Banach lattices with weak Dunford-Pettis property

Khalid Bouras and Mohammed Moussa

Abstract—We introduce and study the class of weak almost Dunford-Pettis operators. As an application, we characterize Banach lattices with the weak Dunford-Pettis property. Also, we establish some sufficient conditions for which each weak almost Dunford-Pettis operator is weak Dunford-Pettis. Finally, we derive some interesting results

Keywords—eak almost Dunford-Pettis operator, almost Dunford-Pettis operator, weak Dunford-Pettis operator. almost Dunford-Pettis operator, almost Dunford-Pettis operator. Weak Dunford-Pettis operator.

I. Introduction and notation

As many Banach spaces do not have the Dunford-Pettis property, a weak notion is introduced, called the weak Dunford-Pettis property. A Banach space (respectively, Banach lattice) E has the Dunford-Pettis (respectively, weak Dunford-Pettis) property if every weakly compact operator defined on E (and taking their values in a Banach space F) is Dunford-Pettis (respectively, almost Dunford-Pettis, that is, the sequence $(\|T(x_n)\|)$ converges to 0 for every weakly null sequence (x_n) consisting of pairwise disjoint elements in E [5]). It is obvious that if E has the Dunford-Pettis property, then it has the weak Dunford-Pettis property.

On the other hand, whenever Aliprantis-Burkinshaw [1] and Kalton-Saab [4] studied the domination property of Dunford-Pettis operators, they used the class of weak Dunford-Pettis operators which satisfies the domination property [4]. Let us recall from [2] that an operator T from a Banach space X into another Y is called weak Dunford-Pettis if the sequence $(f_n(T(x_n)))$ converges to 0 whenever (x_n) converges weakly to 0 in X and (f_n) converges weakly to 0 in Y. Alternatively, T is weak Dunford-Pettis if T maps relatively weakly compact sets of X into Dunford-Pettis sets of Y (see Theorem 5.99 of [2]). A norm bounded subset X0 of a Banach lattice X1 is said to be Dunford-Pettis set if every weakly null sequence (f_n) of X2 converges uniformly to zero on the set X3, that is, $\sup_{X \in X} |f_n(X)| \to 0$ (see Theorem 5.98 of [2]).

In [3], we introduced a new class of sets we call almost Dunford-Pettis set. A norm bounded subset A of a Banach lattice E is said to be almost Dunford-Pettis set if every disjoint weakly null sequence (f_n) of E' converges uniformly to zero on the set A, that is, $\sup_{x \in \mathbf{A}} |f_n(x)| \to 0$.

As weak Dunford-Pettis operators, we introduce a new class of operators that we call weak almost Dunford-Pettis operator. An operator T from a Banach space X into a Banach lattice F is said to be weak almost Dunford-Pettis if T maps relatively weakly compact sets of X into almost Dunford-Pettis sets of F. The latter class of operators differs from

Université Ibn Tofail, Faculté des Sciences, Département de Mathématiques, B.P. 133, Kénitra, Morocco.

mohammed.moussa09@gmail.com

that of weak Dunford-Pettis operators. In fact, the first one is defined between Banach spaces while the second one is defined from a Banach space into a Banach lattice.

On the other hand, since each Dunford-Pettis set in a Banach lattice is almost Dunford-Pettis, then the class of weak almost Dunford-Pettis operators contains strictly that of weak Dunford-Pettis operators, that is, every weak Dunford-Pettis operator is weak almost Dunford-Pettis. But a weak almost Dunford-Pettis operator is not necessary weak Dunford-Pettis. In fact, for Wnuk (see [5], Example 1, p. 231)), the Lorentz space $\wedge(\omega,1)$ has the weak Dunford-Pettis property but does not have the Dunford-Pettis property, and then its identity operator is weak almost Dunford-Pettis (because each relatively weakly compact set in a Banach lattice has the weak Dunford-Pettis property is an almost Dunford-Pettis set, see Theorem 2.8 of [3]), but it is not weak Dunford-Pettis.

The objective of this paper is to study the class of weak almost Dunford-Pettis operators. Also, we derive the following interesting consequences: some characterizations of this class of operators, some characterizations of the weak Dunford-Pettis property, the coincidence of this class of operators with that of weak Dunford-Pettis operators, the domination property of this class of operators and the duality property.

To state our results, we need to fix some notation and recall some definitions. A Banach lattice is a Banach space $(E, \|\cdot\|)$ such that E is a vector lattice and its norm satisfies the following property: for each $x,y\in E$ such that $|x|\leq |y|$, we have $\|x\|\leq \|y\|$. Note that if E is a Banach lattice, its topological dual E', endowed with the dual norm and the dual order, is also a Banach lattice. A norm $\|\cdot\|$ of a Banach lattice E is order continuous if for each generalized sequence (x_α) such that $x_\alpha\downarrow 0$ in E, (x_α) converges to 0 for the norm $\|\cdot\|$ where the notation $x_\alpha\downarrow 0$ means that (x_α) is decreasing, its infimum exists and $\inf(x_\alpha)=0$.

A linear mapping T from a vector lattice E into a vector lattice F is called a lattice homomorphism, if $x \wedge y = 0$ in E implies $T(x) \wedge T(y) = 0$ in F. An operator $T: E \longrightarrow F$ between two Banach lattices is a bounded linear mapping. It is positive if $T(x) \geq 0$ in F whenever $x \geq 0$ in E. If $T: E \longrightarrow F$ is a positive operator between two Banach lattices, then its adjoint $T': F' \longrightarrow E'$, defined by T'(f)(x) = f(T(x)) for each $f \in F'$ and for each $x \in E$, is also positive. We refer the reader to [2] for unexplained terminologies on Banach lattice theory and positive operators.

II. MAIN RESULTS

Recall from [5] that an operator from a Banach lattice E into a Banach space X is said to be almost Dunford-Pettis if the sequence $(\|T\left(x_{n}\right)\|)$ converges to 0 for every weakly null sequence (x_{n}) consisting of pairwise disjoint elements in E.

174

The following result gives a characterizations of weak almost Dunford-Pettis operators from a Banach space into a Banach lattice in term of weakly compact operators and the adjoint of almost Dunford-Pettis operators.

Theorem 2.1: For an operator T from a Banach space X into a Banach lattice F, the following statements are equivalent:

- 1) T is weak almost Dunford-Pettis operator.
- 2) If S is a weakly compact operator from an arbitrary Banach space Z into X, then the adjoint of the operator product $T \circ S$ is almost Dunford-Pettis.
- 3) If S is a weakly compact operator from ℓ^1 into X, then the adjoint of the operator product $T \circ S$ is almost Dunford-Pettis.
- 4) For all weakly null sequence $(x_n)_n \subset X$, and for all disjoint weakly null sequence $(f_n)_n \subset F'$ it follows that $f_n(T(x_n)) \to 0$.

Proof: $(1) \Rightarrow (2)$ Let (f_n) be a disjoint weakly null sequence in F', we have to prove that $((T \circ S)'(f_n))$ converges to 0 for the norm of Z'. If not, then there exist a sequence (z_n) in the closed unit ball B_Z of Z, a subsequence of $((T \circ S)'(f_n))$ (which we shall denote by $((T \circ S)'(f_n))$ again), and some $\varepsilon > 0$ satisfying $|f_n(T(S(z_n)))| > \varepsilon$ for all n. Since S is weakly compact, the set $A = \{S(z_1), S(z_2), \ldots\}$ is relatively weakly compact subset of E, and then the set E (E (E (E) is an almost Dunford-Pettis (because E carries weakly relatively compact sets of E (E). Hence we obtain

$$|f_n\left(T(S\left(z_n\right)\right))| \le \sup_{x \in T(A)} |f_n(x)| \to 0.$$

Then $|f_n\left(T(S\left(z_n\right))\right)|\to 0$, which is impossible with $|f_n\left(T\circ S\left(x_n\right)\right)|>\varepsilon$ for all n. Thus, the sequence $((T\circ S)'(f_n))$ converges to 0 for the norm of Z', and so the adjoint $(T\circ S)'$ is almost Dunford-Pettis.

- $(2) \Rightarrow (3)$ Obvious.
- $(3) \Rightarrow (4)$ Let (f_n) be a disjoint weakly null sequence in F', and let (x_n) be a weakly null sequence in X. Consider the operator $S: l^1 \to X$ defined by

the operator
$$S: l^1 \to X$$
 defined by $S((\lambda_i)_{i=1}^{\infty}) = \sum_{i=1}^{\infty} \lambda_i x_i$ for each $(\lambda_i)_{i=1}^{\infty} \in l^1$.

Then S is weakly compact (Theorem 5.26 of [2]), and so by our hypothesis $(T \circ S)' = S' \circ T'$ is an almost Dunford-Pettis operator. Thus $\|(T \circ S)'(f_n)\| \to 0$ and the desired conclusion follows from the inequality

$$|f_n(T(x_n))| = |f_n(T(S(e_n)))|$$

 $\leq \sup_{(\lambda_i) \in B_{l^1}} |f_n(T(S((\lambda_i)_{i=1}^{\infty})))|$
 $= ||(T \circ S)'(f_n)||$

for each n, where $(e_i)_{i=1}^{\infty}$ is the canonical basis of l^1 .

 $(4)\Rightarrow (1)$ Let W be a relatively weakly compact subset of X, and let (f_n) be a disjoint weakly null sequence in F'. If (f_n) does not converge uniformly to zero on T(W), then there exist a sequence (x_n) of W, a subsequence of (f_n) (which we shall denote by (f_n) again), and some $\varepsilon>0$ satisfying $|f_n(T(x_n))|>\varepsilon$ for all n.

Since W is weakly compact, we can assume that $x_n \to x$ weakly in X. Then $T(x_n) \to T(x)$ weakly in F and so,

by our hypothesis, we have $0<\varepsilon<|f_n\left(T(x_n)\right)|\le |f_n\left(T(x_n-x)\right)|+|f_n\left(T(x)\right)|\to 0$, which is impossible. Thus, (f_n) converges uniformly to zero on T(W), and this shows that T(W) is an almost Dunford-Pettis set. This ends the proof of the Theorem.

Let us recall that, an operator T from a Banach lattice E into a Banach lattice F is said to be order bounded if for each $z \in E^+$, the set T([-z,z]) is order bounded set in F. An operator T from a Banach lattice E into a Banach lattice F is said to be regular if it can be written as a difference of two positive operators. Note that, every regular operator is order bounded but an order bounded operator is not necessary regular (see [2], Example 1.16, p. 13).

Remark 2.2: Each order interval [-z,z] of a Banach lattice E is an almost Dunford-Pettis set for each $z \in E^+$. In fact, if (f_n) be a disjoint weakly null sequence in E', then by Remark 1 of Wnuk [5], $(|f_n|)$ is a disjoint weakly null sequence in E'. Hence $\sup_{x \in [-z,z]} |f_n(x)| = |f_n|(z) \to 0$ for each $z \in E^+$. As a consequence, if $T: E \to F$ is an order bounded operator from a Banach lattice E into another F, then T([-z,z]) is an almost Dunford-Pettis set in F, and then $|f_n \circ T|(z) = \sup_{y \in T([-z,z])} |f_n(y)| \to 0$ for each $z \in E^+$.

We will need the following characterizations, which are just Theorem 2.4 of [3].

Theorem 2.3: [3] Let $T: E \to F$ be an order bounded operator from a Banach lattice E into another Banach lattice F, and let A be a norm bounded solid subset of E. The following statements are equivalent:

- 1) T(A) is an almost Dunford-Pettis set.
- 2) $\{T(x_n), n \in N\}$ is an almost Dunford-Pettis set for each disjoint sequence (x_n) in $A^+ = A \cap E^+$.
- 3) $f_n(T(x_n)) \to 0$ for each disjoint sequence (x_n) in A^+ and for every disjoint weakly null sequence (f_n) of E'.

Proof: $(1) \Rightarrow (2)$ Obvious.

- $(2) \Rightarrow (3)$ Obvious.
- $(3)\Rightarrow (1) \text{ To prove that } T(A) \text{ is an almost Dunford-Pettis set, it suffice to show that } \sup_{x\in\mathbf{A}}|f_n\left(T(x)\right)|\to 0 \text{ for every disjoint weakly null sequence } (f_n) \text{ of } F'. \text{ Otherwise, there exists a sequence } (f_n)\subset E' \text{ satisfying } \sup_{x\in\mathbf{A}}|f_n\left(T(x)\right)|>\varepsilon \text{ for some } \varepsilon>0 \text{ and all } n. \text{ For every } n \text{ there exists } z_n \text{ in } A^+ \text{ such that } |T'\left(f_n\right)|\left(z_n\right)>\varepsilon. \text{ Since } |T'\left(f_n\right)|\left(z\right)\to 0 \text{ for every } z\in E^+ \text{ (see Remark 2.2), then by an easy inductive argument shows that there exist a subsequence } (y_n) \text{ of } (z_n) \text{ and a subsequence } (g_n) \text{ of } (f_n) \text{ such that } T$

$$\left|T'\left(g_{n+1}\right)\right|\left(y_{n+1}\right)>\varepsilon \text{ and }\left|T'\left(g_{n+1}\right)\right|\left(4^{n}\sum_{i=1}^{n}y_{i}\right)<\frac{1}{n}$$

for all $n\geq 1$. Put $x=\sum_{i=1}^\infty 2^{-i}y_i$ and $x_n=(y_{n+1}-4^n\sum_{i=1}^n y_i-2^{-n}x)^+$. By Lemma 4.35 of [2] the sequence (x_n) is disjoint. Since $0\leq x_n\leq y_{n+1}$ for every n, and (y_{n+1}) in A^+ then $(x_n)\subset A^+$.

From the inequalities

$$|T'(g_{n+1})|(x_n) \ge |T'(g_{n+1})|(y_{n+1} - 4^n \sum_{i=1}^n y_i - 2^{-n}x)$$

 $\ge \varepsilon - \frac{1}{n} - 2^{-n} |T'(g_{n+1})|(x)$

World Academy of Science, Engineering and Technology International Journal of Mathematical and Computational Sciences Vol:5, No:2, 2011

we see that $|T'(g_{n+1})|(x_n) > \frac{\varepsilon}{2}$ must hold for all n sufficiently large (because $2^{-n} |T'(g_{n+1})|(x) \to 0$).

In view of $|T'(g_{n+1})|(x_n) = \sup\{|g_{n+1}(T(z))| : |z| \le x_n\}$, for each n sufficiently large there exists some $|z_n| \le x_n$ with $|g_{n+1}(T(z_n))| > \frac{\varepsilon}{2}$. Since (z_n^+) and (z_n^-) are both norm bounded disjoint sequence in A^+ , it follows from our hypothesis that

$$\frac{\varepsilon}{2} < \left| g_{n+1} \left(T(z_n) \right) \right| \le \left| g_{n+1} \left(T(z_n^+) \right) \right| + \left| g_{n+1} \left(T(z_n^-) \right) \right| \to 0$$

which is impossible. This proves that T(A) is an almost Dunford-Pettis set.

For order bounded operators between two Banach lattices, we give a characterization of weak almost Dunford-Pettis operators.

Theorem 2.4: Let T be an order bounded operator from a Banach lattice E into another F. Then the following assertions are equivalent:

- 1) T is weak almost Dunford-Pettis operator.
- 2) $f_n(T(x_n)) \longrightarrow 0$ for all weakly null sequence (x_n) in E consisting of pairwise disjoint terms, and for all weakly null sequence (f_n) in E' consisting of pairwise disjoint terms.

Proof: $(1) \Rightarrow (2)$ Obvious.

 $(2) \Rightarrow (1)$ Let (x_n) be a weakly null sequence in E, and let (f_n) be a disjoint weakly null sequence in F'. We have to prove that $f_n(T(x_n)) \to 0$.

Let A be the solid hull of the weak relatively compact subset $\{x_n,\ n\in N\}$ of E, by Theorem 4.34 of $[2],\ (z_n)\to 0$ weakly for each disjoint sequence (z_n) in A^+ and so, by our hypothesis, we have $g_n(T(z_n))\to 0$ for each disjoint weakly null sequence (g_n) in F' and for each disjoint sequence (z_n) in A^+ , then Theorem 2.3, implies that T(A) is an almost Dunford-Pettis set, and hence $\sup_{y\in T(A)}|f_n(y)|\to 0$. Therefore,

$$|f_n(T(x_n))| \le \sup_{x \in A} |f_n((T(x))| \le \sup_{y \in T(A)} ||f_n(y)|| \to 0$$

holds and the proof is finished.

Now for positive operators between two Banach lattices, we give other characterizations of weak almost Dunford-Pettis operators.

Theorem 2.5: Let E and F be two Banach lattices. For every positive operator T from E into F, the following assertions are equivalent:

- 1) T is weak almost Dunford-Pettis.
- 2) If S is a weakly compact operator from an arbitrary Banach space Z into E, then the adjoint of the operator product $T \circ S$ is almost Dunford-Pettis.
- 3) If S is a weakly compact operator from ℓ^1 into E, then the adjoint of the operator product $T \circ S$ is almost Dunford-Pettis.
- 4) For all weakly null sequence $(x_n)_n \subset E$, and for all disjoint weakly null sequence $(f_n)_n \subset F'$ it follows that $f_n(T(x_n)) \to 0$.
- 5) $f_n(T(x_n)) \longrightarrow 0$ for every weakly null sequence (x_n) in E^+ and for all disjoint weakly null sequence (f_n) in F'.

- 6) $f_n(T(x_n)) \longrightarrow 0$ for all weakly null sequence (x_n) in E consisting of pairwise disjoint terms, and for all weakly null sequence (f_n) in F' consisting of pairwise disjoint terms.
- 7) For all disjoint weakly null sequences $(x_n)_n \subset E^+$, $(f_n)_n \subset (F')^+$ it follows that $f_n(T(x_n)) \longrightarrow 0$.
- 8) $f_n(T(x_n)) \longrightarrow 0$ for every disjoint weakly null sequence (x_n) in E^+ and for all weakly null sequence (f_n) in F'.
- 9) $f_n(T(x_n)) \longrightarrow 0$ for every disjoint weakly null sequence (x_n) in E^+ and for all weakly null sequence (f_n) in $(F')^+$.
- 10) $f_n(T(x_n)) \longrightarrow 0$ for every weakly null sequence (x_n) in E and for all weakly null sequence (f_n) in $(F')^+$.
- 11) $f_n(T(x_n)) \longrightarrow 0$ for every weakly null sequence (x_n) in E^+ and for all weakly null sequence (f_n) in $(F')^+$.
- 12) $f_n(T(x_n)) \longrightarrow 0$ for every weakly null sequence (x_n) in E^+ and for all weakly null sequence (f_n) in F'.

Proof: $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$ Follows from Theorem 2.1.

- $(6) \Leftrightarrow (4)$ Follows from Theorem 2.4.
- $(4) \Rightarrow (5)$ Obvious.
- $(5)\Rightarrow (6)$ Let (x_n) be a weakly null sequence in E consisting of pairwise disjoint elements, and let (f_n) be a weakly null sequence in F', consisting of pairwise disjoint elements, it follows from Remark 1 of Wnuk [5] that $x_n^+ \longrightarrow 0$ and $x_n^- \longrightarrow 0$ weakly in E^+ . Hence by (5), $f_n(T(x_n)) = f_n(T(x_n^+)) f_n(T(x_n^-)) \longrightarrow 0$.
 - $(6) \Rightarrow (7)$ Obvious.

 $(7)\Rightarrow (8)$ Assume by way of contradiction that there exists a disjoint weakly null sequence $(x_n)\subset E^+$ and a weakly null sequence $(f_n)\subset F'$ such that $f_n\left(T(x_n)\right)\nrightarrow 0$. The inequality $|f_n\left(T(x_n)\right)|\leq |f_n|\left(T(x_n)\right)$ implies $|f_n|\left(T(x_n)\right)\nrightarrow 0$. Then there exists some $\varepsilon>0$ and a subsequence of $|f_n|\left(T(x_n)\right)$ (which we shall denote by $|f_n|\left(T(x_n)\right)$ again) satisfying $|f_n|\left(T(x_n)\right)>\varepsilon$ $\forall n$.

On the other hand, since $(x_n) \to 0$ weakly in E, then $T(x_n) \to 0$ weakly in F. Now an easy inductive argument shows that there exist a subsequence (z_n) of (x_n) and a subsequence (g_n) of (f_n) such that $\forall n \geq 1$

$$|g_n|(T(z_n)) > \varepsilon$$
 and $(4^n \sum_{i=1}^n |g_i|)(T(z_{n+1})) < \frac{1}{n}$

Put $h=\sum_{n=1}^{\infty}2^{-n}\,|g_n|$ and $h_n=(|g_{n+1}|-4^n\sum_{i=1}^n|g_i|-2^{-n}h)^+$. By Lemma 4.35 of [2] the sequence (h_n) is disjoint. Since $0\leq h_n\leq |g_{n+1}|$ for all $n\geq 1$ and $(g_n)\to 0$ weakly in F' then it follows from Theorem 4.34 of [2] that $(h_n)\to 0$ weakly in F'.

From the inequalities

$$h_n(T(z_{n+1})) \ge (|g_{n+1}| - 4^n \sum_{i=1}^n |g_i| - 2^{-n}h)(T(z_{n+1}))$$

 $\ge \varepsilon - \frac{1}{n} - 2^{-n}h(T(z_{n+1}))$

we see that $h_n(T(z_{n+1})) > \frac{\varepsilon}{2}$ must hold for all n sufficiently large (because $2^{-n}h(T(z_{n+1})) \to 0$), which contradicts with our hypothesis (7).

 $(8) \Rightarrow (9)$ Obvious.

World Academy of Science, Engineering and Technology International Journal of Mathematical and Computational Sciences Vol:5, No:2, 2011

 $(9)\Rightarrow (10)$ Assume by way of contradiction that there exists a weakly null sequence $(x_n)\subset E$ and a weakly null sequence $(f_n)\subset (F')^+$ such that $f_n\left(T(x_n)\right)\nrightarrow 0$. The inequality $|f_n\left(T(x_n)\right)|\leq f_n\left(T(|x_n|)\right)$ implies $f_n\left(T(|x_n|)\right)\nrightarrow 0$. Then there exists some $\varepsilon>0$ and a subsequence of $f_n\left(T(|x_n|)\right)$ (which we shall denote by $f_n\left(T(|x_n|)\right)$ again) satisfying $f_n\left(T(|x_n|)\right)>\varepsilon$ for all n.

On the other hand, since $(f_n) \to 0$ weakly in F', then $T'(f_n) \to 0$ weakly in E'. Now an easy inductive argument shows that there exist a subsequence (z_n) of $(|x_n|)$ and a subsequence (g_n) of (f_n) such that $\forall n \geq 1$

$$T'\left(g_{n}\right)\left(z_{n}\right)>arepsilon$$
 and $T'\left(g_{n+1}\right)\left(4^{n}\sum_{i=1}^{n}z_{i}\right)<rac{1}{n}$

Put $z=\sum_{n=1}^{\infty}2^{-n}z_n$ and $y_n=(z_{n+1}-4^n\sum_{i=1}^nz_i-2^{-n}z)^+$. By Lemma 4.35 of [2] the sequence (y_n) is disjoint. Since $0\leq y_n\leq z_{n+1}$ for all $n\geq 1$ and $(z_n)\to 0$ weakly in E, then it follows from Theorem 4.34 of [2] that $(y_n)\to 0$ weakly in E.

From the inequalities

$$T'(g_{n+1})(y_n) \ge T'(g_{n+1})(z_{n+1} - 4^n \sum_{i=1}^n z_i - \frac{z}{2^n})$$

 $\ge \varepsilon - \frac{1}{n} - 2^{-n}T'(g_{n+1})(z)$

we see that $g_{n+1}\left(T\left(y_{n}\right)\right)=T'\left(g_{n+1}\right)\left(y_{n}\right)>\frac{\varepsilon}{2}$ must hold for all n sufficiently large (because $2^{-n}T'\left(g_{n+1}\right)\left(z\right)\right)\to0$), which contradicts with our hypothesis (9).

 $(10) \Rightarrow (11)$ Obvious.

- $(11)\Rightarrow (6)$ Let (x_n) be a weakly null sequence in E consisting of pairwise disjoint elements, and let (f_n) be a weakly null sequence in F', consisting of pairwise disjoint elements, it follows from Remark 1 of Wnuk [5] that $|x_n| \to 0$ in $\sigma(E, E')$, and $|f_n| \to 0$ in $\sigma(F', F'')$. Hence by (11), $|f_n|(T(|x_n|)) \to 0$. Now, from $|f_n(T(x_n))| \le |f_n|(T(|x_n|))$ for each n, we derive that $f_n(T(x_n)) \to 0$. $(12) \Rightarrow (8)$ Obvious.
- $(5) \Rightarrow (12)$ The proof is similar of the proof $(7) \Rightarrow (8)$. An application of Theorem 2.5, gives other characterizations of Banach lattices with the weak Dunford-Pettis property.

Corollary 2.6: For a Banach lattice E the following statements are equivalent:

- 1) E has the weak Dunford-Pettis property.
- 2) The identity operator $Id_E: E \to E$ is weak almost Dunford-Pettis, that is, every relatively weakly compact set of E is almost Dunford-Pettis set.
- 3) Every weakly compact operator T from an arbitrary Banach space X to E has an adjoint $T': E' \to X'$ which is almost Dunford-Pettis.
- 4) Every weakly compact operator $T: \ell^1 \to E$ has an adjoint T' which is almost Dunford-Pettis.
- 5) For all weakly null sequence $(x_n)_n \subset E$, and for all disjoint weakly null sequence $(f_n)_n \subset E'$ it follows that $f_n(x_n) \to 0$.
- 6) $f_n(x_n) \longrightarrow 0$ for every weakly null sequence $(x_n)_n$ in E^+ and for all disjoint weakly null sequence $(f_n)_n$ in E'.
- 7) For all disjoint weakly null sequences $(f_n)_n \subset E'$, $(x_n)_n \subset E$ it follows that $f_n(x_n) \longrightarrow 0$.

- 8) For all disjoint weakly null sequences $(f_n)_n \subset (E')^+$, $(x_n)_n \subset E^+$ it follows that $f_n(x_n) \longrightarrow 0$.
- 9) $f_n(x_n) \longrightarrow 0$ for every disjoint weakly null sequence (x_n) in E^+ and for all weakly null sequence (f_n) in E'.
- 10) $f_n(x_n) \longrightarrow 0$ for every disjoint weakly null sequence (x_n) in E^+ and for all weakly null sequence (f_n) in $(E')^+$.
- 11) $f_n(x_n) \longrightarrow 0$ for every weakly null sequence (x_n) in E and for all weakly null sequence (f_n) in $(E')^+$.
- 12) $f_n(x_n) \longrightarrow 0$ for every weakly null sequence $(x_n)_n$ in E^+ and for all weakly null sequence (f_n) in $(E')^+$.
- 13) $f_n(x_n) \longrightarrow 0$ for every weakly null sequence (x_n) in E^+ and for all weakly null sequence (f_n) in E'.

Proof: $(1) \Leftrightarrow (8)$ Follows from Proposition 1 of Wnuk [5].

 $(2) \Leftrightarrow (3) \Leftrightarrow ... \Leftrightarrow (13)$ Follows from Theorem 2.5.

The following consequence of Theorem 2.5 gives a sufficient conditions under which the class of positive weak almost Dunford-Pettis operators coincide with that of positive weak Dunford-Pettis operators.

Corollary 2.7: Let E and F be two Banach lattices. Then each positive weak almost Dunford-Pettis operator from E into F is weak Dunford-Pettis if one of the following assertions is valid:

- The lattice operation of E are weak sequentially continuous:
- 2) The lattice operation of F' are weak sequentially continuous

Proof: (1) Assume that $T: E \to F$ is a positive weak almost Dunford-Pettis operator. Let (x_n) be a weakly null sequence in E, and let (f_n) be a weakly null sequence in F'. We have to prove that $f_n(T(x_n)) \to 0$.

Since the lattice operation of E are weak sequentially continuous, then the positive sequences (x_n^+) and (x_n^-) converge weakly to zero. Thus, Theorem 2.5 (12) imply that

$$f_n\left(T(x_n^+)\right) \longrightarrow 0$$
 and $f_n\left(T(x_n^-)\right) \longrightarrow 0$.

Finally, from $f_n\left(T(x_n)\right) = f_n\left(T(x_n^+)\right) - f_n\left(T(x_n^-)\right)$ for each n, we conclude that $f_n\left(T(x_n)\right) \longrightarrow 0$. This shows that T is weak Dunford-Pettis.

(2) Assume that $T: E \to F$ is a positive weak almost Dunford-Pettis operator. Let (x_n) be a weakly null sequence in E, and let (f_n) be a weakly null sequence in F'. We have to prove that $f_n(T(x_n)) \to 0$.

Since the lattice operation of F' are weak sequentially continuous, then the positive sequences (f_n^+) and (f_n^-) converge weakly to zero. Thus, Theorem 2.5 (10) imply that $f_n^+(T(x_n)) \longrightarrow 0$ and $f_n^-(T(x_n)) \longrightarrow 0$. Finally, from $f_n(T(x_n)) = f_n^+(T(x_n)) - f_n^-(T(x_n))$ for each n, we conclude that $f_n(T(x_n)) \longrightarrow 0$. This shows that T is weak Dunford-Pettis.

The preceding Corollary, gives a sufficient conditions under which the weak Dunford-Pettis property and the Dunford-Pettis property coincide.

Corollary 2.8: Let E be a Banach lattice. Then E has the Dunford-Pettis property if and only if it has the weak Dunford-Pettis property, if one of the following assertions is valid:

World Academy of Science, Engineering and Technology International Journal of Mathematical and Computational Sciences Vol:5, No:2, 2011

- The lattice operation of E are weak sequentially continuous:
- 2) The lattice operation of E' are weak sequentially continuous

Our consequence of Theorem 2.5 we obtain the domination property for weak almost Dunford-Pettis operators.

Corollary 2.9: Let E and F be two Banach lattices. If S and T are two positive operators from E into F such that $0 \le S \le T$ and T is weak almost Dunford-Pettis operator, then S is also weak almost Dunford-Pettis operator.

Proof: Let $(x_n)_n$ be a weakly null sequence in E^+ and (f_n) be a weakly null sequence in $(F')^+$. According to (11) of Theorem 2.5, it suffices to show that $f_n(S(x_n)) \longrightarrow 0$. Since T is weak almost Dunford-Pettis, then Theorem 2.5 implies that $f_n(T(x_n)) \longrightarrow 0$. Now, by using the inequalities $0 \le f_n(S(x_n)) \le f_n(T(x_n))$ for each n, we see that $f_n(S(x_n)) \longrightarrow 0$.

Now, we look at the duality property of the class of positive weak almost Dunford-Pettis operators.

Theorem 2.10: Let E and F be two Banach lattices and let T be a positive operator from E into F. If the adjoint T' is weak almost Dunford-Pettis from F' into E', then T itself is weak almost Dunford-Pettis.

Proof: Let (x_n) be a weakly null sequence in E^+ , and let (f_n) be a weakly null sequence in $(F')^+$. We have to prove that $f_n(T(x_n)) \longrightarrow 0$.

Let $\tau: E \longrightarrow E''$ be the canonical injection of E into its topological bidual E''. Since τ is a lattice homomorphism, the sequence $(\tau(x_n))$ is weakly null in $(E'')^+$. And as the adjoint T' is weak almost Dunford-Pettis from F' into E', we deduce by Theorem 2.1 that $\tau(x_n)(T'(f_n)) \longrightarrow 0$. But $\tau(x_n)(T'(f_n)) = T'(f_n)(x_n) = f_n(T(x_n))$ for each n. Hence $f_n(T(x_n)) \longrightarrow 0$ and this ends the proof.

We end this paper by a consequence of Theorem 2.10, we obtain Proposition 2 of Wnuk [5].

Corollary 2.11: Let E be a Banach lattice. If E' has the weak Dunford-Pettis property, then E itself has the weak Dunford-Pettis.

REFERENCES

- Aliprantis C.D. and Burkinshaw O., Dunford-Pettis operators on Banach lattices. Trans. Amer. Math. Soc. vol. 274, 1 (1982) 227-238.
- [2] Aliprantis C. D. and Burkinshaw O., Positive operators. Reprint of the 1985 original. Springer, Dordrecht, 2006.
- [3] Bouras, K., Moussa, M. and Aqzzouz, B, Almost Dunford-Pettis sets in Banach lattices. Preprint.
- [4] Kalton N.J. and Saab P., Ideal properties of regular operators between Banach lattices. Illinois Journal of Math. Vol. 29, 3 (1985) 382-400.
- 5] Wnuk W., Banach Lattices with the weak Dunford-Pettis Property, Atti Sem. Mat. Univ. Modena, XLII, 227-236 (1994).