6 
dolphines 0.8126398 7 

FIT_2 0.8042133 8 

Institut_Pasteur_DBC 0.7898259 9 

hilab 0.7823978 10 

fudan_zmic 0.7812073 11 

Sano 0.7777184 12 

Neurophet 0.6191348 13 

Uniandes 0.5920517 14 

xinlab-scut-iai-ahu 0.4421640 15 

deepsynth 0.2143268 16 

ajoshiusc 0.0075639 17 
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Brainstem 

 Dice_mean rank 

FMRSK 0.7976343 1 

FIT_2 0.7738880 2 

Institut_Pasteur_DBC 0.7558296 3 

dolphines 0.7468470 4 

FIT_1 0.7450253 5 

BlueBrune 0.7438340 6 
Blackbean 0.7398061 7 

symsense 0.7386228 8 

NVAUTO 0.7312224 9 

fudan_zmic 0.6737203 10 

hilab 0.6653521 11 

Sano 0.5986593 12 

Neurophet 0.5287977 13 

xinlab-scut-iai-ahu 0.3800020 14 

Uniandes 0.3164218 15 

deepsynth 0.1216436 16 

ajoshiusc 0.0581970 17 
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95th percentile Hausdorff Distance 

External Cerebrospinal Fluid 

 Hausdorff_mean rank 

FIT_1 1.315017 1 

NVAUTO 1.412130 2 

hilab 1.441750 3 

FIT_2 1.463382 4 

FMRSK 1.589641 5 

Institut_Pasteur_DBC 1.723857 6 
BlueBrune 1.835754 7 

symsense 1.940743 8 

Blackbean 2.081272 9 

Sano 2.571066 10 

fudan_zmic 3.768968 11 

dolphines 4.104579 12 

Uniandes 5.704037 13 

Neurophet 8.031233 14 

deepsynth 20.073895 15 

xinlab-scut-iai-ahu 21.253929 16 

ajoshiusc 21.964587 17 
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Grey Matter 

 Hausdorff_mean rank 

FIT_2 1.236228 1 

FIT_1 1.467746 2 

BlueBrune 1.504399 3 

symsense 1.547406 4 

Blackbean 1.572826 5 

NVAUTO 1.580428 6 
FMRSK 1.581225 7 

Sano 1.807330 8 

hilab 1.858643 9 

Institut_Pasteur_DBC 1.952965 10 

dolphines 2.818108 11 

fudan_zmic 4.387116 12 

Uniandes 4.762992 13 

Neurophet 8.401903 14 

xinlab-scut-iai-ahu 20.589585 15 

ajoshiusc 30.754803 16 

deepsynth 38.408908 17 
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White Matter 

 Hausdorff_mean rank 

FIT_2 1.563861 1 

FIT_1 1.826411 2 

BlueBrune 1.830433 3 

symsense 1.850833 4 

Blackbean 1.870851 5 

FMRSK 1.894066 6 
NVAUTO 2.053675 7 

Institut_Pasteur_DBC 2.194898 8 

Sano 2.241500 9 

hilab 2.551430 10 

dolphines 4.850287 11 

fudan_zmic 5.500536 12 

Uniandes 6.461602 13 

Neurophet 9.026583 14 

xinlab-scut-iai-ahu 19.758316 15 

deepsynth 23.912247 16 

ajoshiusc 29.435896 17 
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Ventricles 

 Hausdorff_mean rank 

FIT_1 1.396277 1 

BlueBrune 1.508299 2 

hilab 1.723743 3 

FMRSK 1.795598 4 

NVAUTO 1.967377 5 

symsense 2.256076 6 
Institut_Pasteur_DBC 2.363509 7 

Sano 2.375296 8 

Blackbean 2.488673 9 

fudan_zmic 3.890320 10 

FIT_2 5.330758 11 

dolphines 5.412092 12 

Uniandes 10.814170 13 

Neurophet 13.407540 14 

deepsynth 23.125961 15 

xinlab-scut-iai-ahu 24.657591 16 

ajoshiusc 117.834760 17 
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Cerebellum 

 Hausdorff_mean rank 

FIT_1 1.725663 1 

FMRSK 1.892687 2 

BlueBrune 1.895130 3 

Blackbean 1.913128 4 

Institut_Pasteur_DBC 2.036621 5 

symsense 2.124500 6 
NVAUTO 3.020760 7 

Sano 4.709219 8 

dolphines 5.686301 9 

fudan_zmic 9.353846 10 

FIT_2 12.980117 11 

Neurophet 19.598903 12 

Uniandes 28.812656 13 

hilab 41.322407 14 

xinlab-scut-iai-ahu 49.503681 15 

ajoshiusc 95.228086 16 

deepsynth 108.800325 17 
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Deep Grey Matter 

 Hausdorff_mean rank 

FMRSK 2.710479 1 

FIT_1 2.755947 2 

symsense 2.812116 3 

BlueBrune 2.869058 4 

Blackbean 2.875981 5 

Institut_Pasteur_DBC 3.070791 6 
NVAUTO 4.168480 7 

dolphines 4.502141 8 

Sano 6.143795 9 

FIT_2 6.466709 10 

fudan_zmic 7.147026 11 

Uniandes 16.221163 12 

Neurophet 21.974968 13 

hilab 22.319464 14 

xinlab-scut-iai-ahu 22.698064 15 

deepsynth 39.310583 16 

ajoshiusc 178.386704 17 
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Brainstem 

 Hausdorff_mean rank 

FIT_2 2.679801 1 

FMRSK 2.890425 2 

Institut_Pasteur_DBC 3.243911 3 

BlueBrune 4.532057 4 

FIT_1 4.719756 5 

Blackbean 4.798987 6 
symsense 4.915153 7 

NVAUTO 5.061193 8 

dolphines 7.276558 9 

fudan_zmic 7.389241 10 

Sano 7.758951 11 

hilab 17.895417 12 

ajoshiusc 30.539303 13 

xinlab-scut-iai-ahu 35.695744 14 

Uniandes 42.675325 15 

Neurophet 46.317077 16 

deepsynth 103.921027 17 
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Volume Similarity 

External Cerebrospinal Fluid 

 Volume_Similarity_mean rank 

FMRSK 0.9506744 1 

hilab 0.9465403 2 

symsense 0.9456959 3 

NVAUTO 0.9451693 4 

fudan_zmic 0.9451134 5 

FIT_1 0.9450281 6 
BlueBrune 0.9441165 7 

Blackbean 0.9424384 8 

dolphines 0.9399160 9 

Institut_Pasteur_DBC 0.9259333 10 

FIT_2 0.8918895 11 

Neurophet 0.8831092 12 

Sano 0.8760364 13 

Uniandes 0.8459791 14 

deepsynth 0.7195105 15 

ajoshiusc 0.6232196 16 

xinlab-scut-iai-ahu 0.6026724 17 
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Grey Matter 

 Volume_Similarity_mean rank 

Uniandes 0.9519508 1 

NVAUTO 0.9473467 2 

FMRSK 0.9360629 3 

FIT_2 0.9359772 4 

Neurophet 0.8806710 5 

Sano 0.8788077 6 
FIT_1 0.8777920 7 

fudan_zmic 0.8775119 8 

dolphines 0.8721186 9 

Blackbean 0.8717747 10 

BlueBrune 0.8659476 11 

Institut_Pasteur_DBC 0.8649468 12 

symsense 0.8604222 13 

hilab 0.8289043 14 

xinlab-scut-iai-ahu 0.7567914 15 

deepsynth 0.5525400 16 

ajoshiusc 0.4939296 17 
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White Matter 

 Volume_Similarity_mean rank 

FIT_2 0.9660979 1 

FMRSK 0.9597598 2 

Uniandes 0.9559368 3 

NVAUTO 0.9553962 4 

Sano 0.9545711 5 

Institut_Pasteur_DBC 0.9472892 6 
symsense 0.9441952 7 

Blackbean 0.9440683 8 

BlueBrune 0.9439515 9 

dolphines 0.9435153 10 

FIT_1 0.9433925 11 

hilab 0.9409505 12 

fudan_zmic 0.9346883 13 

Neurophet 0.8992096 14 

xinlab-scut-iai-ahu 0.7694890 15 

deepsynth 0.6874537 16 

ajoshiusc 0.4797851 17 
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Ventricles 

 Volume_Similarity_mean rank 

FIT_1 0.9366059 1 

NVAUTO 0.9360715 2 

symsense 0.9357746 3 

BlueBrune 0.9346377 4 

fudan_zmic 0.9338525 5 

Blackbean 0.9330388 6 
Institut_Pasteur_DBC 0.9294503 7 

FMRSK 0.9149049 8 

dolphines 0.9131922 9 

hilab 0.9092984 10 

Sano 0.9049090 11 

FIT_2 0.9014521 12 

Uniandes 0.8437202 13 

Neurophet 0.8109155 14 

xinlab-scut-iai-ahu 0.6346509 15 

deepsynth 0.4653655 16 

ajoshiusc 0.1700188 17 
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Cerebellum 

 Volume_Similarity_mean rank 

FMRSK 0.9551024 1 

BlueBrune 0.9544790 2 

Blackbean 0.9542761 3 

FIT_1 0.9541054 4 

dolphines 0.9511934 5 

symsense 0.9487508 6 
FIT_2 0.9377144 7 

fudan_zmic 0.9189724 8 

Institut_Pasteur_DBC 0.8991082 9 

NVAUTO 0.8945464 10 

Sano 0.8687622 11 

hilab 0.8571062 12 

Uniandes 0.7290814 13 

Neurophet 0.6928458 14 

xinlab-scut-iai-ahu 0.6368375 15 

deepsynth 0.2427404 16 

ajoshiusc 0.2278496 17 
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Deep Grey Matter 

 Volume_Similarity_mean rank 

FIT_2 0.9270531 1 

hilab 0.9152869 2 

FMRSK 0.9146775 3 

NVAUTO 0.8990144 4 

FIT_1 0.8975569 5 

Blackbean 0.8936621 6 
fudan_zmic 0.8888094 7 

dolphines 0.8837865 8 

BlueBrune 0.8835821 9 

symsense 0.8813508 10 

Institut_Pasteur_DBC 0.8486107 11 

Sano 0.8366612 12 

Uniandes 0.7923437 13 

Neurophet 0.6851061 14 

xinlab-scut-iai-ahu 0.6679924 15 

deepsynth 0.4694572 16 

ajoshiusc 0.0279737 17 
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Brainstem 

 Volume_Similarity_mean rank 

FMRSK 0.9233938 1 

FIT_2 0.8559550 2 

hilab 0.8514931 3 

Institut_Pasteur_DBC 0.8466478 4 

NVAUTO 0.8355246 5 

dolphines 0.8263721 6 
FIT_1 0.8218468 7 

BlueBrune 0.8214891 8 

Blackbean 0.8177871 9 

symsense 0.8139695 10 

fudan_zmic 0.8085862 11 

xinlab-scut-iai-ahu 0.7247465 12 

Sano 0.6648246 13 

Neurophet 0.5973122 14 

Uniandes 0.4208773 15 

ajoshiusc 0.4186267 16 

deepsynth 0.2309454 17 
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13 Benchmarking report for Dice Metrics – Excellent Quality 

Reconstructions 

created by challengeR v1.0.2 

29 September, 2023 

This document presents a systematic report on the benchmark study “Dice Met-

rics”. Input data comprises raw metric values for all algorithms and cases. Generated 

plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

13.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 364 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Dice_mean rank 

FIT_1 0.8475250 1 

symsense 0.8448590 2 

BlueBrune 0.8444390 3 

Blackbean 0.8435391 4 

NVAUTO 0.8415211 5 

dolphines 0.8407688 6 

FMRSK 0.8388783 7 

Institut_Pasteur_DBC 0.8335641 8 

FIT_2 0.8310134 9 

fudan_zmic 0.8235194 10 

hilab 0.8112582 11 

Sano 0.7583044 12 

Neurophet 0.7469227 13 

Uniandes 0.7258189 14 

xinlab-scut-iai-ahu 0.5143970 15 

deepsynth 0.4738044 16 

ajoshiusc 0.3421430 17 
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13.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.9575147 0.9558824 0.9411765 0.9705882 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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14 Benchmarking report for Hausdorff Metrics – Excellent 

Quality Reconstructions 

created by challengeR v1.0.2 

29 September, 2023 

This document presents a systematic report on the benchmark study “Hausdorff 

Metrics”. Input data comprises raw metric values for all algorithms and cases. Gener-

ated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

14.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 364 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 
Hausdorff_mean rank 

FIT_1 1.896977 1 

FMRSK 1.906656 2 

Insti-

tut_Pasteur_DBC 

1.920439 3 

BlueBrune 1.921569 4 

Blackbean 1.951724 5 

symsense 1.988744 6 

NVAUTO 2.397795 7 

dolphines 2.755148 8 

FIT_2 3.753654 9 

fudan_zmic 4.196704 10 

Sano 6.168081 11 

Uniandes 7.881959 12 

Neurophet 9.299844 13 

hilab 12.854700 14 

xinlab-scut-iai-ahu 24.849282 15 

deepsynth 32.525491 16 

ajoshiusc 52.881767 17 
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14.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummy-

Task 

0.9345588 0.9411765 0.9117647 0.9558824 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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15 Benchmarking report for Volume Similarity Metrics – 

Excellent Quality Reconstructions 

created by challengeR v1.0.2 

29 September, 2023 

This document presents a systematic report on the benchmark study “Volume Sim-

ilarity Metrics”. Input data comprises raw metric values for all algorithms and cases. 

Generated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

15.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 364 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 

Vol-

ume_Similarity_mean rank 

FMRSK 0.9414758 1 

NVAUTO 0.9399236 2 

FIT_2 0.9369680 3 

FIT_1 0.9343779 4 

Blackbean 0.9321776 5 

symsense 0.9317690 6 

BlueBrune 0.9312333 7 

dolphines 0.9306901 8 

fudan_zmic 0.9295045 9 

Institut_Pasteur_DBC 0.9267254 10 

hilab 0.9155821 11 

Uniandes 0.8742822 12 

Sano 0.8564062 13 

Neurophet 0.8447772 14 

xinlab-scut-iai-ahu 0.7463051 15 

deepsynth 0.6456027 16 

ajoshiusc 0.5071440 17 
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15.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummy-

Task 

0.9268529 0.9264706 0.8970588 0.9558824 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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16 Benchmarking report for Dice Metrics – Good Quality 

Reconstructions 

created by challengeR v1.0.2 

29 September, 2023 

 

This document presents a systematic report on the benchmark study “Dice Met-

rics”. Input data comprises raw metric values for all algorithms and cases. Generated 

plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

16.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 616 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Dice_mean rank 

FIT_1 0.8102157 1 

symsense 0.8075720 2 

Blackbean 0.8059347 3 

BlueBrune 0.8053248 4 

FMRSK 0.8044571 5 

NVAUTO 0.8039744 6 

dolphines 0.7979522 7 

FIT_2 0.7919042 8 

fudan_zmic 0.7830144 9 

https://doi.org/10.1038/s41598-021-82017-6
http://epub.ub.uni-muenchen.de/4134/
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Institut_Pasteur_DBC 0.7826290 10 

hilab 0.7675142 11 

Neurophet 0.7385599 12 

Sano 0.7128628 13 

Uniandes 0.6483182 14 

xinlab-scut-iai-ahu 0.4965492 15 

deepsynth 0.4368088 16 

ajoshiusc 0.3279813 17 
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16.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 

 
  



215 

Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummy-

Task 

0.9591912 0.9705882 0.9411765 0.9852941 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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17 Benchmarking report for Hausdorff Metrics – Good Quality 

Reconstructions 

created by challengeR v1.0.2 

29 September, 2023 

 

This document presents a systematic report on the benchmark study “Hausdorff 

Metrics”. Input data comprises raw metric values for all algorithms and cases. Gener-

ated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

17.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 616 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Hausdorff_mean rank 

FIT_1 2.404649 1 

Institut_Pasteur_DBC 2.442461 2 

FMRSK 2.461099 3 

BlueBrune 2.483286 4 

NVAUTO 2.606146 5 

Blackbean 2.675704 6 

symsense 2.906762 7 

FIT_2 3.200410 8 

fudan_zmic 4.906101 9 

dolphines 5.040367 10 

Sano 6.545363 11 

Neurophet 11.211864 12 

Uniandes 11.850204 13 

hilab 12.984241 14 

xinlab-scut-iai-ahu 23.097476 15 

deepsynth 36.828092 16 

ajoshiusc 53.840463 17 
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17.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummy-

Task 

0.9306471 0.9264706 0.9117647 0.9558824 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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18 Benchmarking report for Volume Similarity Metrics – Good 

Quality Reconstructions 

created by challengeR v1.0.2 

29 September, 2023 

This document presents a systematic report on the benchmark study “Volume Sim-

ilarity Metrics”. Input data comprises raw metric values for all algorithms and cases. 

Generated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

18.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 616 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Volume_Similarity_mean rank 

FMRSK 0.9172204 1 

NVAUTO 0.9097767 2 

FIT_2 0.9075901 3 

FIT_1 0.9063503 4 

Blackbean 0.9050488 5 

BlueBrune 0.9032744 6 

symsense 0.9031506 7 

fudan_zmic 0.8996209 8 

Institut_Pasteur_DBC 0.8989827 9 

dolphines 0.8987604 10 

hilab 0.8828352 11 

Neurophet 0.8429007 12 

Sano 0.8234222 13 

Uniandes 0.8104665 14 

xinlab-scut-iai-ahu 0.7322457 15 

deepsynth 0.6032616 16 

ajoshiusc 0.4944589 17 
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18.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.9421029 0.9411765 0.9264706 0.9705882 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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19 Benchmarking report for Dice Metrics – Poor Quality 

Reconstructions 

created by challengeR v1.0.2 

29 September, 2023 

This document presents a systematic report on the benchmark study “Dice Met-

rics”. Input data comprises raw metric values for all algorithms and cases. Generated 

plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

19.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 140 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Dice_mean rank 

FIT_1 0.7597518 1 
BlueBrune 0.7573871 2 

Blackbean 0.7569661 3 

symsense 0.7566418 4 

NVAUTO 0.7557553 5 

dolphines 0.7508388 6 

FMRSK 0.7452712 7 

FIT_2 0.7395485 8 

Neurophet 0.7234531 9 

fudan_zmic 0.7191791 10 

hilab 0.7021188 11 

Institut_Pasteur_DBC 0.6984268 12 

Sano 0.5670978 13 
Uniandes 0.4770842 14 

xinlab-scut-iai-ahu 0.4303897 15 

deepsynth 0.3140195 16 

ajoshiusc 0.2153574 17 
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19.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummy-

Task 

0.9369118 0.9411765 0.9117647 0.9558824 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 

 
  



247 

Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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20 Benchmarking report for Hausdorff Metrics – Poor Quality 

Reconstructions 

created by challengeR v1.0.2 

29 September, 2023 

This document presents a systematic report on the benchmark study “Hausdorff 

Metrics”. Input data comprises raw metric values for all algorithms and cases. Gener-

ated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

20.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 140 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Hausdorff_mean rank 

BlueBrune 3.097065 1 

NVAUTO 3.161613 2 

Blackbean 3.203836 3 

FIT_1 3.259938 4 

symsense 3.323026 5 

Institut_Pasteur_DBC 3.354046 6 

FMRSK 3.370501 7 

FIT_2 3.526028 8 

fudan_zmic 5.262537 9 

dolphines 6.824333 10 

Neurophet 8.791505 11 

Sano 12.535329 12 

hilab 13.510597 13 

Uniandes 18.295327 14 

xinlab-scut-iai-ahu 18.960886 15 

deepsynth 46.613199 16 

ajoshiusc 78.392945 17 
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20.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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20.3 Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.8869559 0.8970588 0.8382353 0.9411765 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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21 Benchmarking report for Volume Similarity Metrics – Poor 

Quality Reconstructions 

created by challengeR v1.0.2 

29 September, 2023 

This document presents a systematic report on the benchmark study “Volume Sim-

ilarity Metrics”. Input data comprises raw metric values for all algorithms and cases. 

Generated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

21.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 140 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Volume_Similarity_mean rank 

FIT_2 0.8766704 1 

NVAUTO 0.8745644 2 

FMRSK 0.8732227 3 

BlueBrune 0.8685192 4 

dolphines 0.8672304 5 

FIT_1 0.8633964 6 

Blackbean 0.8628127 7 

symsense 0.8606914 8 

fudan_zmic 0.8485512 9 

Insti-

tut_Pasteur_DBC 

0.8452351 10 

Neurophet 0.8429539 11 

hilab 0.8271106 12 

Sano 0.6892375 13 

xinlab-scut-iai-ahu 0.6845423 14 

Uniandes 0.6711314 15 

deepsynth 0.5003960 16 

ajoshiusc 0.3438202 17 
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21.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummy-

Task 

0.9016765 0.9117647 0.8823529 0.9264706 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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22 Benchmarking report for Dice Metrics – Neurotypical Brains 

created by challengeR v1.0.2 

21 September, 2023 

This document presents a systematic report on the benchmark study “Dice Met-

rics”. Input data comprises raw metric values for all algorithms and cases. Generated 

plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

22.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 476 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 
Dice_mean rank 

NVAUTO 0.8306140 1 

FIT_1 0.8288169 2 

FMRSK 0.8277248 3 

symsense 0.8264437 4 

Blackbean 0.8261369 5 

BlueBrune 0.8245527 6 

dolphines 0.8212657 7 

Institut_Pasteur_DBC 0.8169504 8 

fudan_zmic 0.8125557 9 

FIT_2 0.8111363 10 

hilab 0.7979320 11 

Neurophet 0.7504558 12 

Sano 0.7187610 13 

Uniandes 0.7108762 14 

xinlab-scut-iai-ahu 0.6088211 15 

deepsynth 0.4432369 16 

ajoshiusc 0.3157481 17 
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22.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.9591765 0.9705882 0.9411765 0.9852941 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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23 Benchmarking report for Hausdorff Metrics – Neurotypical 

Brains 

created by challengeR v1.0.2 

21 September, 2023 

This document presents a systematic report on the benchmark study “Hausdorff 

Metrics”. Input data comprises raw metric values for all algorithms and cases. Gener-

ated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

23.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 476 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Hausdorff_mean rank 

FMRSK 2.010238 1 

FIT_1 2.062637 2 

Institut_Pasteur_DBC 2.069963 3 

BlueBrune 2.086025 4 

Blackbean 2.091519 5 

symsense 2.093226 6 

NVAUTO 2.136397 7 

fudan_zmic 3.729507 8 

FIT_2 4.010603 9 

dolphines 4.416571 10 

Sano 7.287937 11 

Neurophet 7.730027 12 

Uniandes 7.860998 13 

hilab 12.556709 14 

xinlab-scut-iai-ahu 18.092100 15 

deepsynth 38.013180 16 

ajoshiusc 57.103198 17 
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23.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.8938235 0.8970588 0.8676471 0.9264706 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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24 Benchmarking report for Volume Similarity Metrics – 

Neurotypical Brains 

created by challengeR v1.0.2 

21 September, 2023 

This document presents a systematic report on the benchmark study “Volume Sim-

ilarity Metrics”. Input data comprises raw metric values for all algorithms and cases. 

Generated plots are: 

Visualization of assessment data: Dot- and boxplot, podium plot and ranking 

heatmap 

Visualization of ranking stability: Blob plot, violin plot and significance map, line 

plot 

Details can be found in Wiesenfarth et al. (2021). 

24.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 476 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Volume_Similarity_mean rank 

FMRSK 0.9327262 1 

NVAUTO 0.9300129 2 

FIT_2 0.9235789 3 

Institut_Pasteur_DBC 0.9160553 4 

FIT_1 0.9145272 5 

fudan_zmic 0.9131280 6 

Blackbean 0.9129656 7 

dolphines 0.9120900 8 

symsense 0.9115349 9 

BlueBrune 0.9104248 10 

hilab 0.8982362 11 

Neurophet 0.8559453 12 

Uniandes 0.8545801 13 

Sano 0.8195460 14 

xinlab-scut-iai-ahu 0.7826698 15 

deepsynth 0.5894117 16 

ajoshiusc 0.4655215 17 
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24.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.9426176 0.9411765 0.9264706 0.9558824 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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25 Benchmarking report for Dice Metrics – Pathological Brains 

created by challengeR v1.0.2 

21 September, 2023 

This document presents a systematic report on the benchmark study “Dice Met-

rics”. Input data comprises raw metric values for all algorithms and cases. Generated 

plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

25.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 644 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Dice_mean rank 

FIT_1 0.8065845 1 

symsense 0.8036268 2 

BlueBrune 0.8027996 3 

Blackbean 0.8016119 4 

NVAUTO 0.7950238 5 

dolphines 0.7946791 6 

FMRSK 0.7938482 7 

FIT_2 0.7884127 8 

fudan_zmic 0.7701964 9 

Institut_Pasteur_DBC 0.7677456 10 

hilab 0.7555400 11 

Neurophet 0.7312100 12 

Sano 0.7024996 13 

Uniandes 0.6086597 14 

deepsynth 0.4262748 15 

xinlab-scut-iai-ahu 0.4092711 16 

ajoshiusc 0.3205442 17 
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25.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.9720735 0.9705882 0.9558824 0.9852941 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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26 Benchmarking report for Hausdorff Metrics – Pathological 

Brains 

created by challengeR v1.0.2 

21 September, 2023 

This document presents a systematic report on the benchmark study “Hausdorff 

Metrics”. Input data comprises raw metric values for all algorithms and cases. Gener-

ated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

26.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 644 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Hausdorff_mean rank 

FIT_1 2.556429 1 

BlueBrune 2.592852 2 

Institut_Pasteur_DBC 2.620900 3 

FMRSK 2.678659 4 

Blackbean 2.813099 5 

NVAUTO 2.956343 6 

FIT_2 2.985061 7 

symsense 3.079684 8 

dolphines 4.597607 9 

fudan_zmic 5.452280 10 

Sano 7.085424 11 

Neurophet 12.178524 12 

hilab 13.341449 13 

Uniandes 13.956941 14 

xinlab-scut-iai-ahu 26.887995 15 

deepsynth 35.647450 16 

ajoshiusc 56.224501 17 
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26.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.9283529 0.9264706 0.9117647 0.9558824 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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27 Benchmarking report for Volume Similarity Metrics – 

Pathological Brains 

created by challengeR v1.0.2 

21 September, 2023 

This document presents a systematic report on the benchmark study “Volume Sim-

ilarity Metrics”. Input data comprises raw metric values for all algorithms and cases. 

Generated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

27.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 644 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Volume_Similarity_mean rank 

FMRSK 0.9099045 1 

FIT_1 0.9068104 2 

BlueBrune 0.9062367 3 

FIT_2 0.9056555 4 

Blackbean 0.9053491 5 

NVAUTO 0.9042042 6 

symsense 0.9038989 7 

dolphines 0.9001010 8 

fudan_zmic 0.8954260 9 

Institut_Pasteur_DBC 0.8903602 10 

hilab 0.8778469 11 

Neurophet 0.8343312 12 

Sano 0.8157597 13 

Uniandes 0.7836403 14 

xinlab-scut-iai-ahu 0.6925521 15 

deepsynth 0.6150683 16 

ajoshiusc 0.4902697 17 
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27.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.9232206 0.9264706 0.8970588 0.9411765 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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28 Benchmarking report for Dice Metrics – irtkSimple 

Reconstruction Method 

created by challengeR v1.0.2 

23 October, 2023 

This document presents a systematic report on the benchmark study “Dice Met-

rics”. Input data comprises raw metric values for all algorithms and cases. Generated 

plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

28.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 140 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 
Dice_m

ean 
r

ank 

deepsynth 0.7327846 1 

FMRSK 0.7136193 2 

NVAUTO 0.6934984 3 

Uniandes 0.6926523 4 

Neurophet 0.6890230 5 

ajoshiusc 0.6856601 6 

BlueBrune 0.6812812 7 

FIT_1 0.6810933 8 

FIT_2 0.6800074 9 

symsense 0.6791905 10 

Blackbean 0.6789500 11 

dolphines 0.6787659 12 

fudan_zmic 0.6771299 13 

Sano 0.6712588 14 

Institut_Pasteur_DBC 0.6687211 15 

hilab 0.6537900 16 

xinlab-scut-iai-ahu 0.4443192 17 
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28.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.8881618 0.8970588 0.8529412 0.9264706 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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29 Benchmarking report for Hausdorff Metrics – irtkSimple 

Reconstruction Method 

created by challengeR v1.0.2 

23 October, 2023 

This document presents a systematic report on the benchmark study “Hausdorff 

Metrics”. Input data comprises raw metric values for all algorithms and cases. Gener-

ated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

29.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 140 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Hausdorff_mean rank 

deepsynth 3.367647 1 

FMRSK 3.828919 2 

FIT_2 3.911252 3 

Neurophet 4.189914 4 

Institut_Pasteur_DBC 4.335186 5 

ajoshiusc 4.362200 6 

Uniandes 4.442928 7 

Sano 4.544371 8 

NVAUTO 4.554302 9 

dolphines 4.564495 10 

BlueBrune 4.618616 11 

Blackbean 4.670160 12 

FIT_1 4.763669 13 

symsense 4.775997 14 

fudan_zmic 5.842642 15 

hilab 14.574006 16 

xinlab-scut-iai-ahu 22.087781 17 
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29.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 

 



336 

Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.8834853 0.8970588 0.8529412 0.9264706 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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30 Benchmarking report for Volume Similarity Metrics – 

irtkSimple Reconstruction Method 

created by challengeR v1.0.2 

23 October, 2023 

This document presents a systematic report on the benchmark study “Volume Sim-

ilarity Metrics”. Input data comprises raw metric values for all algorithms and cases. 

Generated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

30.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 140 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Volume_Similarity_mean rank 

deepsynth 0.8649748 1 

FMRSK 0.8339122 2 

ajoshiusc 0.8159130 3 

FIT_2 0.8128959 4 

NVAUTO 0.8050503 5 

Uniandes 0.8037555 6 

Neurophet 0.8029831 7 

BlueBrune 0.7933006 8 

fudan_zmic 0.7913864 9 

dolphines 0.7908812 10 

FIT_1 0.7880491 11 

Blackbean 0.7879563 12 

Institut_Pasteur_DBC 0.7870338 13 

symsense 0.7869364 14 

Sano 0.7866331 15 

hilab 0.7719335 16 

xinlab-scut-iai-ahu 0.6660453 17 
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30.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.8693088 0.8676471 0.8382353 0.8970588 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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31 Benchmarking report for Dice Metrics – mial-srtk 

Reconstruction Method 

created by challengeR v1.0.2 

23 October, 2023 

This document presents a systematic report on the benchmark study “Dice Met-

rics”. Input data comprises raw metric values for all algorithms and cases. Generated 

plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

31.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 420 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Dice_mean rank 

NVAUTO 0.7965113 1 

FMRSK 0.7932151 2 

fudan_zmic 0.7702846 3 

FIT_1 0.7693562 4 

symsense 0.7677151 5 

Blackbean 0.7668915 6 

BlueBrune 0.7664517 7 

dolphines 0.7660195 8 

Institut_Pasteur_DBC 0.7528768 9 

FIT_2 0.7426605 10 

hilab 0.7424022 11 

Sano 0.7155146 12 

Neurophet 0.6500694 13 

Uniandes 0.6166908 14 

xinlab-scut-iai-ahu 0.5946697 15 

deepsynth 0.3460063 16 

ajoshiusc 0.2965834 17 
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31.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.9719118 0.9705882 0.9558824 0.9852941 

 
  



355 

Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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32 Benchmarking report for Hausdorff Metrics – mial-srtk 

Reconstruction Method 

created by challengeR v1.0.2 

23 October, 2023 

This document presents a systematic report on the benchmark study “Hausdorff 

Metrics”. Input data comprises raw metric values for all algorithms and cases. Gener-

ated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

32.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 420 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 
Hausdorff_m

ean 
r

ank 

FMRSK 2.445920 1 

NVAUTO 2.670251 2 

Institut_Pasteur_DBC 3.075040 3 

dolphines 3.082171 4 

BlueBrune 3.121191 5 

FIT_1 3.140513 6 

Blackbean 3.141349 7 

symsense 3.158501 8 

fudan_zmic 3.473781 9 

Sano 4.256106 10 

FIT_2 6.118941 11 

hilab 13.404766 12 

Neurophet 14.004507 13 

Uniandes 14.157257 14 

xinlab-scut-iai-ahu 15.190746 15 

deepsynth 48.140913 16 

ajoshiusc 63.917304 17 
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32.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.9278235 0.9411765 0.9117647 0.9558824 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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33 Benchmarking report for Volume Similarity Metrics – mial-

srtk Reconstruction Method 

created by challengeR v1.0.2 

23 October, 2023 

This document presents a systematic report on the benchmark study “Volume Sim-

ilarity Metrics”. Input data comprises raw metric values for all algorithms and cases. 

Generated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

33.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 420 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Volume_Similarity_mean rank 

FMRSK 0.8984594 1 

NVAUTO 0.8971790 2 

FIT_2 0.8712877 3 

fudan_zmic 0.8553545 4 

Institut_Pasteur_DBC 0.8520549 5 

dolphines 0.8481905 6 

FIT_1 0.8474980 7 

BlueBrune 0.8459830 8 

Blackbean 0.8458801 9 

symsense 0.8452604 10 

hilab 0.8386639 11 

Sano 0.8094217 12 

Neurophet 0.7707029 13 

Uniandes 0.7598427 14 

xinlab-scut-iai-ahu 0.7556871 15 

deepsynth 0.4865213 16 

ajoshiusc 0.3915736 17 
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33.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.9582647 0.9558824 0.9411765 0.9705882 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 

 
  



375 

33.3 References 

Wiesenfarth, M., Reinke, A., Landman, B.A., Eisenmann, M., Aguilera Saiz, L., 

Cardoso, M.J., Maier-Hein, L. and Kopp-Schneider, A. Methods and open-source 

toolkit for analyzing and visualizing challenge results. Sci Rep 11, 2369 (2021). 

https://doi.org/10.1038/s41598-021-82017-6 

M. J. A. Eugster, T. Hothorn, and F. Leisch, “Exploratory and inferential analysis 

of benchmark experiments,” Institut fuer Statistik, Ludwig-Maximilians-Universitaet 

Muenchen, Germany, Technical Report 30, 2008. [Online]. Available: 

http://epub.ub.uni-muenchen.de/4134/. 

 

  

https://doi.org/10.1038/s41598-021-82017-6
http://epub.ub.uni-muenchen.de/4134/


376 

34 Benchmarking report for Dice Metrics – NiftyMIC 

Reconstruction Method 

created by challengeR v1.0.2 

23 October, 2023 

This document presents a systematic report on the benchmark study “Dice Met-

rics”. Input data comprises raw metric values for all algorithms and cases. Generated 

plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

34.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 343 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 
Dice_m

ean 
r

ank 

FIT_1 0.8360724 1 

symsense 0.8322206 2 

Blackbean 0.8310190 3 

BlueBrune 0.8300694 4 

FIT_2 0.8299381 5 

Neurophet 0.8263272 6 

dolphines 0.8246378 7 

NVAUTO 0.8089763 8 

FMRSK 0.8073792 9 

Institut_Pasteur_DBC 0.7931034 10 

fudan_zmic 0.7908866 11 

hilab 0.7835601 12 

Uniandes 0.6160903 13 

Sano 0.5992771 14 

xinlab-scut-iai-ahu 0.5690613 15 

deepsynth 0.3779188 16 

ajoshiusc 0.1597532 17 
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34.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 

 
  



378 

Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.9621029 0.9705882 0.9411765 0.9705882 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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35 Benchmarking report for Hausdorff Metrics – NiftyMIC 

Reconstruction Method 

created by challengeR v1.0.2 

23 October, 2023 

This document presents a systematic report on the benchmark study “Hausdorff 

Metrics”. Input data comprises raw metric values for all algorithms and cases. Gener-

ated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

35.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 

The analysis is based on 17 algorithms and 343 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Hausdorff_mean rank 

FIT_2 1.729183 1 

FIT_1 1.892675 2 

BlueBrune 1.902297 3 

Blackbean 1.964173 4 

symsense 1.976255 5 

Institut_Pasteur_DBC 1.995587 6 

Neurophet 2.009161 7 

FMRSK 2.414913 8 

NVAUTO 2.422028 9 

fudan_zmic 4.905231 10 

dolphines 5.304687 11 

Uniandes 8.746812 12 

hilab 12.423486 13 

Sano 15.082354 14 

xinlab-scut-iai-ahu 18.263125 15 

deepsynth 38.416113 16 

ajoshiusc 76.100706 17 
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35.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.9453088 0.9558824 0.9264706 0.9705882 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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36 Benchmarking report for Volume Similarity Metrics – 

NiftyMIC Reconstruction Method 

created by challengeR v1.0.2 

23 October, 2023 

This document presents a systematic report on the benchmark study “Volume Sim-

ilarity Metrics”. Input data comprises raw metric values for all algorithms and cases. 

Generated plots are: 

• Visualization of assessment data: Dot- and boxplot, podium plot and rank-

ing heatmap 

• Visualization of ranking stability: Blob plot, violin plot and significance 

map, line plot 

Details can be found in Wiesenfarth et al. (2021). 

36.1 Ranking 

Algorithms within a task are ranked according to the following ranking scheme: 

    aggregate using function (“mean”) then rank 
The analysis is based on 17 algorithms and 343 cases. 0 missing cases have been 

found in the data set. 

Ranking: 

 Volume_Similarity_mean rank 

FIT_1 0.9458558 1 

BlueBrune 0.9439420 2 

Blackbean 0.9432667 3 

dolphines 0.9428963 4 

FIT_2 0.9424504 5 

symsense 0.9421589 6 

Institut_Pasteur_DBC 0.9327780 7 

Neurophet 0.9316737 8 

fudan_zmic 0.9300533 9 

FMRSK 0.9294705 10 

NVAUTO 0.9245963 11 

hilab 0.9086920 12 

Uniandes 0.8082391 13 

xinlab-scut-iai-ahu 0.7885668 14 

Sano 0.7280521 15 

deepsynth 0.5758699 16 

ajoshiusc 0.3599621 17 
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36.2 Visualization of raw assessment data 

Dot- and boxplot 

Dot- and boxplots for visualizing raw assessment data separately for each algo-

rithm. Boxplots representing descriptive statistics over all cases (median, quartiles 

and outliers) are combined with horizontally jittered dots representing individual cas-

es. 
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Podium plot 

Podium plots (see also Eugster et al., 2008) for visualizing raw assessment data. 

Upper part (spaghetti plot): Participating algorithms are color-coded, and each colored 

dot in the plot represents a metric value achieved with the respective algorithm. The 

actual metric value is encoded by the y-axis. Each podium (here: 𝑝=17) represents 

one possible rank, ordered from best (1) to last (here: 17). The assignment of metric 

values (i.e. colored dots) to one of the podiums is based on the rank that the respective 

algorithm achieved on the corresponding case. Note that the plot part above each 

podium place is further subdivided into 𝑝 “columns”, where each column represents 

one participating algorithm (here: 𝑝 = 17). Dots corresponding to identical cases are 

connected by a line, leading to the shown spaghetti structure. Lower part: Bar charts 

represent the relative frequency for each algorithm to achieve the rank encoded by the 

podium place. 
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Ranking heatmap 

Ranking heatmaps for visualizing raw assessment data. Each cell (𝑖, 𝐴𝑗) shows the 

absolute frequency of cases in which algorithm 𝐴𝑗 achieved rank 𝑖. 
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Visualization of ranking stability 

Blob plot for visualizing ranking stability based on bootstrap sampling  

Algorithms are color-coded, and the area of each blob at position (𝐴𝑖 ,rank 𝑗) is 

proportional to the relative frequency 𝐴𝑖 achieved rank 𝑗 across 𝑏 = 1000 bootstrap 

samples. The median rank for each algorithm is indicated by a black cross. 95% boot-

strap intervals across bootstrap samples are indicated by black lines. 

## Warning: `guides(<scale> = FALSE)` is deprecated. Plea
se use `guides(<scale> = 
## "none")` instead. 
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Violin plot for visualizing ranking stability based on bootstrapping  

The ranking list based on the full assessment data is pairwise compared with the 

ranking lists based on the individual bootstrap samples (here 𝑏 = 1000 samples). For 

each pair of rankings, Kendall’s 𝜏 correlation is computed. Kendall’s 𝜏 is a scaled 

index determining the correlation between the lists. It is computed by evaluating the 

number of pairwise concordances and discordances between ranking lists and produc-

es values between −1 (for inverted order) and 1 (for identical order). A violin plot, 

which simultaneously depicts a boxplot and a density plot, is generated from the re-

sults. 

Summary Kendall’s tau: 

Task mean median q25 q75 

dummyTask 0.9056618 0.9117647 0.8823529 0.9264706 
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Significance maps for visualizing ranking stability based on statistical signifi-

cance 

Significance maps depict incidence matrices of pairwise significant test results for 

the one-sided Wilcoxon signed rank test at a 5% significance level with adjustment 

for multiple testing according to Holm. Yellow shading indicates that metric values 

from the algorithm on the x-axis were significantly superior to those from the algo-

rithm on the y-axis, blue color indicates no significant difference. 
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Ranking robustness to ranking methods 

Line plots for visualizing ranking robustness across different ranking methods. 

Each algorithm is represented by one colored line. For each ranking method encoded 

on the x-axis, the height of the line represents the corresponding rank. Horizontal 

lines indicate identical ranks for all methods. 
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