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Abstract
In an attempt to select stars that can host planets with characteristics similar to our own, we selected seven solar-type stars
known to host planets in the habitable zone and for which spectroscopic stellar parameters are available. For these stars we
estimated ’empirical’ abundances of O, C, Mg and Si, which in turn we used to derive the iron and water mass fraction of
the planet building blocks with the use of the model presented in Santos et al. (2015). Our results show that if rocky planets
orbit these stars they might have signi�cantly di�erent compositions between themselves and di�erent from that of our Earth.
However, for a meaningful comparison between the compositional properties of exoplanets in the habitable zone and our own
planet, a far more sophisticated analysis (e.g. Dorn et al., 2017) of a large number of systems with precise mass and radius of
planets, and accurate chemical abundances of the host stars. The work presented here is merely the �rst humble step in this
direction.

1 Introduction
Observations revealed a now well-known dependence be-

tween exoplanet formation and metallicity. Giant planets
tend to form more frequently around metalic stars (e.g. Gon-
zalez, 1997; Santos et al., 2001; Mortier et al., 2013). This
dependence, however, is less clear for low-mass/small-size
planets (e.g. Sousa et al., 2011; Buchhave & Latham, 2015;
Zhu et al., 2016). Interestingly, there are no planets ob-
served around very metal poor stars e.g. [Fe/H] < -1 dex
(exoplanet.eu), which probably means that there is a crit-
ical metallicity below which no planet can be formed (e.g.
Johnson & Li, 2012). This critical metallicity is much higher
than the metallicity of population III stars in our Galaxy, lead-
ing to the inference that planet formation started only after
the �rst stars were formed and died, enriching the the inter-
stellar gas with metals. However, this process did not take
very long (in astronomical timescale) since many planets are
found around thick disk stars that are typically older than 8
Gyr (e.g. Haywood et al., 2013). Moreover, it was shown that
planet formation was more e�cient around thick disk stars
when compared to the thin disk stars of the same (low) metal-
licity (Haywood, 2009; Adibekyan et al., 2012a,b). This stems
from the thick disk stars being enhanced in α-elements such
as O, Mg, Si (e.g. Bensby et al., 2003; Adibekyan et al., 2013a)
which seems to compensate the lack of iron, typically used
as a proxy of overall metallicity (Adibekyan et al., 2012a).
Indeed a system of �ve sub-earth-size planets was detected
around a 11.2 Gyr old star (Campante et al., 2015), setting the
limit for the earliest exoplanet system formed and opening a
possibility for the existence of ancient life in our Galaxy.

During (at least) the 11.2 billion year-long history of exo-
planet formation in the Milky Way, the interstellar gas has
chemically evolved signi�cantly. Some recent works detail
how abundances of di�erent chemical elements changes with
time (e.g. Nissen et al., 2017; Delgado Mena et al., 2017a)
and place in the Galaxy (e.g. Recio-Blanco et al., 2014; Kor-

dopatis et al., 2015). Abundances of these di�erent individual
heavy elements and speci�c elemental ratios (e.g. Mg/Si and
Fe/Si) are, in turn, very important for the formation (San-
tos et al., 2001; Suárez-Andrés et al., 2017; Santos et al., 2017;
Adibekyan et al., 2015, 2017), orbital architecture (Adibekyan
et al., 2013b; Beaugé & Nesvorný, 2013; Mulders et al., 2016),
structure and composition (Santos et al., 2015; Thiabaud et al.,
2014; Dorn et al., 2015), and even maybe for ’habitability’ of
the exoplanets (Adibekyan et al., 2016). This discussion leads
to a conclusion that the chemical environment i.e., time and
place in the Milky Way, play a crucial role for the formation
of planets and their main characteristics (Adibekyan, 2017).

In a recent work, Adibekyan et al. (2016) proposed that
planets in the habitable zone of solar-like stars may have dif-
ferent compositions from that of our Earth. In this work, we
try to estimate the composition of the planet building blocks
around stars that are known to host planets in the habitable
zone (HZ)1.

2 Planets in the habitable zone: sample se-
lection

To select stars with HZ planets we used the the Habit-
able Exoplanet Catalog2. From the list of “Conservative” and
“Optimistic Sample of Potentially Habitable Exoplanets” we
selected planets that are hosted by solar-type stars with ef-
fective temperature higher than 4500 K. We note that the
derivation of stellar parameters, including stellar metallicity,
is very challenging for cooler stars and are typically less pre-
cise. For six (Kepler-1540, Kepler-1544, Kepler-1552, Kepler-
1090, Kepler-1606 and Kepler-1638) out of 13 selected sys-
tems, the stellar metallicity (the most important parameter
for the current study) was derived by Morton et al. (2016)

1Do not mix with the Habeertable Zone de�ned in Turbo-King et al.
(2017).

2http://phl.upr.edu/projects/habitable-exoplanets-catalog
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Table 1: Stellar parameters and abundances of the sample stars. The index emp refer to the ’empirical’ derivation of the
abundances. The references for stellar parameters are in the last column.

star Teff log g [Fe/H] [O/H] [C/H] [Mg/H] [Si/H] [O/H]emp [C/H]emp [Mg/H]emp [Si/H]emp References

Kepler-22 5518±44 4.44±0.06 -0.29±0.06 -0.19±0.05 -0.24±0.05 -0.23±0.03 -0.24±0.02 -0.10±0.10 -0.28±0.06 -0.18±0.06 -0.21±0.05 Borucki et al. (2012)
HD40307 4774±77 4.42±0.16 -0.36±0.02 -0.36±0.10 -0.20±0.09 -0.19±0.08 -0.14±0.10 -0.40±0.05 -0.22±0.03 -0.27±0.05 Tsantaki et al. (2013)
HD10700 5310±17 4.46±0.03 -0.52±0.01 -0.26±0.10 -0.52±0.10 -0.30±0.06 -0.36±0.01 -0.18±0.10 -0.52±0.10 -0.29±0.08 -0.35±0.07 Sousa et al. (2008)
Kepler-452 5757±85 4.32±0.09 0.21±0.09 0.21±0.10 0.17±0.08 0.22±0.08 0.21±0.08 Jenkins et al. (2015)
Kepler-62 4925±70 4.68±0.04 -0.37±0.04 -0.14±0.10 -0.39±0.05 -0.21±0.05 -0.22±0.06 Borucki et al. (2013)
Kepler-174 4880±126 4.68±0.15 -0.43±0.10 -0.18±0.10 -0.59±0.10 -0.41±0.01 -0.40±0.04 Rowe et al. (2014)
Kepler-443 4723±100 4.62±0.10 -0.01±0.10 0.02±0.10 -0.11±0.09 -0.07±0.10 0.06±0.07 Torres et al. (2015)

using the vespa3 package. The non-spectroscopic metallic-
ities of these six stars seem to be too biased (probably be-
cause of the �tting priors and algorithm) towards the solar
value. The mean metallicity and the standard deviation of
the six stars is 0.000±0.058 dex. In fact, about 80% of the stars
from the full sample of Morton et al. (2016) have metallicities
from -0.1 to 0.1 dex. For comparison, only about 34% of stars
from the volume-limited HARPS sample of Adibekyan et al.
(2012c) lie within the aforementioned range of metallicity.
Without making any judgment on the quality of this work,
but nonetheless noting the clear discrepancy, we preferred
to con�ne our analysis to spectroscopicly derived parame-
ters. As such, we limited our analysis to seven stars (Kepler-
22, HD40307, HD10700, Kepler-452, Kepler-62, Kepler-174,
Kepler-443) with metallicities only derived by spectroscopic
methods (see Table 1). It is interesting to see that six out of
seven hosts have sub-solar metallicities, although the metal-
licity of Kepler-443 is compatible with the solar value within
the error.

3 Abundances of the host stars
In order to derive composition of the planetary building

blocks, as it was done in Santos et al. (2015) chemical abun-
dances of O, C, Mg, and Si are necessary. Our intensive liter-
ature search for chemical abundances of the sample stars was
not very productive. Only three stars have elemental abun-
dances reported in the literature: Kepler-22 – (Schuler et al.,
2015), HD40307 – (Delgado Mena et al., 2017b; Suárez-Andrés
et al., 2017), and HD10700 – (Bertran de Lis et al., 2015; Del-
gado Mena et al., 2017b; Suárez-Andrés et al., 2017). To obtain
the ’empirical’ abundances of other stars we proceed as fol-
lows. We �rst searched for stellar analogs4 for each star in
these catalogs: Suárez-Andrés et al. (2017) for Carbon abun-
dance and Delgado Mena et al. (2017b) for abundances of Mg
and Si. The mean abundance of all the analogs was used as a
proxy for the ’empirical’ abundance for a given star, and the
standard deviation (star-to-star scatter) of the abundances
was used as an error of the empirical’ abundance. Oxygen
abundance was derived from the empirical formula between
[O/H] and [Fe/H] provided in Suárez-Andrés et al. (2017)
which is based on the Bertran de Lis et al. (2015) data. Orig-
inal and ’empirical’ abundances of the stars are presented in
the Table 1. As can be seen from the table, the di�erence be-
tween ’empirical’ and original abundances can be as large
as 0.1 dex. Thus we stress that the ’empirical’ abundances

3https://github.com/timothydmorton/vespa
4We de�ned stellar analogs as stars with [Fe/H]±0.1 dex, Teff±500K,

and logg±0.3 dex.

should be considered only as rough estimates.

4 Composition of the planet building blocks
The model presented in Santos et al. (2015) uses atomic

abundances of O, C, Mg, Si and Fe, as input, and with simple
stoichometric equations calculates the mass fraction of H2O,
CH4, Fe, MgSiO3, Mg2SiO4, the total mass percentage of all
heavy elements (Z), the iron mass fraction (firon = mFe/(mFe

+ mMgSiO3
+ mMg2SiO4

) and the water mass fraction (wf

= mH2O/(mH2O + mFe + mMgSiO3
+ mMg2SiO4

)). These
values are derived for each star using the original spectro-
scopic and ’empirical’ abundances. The results are presented
in Table 2. From the table we can see that for the three stars
for which together with the ’empirical’ abundances spectro-
scopic abundances are available (HD40307, HD10700, and
Kepler-22), the derived values are similar and agree within
the error bars. However, it should be mention the uncertain-
ties of some of the parameters are large, especially if they are
derived from the ’empirical’ abundances.

5 Results and Discussion
Our results summarized in Table 2 show that if small-size

and low-mass planets are found in the HZ of the studied
seven stars then they are expected to have signi�cantly dif-
ferent iron-to-silicate and water mass fractions. In particu-
lar, the iron mass fraction in �ve out of seven cases is signi�-
cantly lower (from∼24 to∼28%) than what this model would
predict for solar-system planet building blocks (i.e. firon =
33% Santos et al. 2017, submitted). Water content would also
vary from system to system between ∼56 to 72%. Here we
should stress again the large uncertainties for this parame-
ter that mostly come from the larger errors on the C and O
abundances.

Very recently, Santos et al. (2017, submitted) compiled
chemical abundances for large sample of solar-type stars
from the solar vicinity and derived the expected composition
of the planet building blocks. The authors found that stars
belonging to di�erent galactic stellar populations (thin disk,
thick disk, halo, and high-α metal-rich - Adibekyan et al.
(2011)) are expected to have rocky planets with signi�cantly
di�erent iron mass and water mass fractions. Our results go
well in line with the �ndings of Santos et al. (2017, submit-
ted), since stars in our small sample having di�erent metal-
licities and ages probably belong to di�erent galactic popu-
lations. The results also somehow con�rm the prediction of
Adibekyan et al. (2016) that exoplanets in the HZ may have
composition di�erent from that of our Earth.
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Table 2: Mass fractions and total fraction (Z) of heavy elements, iron mass fraction among refractory species (firon), and the
water mass fraction (wf ). All values are in %.

star H2O CH4 Fe MgSiO3 Mg2SiO4 Z firon wf

HD40307emp 0.39±0.11 0.15±0.01 0.06±0.00 0.08±0.03 0.07±0.02 0.74±0.12 27.89±1.72 65.00±11.58
HD40307 0.38±0.11 0.15±0.03 0.06±0.00 0.10±0.06 0.07±0.07 0.76±0.12 25.10±2.82 62.30±14.35
HD10700emp 0.37±0.11 0.11±0.03 0.04±0.00 0.06±0.05 0.07±0.05 0.65±0.11 23.80±2.51 68.52±13.08
HD10700 0.38±0.10 0.12±0.03 0.04±0.00 0.06±0.02 0.06±0.03 0.66±0.10 24.36±1.36 70.37±10.63
Kepler-22emp 0.45±0.13 0.20±0.02 0.07±0.01 0.10±0.05 0.08±0.05 0.90±0.14 29.85±3.24 64.29±14.83
Kepler-22 0.33±0.04 0.20±0.02 0.08±0.01 0.10±0.02 0.07±0.02 0.78±0.05 30.64±2.90 56.90±5.00
Kepler-62emp 0.40±0.10 0.15±0.02 0.06±0.01 0.11±0.04 0.06±0.03 0.76±0.10 25.88±2.53 63.49±11.22
Kepler-174emp 0.39±0.11 0.10±0.02 0.04±0.01 0.08±0.01 0.03±0.01 0.63±0.11 26.86±4.68 72.22±11.14
Kepler-443emp 0.56±0.14 0.29±0.05 0.13±0.03 0.23±0.04 0.02±0.05 1.25±0.16 32.70±6.00 59.57±15.68
Kepler-452emp 0.82±0.21 0.55±0.10 0.21±0.05 0.28±0.15 0.15±0.15 2.02±0.25 32.73±5.84 56.16±30.27
Sun 0.50±0.07 0.37±0.04 0.13±0.01 0.18±0.06 0.08±0.06 1.26±0.08 33.14±3.11 56.08±5.12

6 A laconic conclusion
We estimated the water and iron-to-silicate mass fraction

of planet building blocks for seven solar-type stars with pre-
cise spectroscopic metallicities that are known to have plan-
ets in the HZ. Our very simpli�ed analysis show that if rocky
planets are found orbiting around these stars they might have
di�erent composition compared to our own planet. To con-
�dently answer to the question postulated in the title of this
manuscript a far more sophisticated analysis for each indi-
vidual object is needed with an important requirement of
having very precise masses and radius of the planets and
very accurate chemical abundances of the host star (e.g. Dorn
et al., 2017).
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