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Abstract—We introduce and study the class of weak almost
Dunford-Pettis operators. As an application, we characterize Banach
lattices with the weak Dunford-Pettis property. Also, we establish
some sufficient conditions for which each weak almost Dunford-Pettis
operator is weak Dunford-Pettis. Finally, we derive some interesting
results.
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[. INTRODUCTION AND NOTATION

As many Banach spaces do not have the Dunford-Pettis
property, a weak notion is introduced, called the weak
Dunford-Pettis property. A Banach space (respectively, Banach
lattice) F has the Dunford-Pettis (respectively, weak Dunford-
Pettis) property if every weakly compact operator defined
on F (and taking their values in a Banach space F') is
Dunford-Pettis (respectively, almost Dunford-Pettis, that is, the
sequence (||T (zy)||) converges to O for every weakly null
sequence (x,) consisting of pairwise disjoint elements in E
[SD). It is obvious that if E has the Dunford-Pettis property,
then it has the weak Dunford-Pettis property.

On the other hand, whenever Aliprantis-Burkinshaw [1] and
Kalton-Saab [4] studied the domination property of Dunford-
Pettis operators, they used the class of weak Dunford-Pettis
operators which satisfies the domination property [4]. Let us
recall from [2] that an operator 7" from a Banach space X
into another Y is called weak Dunford-Pettis if the sequence
(fn(T(zy))) converges to 0 whenever (z,,) converges weakly
to 0 in X and (f,,) converges weakly to 0 in Y. Alternatively,
T is weak Dunford-Pettis if 7" maps relatively weakly compact
sets of X into Dunford-Pettis sets of Y (see Theorem 5.99
of [2]). A norm bounded subset A of a Banach lattice F is
said to be Dunford-Pettis set if every weakly null sequence
(fn) of E' converges uniformly to zero on the set A, that is,
Supgea | fn(z)| — 0 (see Theorem 5.98 of [2]).

In [3], we introduced a new class of sets we call almost
Dunford-Pettis set. A norm bounded subset A of a Banach
lattice E is said to be almost Dunford-Pettis set if every
disjoint weakly null sequence (f,,) of E’ converges uniformly
to zero on the set A, that is, sup,ca |fn(z)| = 0.

As weak Dunford-Pettis operators, we introduce a new
class of operators that we call weak almost Dunford-Pettis
operator. An operator 7' from a Banach space X into a Banach
lattice F' is said to be weak almost Dunford-Pettis if T' maps
relatively weakly compact sets of X into almost Dunford-
Pettis sets of F. The latter class of operators differs from
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that of weak Dunford-Pettis operators. In fact, the first one
is defined between Banach spaces while the second one is
defined from a Banach space into a Banach lattice.

On the other hand, since each Dunford-Pettis set in a
Banach lattice is almost Dunford-Pettis, then the class of weak
almost Dunford-Pettis operators contains strictly that of weak
Dunford-Pettis operators, that is, every weak Dunford-Pettis
operator is weak almost Dunford-Pettis. But a weak almost
Dunford-Pettis operator is not necessary weak Dunford-Pettis.
In fact, for Wnuk (see [5], Example 1, p. 231)), the Lorentz
space A(w, 1) has the weak Dunford-Pettis property but does
not have the Dunford-Pettis property, and then its identity op-
erator is weak almost Dunford-Pettis (because each relatively
weakly compact set in a Banach lattice has the weak Dunford-
Pettis property is an almost Dunford-Pettis set, see Theorem
2.8 of [3]), but it is not weak Dunford-Pettis.

The objective of this paper is to study the class of weak
almost Dunford-Pettis operators. Also, we derive the following
interesting consequences: some characterizations of this class
of operators, some characterizations of the weak Dunford-
Pettis property, the coincidence of this class of operators with
that of weak Dunford-Pettis operators, the domination property
of this class of operators and the duality property.

To state our results, we need to fix some notation and recall
some definitions. A Banach lattice is a Banach space (E, || -
|I) such that E is a vector lattice and its norm satisfies the
following property: for each x,y € E such that |z| < |y|,
we have ||z|| < |ly||. Note that if E is a Banach lattice, its
topological dual E’, endowed with the dual norm and the dual
order, is also a Banach lattice. A norm || || of a Banach lattice
E is order continuous if for each generalized sequence ()
such that z,, | 0 in E, (z,) converges to 0 for the norm || - ||
where the notation z, | 0 means that (z,) is decreasing, its
infimum exists and inf(z,) = 0.

A linear mapping 7" from a vector lattice £ into a vector
lattice I is called a lattice homomorphism, if z Ay = 0 in
E implies T'(z) AT(y) =0 in F. An operator T : E — F
between two Banach lattices is a bounded linear mapping. It is
positive if T'(x) > 0 in F whenever x > 0in E.If T : E —
F' is a positive operator between two Banach lattices, then its
adjoint 7" : F/ — E’, defined by T" (f) () = f (T (z)) for
each f € F’' and for each € F, is also positive. We refer the
reader to [2] for unexplained terminologies on Banach lattice
theory and positive operators.

II. MAIN RESULTS

Recall from [5] that an operator from a Banach lattice E
into a Banach space X is said to be almost Dunford-Pettis if
the sequence (||T (x,,)||) converges to 0 for every weakly null
sequence (x,,) consisting of pairwise disjoint elements in F.
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The following result gives a characterizations of weak
almost Dunford-Pettis operators from a Banach space into a
Banach lattice in term of weakly compact operators and the
adjoint of almost Dunford-Pettis operators.

Theorem 2.1: For an operator 7" from a Banach space
X into a Banach lattice F', the following statements are
equivalent:

1) T is weak almost Dunford-Pettis operator.

2) If S is a weakly compact operator from an arbitrary
Banach space Z into X, then the adjoint of the operator
product T o .S is almost Dunford-Pettis.

3) If S is a weakly compact operator from ¢! into X,
then the adjoint of the operator product 7o S is almost
Dunford-Pettis.

4) For all weakly null sequence ()
disjoint weakly null sequence (fy)n
that f,,(T (x,)) — 0.

Proof: (1) = (2) Let (f,) be a disjoint weakly null
sequence in F’, we have to prove that ((7'o S)' (f,)) con-
verges to 0 for the norm of Z’. If not, then there exist a
sequence (z,) in the closed unit ball Bz of Z, a subsequence
of ((T'oS) (fn)) (which we shall denote by ((T'o.S) (f,))
i i (T(S (zn)))| > € for
all n. Since S is weakly compact, the set A = {S(z1),
S (#2), ...} is relatively weakly compact subset of E, and then
the set T'(A) is an almost Dunford-Pettis (because 1" carries
weakly relatively compact sets of X to almost Dunford-Pettis
sets of F'). Hence we obtain

[fn (T(S (z0)))] <

C X, and for all
C F’ it follows

sup |fn(z)| — 0.
2€T(A)

Then |f, (T(S(z,)))] — 0, which is impossible with
|fn (T0S (xn))] > e for all n. Thus, the sequence
((T'oS)' (frn)) converges to 0 for the norm of Z’, and so
the adjoint (7" o S)’ is almost Dunford-Pettis.

(2) = (3) Obvious.

(3) = (4) Let (f,) be a disjoint weakly null sequence in
, and let (z,,) be a weakly null sequence in X. Consider
the operator S : [ — X defined by

S((N)521) = Yooy Ay for each ()2, € I1.

Then S is weakly compact (Theorem 5.26 of [2]), and so by
our hypothesis (T'oS) = 5" o T’ is an almost Dunford-Pettis
operator. Thus ||(T" o S)'(f)|| — 0 and the desired conclusion
follows from the inequality

[fn(T (@)l = [fa(T(S(en)))]
A |fn(T(S((A)iZ1))]

(T o S) (fu)

for each n, where (e;)$°; is the canonical basis of /'.

(4) = (1) Let W be a relatively weakly compact subset of
X, and let (f,) be a disjoint weakly null sequence in F’. If
(fn) does not converge uniformly to zero on 7'(W), then there
exist a sequence (z,) of W, a subsequence of (f,) (which
we shall denote by (f,) again), and some ¢ > 0 satisfying
| fro (T(zy))| > € for all n.

Since W is weakly compact, we can assume that z,, — =
weakly in X. Then T'(z,) — T'(z) weakly in F' and so,

/

IN
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by our hypothesis, we have 0 < e < |fy, (T(zn))]

|fr (T(xy, — )| + |fn (T(z))] — 0, which is impossible.
Thus, (f,) converges uniformly to zero on T(W), and this
shows that T'(TW) is an almost Dunford-Pettis set. This ends
the proof of the Theorem. |

Let us recall that, an operator T' from a Banach lattice £
into a Banach lattice I is said to be order bounded if for
each z € ET, the set T'([—z, 2]) is order bounded set in F.
An operator T from a Banach lattice E' into a Banach lattice
F' is said to be regular if it can be written as a difference
of two positive operators. Note that, every regular operator is
order bounded but an order bounded operator is not necessary
regular (see [2], Example 1.16, p. 13).

Remark 2.2: Each order interval [—z, z] of a Banach lattice
FE is an almost Dunford-Pettis set for each z € ET. In fact, if
(fr) be a disjoint weakly null sequence in E’, then by Remark
1 of Wnuk [5], (|f|) is a disjoint weakly null sequence in F’.
Hence sup,e(_, . |fn(2)] = |ful (2) = 0 for each 2 € E*.
As a consequence, if T': £ — F'is an order bounded operator
from a Banach lattice F into another F, then T'([—z, z]) is
an almost Dunford-Pettis set in F, and then |f, o T|(z) =
SUPy et ([—2,2)) | fn(y)| — O for each z € E*.

We will need the following characterizations, which are just
Theorem 2.4 of [3].

Theorem 2.3: [3] Let T : EE — F be an order bounded
operator from a Banach lattice E into another Banach lattice
F, and let A be a norm bounded solid subset of E. The
following statements are equivalent:

1) T(A) is an almost Dunford-Pettis set.

2) {T(xz,), n € N} is an almost Dunford-Pettis set for

each disjoint sequence (z,) in AT = ANET.

3) fu(T(z,)) — 0 for each disjoint sequence (z,) in A"

and for every disjoint weakly null sequence (f,,) of E’.
Proof: (1) = (2) Obvious.

(2) = (3) Obvious.

(3) = (1) To prove that T'(A) is an almost Dunford-Pettis
set, it suffice to show that sup,c 4 |fn (T'(z))| — O for every
disjoint weakly null sequence (f,) of F’. Otherwise, there
exists a sequence (f,) C E’ satisfying supca |fn (T'(2))| >
¢ for some € > 0 and all n. For every n there exists z, in
AT such that [T (f,)] (zn) > e. Since |T’ (f»)] (z) — 0 for
every z € ET (see Remark 2.2), then by an easy inductive
argument shows that there exist a subsequence (y,) of (z,)
and a subsequence (g,,) of (f,) such that

n

1

IT" (gn41)| (Yns+1) > € and |T" (gni1)] (4" § yi) < -
=1

forall n > 1. Put z = >0 27", and =, = (Ynt1 —
4n Zl 1Y — 27 "z)*. By Lemma 4.35 of [2] the sequence
(z,) is disjoint. Since 0 < z,, < yp41 for every n, and (Yn11)
in AT then (z,) C A™.

From the inequalities

T (gns1)] (Yns1 — 4" Z Yy — 27 "x)

i=1

— = 27"T" (gn11)| (z)

|T/ (gn+1)| (zn)

Y

Y
™
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we see that |T"(gn41)| () > § must hold for all n
sufficiently large (because 27" |T” (gn+1)| (z) — 0).

In view of |T" (gn+1)| (zn) = sup{|gns1 (T(2))] : |2] <
Zn}, for each n sufficiently large there exists some |z,| <
&y, With |gpq1 (T'(2,))] > 5. Since (2;7) and (z;,) are both
norm bounded disjoint sequence in A*, it follows from our
hypothesis that

= < gnst (@) < [gar (TED)] + [gnes (T(7))] -0

which is impossible. This proves that 7'(A) is an almost
Dunford-Pettis set. ]

For order bounded operators between two Banach lattices,
we give a characterization of weak almost Dunford-Pettis
operators.

Theorem 2.4: Let T be an order bounded operator from a
Banach lattice E into another F'. Then the following assertions
are equivalent:

1) T is weak almost Dunford-Pettis operator.

2) fo(T(z,)) — 0 for all weakly null sequence (z,)
in E consisting of pairwise disjoint terms, and for all
weakly null sequence (f,,) in E’ consisting of pairwise
disjoint terms.

Proof: (1) = (2) Obvious.

(2) = (1) Let (x,) be a weakly null sequence in F, and
let (f,,) be a disjoint weakly null sequence in F’. We have to
prove that f,,(T(z,)) — 0.

Let A be the solid hull of the weak relatively compact subset
{Zn, n € N} of E, by Theorem 4.34 of [2], (z,) — O
weakly for each disjoint sequence (z,) in AT and so, by
our hypothesis, we have ¢,(7T(z,)) — 0 for each disjoint
weakly null sequence (g, ) in F and for each disjoint sequence
(2,,) in AT, then Theorem 2.3, implies that 7'(A4) is an
almost Dunford-Pettis set, and hence sup,cp(ay [fn(y)| — 0.
Therefore,

[fn(T(@n))| < sup [fn((T(2)| < sup [fa(y)ll =0
z€A yeT(A)

holds and the proof is finished. ]

Now for positive operators between two Banach lattices,
we give other characterizations of weak almost Dunford-Pettis
operators.

Theorem 2.5: Let E and F' be two Banach lattices. For
every positive operator 7' from E into F, the following
assertions are equivalent:

1) T is weak almost Dunford-Pettis.

2) If S is a weakly compact operator from an arbitrary
Banach space Z into E, then the adjoint of the operator
product T o S is almost Dunford-Pettis.

3) If S is a weakly compact operator from ¢! into F,
then the adjoint of the operator product 7 o S is almost
Dunford-Pettis.

4) For all weakly null sequence (z)
disjoint weakly null sequence (fy)n
that f,,(T (x,)) — 0.

5) fn(T(z,)) — 0 for every weakly null sequence (z,)
in E* and for all disjoint weakly null sequence (f,) in
F'.

C F, and for all
C F' it follows

International Scholarly and Scientific Research & Innovation 5(2) 2011

6) fn(T(xz,)) — 0 for all weakly null sequence ()
in E consisting of pairwise disjoint terms, and for all
weakly null sequence (f,,) in F’ consisting of pairwise
disjoint terms.

7) For all disjoint weakly null sequences (x,), C ET,
(fu)n C (F')T it follows that f, (T'(z,)) — 0.

8) fn(T(z,)) — 0 for every disjoint weakly null se-
quence () in ET and for all weakly null sequence
(fn) in F".

9) fn(T(x,)) — 0 for every disjoint weakly null se-
quence (z,,) in ET and for all weakly null sequence
(fu) in (F')F.

10) fn (T(zy,)) — 0 for every weakly null sequence ()
in E and for all weakly null sequence (f,) in (F')*.
1) fn (T(x,)) — 0 for every weakly null sequence ()
in E1 and for all weakly null sequence (f,,) in (F')*.
12) fn (T(z,)) — 0 for every weakly null sequence ()
in £ and for all weakly null sequence (f,,) in F”.
Proof: (1) & (2) & (3) < (4) Follows from Theo-
rem 2.1.

(6) < (4) Follows from Theorem 2.4.

(4) = (5) Obvious.

(5) = (6) Let (x,,) be a weakly null sequence in E
consisting of pairwise disjoint elements, and let (f,) be a
weakly null sequence in F”, consisting of pairwise disjoint
elements, it follows from Remark 1 of Wnuk [5] that .Z;I; — 0
and z,, —> 0 weakly in E*. Hence by (5), fn(T(z,)) =
FalT(54)) = falT () — 0.

(6) = (7) Obvious.

(7) = (8) Assume by way of contradiction that there exists
a disjoint weakly null sequence (z,,) C ET and a weakly null
sequence (f,) C F’ such that f,, (T'(z,)) - 0. The inequality
| fo (T(2n))| < |fu| (T(25)) implies |f,| (T'(2zn)) ~ 0. Then
there exists some € > 0 and a subsequence of |f,|(T(zy,))
(which we shall denote by |f,|(T(x,)) again) satisfying
[ fnl (T(zy)) > € Vn.

On the other hand, since (z,) — 0 weakly in E, then
T(x,) — 0 weakly in F. Now an easy inductive argument
shows that there exist a subsequence (z,) of (z,) and a
subsequence (g,,) of (f,) such that ¥n > 1

90 (T(20)) > < and (4 3" | (T(z011)) <

Puth =377, 27" |gn| and by, = (|gnt1| —4" 320, 9] —
27"h)*. By Lemma 4.35 of [2] the sequence (h,,) is disjoint.
Since 0 < h,, < |gpy1| forall n > 1 and (g,) — 0 weakly in
F’ then it follows from Theorem 4.34 of [2] that (h,) — 0
weakly in F”.

From the inequalities

hn(T (1)) = (gl =473 lgil = 27" W) (T (2041))
> o =2 (T ()

we see that h,,(T(2,41)) > § must hold for all n sufficiently
large (because 27" h(T'(zp+1)) — 0), which contradicts with
our hypothesis (7).

(8) = (9) Obvious.
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(9) = (10) Assume by way of contradiction that there
exists a weakly null sequence (z,) C F and a weakly null
sequence (f,) C (F')" such that f, (T'(z,)) - 0. The in-
equality | o (T(w0))| < fu (T(|n]}) implies fo (T (zn]))
0. Then there exists some € > 0 and a subsequence of
fn (T(|xn|)) (which we shall denote by f, (T'(|z,|)) again)
satisfying f,, (T'(Jzy|)) > € for all n.

On the other hand, since (f,) — 0 weakly in F’, then
T’ (fn) — 0 weakly in E’. Now an easy inductive argument
shows that there exist a subsequence (z,) of (|z,|) and a
subsequence (g,,) of (f,) such that ¥n > 1

T (gn) (zn) > € and T' (gny1) (4" Zj:

Put z = > 127"z, and y, = (Zp41 — 4" > 0 1 2 —
27"2)*. By Lemma 4.35 of [2] the sequence (y,,) is disjoint.
Since 0 < y,, < zpy1 forall n > 1 and (z,) — 0 weakly in
E, then it follows from Theorem 4.34 of [2] that (y,) — 0
weakly in F.

From the inequalities

n
T’ (Gn+1) (yn) > T’ (9n+1) (zng1 — 4" Zi:l Zi

1
> - o 27T (gn+1) (2)

1
lzi)<g

z
oo

)

we see that In+1 (T (yn)) =T (gn+1) (yn) > % must hold
for all n sufficiently large (because 277" (gn+1) (2)) — 0),
which contradicts with our hypothesis (9).

(10) = (11) Obvious.

(11) = (6) Let (x,) be a weakly null sequence in E
consisting of pairwise disjoint elements, and let (f,) be
a weakly null sequence in F’, consisting of pairwise dis-
joint elements, it follows from Remark 1 of Wnuk [5] that
|z — 0in o (E,E'), and | f,| — 0 in o (F’, F""). Hence
by (11), |fu| (T(|zn])) — 0. Now, from |f, (T(z,))] <
| fnl (T(|xy|)) for each n, we derive that f,, (T'(z,)) — 0.

(12) = (8) Obvious.

(5) = (12) The proof is similar of the proof (7) = (8). ®

An application of Theorem 2.5, gives other characterizations
of Banach lattices with the weak Dunford-Pettis property.

Corollary 2.6: For a Banach lattice E the following state-
ments are equivalent:

1) E has the weak Dunford-Pettis property.

2) The identity operator Idg : E — E is weak almost
Dunford-Pettis, that is, every relatively weakly compact
set of F is almost Dunford-Pettis set.

3) Every weakly compact operator 7' from an arbitrary
Banach space X to E has an adjoint 77 : ' — X'
which is almost Dunford-Pettis.

4) Every weakly compact operator T : ¢! — FE has an
adjoint 77 which is almost Dunford-Pettis.

5) For all weakly null sequence (z,), C E, and for all
disjoint weakly null sequence (f,), C E’ it follows
that f,,(z,) — 0.

6) fn(xz,) — 0 for every weakly null sequence (zy,),, in
E* and for all disjoint weakly null sequence (f,), in
E'.

7) For all disjoint weakly null sequences (f,.), C E’,
(zn)n C E it follows that f, (z,) — 0.

International Scholarly and Scientific Research & Innovation 5(2) 2011

8) For all disjoint weakly null sequences (fy,)n C (E')7,
(xn)n C ET it follows that f, (z,) — 0.

9) fu(xn) —> 0 for every disjoint weakly null sequence
(z,) in ET and for all weakly null sequence (f,) in
E'.
fn (z,) — 0 for every disjoint weakly null sequence
() in E* and for all weakly null sequence (f,) in
(E)*.
fn () — 0 for every weakly null sequence (x,,) in
E and for all weakly null sequence (f,) in (E')*.
fn (z) — 0 for every weakly null sequence (zy,), in
E™ and for all weakly null sequence (f,) in (E')T.
fn (xy) — 0 for every weakly null sequence (z,,) in
E* and for all weakly null sequence (f,,) in E’.

Proof: (1) < (8) Follows from Proposition 1 of Wnuk

[5].

(2) & (3) & ... & (13) Follows from Theorem 2.5. [ |

The following consequence of Theorem 2.5 gives a suffi-
cient conditions under which the class of positive weak almost
Dunford-Pettis operators coincide with that of positive weak
Dunford-Pettis operators.

Corollary 2.7: Let E and F be two Banach lattices. Then
each positive weak almost Dunford-Pettis operator from E into
F' is weak Dunford-Pettis if one of the following assertions is
valid:

10)

1)
12)

13)

1) The lattice operation of E are weak sequentially contin-
uous;

2) The lattice operation of F’ are weak sequentially con-
tinuous.

Proof: (1) Assume that T : E — F is a positive weak
almost Dunford-Pettis operator. Let (x,) be a weakly null
sequence in E, and let (f,) be a weakly null sequence in
F’. We have to prove that f,,(T(z,)) — 0.

Since the lattice operation of E are weak sequentially con-
tinuous, then the positive sequences (z;) and (x, ) converge
weakly to zero. Thus, Theorem 2.5 (12) imply that

o (T(@)) — 0 and f, (T(z;,)) — 0.

Finally, from f,, (T(zs)) = fu (T(z})) — fu (T(z;,)) for
each n, we conclude that f,, (T'(x,)) — 0. This shows that
T is weak Dunford-Pettis.

(2) Assume that T : E — F is a positive weak almost
Dunford-Pettis operator. Let (z,,) be a weakly null sequence
in E, and let (f,) be a weakly null sequence in F”’. We have
to prove that f,,(T(z,)) — 0.

Since the lattice operation of F’ are weak sequentially
continuous, then the positive sequences (f;F) and (f,) con-
verge weakly to zero. Thus, Theorem 2.5 (10) imply that
A (T(z,)) — 0 and f, (T'(x,)) — 0. Finally, from
fo(T(xn)) = fi (T(xn)) = fi (T(xn)) for each n, we
conclude that f, (T'(x,)) — 0. This shows that T is weak
Dunford-Pettis. ]

The preceding Corollary, gives a sufficient conditions under
which the weak Dunford-Pettis property and the Dunford-
Pettis property coincide.

Corollary 2.8: Let E be a Banach lattice. Then E has the
Dunford-Pettis property if and only if it has the weak Dunford-
Pettis property, if one of the following assertions is valid:
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1) The lattice operation of E are weak sequentially contin-

uous;

2) The lattice operation of E’ are weak sequentially con-

tinuous.

Our consequence of Theorem 2.5 we obtain the domination
property for weak almost Dunford-Pettis operators.

Corollary 2.9: Let E and F' be two Banach lattices. If S
and T are two positive operators from FE into F' such that
0 < S <T and T is weak almost Dunford-Pettis operator,
then S is also weak almost Dunford-Pettis operator.

Proof: Let (x,,), be a weakly null sequence in ET and
(f.) be a weakly null sequence in (F')T. According to (11)
of Theorem 2.5, it suffices to show that f, (S(z,)) — 0.
Since T is weak almost Dunford-Pettis, then Theorem 2.5
implies that f,, (T'(z,)) — 0. Now, by using the inequalities
0 < fn(S(zn)) < fo(T(xy,)) for each n, we see that
fn (S(zn)) — 0. u

Now, we look at the duality property of the class of positive
weak almost Dunford-Pettis operators.

Theorem 2.10: Let E and F' be two Banach lattices and let
T be a positive operator from F into F. If the adjoint T” is
weak almost Dunford-Pettis from F' into E’, then T itself is
weak almost Dunford-Pettis.

Proof: Let (x,,) be a weakly null sequence in E, and let
(f,) be a weakly null sequence in (F”’)". We have to prove
that f,, (T'(z,)) — 0.

Let 7 : E — E” be the canonical injection of E into
its topological bidual E”. Since 7 is a lattice homomorphism,
the sequence (7(z,)) is weakly null in (E”)*. And as the
adjoint 7" is weak almost Dunford-Pettis from F’ into F’,
we deduce by Theorem 2.1 that 7(x,)(T'(fn)) — 0. But
() (T (fn)) = T'(fn)(xn) = fn(T(z,)) for each n. Hence
fru(T(x,)) — 0 and this ends the proof. |

We end this paper by a consequence of Theorem 2.10, we
obtain Proposition 2 of Wnuk [5].

Corollary 2.11: Let E be a Banach lattice. If E’ has the
weak Dunford-Pettis property, then E itself has the weak
Dunford-Pettis.
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