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Abstract 

This deliverable reports on the different experiments that were performed to improve the 
reliability and accuracy of 5G/6G localisation techniques. It ranges from: sub 6GHz ToA 
localisation measurement campaigns; localisation from environment landmarks using LIDAR 
point clouds that could potentially have been be sensed from a 6G sensing system; 
Simultaneous Localisation and Mapping (SLAM) two-step localization system to improve the 
performance of the data fusion by data combination and selection; federated learning based 
localization using visible light signals to establish communication and determine the location 
of the receiving device to overcome the effects of multipath; a beacon positioning signal 
design which is used to unlock strict time synchronisation; a secure mutual localization system 
that uses iterative trilateration to determine location when continuous Line of Sight (LoS) 
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access between at least three position-calibrated anchor nodes and the user equipment (UE) 
is not available for determining positions; a Blockchain-based solution for IIoT by utilizing 
sharding and the Interplanetary File System (IPFS) to efficiently store, process, and retrieve 
data to thereby increase the scalability of IIoT solutions while ensuring privacy. 

 

[End of abstract] 
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Executive summary 

Localisation of User Equipment to within millimetre accuracy and 99.999% reliability remains 
a critical requirement for both 5G and future 6G networks since future application scenarios 
with degree of localization precision can be an essential enabler that opens up a lot of new 
possibilities, for example, tracking of animals in indoor farming scenarios or autonomous 
movements of robots as well as transportation systems in large warehouses and production 
halls. This deliverable reports on the tangible progress of results towards these objectives.  

This deliverable summarises how all the different localization technologies could work 
together to 99.9999% reliability obtain localisation with centimetre accuracy.   

It reports on results of a sub 6G measurement campaign to measure distance to centimetre 
accuracy using time of arrival and the repeatability of measurement results. It provides a 
detailed description of the experimental equipment that was used. Two experimental 
configurations were explored (1) Same UE Tx and Ref Tx antennas, (2) Separate UE Tx and Ref 
Tx antennas. It explores and attempts to quantify the source of errors and unreliability of 
measurements. Experiments were performed with and without EM absorbers to assess the 
effects of multipath. A detailed description of the format of the 5G FAPI format of the 
measurement data was presented and used to write a packet sniffing data extraction Python 
program to capture every single sample measurement from each measurement section. The 
time series and histogram of ToA of the measurement data results were plotted and analysed 
to identify any sources of error and calculate the degree of accuracy.    

Furthermore, it reports on results of measuring location using an environmental imaging and 
sensing system. The motivation for this study is to estimate what localisation accuracy could 
be expected to be obtained from a 6G Communication and Sensing system. Since a 6G 
Communication and Sensing system has not yet been delivered a LIDAR and 360 camera was 
used to emulate the imaging and environment sensing system. The LIDAR system captured a 
point cloud of its environment and a co-located 360-degree camera capture RGB image. A 
Neural Network was used to identify landmarks in the environment which consisted of square, 
rectangular, circular and triangular shapes situated at known locations. The shapes of these 
landmarks were deliberately chosen to be identical to the type of shapes typically used for 
street signs. Once four or more of the shapes had been recognized the distance from the LIDAR 
to the centre point of the landmark was measured, which were using to estimated position of 
the LIDAR using triangulation. 

It also reports on data combination and selection for a Simultaneous Localisation and Mapping 
(SLAM) system. A two-step localization system to improve the performance of the data fusion 
method is presented consisting of offline and online phases. A selection process is integrated 
in the localization system based on classification using a Deep Neural Network (DNN) model, 
trained offline. The model is applied online by taking the Received Signal Strength (RSS) 
received from both considered technologies, namely: WiFi 2.4 GHz and Optical Wireless 
Communications (OWC). 

Additionally, it reports on federated learning-based localization using visible light signals to 
establish communication and determine the location of the receiving device. As visible light 
signals traverse through the space, they encounter various obstacles, such as walls, furniture, 
and other objects. These obstacles create multipath effects, wherein the signals reflect, refract, 
or scatter, giving rise to multiple signal paths to reach the receiver. The multipath 
phenomenon can lead to signal interference and propagation abnormalities, contributing to 
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inaccuracies in the localization process. The presence of these challenges lead to high 
localization errors in terms of accuracy, reliability, and scalability. To overcome these 
limitations and enhance the efficiency of VLC-based localization in dynamic indoor 
environments, machine learning techniques are needed for data-based localization to 
mitigate this problem. By adopting machine learning techniques, the performance of VLC-
based localization can be significantly improved. 

Furthermore, it reports on a beacon positioning signal design which is used to unlock strict 
time synchronisation. Most of position accuracy application are in condition of a rich hardware 
resources.  Specifically, a high sampling rate is usually required to sample the input signal to 
avoid the aliasing effect, which leads to increased implementation complexity and power 
consumption.  To anticipate the increasing of IoT device number in the future 6G network, to 
solve this issue, an indoor beacon construction and low sampling rate positioning scheme is 
proposed based on on-off keying (OOK) modulation pulse pairs. Different from the traditional 
time of arrival (TOA)-based positioning scheme, this positioning scheme does not require 
stringent time synchronization. Moreover, the proposed scheme achieves high positioning 
performance with a low sampling rate and low bandwidth. Specifically, inspired by the ease 
of implementing both communication and illumination services with small modulation 
bandwidth, the OOK modulation is exploited in the considered VLP systems. Then, the OOK-
based pulse pairs are proposed to design the positioning beacon signal without the 
synchronization requirement. 

It reports on a secure mutual localization system that is validated through simulation 
experiments. Localisation schemes are highly dependent on continuous Line of Sight (LoS) 
access between at least three position-calibrated anchor nodes and the user equipment (UE) 
for which positions need to be determined. Iterative trilateration in a multi-device 
environment is developed which uses neighbouring UEs that act as anchor nodes once they 
have determined their position beforehand. Since a light-weight secure messaging scheme is 
used in this multi-device environment where a UE’s identity is unknown to neighbouring UEs, 
then a trust framework is required that excludes malicious UEs from the collective localisation 
process. An simulation experiment is performed which demonstrates the feasibility of the 
messaging scheme for different setups of number of UEs, spatial scenarios with varying levels 
of obstructedness, wireless communication latencies, and different communication ranges. 

Finally, it provides a detailed description on how to deploy Blockchain-based solution for IIoT. 
The proof-of-concept deployment starts with an overview on how to increase the scalability 
of IIoT solutions while ensuring privacy. The recommended blockchain-based architecture 
utilizes sharding and the Interplanetary File System (IPFS) to efficiently store, process, and 
retrieve data. This sustainable design choice is considered to make it suitable for large-scale 
implementations. It is concluded through a proof-of-concept implementation that the 
underlying blockchain consensus mechanism is the primary factor limiting the IIoT scalability. 
The implementation and testing were conducted on a Harmony test network connected to a 
laboratory-scale IIoT testbed. The proposal evaluated the proposed architecture with widely 
employed blockchain consensus mechanisms. With a block latency of just 2.13 seconds, the 
architecture outperforms existing systems and can process up to 4000 transactions. This 
demonstrates the effectiveness and efficiency of the proposed solution for extensive IIoT 
deployments through in-depth evaluations and performance comparisons. 
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Abbreviations 
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1 Introduction 

Section 1 introduces the reader to the experiments that are reported in this deliverable to 
increase localisation reliability and accuracy. 

Section 2 provides a summary of how all the different localization technologies could work 
together to obtain localisation with centimetre accuracy and 99.9999% reliability.   

Section 3 reports on results of a sub 6G measurement campaign to measure distance to 
centimetre accuracy using time of arrival and the repeatability of measurement results. 

Section 4 reports on results of measuring location using an environmental imaging and sensing 
system. The motivation for this study is to estimate what localisation accuracy could be 
expected to be obtained from a 6G Communication and Sensing system. 

Section 5 reports on data combination and selection for a Simultaneous Localisation and 
Mapping (SLAM) system. A two-step localization system to improve the performance of the 
data fusion method is presented consisting of offline and online phases. 

Section 6 reports on federated learning-based localization using visible light signals, which 
adopts machine learning techniques, to improve the performance of VLC-based localization, 
which has been impaired as a result of signal multipath propagation due to scatterers in 
environment. 

Section 7 reports on a beacon positioning signal design which is used to unlock strict time 
synchronisation.  

Section 8 reports on a secure mutual localization system to support localisation schemes, 
which are highly dependent on continuous Line of Sight (LoS) access between at least three 
position-calibrated anchor nodes that is validated through simulation experiments.  

In section 9 provides a detailed description on how to deploy Blockchain-based solution for 
IIoT by utilizing sharding and the Interplanetary File System (IPFS) to efficiently store, process, 
and retrieve data to thereby increase the scalability of IIoT solutions while ensuring privacy. 

In section 10 an overall summary of conclusions to the accomplishments reported in the 
deliverable are provided. 
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2 Simultaneous Localisation and Mapping Strategy  

Localization of UEs using Time of Arrival (ToA), Angle of Arrival (AoA) and Received Signal 
Strength (RSS) techniques can be used to obtain an accuracy of less than 1cm, however it is 
highly dependent on the continuous direct line of sight access between the gNB access points 
and the UE. If there is not direct line of sight access to four or more gNB access points then 
location ambiguity is introduced and so other techniques should be used to maintain 
localization such as dead reckoning using Inertial Measurement Unit (IMU) or using iterative 
multi-lateration or using position from landmarks. Since the performance of ToA localisation 
is also susceptible to the effects of multipath propagation of the transmitted signal, then 
alternative AoA and RSS techniques or location from landmarks should be used.    

If there is not direct line of sight access to four or more gNB access points to obtain location 
using ToA or RSS then an alternative solution is to use Angle of Arrival (AoA) from more than 
two access points or AoA and distance from one access point, so that some form of interim 
measure for obtaining location can continue to be made. Note that distance can also be 
estimated using Orthogonal Time Frequency Space (OTFS) modulation due to its operation in 
the delay and Doppler domain as opposed to using Orthogonal Frequency Division 
Multiplexing (OFDM) which operates in the time and frequency domain.  

If there is no direct line of sight access to any gNB access points, then Position from landmarks 
calculates position from the landmarks identified from within point cloud data of a sensed 
environment obtained for example from a LIDAR system or a Communication system with 
RADAR sensing capabilities. In order to generate as complete a reconstruction of environment 
this point cloud needs to be constructed from many point clouds sensed from the perspective 
of many different access points between UEs using distributed ledgers. These sets of point 
clouds recorded from different locations in the environment can then be integrated to obtain 
a more complete sensing of the environment.  
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3 Sub 6GHz measurement campaign in Diverse 
Environments 

The cm level UE position accuracy measurement campaign is a four-phase process starting 
with Phase 1, which was reported in [3-1], and followed by Phases 2, 3 and 4 which is reported 
in this deliverable:  

• PHASE-1 First to understand how the data with the Time of Arrival (ToA) will be 
provided to prepare your UE location measurement SW and test setup for the real-life 
test at Brunel 

• PHASE-2 – After that to prepare the LAB for the 5G system upgrade by RunEL 

• PHASE-3 – RunEL will send an Engineer to BRUNEL to upgrade the 5G Network  

• PHASE-4 – Execution of the Test at BRUNEL 

3.1 Aim of Experiment 

The aim of the experiment is to measure the accuracy of Time of Arrival measurements 
between UE Tx Antenna and gNB Rx Antenna in order to measure distance. The laboratory 
was set up with the assistance of three engineers from RunEL, namely: Arik Salamon, Almog 
Karamani and Zion Hadad, shown from left to right in Figure 3.1.1 

 

Figure 3.1.1: Technical Team from RunEL 
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3.2 Experimental Setup 

3.2.1 Remote Unit System Setup 

 

Figure 3.2.1: Remote Unit 

The requirement for the Host PC is Linux Ubuntu 18.04 or 20.04 of which Brunel University is 
using the latter. The PC has 2x RunEL DU Cards (Cassino cards) inserted in the PCI slots of the 
Host server, one using as DU_TX the second card as DU_RX.  The PC has 2 x 10G Ethernet ports, 
one should get IP 10.0.0.103, the second port should get IP 10.1.0.104.   

The RunEL Cards (Cassino cards) has 4 x 10G Ethernet, of which we are using only 2 x Ethernet 
ports for each card.  Connect with Small Form-factor Pluggable SFP+ Transceivers and Optic 
cables according to Figure 3.2.1.  In the host we should have SU (Super User) user with the 
name ”runel”. 

The RunEL (Cassino Cards) Driver then needs to be setup and the Ethernet fifo card drivers 
have to be activated and the whole system booted up, as explained in Appendix I, and the DU 
and RU powered up in a specific sequence, as explained in Appendix II.  

For taking distance measurements the downlink, distance program and uplink shells need to 
be initiated in the specific order, as explained in Appendix III. The results are collected through 
Runel’s distance software, which displays the results of averaging of the measurement data 
as shown in Figure 3.2.2 below.  

As shown in the figure, it is divided into sections. There are 2 Tx Antenna, 4 RX Antenna. The 
2 Tx antenna each one has 4 sections  

- [24,32,40,48] 
- [64,72,80,88] 

The 4 Rx antenna each receive in 2 sections  

- [24,64] 
- [32,72] 
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- [40,80] 
- [48,88] 

 

Figure 3.2.2: Graphic User Interface of Results 

3.2.2 Initial Experimental Setup 

The Time Difference of Arrival (TDoA) experimental setup is shown in Figure 3.2.3. The Remote 
unit has IP address 10.1.0.140. and the Distributed Unit (Dell 740 Server) 10.1.0.104. 

 

Figure 3.2.3: TDoA Experimental Setup for Location Measurement 

Initially Isotropic Antennas were intended for the Ref Tx Antenna and the UE Tx Antenna so 
that all four gNB Rx Antenna Arrays would be able to receive the OFDM signal from them, as 
shown in Figure 3.2.3 but the received signal was not sufficiently above the noise floor to 
detect and process them. 
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Figure 3.2.4: Experimental Set Up 

Figure 3.2.4 shows the experimental set from the view point of gNB Rx Antenna Array 1, which 
is directed towards Ref Tx Antenna Array and the UE Tx Antenna Array, which is fixed to the 
flat bed plotter that is able to move co linearly closer or further from it.  In the background 
can be seen gNB Rx Antenna Array 2 and gNB Rx Antenna Array 3. The Ref Tx Antenna Array 
is located at a known distance from the gNB Rx Antenna Array 1.  

Instead, a directional antenna array was needed for the Ref Tx Antenna and UE Tx Antenna so 
that a sufficiently strong received signal above the noise floor could be obtained, as shown in 
Figure 3.2.6, the remote unit of which is shown in Figure 3.2.5, the circuit of which is shown 
in Figure 3.2.6. 

Ref Tx Antenna Array 

gNB Rx Antenna Array 3 

gNB Rx Antenna Array 2 

UE Tx Antenna Array 

Flatbed Plotter Head 
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Figure 3.2.5: 5G Remote Unit and Splitter 

Since the system was calibrated using coaxial cable end-to-end connections, compensation is 
required to be made for the segment of the end-to-end connection that was replaced by free 
space transmission. 

 

Figure 3.2.6: TDoA Experimental Setup with directional UE antenna for Location 
Measurement 

The speed of light in vacuum is c = 2.998 × 108 m/s, whereas the speed of an electrical signal 
in coaxial cable is about 2/3 of this, which is 1.998 × 108 m/s. The system is calibrated over 
coax with 0.66 c. 

The calibration is complicated to calculate as it should include the delays in splitters, filters, 
Clocks synchronization etc. The best way to do a calibration as follows: 

1. Calibration With Coax: put two different coax length (1 meter and 2 meters for 
example) between TX and RX and calibrate the measured distance according to the 
difference between the coax length (1 meter in the example). 

Remote
Unit

gNB Rx
Antenna 
Array 1

Ref Tx
Antenna
Array

UE Tx
Antenna
Array

Distributed
Unit

Splitter

X1

Y1
V1=1.5(Y1-X1)+ D1

D1

X2
X3

inputs of 
Remote Unit of 
the four gNB 
Receive 
Antenna Arrays 
1 - 4 

Splitter 

Coaxial cable to gNB 

Rx Antenna Array 1  
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2. Measurement Over the air: put the UE antenna in two different positions (1 meter and 
2 meters for example) between TX and RX and measure the distance according the 
measure range which should be 2/3 of the measurement in case 1 (Therefore you need 
to multiply it by a correction factor of 1.5) 

(Y1 - X1) is the difference in path lengths of the coax cables between the UE Tx Antenna Array 
and Ref Tx Antenna Array, compensated by the ratios of speed of light in free space and the 
speed of light in coax cable = 1.5.  

𝚫1 is the difference in path lengths in free space between the UE Tx Antenna Array and Ref Tx 
Antenna Array. 

V1 is the compensation required due to the different path lengths and propagation times in 
different media. 

V1=1.5(Y1-X1)+ 𝛥1 
Where:  

X1 is the propagation time in coax cable between the Remote Unit and the UE Tx Antenna 

Y1 is the propagation time in coax cable between the Remote Unit and the Ref Tx Antenna 

𝛥1 is the difference in propagation time in Free Space between UE Tx Antenna and the Ref Tx 
Antenna Array 

A Flat Bed Plotter, presented in [3-2], is used to move the UE Tx Antenna Array. 

3.3 Experimental Results and Analysis  

3.3.1 Experiment 1: Same UE Tx and Ref Tx antennas 

System Setup 1: 

A directional antenna array was needed for the Ref Tx Antenna and UE Tx Antenna so that a 
sufficiently strong received signal above the noise floor could be obtained by the gNB Rx 
Antenna Array, which was split into four with a Splitter and fed into the intended inputs of 
Remote Unit of the four gNB Receive Antenna Arrays 1 - 4, as shown in Figure 3.2.1. Since the 
antenna array was not able to be beamsteered, then the UE Tx Antenna Array, Ref Tx Antenna 
Array and gNB Rx Antenna Array were required to be co-linear with each other, as shown in 
Figure 3.3.1 in order to receive a sufficiently strong signal above the noise floor to signal 
process the OFDM for obtaining ToA. 
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Figure 3.3.1: TDoA Experimental Setup for Location Measurement with single UE Tx 
Antenna Array 

Zion and Kareem put the capabilities of the system through the following three tests in order 
to evaluate its performance. In order to make up for the lack of time during the integration 
meeting to collect additional data, measurements were taken at regular intervals of 20 
centimeters. In addition, the EM absorbers had not yet been delivered, which meant that they 
could not be used during the integration meeting to absorb multipath reflections. Three tests 
were performed Test 1, 2 and 3 without absorbers (due to unavailability) for repeatability. 
One test was performed with absorbers when they were delivered. 

3.3.1.1 Test 1 

Table 3.3.1: Test 1 - Numerical Results of Measured Distance between Adjacent points for 
single UE Transmit antenna  

 

 

The measured data are presented in Table 3.3.1 above, which corresponds to the 
experimental setup 1. Based on the data presented in the table, the recorded distance 
travelled was 120 centimetres, whereas the measured distance amounted to 156 cm, with 
increments of 20 centimetres. Based on the results obtained, it was determined that the mean 
score was 23.2. Nevertheless, upon considering the correction factor of 1.5, the score 
exhibited a notable increase to 29.6. Similarly, in accordance with the standard deviation, the 
initial value was recorded as 31.4, however, it subsequently exhibited an increase to 54.7. 
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Figure 3.3.2: Test 1 - Measured Distance between adjacent points without correction 
factor of 1.5 for single UE transmit antenna 

The illustration that is displayed above shows that the distance that is measured between two 
points that are adjacent to one another closely approximating the distance that is actually 
present when the correction factor of 1.5 is not applied to the measurement. Despite this, it 
is clear that after a distance of 60 cm, the measurements that were recorded began to diverge 
progressively more from the actual distance.  

 

Figure 3.3.3: Test 1 - Measured Distance between adjacent points with correction factor of 
1.5 for single UE transmit antenna 

The provided illustration demonstrates that the measured distance between two adjacent 
points closely approximates the actual distance when a correction factor of 1.5 is applied. The 
application of this factor resulted in improved accuracy, as the measurement error decreased 
from 10% to 2%. However, it is evident that beyond a distance of 60 cm, the recorded 
measurements exhibited an increasingly noticeable deviation from the true distance. 
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Table 3.3.2: Test 1 - Numerical Results of Measured Distance from zero for single UE 
Transmit antenna  

 

 

The measured data are presented in the Table 3.3.2 above, which corresponds to 
experimental setup. According to the table's data, the recorded distance traveled was 100 cm, 
while the measured distance was 274 cm, with increments of 20 cm. Based on the obtained 
results, the mean average was determined to be 38.8. However, after considering the 
correction factor of 1.5, the score increased significantly to 64.2. In accordance with the 
standard deviation, the initial value was initially recorded as 49.5, but it subsequently 
increased to 76.9. 

 

Figure 3.3.4: Test 1 - Measured Distance from zero without correction factor of 1.5 for 
single UE transmit antenna 
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Figure 3.3.5: Test 1 - Measured Distance from zero with correction factor of 1.5 for single 
UE transmit antenna 

When the 1.5 correction factor is not taken into account, the measurements that start from 0 
produce results that are unsatisfactory, as the diagram illustrates. In spite of this, the 
outcomes showed signs of improvement after the 1.5 correction factor was taken into account.   

3.3.1.2 Test 2 

The test 2 was performed to assess repeatability of measurement results. 

Table 3.3.3: Test 2 - Numerical Results of Measured Distance from adjacent points for 
single UE Transmit antenna   

 

The measured data are presented in the Table 3.3.3 presented above, which corresponds to 
experimental setup. According to the table's data, the recorded distance travelled was 100 cm, 
while the measured distance was 62 cm, with increments of 20 cm. Based on the obtained 
results, the mean average was determined to be 7.6. However, after considering the 1.5 
correction factor, the average reduced significantly to 4. In accordance with the standard 
deviation, the initial value was initially recorded as 2.7, but it subsequently decreased to 1.3. 
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Figure 3.3.6: Test 2 - Measured Distance from adjacent points without 1.5 correction factor 
for single UE transmit antenna 

 

 

Figure 3.3.7: Test 2 - Measured Distance from adjacent points with 1.5 correction factor for 
single UE transmit antenna 

Figure 3.3.7 above shows, the measuring distance from adjacent without the 1.5 correction 
factor results in poor results, hence when the 1.5 correction factor was considered the results 
improved tremendously.  
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Table 3.3.4: Test 2 - Numerical Results of Measured Distance from zero for single UE 
Transmit antenna 

 

 

The measured data are presented in the Table 3.3.4 presented above, which corresponds to 
experimental setup. According to the table's data, the recorded distance travelled was 100 cm, 
while the measured distance was 193 cm (when offset from antenna is taken account - this is 
not shown on table), with increments of 20 cm. Based on the obtained results, the mean 
average was determined to be 22.2. However, after considering the 1.5 correction factor, the 
average increased significantly to 39.3. In accordance with the standard deviation, the initial 
value was initially recorded as 13.2, but it subsequently increased to 24.8. 

 

Figure 3.3.8: Test 2 - Measured Distance from zero without 1.5 correction factor for single 
UE transmit antenna 
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Figure 3.3.9: Test 2 - Measured Distance from zero with 1.5 correction factor for single UE 
transmit antenna 

The diagram that is displayed above shows that the obtained results are of poor quality when 
the measuring distance between adjacent points is not adjusted by a correction factor of 1.5. 
This results in the measurement being inaccurate. On the other hand, when the 1.5 correction 
factor is taken into account, the results show a significant improvement.  

3.3.1.3 Test 3  

Test 3 was performed to assess repeatability of measurement results. 

Table 3.3.5: Test 3 - Numerical Results of Measured Distance from adjacent points for 
single UE Transmit antenna 

 

 

The measured data are presented in the Table 3.3.5 presented above, which corresponds to 
experimental setup. According to the table's data, the recorded distance travelled was 100 cm, 
while the measured distance was 64 cm, with increments of 20 cm. Based on the obtained 
results, the mean average was determined to be 7.2. However, after considering the 1.5 
correction factor, the average reduced significantly to 4. In accordance with the standard 
deviation, the initial value was initially recorded as 3, but it subsequently decreased to 2.2. 
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Figure 3.3.10: Test 3 - Measured Distance from adjacent points without 1.5 correction 
factor for single UE transmit antenna 

 

 

Figure 3.3.11: Test 3 - Measured Distance from adjacent points with 1.5 correction factor 
for single UE transmit antenna 

The diagram that is displayed above shows that the obtained results are of poor quality when 
the measuring distance between adjacent points is not adjusted by a correction factor of 1.5. 
This results in the measurement being inaccurate. On the other hand, when the 1.5 correction 
factor is taken into account, the results show a significant improvement as it reduced the error 
from 8% to 2% at 80 cm.  
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Table 3.3.6: Test 3 - Numerical Results of Measured Distance from zero for single UE 
Transmit antenna  

 

 

The measured data are presented in the Table 3.3.6 presented above, which corresponds to 
experimental setup. According to the table's data, the recorded distance traveled was 100 cm, 
while the measured distance was 200 cm, with increments of 20 cm. Based on the obtained 
results, the mean average was determined to be 23.2. However, after considering the 1.5 
correction factor, the average increased significantly to 40.8. In accordance with the standard 
deviation, the initial value was initially recorded as 13.9, but it subsequently increased to 26.2. 

 

Figure 3.3.12: Test 3 - Measured Distance from zero without 1.5 correction factor for single 
UE transmit antenna 

 



6G BRAINS H2020-ICT 101017226 Deliverable D6.4 

Page 38 of (168)  © 6G BRAINS consortium 2024 

 

Figure 3.3.13: Test 3 - Measured Distance from zero with 1.5 correction factor for single UE 
transmit antenna 

The diagram that is displayed above shows that the obtained results are of poor quality when 
the measuring distance between adjacent points is not adjusted by a correction factor of 1.5. 
This results in the measurement being inaccurate. On the other hand, when the 1.5 correction 
factor is taken into account, the results show a significant improvement.  

Repeatability comparison of the above 3 tests: 

 

Figure 3.3.14: Tests 1, 2, 3 - Measured Distance from adjacent points without 1.5 
correction factor for single UE transmit antenna 

The measured distance Test1 (T1) exhibited a high level of stability and demonstrated 
similarity to the other measured distances. Nevertheless, it is evident that T1 experiences a 
significant increase beyond the 60cm mark. In general, upon comparing these tests, it 
becomes evident that the data exhibits a consistent pattern, thereby enabling us to infer that 
the data possesses reliability and reproducibility. 
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Figure 3.3.15: Tests 1, 2, 3 - Measured Distance from adjacent points with 1.5 correction 
factor for single UE transmit antenna 

The observed distance T1 exhibited a high level of stability and demonstrated similarity to the 
other measured distances. Nevertheless, it is evident that T1 experiences a significant increase 
beyond the 60cm mark. In general, upon comparing these tests, it becomes evident that the 
data exhibits a consistent pattern, thereby enabling us to infer that the data possesses 
reliability and reproducibility. 

 

Figure 3.3.16: Tests 1, 2, 3 - Measured Distance from zero without 1.5 correction factor for 
single UE transmit antenna 

The measured distance T1 was very stable and similar to the other measured distance. 
However, it can be seen that T1 increases drastically after 60cm. Overall, by comparing these 
tests it can be seen that the data follows a mutual trend, which allows us to assume that the 
data is reliable and reproducible. 
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Figure 3.3.17: Tests 1, 2, 3 - Measured Distance from zero with 1.5 correction factor for 
single UE transmit antenna 

The measured distance T1 was very stable and similar to the other measured distance. 
However, it can be seen that T1 increases drastically after 60cm. Overall, by comparing these 
tests it can be seen that the data follows a mutual trend, which allows us to assume that the 
data is reliable and reproducible. 

3.3.1.4 Test using Absorbers to limit multipath 

The following two tests were performed for repeatability by the Brunel Team using the same 
system setup with an addition of EM absorbers to reduce any multipath.  

Table 3.3.7: Test 1 with absorbers - Numerical Results of Measured Distance between 
Adjacent points for single UE Transmit antenna 

 

 

The measured data are presented in Table 3.3.7 above, which corresponds to the 
experimental setup 1. Based on the data presented in the table, the recorded distance 
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travelled was 120 centimetres, whereas the measured distance amounted to 94 cm, with 
increments of 10 centimetres. Based on the results obtained, it was determined that the mean 
score was 5.7. Nevertheless, upon considering the 1.5 correction factor, the score exhibited a 
notable increase to 8.7. Similarly, in accordance with the standard deviation, the initial value 
was recorded as 4.8, however, it subsequently exhibited an increase to 6.5. 

 

Figure 3.3.18: Test 1 with absorbers - Measured Distance between adjacent points without 
1.5 correction factor for single UE transmit antenna 

 

 

Figure 3.3.19: Test 1 with absorbers - Measured Distance between adjacent points with 1.5 
correction factor for single UE transmit antenna 

The diagram that is displayed above shows that the obtained results are of poor quality when 
the measuring distance between adjacent points is not adjusted by a correction factor of 1.5. 
On the other hand, when the 1.5 correction factor is taken into account, the results does not 
show significant improvement.  
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Table 3.3.8 - Test 1 with absorbers - Numerical Results of Measured Distance from zero for 
single UE Transmit antenna 

 

 

The measured data are presented in Table 3.3.8 above, which corresponds to the 
experimental setup 1. Based on the data presented in the table, the recorded distance 
travelled was 120 centimetres, whereas the measured distance amounted to 94 cm, with 
increments of 10 centimetres. Based on the results obtained, it was determined that the mean 
score was 16.6. Nevertheless, upon considering the 1.5 correction factor, the score exhibited 
a notable decrease to 9.9. Similarly, in accordance with the standard deviation, the initial value 
was recorded as 10.4, however, it subsequently exhibited an increase to 6.3. 

 

Figure 3.3.20: Test 1 with absorbers - Measured Distance from zero without 1.5 correction 
factor for single UE transmit antenna 
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Figure 3.3.21: Test 1 with absorbers - Measured Distance from zero with 1.5 correction 
factor for single UE transmit antenna 

As depicted in the Figure 3.3.21 above, the measuring distance from 0 without the 1.5 
correction factor yields poor results; consequently, when the 1.5 correction factor was taken 
into account, the results significantly improved.  

3.3.2 Experiment 2: Separate UE Tx and Ref Tx antennas 

System setup 2: EM Absorbers has been used throughout experiment 2 

 

Figure 3.3.22: TDoA Experimental Setup for Location Measurement with single UE Tx 
Antenna Array and reference UE Tx Antenna Array 
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Figure 3.3.23: Experimental Set Up with EM absorbent material 

The EM absorbent material used was: 

RF EMI Absorbing Sheet ECCOSORB® QR-13AF Polyurethane Foam 24.000" (609.60mm) X 
24.000" (609.60mm) X 0.250" (6.35mm) 

78135164 Laird Technologies EMI | RF and Wireless | DigiKey 

RFP-DS-QR 13 AF 03082022.pdf (laird.com) 

Whose absorption characteristics were as shown in Figure 3.3.24 below 

 

Figure 3.3.24: Typical attenuation of EM absorbent material 

https://www.digikey.co.uk/en/products/detail/laird-technologies-emi/78135164/4360282
https://www.laird.com/sites/default/files/2022-03/RFP-DS-QR%2013%20AF%2003082022.pdf
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Table 3.3.9: Test 1 - Numerical Results of Measured Distance between Adjacent points 
using Ref Tx and UE Transmit antenna 

 

 

The measured data are presented in Table 3.3.9 above, which corresponds to the 
experimental setup 1. Based on the data presented in the table, the recorded distance 
travelled was 120 centimetres, whereas the measured distance amounted to 136.5 cm, with 
increments of 10 centimetres. Based on the results obtained, it was determined that the mean 
score was 3.9. Nevertheless, upon considering the 1.5 correction factor, the mean increased 
to 4.2. Similarly, in accordance with the standard deviation, the initial value was recorded as 
2, however, it subsequently exhibited an increase to 3.8. 

 

Figure 3.3.25: Test 1 - Measured Distance between adjacent points without 1.5 correction 
factor using Ref Tx and UE transmit antenna 
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Figure 3.3.26: Test 1 - Measured Distance between adjacent points with 1.5 correction 
factor using Ref Tx and UE transmit antenna 

The Figure 3.3.26 demonstrates that the measured distance between adjacent points is closer 
to the actual distance when the 1.5 correction factor is not considered; however, when the 
1.5 correction factor is considered, the points are further from the actual distance.  

Table 3.3.10: Test 1 - Numerical Results of Measured Distance from zero using Ref Tx and 
UE Transmit antenna 

 

 

The measured data are presented in Table 3.3.10 above, which corresponds to the 
experimental setup 1. Based on the data presented in the table, the recorded distance 
travelled was 120 centimetres, whereas the measured distance amounted to 91 cm, with 
increments of 10 centimetres. Based on the results obtained, it was determined that the mean 
was 20.4. Nevertheless, upon considering the 1.5 correction factor, the mean a notable 
decreased to 5,1. Similarly, in accordance with the standard deviation, the initial value was 
recorded as 9.1, however, it subsequently exhibited an increase to 4. 
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Figure 3.3.27: Test 1 - Measured Distance from zero without 1.5 correction factor using Ref 
Tx and UE transmit antenna 

 

 

Figure 3.3.28: Test 1 - Measured Distance from zero with 1.5 correction factor using Ref Tx 
and UE transmit antenna 

As illustrated in the aforementioned Figure 3.3.28, the measurement distance from the origin 
without considering the multiplication correction factor of 1.5 resulted in unsatisfactory 
outcomes. However, upon incorporating the 1.5 correction factor, a notable enhancement in 
the results was observed as it almost half the error for each distance travelled. 
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Table 3.3.11: Test 2 with absorbers - Numerical Results of Measured Distance between 
Adjacent points for single UE Transmit antenna 

 

 

Table 3.3.11 (see above) displays the measured data based on the setup for a second attempt 
to determine if any improvements have been made and to see if the results are reproducible. 
According to the table, the measured distance was 90 cm and the travelled distance was 
120cm in 10cm increments. The average mean was 3.5 and increased to 3.7 when the 
correction factor of 1.5 was considered. Similarly, the standard deviation was 2.2 and 
increased to 3.5.  

 

Figure 3.3.29: Test 2 with absorbers - Measured Distance between adjacent points without 
1.5 correction factor for single UE transmit antenna 
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Figure 3.3.30: Test 2 with absorbers - Measured Distance between adjacent points with 1.5 
correction factor for single UE transmit antenna 

The Figure 3.3.30 above demonstrates that the measured distance between adjacent points 
is closer to the actual distance when the 1.5 correction factor is considered; however, when 
the 1.5 correction factor is not considered, the points are further from the actual distance. 

Table 3.3.12: Test 2 with absorbers - Numerical Results of Measured Distance from zero for 
single UE Transmit antenna 

 

 

The subsequent Table 3.3.12 displays the measured data based on the setup for the second 
attempt to determine if any improvements have been made and if the results can be 
replicated. The table indicates that the measured distance was 91 cm and the travelled 
distance was 120 cm in 10 cm increments. The average mean was 20.9 and dropped to 4.4 
when the correction factor of 1.5 was taken into account. Similarly, the standard deviation 
decreased from 9.6 to 4. 
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Figure 3.3.31: Test 2 with absorbers - Measured Distance from zero without 1.5 correction 
factor for single UE transmit antenna 

 

 

Figure 3.3.32: Test 2 with absorbers - Measured Distance from zero with 1.5 correction 
factor for single UE transmit antenna 

As illustrated in the aforementioned Figure 3.3.32, the measurement distance from the origin 
without considering the multiplication correction factor of 1.5 resulted in unsatisfactory 
outcomes. However, upon incorporating the 1.5 correction factor, a notable enhancement in 
the results was observed as it almost half the error for each distance traveled. 

Comparing Measured Distance T1 and T2 together: 
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Figure 3.3.33: Test 1,2 - Measured Distance from adjacent points without 1.5 correction 
factor using Ref Tx and UE transmit antenna 

 

 

Figure 3.3.34: Test 1, 2 - Measured Distance from adjacent points with 1.5 correction factor 
using Ref Tx and UE transmit antenna 

The Figure 3.3.33 and Figure 3.3.34 above show the measured distance between adjacent 
points without the 1.5 correction factor to be closer to the actual distance, however, 
considering the 1.5 correction factor, it can be seen that the points are further away from the 
actual distance. Nonetheless, it shows that the results are reproducible. Overall, comparing 
both set of results, it showed a slight improvement but mostly it was the same. 
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Figure 3.3.35: Test 1, 2 - Measured Distance from zero without 1.5 correction factor using 
Ref Tx and UE transmit antenna 

Overall, comparing both set of results, it showed a slight improvement but mostly it was the 
same. However, considering the 1.5 correction factor always showed improvement when 
measuring the distance from 0.  

 

Figure 3.3.36: Test 1, 2, 3 - Measured Distance from zero with 1.5 correction factor using 
Ref Tx and UE transmit antenna 
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3.4 Detailed Measurement Data Results and Analysis 

3.4.1 Capturing the Measurement Results 

Measurement data is transmitted with UDP Packets using 5G functional application platform 
interface (FAPI) which is an initiative within the small cell industry released by Small Cell Forum 
(SCF) that establishes interoperability and innovation among suppliers of platform hardware, 
platform software and application software [3-3]. 

Table 3.4.1: 5G FAPI by SCF – Number and Type of messages 

 

 

 

In order to extract the data from the Ethernet frames the following need to be taken into 
account: 

1. Endianness is big-endian 

2. Slot numbers are between 0-19. 

3. We have 16 fields for every number. These will all be in use in MIMO (4x4). The 
current test is SISO so only 1 value is in use. 

4. We have 2 TX antenna, each one transmitting 4 sections: [24, 32, 40, 48], [64, 72, 
80, 88]   

5. We have 4 RX antenna each one receiving 2 sections: [24, 64], [32, 72], [40, 80], [48, 
88];  

6. Every packet holds information from 1 section. Therefore, we will have 8 packets of 
the same type in each slot. 

7. Every packet begins with a general FAPI PHY API message word (64 bits): 

 

The relevant Message type ID values for ToA measurements are: 
7.1. CRC Indication = 0x0086 = 0d134  
7.2. TOA Packet (Runel’s proprietary) = 0x0008 
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Table 3.4.2: 5G FAPI by SCF – Data Fields  
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The frames work in pairs as shown below. 

MessageID 134 in Ethernet Frame 228 produces for Slot 8, Handle 48, RNTI 220 (in red below) 
produces UISinrMetric: 6336, TimingAdvanceOffset: 0, TimingAdvanceOffsetNs: 205, RSSI: 
423, RSRP: 423 (in blue below) 

Ethernet Frame: 228 
         - Destination: 90:E2:BA:D9:2F:CD, Source: 00:0A:35:02:00:22, Protocol 8 
         - IPv4 Packet: 
                 - Version: 4, Header Length: 20, TTL: 64, 
                 - Protocol: 17, Source: 10.1.0.140, Target: 10.1.0.104 
         - UDP Segment: 
                 - Source Port: 1234, Destination Port: 1236, Length: 48 
                 - FAPI PHY Data: 
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                         - No of Messages: 1, Undefined: 0, MessageID: 134, length: 28 
                 - CRC Segment 
                         - SFN: 518, Slot: 8, numCRC: 1 
                         - Handle: 48, RNTI: 220, RAPID: 255 
                                 - HarqID: 0, TbCrcStatus: 1 
                                 - Numcb: 1, CbCrcStatus: 1 
                                 - UISinrMetric: 6336, TimingAdvanceOffset: 0 
                                 - TimingAdvanceOffsetNs: 205, RSSI: 423, RSRP: 423 

 

MessageID 8 in Ethernet frame 229 produces for Slot 8 sectionID: 48, RNTI: 220 (in red below) 
Time1: 205220 (in blue below) 

Ethernet Frame: 229 
         - Destination: 90:E2:BA:D9:2F:CD, Source: 00:0A:35:02:00:22, Protocol 8 
         - IPv4 Packet: 
                 - Version: 4, Header Length: 20, TTL: 64, 
                 - Protocol: 17, Source: 10.1.0.140, Target: 10.1.0.104 
         - UDP Segment: 
                 - Source Port: 1234, Destination Port: 1236, Length: 152 
                 - FAPI PHY Data: 
                         - No of Messages: 0, Undefined: 0, MessageID: 8, length: 0 
                 - TOA Data 
                         - slot: 8, sectionID: 48, RNTI: 220 
                                 - Time1: 205220, SNR1: 0, RSSI1: 0  

 

3.4.2  Capturing the Measurement Results 

Since there are 2 Tx Antenna, 4 RX Antenna. The 2 Tx antenna each one has 4 sections with 
their corresponding results. 

- [24,32,40,48] 
- [64,72,80,88] 

Detailed results of data collected using TDoA experimental setup in Figure 3.2.6 were 
extracted for distance measurement 10 cm = 0.1m and analysed in more depth. 

X1 = Y1 = 6.0m, X2 = 4.0 m, X3 = 0.5m 

Measurement 𝛥 was at 10 cm + 58 cm offset = 68cm = 0.68 m 

If it was calibrated in coaxial cable then 

20.4340m – (6.0*1.5) – (4.0*1.5) - (0.5*1.5) = 20.4340m – 15.75m = 4.6840m 

18.3036m – (6.0*1.5) – (4.0*1.5) - (0.5*1.5) = 18.3036m – 15.75m = 2.5536m 

95% of all samples are 204340 + or – 172.45 x 2 = 344.9 time-tics = 3.449 cm from the mean, 
which is approximately the degree of accuracy obtained from the measurement campaign 
reported in section 3.3. On the time series Figure 3.4.2 spikes occur at slot 6, 43, 78, 115, 150, 
187, 223 etc., i.e. between 35 to 37 slots apart. If it is due to interference from the flat-bed 
plotter stepper motor or the cooling fan motor then it is a problem because there will be 
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plenty of these type of motors in factories, whereas if it due to the FPGA system clock then it 
is also a problem. In both cases the design of EM shielding is required. 

 

Figure 3.4.1: Frequency Distribution of measurements for RNTI=220, SECT=24 

 

 

Figure 3.4.2: Time series of measurement data for RNTI=220, SECT=24 

95% of all samples are 204428 + or – 176.52 x 2 = 353.04 time-tics = 3.5304 cm from the mean 
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Figure 3.4.3: Frequency Distribution of measurements for RNTI=220, SECT=32 

 

 

Figure 3.4.4: Time series of measurement data for RNTI=220, SECT=32 

95% of all samples are 203291 + or – 175.78 x 2 = 351.56 time-tics = 3.5156 cm from the mean 
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Figure 3.4.5: Frequency Distribution of measurements for RNTI=220, SECT=40 

 

 

Figure 3.4.6: Time series of measurement data for RNTI=220, SECT=40 

95% of all samples are 204657 + or – 159.15 x 2 = 353.04 time-tics = 3.183 cm from the mean 
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Figure 3.4.7: Frequency Distribution of measurements for RNTI=220, SECT=48 

 

 

Figure 3.4.8: Time series of measurement data for RNTI=220, SECT=48 

95% of all samples are 182979 + or – 218.06 x 2 = 436.12 time-tics = 4.3612 cm from the mean 
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Figure 3.4.9: Frequency Distribution of measurements for RNTI=220, SECT=64 

 

 

Figure 3.4.10: Time series of measurement data for RNTI=220, SECT=64 

95% of all samples are 183036 + or – 222.31 x 2 = 444.62 time-tics = 4.4462 cm from the mean 
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Figure 3.4.11: Frequency Distribution of measurements for RNTI=220, SECT=72 

 

 

Figure 3.4.12: Time series of measurement data for RNTI=220, SECT=72 

95% of all samples are 181995 + or – 225.03 x 2 = 450.06 time-tics = 4.5006 cm from the mean 
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Figure 3.4.13: Frequency Distribution of measurements for RNTI=220, SECT=80 

 

 

Figure 3.4.14: Time series of measurement data for RNTI=220, SECT=80 

95% of all samples are 183558 + or – 212.18 x 2 = 424.36 time-tics = 4.2436 cm from the mean 
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Figure 3.4.15: Frequency Distribution of measurements for RNTI=220, SECT=88 

 

 

Figure 3.4.16: Time series of measurement data for RNTI=220, SECT=24 

A summary of all the measurement mean, stdev and 95% CI at 68 cm are shown in Table 3.4.3. 
It shows that the 95% CI for the four sections 24, 32, 40, 48 is around 3.5cm and for the four 
sections 64, 72, 80, 88 is around 4.5cm, which provides a good indicator of the accuracy of the 
system. 
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Table 3.4.3: Summary of Measurements of mean, stdev and 95% CI at 68cm.  

ID mean (mm) StdDev (mm) 95% CI (cm) 

24 20434.0 17.245 3.449 

32 20442.8 17.652 3.530 

40 20329.1 17.578 3.516 

48 20465.7 15.915 3.183 

64 18297.9 21.806 4.361 

72 18303.6 22.231 4.44 

80 18199.5 22.503 4.500 

88 18355.8 21.218 4.244 
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4 Environment Imaging and Sensing  

4.1 Aim of Experiment  

Within the modern-day setting, using LIDAR technologies to measure the state of an external 
environment is common, however with the emergence of next-generation automation within 
factory and large-scale warehouse environments [4-1] there is a desperate need to adapt. In 
a factory space, where there are a multitude of automated ‘bots’ conducting various tasks, 
there is the issue of keeping track of each bot’s positioning. Localisation plays a key role in this 
process of keeping track of positions, and there have been multiple endeavours to find the 
most optimal solution to this.  

The aim of this experiment is to design and develop a system where a potential device 
equipped with a LIDAR can be located within an environment. This environment contains 
multiple shapes which will be utilised as landmarks. The LIDAR then recognizes these 
landmarks and determines the distance from itself and the landmark. When a number of 
measurements have been recorded, an algorithm estimates its position within the 
environment. This project scope is strictly within a two-dimensional space, and as such will 
not determine the height of the device. The objectives are as follows: 

The system should read sensor data produced by the LIDAR 

The system must be able to detect landmarks through this sensor data 

An algorithm must be made to retrieve distances from these landmarks 

Provided that the distances have been determined, the algorithm should be able to determine 
the estimated position of the sensor in the environment. The motivation for this work is to 
determine what level of location accuracy could be obtained from a 6G Communication and 
Sensing system using location from landmarks  

This work was performed as research informed teaching BEng student final year project by 
Prabhveer Mujral [4-32] under the guidance and supervision of 6G BRAINS researchers Ali 
Mahbas and John Cosmas. 

4.2 Background Theory 

4.2.1 Applications of localisation 

The importance of localisation, or position estimation cannot be underestimated, as it can be 
applied to a multitude of applications, such as ranging from emergency systems, where having 
accurate location of an emergency caller is paramount [4-2] to more commercial applications, 
such as providing location-based services [4-3]. In more modern applications such as 
autonomous driving, intelligent transportation systems (ITS), and vehicular ad-hoc networks 
(VANETS), where Simultaneous Localisation and Mapping (SLAM) is heavily implemented [4-
4], requires a more responsive and accurate position tracking in order to fully function. In 
addition to this, with the emergence of the Internet of Things (IoT) [4-5] and tactile internet 
[4-6], the application of localisation has never been more visible to the everyday consumer. 
Not one solution is applicable to all cases, as multiple factors can impact their efficacy. 
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4.2.2 Localisation Techniques 

Localisation consists of determining the coordinates and direction of an object within a map. 
This could be interchangeable with positioning, which only determines the coordinates of an 
object. One of the most common methods of localisation is through satellite navigation. This 
generally works out a user equipment’s (UE) position by estimating the intersections between 
two or more satellites. Although this technology is effective in outdoor environments, it is 
affected by multiple sources of errors, potentially causing deviations of up to 100m. If the 
satellite clock has an inaccuracy of one nanosecond, it results in 30cm of error. Moreover, the 
speeds of GPS signals are affected by both the ionosphere and troposphere, causing further 
deviations of up to 30m. This also requires a clear line of sight (LOS) [4-7]. 

From a mobile networks point of view, positioning techniques can be broken into two 
categories, depending on the entity which computes the position – mobile based and network 
based [4-2]. Mobile based is where the UE itself works out its own location whereas in network 
based, the network location server would calculate a UE’s position. The latter is also 
considered to be the standard due to the control the network operator is able to have, as well 
as support for legacy devices. The fundamental techniques these mobile networks use is 
trilateration, triangulation (akin to GPS), proximity, and scene analysis. 

In a general sense, mobile location estimation is possible using Received Signal Strength (RSS), 
Time Difference of Arrival (TDoA), and Angle of Arrival (AoA) of signals, but all suffer from the 
issue of LOS. In essence, to adopt these methods for localisation, multiple base stations (BS) 
with known locations must be utilised [4-8] where the previously mentioned geometric 
algorithms can be used to work out a UE’s position. This issue is bettered in 5G and 
subsequently mmWave (30-100GHz), where machine learning models such as the data-centric 
fingerprint positioning [4-9] are implemented. Although machine learning models are far more 
effective at determining indoor position, it will require some form of offline training before 
putting into practice, often with extremely large datasets. In addition to this, the model would 
have to be retrained for each new environment. 

With the emergency of 6th Generation mobile technology, a potential candidate is terahertz-
band localisation [4-10]. By operating in the 0.1-10 THz range, its wavelengths range from 
0.03-3mm, ultimately resulting in larger bandwidths and data rates. Although these 
frequencies bring a high degree of path loss and decreasing propagation distances, highly 
desirable localisation measurements can be derived by using high-gain antennae. Due to the 
infancy of this field, there are no set commercial applications however, advances in addressing 
system structures, and localisation algorithm research such as [4-11] suggest that the 
potential is present. 

Another method of localisation that has been explored is through the use of sensor fusion. In 
this case multiple sensors are combined together to compute a more accurate result. In one 
report, ultra-wide band (UWB) frequency sensors were fused with vision sensors and inertial 
measurement units (IMUs) in an indoor environment in an attempt to create a more accurate 
localisation effort [4-12]. Their testing environment primarily utilised the trilateration result 
from the distances to three UWB beacons to work out the raw positions, which was then 
passed to an extended Kalman filter (EKF). This filter then combines the velocity and angle 
measurements from the IMUs in addition to the average position found by the vision sensor. 
Overall, this method produces more consistent results at a consistently high error delta. 
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4.2.3 LIDAR technology & localisation using LIDAR 

LIDAR stands for Light Detection and Ranging and is a type of sensing technology which is 
heavily used in applications such as: autonomous vehicles, robotics, geographical surveys, and 
much more. The LIDAR emits laser pulses which bounce off objects and return back. The lasers 
time of arrival is then analysed to create a 3D map of the environment. The output of a LIDAR 
is in the form of a point cloud – a collection of millions of data points, with each point 
belonging to a cartesian coordinate. These sensors come in two types: airborne and terrestrial. 
Airborne is where a LIDAR is fixed onto an aircraft or helicopter. Terrestrial LIDAR comes in 
the form of mobile and static configurations. In mobile configurations, LIDARs are placed on 
moving entities such as cars, and are continuously capturing point clouds. Static LIDARs tend 
to be more portable and can be used in creating detailed point clouds of rooms such as a 
factory floor. 

In a practical sense, there have been multiple ventures in utilising LIDAR technology in 
localisation. Firstly, localisation can be defined into two scenarios; when the robot is in a 
known environment, or when it is in a completely unknown environment. In situations in a 
known environment, robots can perform landmark-based localisation by detecting the 
distances from these markers. By parsing these values through an EKF, accurate pose data can 
be derived [4-13]. In completely unknown environments, in the case of LIDAR, techniques such 
as Simultaneous Localisation and Mapping (SLAM) are utilised. In LIDAR SLAM, a 3D LIDAR 
(outputs data in x, y, and z planes unlike a 2D LIDAR) takes multiple scans of an environment 
and determines an ego’s movement by calculating the iterative closest point (ICP) differences 
between point clouds. By employing frameworks such as LIDAR odometry and mapping 
(LeGO-LOAM), highly accurate localisation results were produced [4-14]. Although these 
results were produced within a simulated environment, they are backed up by outdoor 
experiments [4-15]. 

LIDAR has previously been used as an assistance tool to reduce the localisation error in UWB 
in indoor robot localisation [4-16], rather than being the sole technology. This particular test 
combined a single scanning LIDAR to scan the environment alongside a UWB positioning 
element. The LIDAR aids localisation by measuring the distances from each UWB reference 
node at a particular time in the environment and is then compared against the ranges 
determined by the UWB. The difference between the two is considered to be the UWB error 
and is combined with another EKF to find the standard error. By knowing the error, 
adjustments can be made to position. 
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Figure 4.2.1: The CDFs of the position errors of the UWB and LIDAR-assisted UWB [4-16] 

Their testing methodology consisted of a robot equipped with a LIDAR and a UWB positioning 
element which would be placed in a small-scale environment. Figure 4.2.1 shows that the 
cumulative distribution function (CDF) is smaller when utilising LIDAR, thus showing the LIDAR 
has improved position accuracy. 

Another instance where LIDAR technology has been combined with another sensor for 
localisation, is with IMU sensors [4-17]. The issue identified in this report was regarding the 
loss in localisation accuracy, when a moving bot travelled a set distance. In this case, the IMU 
was the Bosch BNO055 which contained an accelerometer, a magnetometer, and gyroscopic 
sensors. By connecting these sensor outputs to an extension of the EKF, a more refined 
localisation package was created. The indoor experiment results showed that combining IMUs 
with a LIDAR produced localisation accuracy by 57.9-72.2%. 

The key takeaway from these projects is that combining sensors with a LIDAR produces far 
more accurate results than on its own. 

Another paper presents a framework of vehicle self-localisation within urban environments 
[4-18]. The idea is to classify distinct, physical objects such as light poles and stop signs as 
unique landmarks. Multiple segmentation techniques were applied to the LIDAR’s point cloud 
to remove the ground floor and leave certain objects depending on the desired characteristics 
of the landmarks they wished to identify. Next, a type of rule-based filtering is completed on 
the point cloud to remove any noisy or poorly detailed objects. In this paper, they filter for 
cylindrical shapes, so they filtered out objects which had a larger width than height. 

The stereo camera in this paper is an attempt at finding distance using its depth however, this 
is far less accurate than the LIDAR. Once filtered, a cascading classifier, which is a type of object 
detection algorithm, was run on the stereo camera to find any common traffic shapes, such 
as stop signs. Once detected and classified, the LIDAR’s distance data is matched with the 
stereo camera’s object detection information, by projecting the point cloud on the stereo 
images, to obtain a set of 2D feature points, as illustrated in Figure 4.2.2.  
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Figure 4.2.2: Illustration of the steps for the landmark detection using a stereo camera [4-
18] 

In terms of the results in this method, the paper tested multiple cases; only the LIDAR, just the 
stereo camera, and both LIDAR and camera. They ran simulations in all cases and concluded 
that using both sensors resulted in a position error below 0.5m. When comparing just LIDAR 
and camera, it was seen that the stereo camera was negligible in finding actual localisation. A 
major caveat is that the landmark’s positions are already known in the environment, which is 
required to conduct the pose estimation. There is also the possibility that no landmarks would 
be identified. 

Another paper proposed a solution of localisation with a single camera and LIDAR [4-19]. It 
expresses the already-mentioned disadvantages of using GPS (or lack thereof) within indoor 
environments and proposes an algorithm where a single moving camera takes two images. 
Mathematical representations of features are extracted from both images in the form of 
vectors and are subsequently projected onto the LIDAR’s point cloud. Depth information is 
then found using sparse depth maps on the two images and 3D points are found on the feature 
pairs in both images. They then conduct a transformation matrix to find the pose. Overall, they 
were able to achieve an average error of less than 10cm. More importantly it did not require 
any prior knowledge of the environment but is reliant on both the camera and LIDAR being 
available. Furthermore, it could suffer if the environment is static, and is feature-less.   

The majority of LIDAR-based solutions utilise SLAM as seen in [4-20]. It notes that a major 
strength of using LIDAR is that it is able to work in light-agnostic environments, as it can 
produce its own light source. This paper also presents three strategies for implementing SLAM: 
Gaussian filter-based, particle filter-based, and graph optimisation-based. Gaussian based 
assumes the that the estimated state of the moving bot can be found using a probabilistic 
Gaussian filter. Particle filters estimate the position using a set of particles. These particles 
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would have individual weighting based off a number of factors. The particle with the best 
weighting would most likely be the following position of the bot. Finally, graph based aims to 
estimate position at all positions, both previous and future, by taking in all measurements and 
control values in a time range. It then makes a global optimisation for all poses. 

A key takeaway from this paper is that the LOAM algorithm (also mentioned in [4-14]) 
produces localisation errors of less than 10cm in low and high-speed cases, and that a 
potential combination of visual and LIDAR features could increase the robustness of SLAM 
algorithms. SLAM does have its benefits over other methods such as its ability to conduct both 
system mapping and localisation but is computationally heavy. 

4.2.4 Position Estimation Algorithms 

To estimate position or localisation, there are a multitude of different algorithms depending 
on the use case. Algorithms such as the previously mentioned trilateration algorithm, could 
be utilised in both two- and three-dimensional environments, and appears to be the simplest 
to implement. This algorithm does have its drawbacks however, with one such problem being 
the inaccuracies in the distances measured to the landmarks. Efforts have been made to 
rectify this issue [4-21] by using EKFs to reduce the perceived noise in these measurements 
however, other issues still pose a problem such as losing LOS to the landmarks.  

Another popular algorithm is fingerprinting. In this algorithm RSS values are stored in a 
database akin to a map [4-22]. When a UE measured their RSS, it is then matched to the radio 
map, and an estimated position is found. This method has a major problem - the radio map 
must be created which consists of measuring the RSS value of every access point (AP) in the 
system at every coordinate (or cell) in the map. In addition to the time taken to create this 
map exponentially increasing as the environment increases in size, but it will also have to be 
re-created should an AP be changed or shutdown.   

4.2.5 Object Detection Algorithms  

For this project, rather than powered landmarks such as APs, static inexpensive landmarks will 
be utilised. Therefore, the system must be able to identify these landmarks. One proposed 
method to recognise these landmarks is using object detection algorithms. Almost all object 
detection algorithms can be split into two methods: deep learning methods such as 
convolutional neural networks (CNNs), or traditional image processing techniques. Image 
processing such as python’s OpenCV does not require any historic data for training but require 
near-perfect conditions to detect objects. Whereas deep learning (DL) methods usually 
require a form of supervised learning, in the form of manually labelling objects within a 
dataset, and then training the CNN over hundreds of epochs [4-23]. The benefit to DL 
algorithms is that they are far more robust to sub optimal conditions, thus more reliable if 
trained correctly.  

One specific DL method is YOLO [4-24]. This form of object detection relies on the use of 
bounding boxes and classes. In essence, a trainer would provide a dataset of images that are 
pre-labelled. The objects that one wants to detect are initially given a class name and are 
labelled with a box around each instance in the image. One key benefit to utilising YOLO over 
other algorithms is that it is extremely fast in real-time detection. Other leading detection 
methods such as Fast R-CNN [4-25] may produce higher accuracy but struggle when run under 
new environments in addition to it being far slower.  
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Figure 4.2.3: Source of errors in both Fast R-CNN and YOLO Detection [4-24]  

Figure 4.2.3 above is a comparison between the two object detection methods, running on 
the same dataset looking for 20 classes. Fast R-CNN is slightly more accurate than YOLOv1, at 
the expense of a large increase in background errors. On the other hand, YOLO struggles at 
correctly localisation objects. It is possible however, to combine both detection methods by 
running and checking for any overlapping bounding boxes. 

Overall, YOLO and its subsequent versions appear to be the optimal solution for this particular 
use case, mainly due to its real-time speed. 

4.3 Experimental Setup 

4.3.1 Introduction 

This section will begin by identifying the system’s requirements and performance indicators. 
Then, the system environment will be deployed, which consists of creating and placing 
landmarks. Next, the processes behind connecting to the LIDAR, and 360-degree camera will 
be discussed. Furthermore, the training of the object detector will be discussed, in addition to 
the application of this detector. Finally, the algorithm behind taking distances, and applying 
them to a pose estimation algorithm will be described. This estimation algorithm will also be 
mapped onto a digital map, where the estimated position will be displayed within the 2D 
environment. 

4.3.2 System Scope and Requirements  

The system’s functional and technical requirements have been outlined in the Table 4.3.1 
below. 

Table 4.3.1: Proposed Functional and Technical Requirements 

Proposed Functional Requirements Proposed Technical Requirements 
The LIDAR system should correctly detect 
and map the surrounding environment. 

The LIDAR should be correctly configured in the system such 
that the testing environment is completely in view. 

The system should automatically identify 
landmarks within the environment. 

There must be a form of object detection which can identify 
objects within the environment. 

The system must be able to accurately 
determine distance from landmarks. 

Distance must be calculated from within the program, and as 
such must be able to identify the midpoint of detected 

landmarks. 
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Proposed Functional Requirements Proposed Technical Requirements 
The system must estimate position in real-

time. 
The program must be capable of receiving data from the object 

detector and LIDAR in real-time and estimate position. 

The position estimation must work in the 
event a number of landmarks are blocked. 

The object detector must be able to identify even partially 
blocked landmarks and must be able to determine position as 

long as the minimum number of landmarks are detected. 
The landmarks should be standalone, and 

not require any continuous setup. 
The landmarks should be non-electronic and should not 

require constant maintenance. 

 

As the requirements have been identified, the KPIs must be outlined so that the system can 
be evaluated. The KPIs are as follows in Table 4.3.2: 

Table 4.3.2: Proposed Key Performance Indicators 

Key Performance Indicator 
Distance measurements should be within 5% of 

actual distance. 
Object detection should occur at least once per 

frame. 
The object detector should have a false positive rate 

of less than 5%. 
Distance measurements should occur at least once 

per frame. 
Position estimation should be within 5% error in 

both x and y coordinates. 

 

Based off these requirements, the proposed system can be outlined. The UE in this experiment 
will be equipped with a 360-degree LIDAR, which will continuously scan the environment. 
Localisation will be achieved by deploying multiple landmarks around an environment. There 
will be six landmarks deployed around environment, and the LIDAR will be able to identify 
them with the help of the object detection algorithm, YOLOv5. When the UE has detected at 
least three landmarks, another algorithm will measure the distance between the landmark 
and UE, which will then be parsed into a trilateration algorithm. This trilateration process 
requires the known positions of these landmarks and as such these will be known beforehand. 
The program will estimate the position of the UE in the environment and plot this coordinate 
on a 2D map. This system is outlined in the flowchart in Figure 4.3.1 below. 
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Figure 4.3.1:  Complete System Flowchart 
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4.3.3 Setting up the System Environment 

As a reference, this is the initial state of the environment, as shown in Figure 4.3.2. 

 

Figure 4.3.2: Initial Environment State 

The current state of the environment includes a 2.50 x 2.50 x 2.16m (L x W x H) frame which 
will serve as the testing environment. A choice has been made to use the struts of this frame 
as the locations for the landmarks, as their locations should be easily measurable. Moreover, 
there is also a 3D plotter present in this environment. The plotter can move in all three 
dimensions and will be helpful in testing the accuracy of the localisation algorithm. Another 
important note is that both the plotter and frames are placed on top of a large millimetre 
graph mat. This will also be useful in measuring actual positions down to the nearest 
millimetre. 

4.3.4 Creating Landmarks 

As reported in the requirements Table 4.3.1, the landmarks should be non-electronic, and not 
require any continuous setup. Therefore, the ideal solution is for them to be made of a type 
of wood or plastic. As a LIDAR would have to be able to see these shapes, the preferred 
material will be a solid wood, as this will contrast best from the background. As for the 
landmarks themselves, since the object detector will have to identify each landmark as a 
unique object, these landmarks should be distinct shapes. Therefore, the distinct shapes will 
be a triangle, circle, octagon, trapezium, vertical rectangle, and horizontal rectangle. The 
shapes are also 12mm thick, which is important to note when developing the pose algorithm. 
The environment with the shapes attached around the frame are as shown in the Figure 4.3.3 
below. 
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Figure 4.3.3: Deployed Testing Environment 

As seen in the Figure 4.3.3, the shapes are attached to the struts of the frame and are clearly 
visible in the environment. As the landmarks have been set in the environment, the next step 
is to create a mount for the 360-degree camera. 

4.3.5 Creating a 3D Camera Mount 

The camera in question is a Ricoh Theta V 360-degree camera.  

 

Figure 4.3.4: Ricoh Theta V camera [4-26] 

This camera will be used in sensor fusion with the LIDAR, in particular using YOLOv5 on the 
images. Therefore, the camera must be closely aligned with the LIDAR as much as possible. 
The LIDAR has a small insert near the top, which could be used to place the camera, but a 
mount must be created. As seen in the Figure 4.3.4 above, the camera has a mounting hole, 
meaning that a model could be created which inserts into the top of the LIDAR.  

As there is no prefabricated piece to insert into the LIDAR, one must be created. To create this 
piece, a design was made on the 3D modelling software called Fusion 360. The design is shown 
below. 



6G BRAINS H2020-ICT 101017226 Deliverable D6.4 

Page 78 of (168)  © 6G BRAINS consortium 2024 

 

Figure 4.3.5: Designing and Creating the camera mount 

The base of the mount has a diameter of 35mm and has an M6 thread with a pitch of 1.0mm, 
as shown in Figure 4.3.5. This model is then 3D printed and inserted onto the LIDAR. 

4.3.6 Interfacing with the LIDAR using Python 

The LIDAR is the Ouster OS1-32-U scanning sensor. This particular LIDAR has a vertical 
resolution of 32 channels, and a horizontal resolution of up to 2048 lines per rotation. The 
rotation rate can also go up to 20Hz and has a maximum deviation of plus or minus 10cm [4-
27]. This sensor uses a gigabit ethernet output, and streams data using user datagram protocol 
(UDP) packets. 

 

Figure 4.3.6: The Ouster OS1 LIDAR 

Ouster LIDARs work by firing lasers in all direction using a rotating array of mirrors, and in this 
case, pulses are fired 12.6 million times per second, as shown in Figure 4.3.6. This LIDAR has 
four main data layers for each pixel within the point cloud, as shown in Table 4.3.3: 
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Table 4.3.3: Ouster Data Layers 

Data Layer Description Example 2D Image [4-28] 

Range A representation of the 
distance from each pixel 

 
Signal Displays the strength of the 

laser returned from an 
object. Objects further 

away will not be in as much 
detail. 

 

 

Near-IR Displays the strength of 
light at the 865nm 

wavelength. Detail heavily 
depends on the amount of 

sunlight. 

 

 

Reflectivity A display of how well the 
surface reflected the 

lasers. 

 

 

 

Each layer has its own benefits in terms of use case, with the range layer being key in all 
situations as this is which captures the distances.  

For this project, the LIDAR is mounted upon the 3D plotter, so that it can be easily moved 
during testing. The LIDAR will have to complete a full 360-degree scan of the environment and 
produce a clear enough 2D LIDAR image such that YOLOv5 will be able to accurately identify 
the landmarks. Therefore, the point cloud has been configured to a resolution of 1024x10, and 
a vertical field of view of 45 degrees. One extremely beneficial feature of these LIDARs is their 
1:1 spatial correspondence of points [4-28]. This means that each pixel within the 2D LIDAR 
exactly matches a single point within the 3D point cloud. This results in no unnecessary noise 
being introduced during processing, ultimately aiding in positional accuracy. As a result, the 
2D images could be directly combined with YOLO and interpreted almost seamlessly. 

Before training and running YOLO, it is integral to know how to interface with the LIDAR 
through Python code. Python code is the ideal method to conduct this project as there are a 
multitude of packages which accelerate the developmental process, in addition to having 
PyTorch, which is vital in using YOLO and other machine learning algorithms. As a bonus, the 
Ouster SDK is readily available in Python, making interfacing with Ouster LIDARs 
straightforward.  

The goal behind interfacing with the LIDAR is to be able to correctly configure and interface 
with the LIDAR so that point clouds can be generated in real time. The first step in this process 
is to create a virtual Python environment. A virtual environment in python is simply a portable 
directory where the python packages can be easily installed or removed. This also instils a 
layer of abstraction, in the event where multiple projects are utilising hundreds of different 
python packages.  
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For this project, the PyCharm Python IDE has been used, due to its ease of use for Python 
programming, in addition to its ability to create virtual environments. The machine that the 
LIDAR will be connected to is the Dell PowerEdge R740 server. It is running on an instance of 
Ubuntu 22.04 LTS and is equipped with a 36-Core Xeon Gold 6140 CPU, as shown in Figure 
4.3.7. This system has up to four ethernet ports, one of which will be used in directly 
connecting to the LIDAR.   

 

Figure 4.3.7: Dell PowerEdge R740 [4-29] 

The code required to interface with the LIDAR in real time is as follows in Figure 4.3.8: Code 
required to interface with the LIDAR: 

 

Figure 4.3.8: Code required to interface with the LIDAR 

This code simply defines the LIDAR, which is connected to the host via ethernet, in terms of 
its network hostname, in addition to the UDP port that it should listen to. This is all after the 
ouster package has been imported. Once these parameters have been set, the following step 
is to communicate with the LIDAR, as shown in Figure 4.3.9. 

 

Figure 4.3.9: Code to show the Reflectivity layer in real-time 
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This block of code simply combines the previous parameters and runs the ‘Scans.stream’ 
function. This function attempts to connect to the LIDAR using the supplied hostname, and 
UDP port. If successfully connected, the program reads each point cloud produced by the 
LIDAR as a single scan, and outputs the reflectivity layer using ‘cv2.imshow’. The output will 
be the 2D representation of the point cloud, in the reflectivity layer, as shown in Figure 4.3.10. 

 

Figure 4.3.10: Output of the Reflectivity layer 

Note that it is using the reflectivity layer but converted to greyscale for viewability. Now that 
the LIDAR has been successfully interfaced with via Python, it is now possible to begin training 
YOLOv5 to detect the landmarks around the environment. 

4.3.7 Training YOLOv5 for object Detection 

YOLO is an object detection model which is widely known for its high speed and real-time 
detection accuracy. This particular model can act on images, videos, live streams, and a 
multitude of different applications. Before training the system, it is important to understand 
how the YOLO process functions.  

In the case of a single image input, YOLO initially resizes the image to a predetermined fixed 
size. This allows the model to work within set parameters, rather than a dynamic range, 
ultimately increasing performance. Next, the normalised image is passed into a CNN backbone, 
to extract features at different scales. This version of YOLO in particular uses the Cross Stage 
Partial (CSP) network, which was created to improve the accuracy and efficiency of CNNs by 
finding a solution to capturing more complex features from images, without requiring as much 
computational power [4-30]. 

Once feature maps have been created by the backbone, it is passed to a ‘neck’ network, which 
combines the feature maps to form a single representation. The head network, which is the 
following step, is vital as this is where the model begins to detect potential objects in the 
features. It applies bounding boxes, which are essentially rectangular boxes around each 
detection and assigns it a class probability – how likely this object belongs to a particular class. 
The output of this head is likely to have many overlapping boxes, so a non-maximum 
suppression (NMS) algorithm is applied to remove redundant boxes. It determines redundant 
boxes by checking their class probability values against a threshold value and acts according 
to whether it is above or below this value. This would not remove all overlaps, as some 
occlusion can occur legitimately. Finally the resulting image is produced, where the bounding 
boxes are surrounding any detected objects. Yolov5 flow model is shown in Figure 4.3.11 



6G BRAINS H2020-ICT 101017226 Deliverable D6.4 

Page 82 of (168)  © 6G BRAINS consortium 2024 

 

Figure 4.3.11: YOLOv5 Model Flow 

In a practical sense the weights file, which is a binary file that could be considered as the 
source of the object detector’s ‘knowledge’, is trained against the objects one would like to 
detect. This is where the ‘training’ term is coined when making object detectors. In order to 
train YOLO, a large dataset of images must be acquired. A training dataset would usually 
require thousands of labelled images, with the objects captured in different angles, distances, 
lighting, and orientations. Due to the fact that the reflectivity layer does not rely on lighting, 
the easiest solution to create a large dataset is by splitting each frame of a LIDAR recording 
into images.  

In order to take a recording of the scene, the Ouster visualiser software was utilised. This 
software provides a simple interface to the LIDAR, and contains features such as recording 
scenes, playback of recordings, and measurements down to single points within the cloud. 
Through the program, it is possible to connect to a live LIDAR, through an available ethernet 
port. An interface appears with multiple parameters that can be configured, as shown in 
Figure 4.3.12. 

 

Figure 4.3.12: Configuring the LIDAR on Ouster Studio 
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The key settings that change the sensor’s readings are the: LIDAR Mode, Operating Mode, 
Azimuth Window, and Signal Multiplier, as shown in Table 4.3.4. 

Table 4.3.4: LIDAR Configuration Parameters 

Configuration Parameter Description 
LIDAR Mode Changes the horizontal and vertical resolution rates of the sensor. In this 

project it is set to 1024x10. 
Operating Mode Can be set to run normally or on standby. Standby will sleep until commands 

are received. It is set to normal in this project. 
Azimuth Window The angle in which the LIDAR should scan, from 0 to 360 degrees. It is set to 

360 by default. 
Signal Multiplier The power in which the LIDAR lasers are fired at. Higher signal power, the 

further the range. As an azimuth of 360 is being used, the multiplier is set to 1. 

 

The recording environment involved the LIDAR remaining stationary in the environment, with 
the shapes in the environment present in LOS. As the recording runs, one shape will be blocked 
to create images where not all objects are present. This process is repeated with the LIDAR in 
different positions within the environment. As previously mentioned, the LIDAR is mounted 
on a 3D plotter, which is connected to the server by a router, and is controlled by a Python 
program. This Python program simply connects to the 3D plotter’s local Internet Protocol (IP) 
address and sends commands via Transmission Control Protocol (TCP), as shown in Figure 
4.3.13. The plotter has a resolution of 1270 by 1270 by 50 (XYZ), and also has support for voice 
commands via a connected microphone. For ease of use, textual inputs were utilised instead. 

  

Figure 4.3.13: Code to move the 3D Plotter 

To summarise, the LIDAR is recording in multiple static positions, by moving along a 3D plotter. 
Once recordings were saved, some code would have to be created to split and encode each 
frame into an image. The following code, shown in Figure 4.3.14 simply reads each scan in the 
file and encodes the reflectivity layer into a readable image format. The lossy encoding of jpg 
was the format of choice as the marginal difference in quality against a lossless encoding was 
negligible.  
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Figure 4.3.14: Code and output in slicing LIDAR recordings to images 

By running this code on a 30 second recording, a minimum of 300 images were sliced (as the 
LIDAR is running at 10 frames per second). In total, 5812 images were created to add to the 
dataset, containing the shapes from multiple different angles and sizes. 

Now that a dataset has been formed, the next step in the training process is to manually 
describe the objects that YOLO should look detect by labelling each shape in every image. This 
process is extremely tedious and time consuming however, this is the core of the training 
process. For this project an online tool called Roboflow [4-31] was utilised to ease the labelling 
process. This site allows images to be directly uploaded into a new project and lets the user 
draw boxes around the objects they wish to detect, in addition to creating new classes. For 
this project, Figure 4.3.15 below shows how each image would be labelled. 

 

Figure 4.3.15: Using Roboflow to annotate images 

Notice how each shape within the environment is presented in a user-friendly manner, 
highlighted by the colour coordination of boxes and classes. This image-label-next image 
process was repeated for at least 1000 iterations, resulting in a dataset capable of training 
YOLOv5. Once finished, the following step is to split the dataset into three sections – train, 
validation, and test. Train, the largest dataset, is dedicated to training the model. Test is used 
to validate the trained model. Finally, the validation data is used to tune the hyperparameters 
of the object detector. Hyperparameters are the settings that are usually manually configured 
prior to training such as learning rate, the number of epochs, and batch size. The ideal split is 
66%, 24%, and 11% respectively as more emphasis should be placed on training.  

Roboflow provides further pre-processing and augmentation features to stretch out the 
usefulness of the dataset for example, it can automatically stretch or rotate the labelled 
objects. For this dataset these settings have been left as-is to maintain the integrity of the real 
environment. Once the images have been split and any further processing has been done, the 
data must be generated into an image-annotation pair. This is where each image’s labelled 
classes are written into a text file, with coordinates mapping exactly where the boxes were 
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drawn. As a final procedure, a configuration file must also be created, to list where the dataset 
is stored, as shown in Figure 4.3.16. 

 

Figure 4.3.16: Configuring the training file 

Once these image-label files have been moved into the relevant directories, it is now possible 
to begin running the trainer. The trainer comes in the form of a Python file, which heavily 
utilises the PyTorch package. In this file, the process shown in Figure 4.3.17 was completed. 

 

Figure 4.3.17: YOLOv5 Training Cycle 

The training process begins by loading the hyperparameter values that were set beforehand. 
Then, it begins by initialising a pre-existing weights file, provided there is one. Using a pre-
trained weights file speeds up the training process and is recommended. The following step is 
to forward the training images into the neural network which in turn generates predictions 
for the location class of the objects within the image. It is extremely unlikely that it is near 100% 
accuracy in the first pass, so a loss calculation is conducted to numerically compare the 
difference between the predicted and actual labels. Using this calculated loss, the algorithm 
adjusts its weighting, and backpropagates the error through the neural network, in an attempt 
to reduce the loss. This occurs multiple times on each image within a batch. Once a single 
batch is completed, this is considered to be one epoch. A training model will normally require 
at least 100 epochs before a reliable model is created. Upon the completion of the desired 
number of epochs, the trainer then runs on a training set, which was previously unknown to 
the model.  
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For this project, the trainer was initialised to run for 250 epochs, however the program has a 
special feature where it will stop training should there be no significant gain in accuracy. As 
seen in the Figure 4.3.18 below, the model was on its 9thepoch, and was producing box loss, 
object loss, and classification losses or 7%, 2%, and 0.6% respectively. Generally speaking, 
these losses should be below 0.01 for optimum reliability. In this project, a dedicated graphics 
processing unit (GPU) was tasked to run the object trainer due to its capability of performing 
vast parallel processes, in addition to having dedicated video memory. 

 

Figure 4.3.18: Running the YOLOv5 Trainer  

As previously mentioned, the algorithm is able to test for performance after every epoch. In 
this process, the program conducts multiple tests and produces multiple graphs. A confusion 
matrix shows the probability distribution between the predicted classes against the true 
classes, Figure 4.3.19. 

 

Figure 4.3.19: Confusion Matrix for the newly trained weights file 

Ideally the matrix should show 1 in the centre diagonal, meaning that each class in the dataset 
was detected correctly. In this particular training, the model did very well in correctly 
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detecting classes, but not as much in detecting the background. By using these statistics, an 
F1 score can be calculated. This score combines the model’s precision and recall into a single 
value, which represents the overall accuracy. Precision is a measure of the fraction of true 
positive detections among all detections, while recall measures the fraction of true positive 
detections among all actual objects in the image. This score ranges from 0 to 1, with 1 being 
the best score. A high precision suggests that the model produces very little false positives, 
while a high recall shows that the model is detecting most of the true positive objects. 

 

 

Figure 4.3.20: Precision Recall and the F1-Confidence 

The above Figure 4.3.20 precision-recall curve shows that the model has most classes 
achieving at least 0.99 apart from the circle and vertical rectangle. The following F1-
Confidence Curve in Figure 4.3.20 shows that the model achieves the highest F1 score of 0.97 
when it has a minimum confidence score of 0.685. This means that the minimum confidence 
level when running this object detector should be set to around this value. There is a trade-
off to be had here however, where the confidence threshold could be set higher, but at the 
risk of losing true positive detections. Similarly, a lower confidence could be set to the 
detriment of detecting false positives. 

Overall, a new weights file was created as a result of training YOLOv5 against the LIDAR dataset. 
The new file is designed to detect the shapes around the environment, through the LIDAR’s 
2D reflectivity output. This dataset was created by slicing multiple thirty second LIDAR 
recordings into individual images and labelling the objects through Roboflow. The optimal 
confidence level of this model is 0.685, based off the resulting F1 score. The next step is to use 
this newly trained object detector in combination with another algorithm to detect the 
position of the LIDAR within the environment. 

4.3.8  Using Strictly LIDAR for Pose Estimation 

Now that the object detector has been trained to work with the reflectivity layer of the LIDAR, 
it is now possible to begin creating the algorithm which will estimate the sensor’s position 
within the environment. The Figure 4.3.21 below shows the designed flow in this algorithm. 



6G BRAINS H2020-ICT 101017226 Deliverable D6.4 

Page 88 of (168)  © 6G BRAINS consortium 2024 

 

Figure 4.3.21: LIDAR Position Estimation 

The initial step is to apply YOLO onto the LIDAR’s output, detect shapes on each scan, and 
calculate the distances from them within the environment. Having accurate distance 
measurements will be paramount as this could heavily change the estimated position. 

4.3.9 Processing YOLOv5 on Point Clouds 

The first script is to run YOLOv5 on the point cloud. From a setup perspective, aside from the 
weights file, the Python code which reads into a LIDAR’s recording only requires the LIDAR 
metadata, which contains the LIDAR resolution, frequency, number of channels, and other 
configuration data. This is so that the recording can be played back correctly by the algorithm. 
In addition to this, the minimum confidence threshold must also be declared, and as found in 
the testing results, this should be set to around 0.685, as shown in Figure 4.3.22. There is also 
another parameter, which allows the algorithm to display an OpenCV window of the recording 
and bounding boxes in real time. 

 

Figure 4.3.22: Configuring parameters for detection 

When running this code with the correct source and metadata, the following output is 
produced, as shown in Figure 4.3.23. 

 

Figure 4.3.23: YOLO output on LIDAR recording 

In this output, each shape has been detected alongside their confidence levels, as shown in 
Figure 4.3.24. Each shape that has been detected has a confidence of at least 80%, and it can 
also be seen that the bounding boxes have been correctly placed. 

 

Figure 4.3.24: YOLO output with a blocked shape 

In another recording however, an entity is blocking the circle in the scene, but the object 
detector has reacted correctly as there is no longer a box in that position. This shows that the 
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training of the model has been fruitful. As a result, measuring accurate distances should be 
possible. 

4.3.10 Extracting Distances from Point Cloud 

The theory of extracting distances from the point cloud recording depends on the ability of 
the LIDAR’s 1:1 spatial correspondence of points. In theory, the coordinates that YOLO has 
mapped the bounding boxes onto should also be mapped to a set of points within the 3D point 
cloud. Therefore, by listing the points within the box as a region of interest, the algorithm 
should be able to work out a particular coordinate which best represents the shape. This 
coordinate can then be mapped onto the point cloud, and the appropriate x, y, and z 
coordinates point can be read. Then, the Euclidian distance can be found from that particular 
point to the sensor (which is set as the origin). 

 

The Figure 4.3.25 below shows this flow. 

 

Figure 4.3.25: Measuring Distance 

This diagram shows how each detected object is processed to calculate the distance from itself 
and the sensor. For each bounding box, the algorithm notes its coordinates, and produces a 
subset of the overall image. In this subset, a subarray is created which covers the area in which 
the object is detected within the image. With this region of interest, a function is run to find 
the nearest point in the array. This point represents the coordinate of the object which is 
closest to the sensor. Using this special coordinate, it is then reflected upon the range layer of 
the point cloud using a pre-made look up table (LUT), to retrieve the coordinates. Finally, the 
distance calculation is conducted to get the distance from the shape’s closest point and the 
sensor. 

In practice, the code which conducts this specific process is shown in Figure 4.3.26 below: 
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Figure 4.3.26: Code to calculate distance 

The final line produces an annotation on the playback which shows the class name and 
distance measured. By running this code procedure on the playback, the following output 
shown in Figure 4.3.27 is produced: 

 

Figure 4.3.27: LIDAR output with measured distance 

Notice how each shape has differing distances, showing that the function is working as 
intended. Now that distances can be retrieved; it must now be filtered using a Kalman filter.  

4.3.11 Implementation of Kalman Filters 

In essence, a Kalman filter (KF) is a mathematical algorithm which uses a series of 
measurements over a period of time to estimate the state of a system. It is a closed loop 
function which follows a recursive formula. It takes an input measurement and uses a number 
of historical inputs to update the output value. In this use case, the system would input a 
number of distances, one per detection of a particular object, and the filter would output an 
estimation. This is used to remove any extreme outliers which could be sent from the object 
detection algorithm. The Figure 4.3.28 below shows the intended use case. 
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Figure 4.3.28: Applying the KF on distances  

Theoretically speaking, the KF should eliminate the noise when distances are measured and 
produce a more stable output. In order to implement this, the code filter should be receiving 
measurements whenever the object detector measures a distance. As there are multiple 
classes, the code should also be able to recognise which shape the distance value belongs to. 
Moreover, these distances must be held in a buffer so that the KF has its recursive data. 

 

Figure 4.3.29: Kalman filter implementation 

Simply put, the code should call a function to update the KF, with the class name, and distance 
value as parameters, as shown in Figure 4.3.29. The resulting function will read the class name 
and subsequently call the KF subroutine. The filter would then run the length of the buffer and 
output the most recent filtered value. The code implementation is shown in Figure 4.3.30 
below: 
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Figure 4.3.30: Code implementing KF use 

Now that the KF has been implemented. It is possible to begin estimating the position of the 
sensor within the environment. 

4.3.12 Trilateration Estimation using Distances 

Using the calculated distances, it is now possible to estimate the position of the UE within the 
environment. As this project is only focusing on the two-dimensional position of the sensor, 
the most appropriate technique is trilateration. This is the most optimal as it only requires the 
coordinates of the landmarks (in this case the shapes) in the environment, and the distances 
from those landmarks. In addition to this it only requires three distances so there is flexibility 
in the event that one or more shapes are blocked. The flow that the code should follow is 
shown in Figure 4.3.31 below: 

 

Figure 4.3.31: Process to calculate position using trilateration 

This figure represents the steps that the algorithm should take to determine position. As the 
distances for each shape come from the KF, the trilateration algorithm can read them, and 
map them onto an array. The coordinate for each shape is vital in this process, and as such 
must be carefully measured. To measure each shape’s coordinates within the environment, a 
reference point must be chosen. For accurate measurements, a laser distance measuring tool, 
as shown Figure 4.3.32, has been utilised for distances with a tolerance of one millimetre. 
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Figure 4.3.32: Leica Disto D2 Laser Measuring tool 

Using this tool, it is possible to map the environment. From the origin, the shapes around the 
perimeter of the site, as shown in Figure 4.3.33, are able to be measured.  

 

Figure 4.3.33: Mapping the system environment 

By measuring from the x and y axis, the following coordinates for each shape were derived, as 
shown in Table 4.3.5: 

Table 4.3.5: Measured Shape Coordinates 

Shape Name X-Axis Y-Axis 
Vertical Rectangle 0.027 1.160 

Trapezium 0.033 2.403 
Octagon 1.129 2.391 

Circle 2.414 2.374 
Horizontal Rectangle 2.405 1.315 

Triangle 2.388 -0.003 

 

Notice that coordinates are not linear – this is due to the fact that the exterior frame 
surrounding the environment is not uniform, making this process difficult to accurately 
measure. The coordinates are including the 12mm thickness of the material used. Using these 
coordinates, it is now possible to code this trilateration algorithm.  

By sorting the distances from lowest to highest, the top three shortest distances can be 
selected. The shortest three have been chosen as from an error point of view, objects further 
away are more likely to produce incorrect results. This is due to the fact that the object 
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themselves would have a smaller region of interest on the LIDAR output, meaning that the 
bounding boxes are more likely to be out of place. After sorting, the distances between the 
landmarks must be found. This calculation utilises the coordinates of those shapes and the 
Euclidian distance formula as shown in equation 4.6.2.2. This calculation occurs three times 
to cover all combinations between the landmarks and is then used to calculate unit vectors. 
These unit vectors are used to represent the direction in space. Using these unit vectors, it is 
possible to work out the direction in which the sensor is at. Then, it is possible to work out the 
estimated position of the sensor in vector form (i and j directions). Then, by reusing the 
measured distances, it is possible to find the x and y coordinates of the sensor. From a code 
perspective, the key lines are shown in Figure 4.3.34 below: 

 

Figure 4.3.34: Coding in the trilateration calculation 

The resulting position variable is simply a list with two values, the x and y coordinates. This is 
the estimated position in the environment. 

4.3.13 Displaying position on a 2D Map  

A human readable interface where the real-time position can be shown as each frame of the 
LIDAR is processed must be made. As it is a two-dimensional estimation, it would be best to 
show the map on a coordinate grid. Python has a package with the name of ‘matplotlib’ which 
can easily create a grid, in addition to the ability to plot shapes and specific points. Moreover, 
it can be constantly updated, which is required as the estimated position will update as new 
scans are interpreted. The coordinates for the shapes are already known, so the environment 
can already be built. The below Figure 4.3.35 shows how this map can be coded. 

 

Figure 4.3.35: Displaying a shape 

This code is repeated for each shape. In addition to displaying the shape’s positions, the 
exterior frame should also be displayed. As previously mentioned, this is not a uniform shape, 
so must be coded in as a polygon, rather than a square or rectangle.  

 

Figure 4.3.36: Displaying the exterior frame and plotter 
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The four corner coordinates of this polygon were declared and parsed into the ‘plt.Polygon’ 
function. This produces the shape on the map with a red edge colour, with no fill. Also, it 
would also be beneficial to show the plotter on the map. Figure 4.3.36 also represents this.  

As the system relies on distance measurements from the landmarks, it would be another good 
addition to represent these distance measurements in the form of circles, as shown in Figure 
4.3.37. This could show the user the state of the measurements as each frame is read. If there 
were sudden changes in the distance measurements, the user will be able to see them. 

 

Figure 4.3.37: Displaying circles around landmarks 

To show the estimated positions of the sensor within the environment on the map, the values 
of the trilateration function must be used. The code simply calls this function and uses 
‘graph.plot’ to show this on the map, as shown in Figure 4.3.38. 

 

Figure 4.3.38: Displaying the estimated position 

Notice how the value is rounded to three decimal places. This is to keep in line with the 
tolerance of the tools used in measuring the coordinates of the landmarks. The final output of 
this map is shown in Figure 4.3.39 below: 

 

Figure 4.3.39: Real time mapping of the estimated position 

As previously mentioned, this map updates when a new frame of the recording is processed, 
meaning it is updating in almost real time.  

This concludes using only the LIDAR to estimate positions within the environment. The LIDAR 
recordings were run frame by frame through YOLOv5, and the resulting objects had the 
distances measured from them. Using the distances retrieved in each frame, the shortest 
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three were utilised in a trilateration algorithm to find an estimated position. This position was 
then shown on an updating map. 

4.3.14 Position Tracking with Live LIDAR Streams 

At present, the system is built to take a recording of the LIDAR and estimate position. As a 
bonus, it is possible to have this algorithm work in real-time. By simply replacing the code in 
the main algorithm with the block in Figure 4.3.40, it is possible to conduct YOLO and 
trilateration on a live stream.  

 

Figure 4.3.40: Changing the code to run in real-time 

By running this new algorithm, the same results are produced, with a slight stutter. Due to this 
stutter, this method will not be tested however it is clearly possible to conduct position 
estimation in fully real-time through the use of YOLOv5 and a LIDAR sensor. 

4.3.15 Utilising Both 360 Camera and LIDAR for Position Estimation 

In this section, rather than using just the LIDAR for position estimation, a 360-degree camera 
can be fused. The LIDAR’s output is of a very low resolution, meaning that the object detector 
is prone to erroneous results in both training and final use. The trainer greatly struggles due 
to the lack of features in these images; therefore, the camera’s higher detail should 
theoretically provide better results. The plan behind using the camera is that its images will 
have YOLOv5 running upon it. It has greater resolution, colour depth and granularity than the 
LIDAR, making it the logical choice for the object detector to run on. 

The proposed process is shown in the flow below: 

 

Figure 4.3.41: Camera and LIDAR sensor fusion flow 
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As described in the Figure 4.3.41, the camera’s role is to allow the object detector to have 
finer detail in identifying objects. This in essence should reduce the number of false detections, 
and ultimately produce a more accurate position estimation. 

4.3.16 Processing YOLOv5 on 360-degree Images 

In order to process YOLOv5 on the camera images, it must be retrained again. This results in 
repeating the process described in section 4.5. This time, the dataset is built off a multitude 
of images from the camera. The dataset was generated from wirelessly taking images from 
the camera, using a Python script. By connecting the camera to a wireless network, it is able 
to be accessed using its IP. The following Figure 4.3.42 shows the key code to wirelessly take 
images. 

 

 

Figure 4.3.42: Wirelessly capturing images 

Using this code, multiple images were taken of the environment from multiple different 
positions within the environment. After running the trainer until no noticeable gains in 
accuracy were had, the following recall and precision graphs were generated.  

 

Figure 4.3.43: 360-degree camera P-R and F1-Confidence Curves  

As seen by the graphs in Figure 4.3.43, the scores are far higher than on the LIDAR training 
(0.869), potentially meaning that YOLOv5 is able to better identify the shapes in this medium. 
By running the object detector on one of the images, the following Figure 4.3.44 is shown: 
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Figure 4.3.44: Running YOLO through the 360-degree camera 

It is clear to see that the bounding boxes are firmly in line with the shapes, and their 
confidence levels are firmly beyond 90%. This backs the notion that the object detector will 
run far better on higher quality images. As the training is now complete, the proceeding step 
is to find a way to map the regions of interest onto the point cloud. 

4.3.17 Fusing Camera Images with Point Clouds 

Since the Ricoh camera that is used to capture the images utilises a dual fish-eye lens, 
advanced processing would be required in order to directly map it onto the LIDAR image. 
Furthermore, the camera’s aspect ratio does not match with the LIDAR’s image. In order to 
rectify this, the camera image must first be converted into an equirectangular projection. Then 
it must be cropped and resized to match the resolution of the image. Simply resizing the image 
will cause an undesirable loss in detail, meaning another method must be utilised. Image 
processing techniques such as warping or morphing could be a potential method to align the 
images together. 

In essence, fusing the two images is beneficial for greater precision in detecting distances and 
overall accuracy, at the expense of processing the two images together. This should be further 
explored in the future. 

4.4 Experimental Results and Analysis  

This section is dedicated to testing the LIDAR algorithm against the described requirements. 
The system’s performance will also be tested by comparing its position estimations against 
the actual positions within the environment.  

4.4.1 Comparing Position Accuracy 

Position accuracy will be tested by comparing the actual x, and y coordinates against the 
estimated coordinates.  

By moving the 3D plotter, the LIDAR will be moved to 16 different positions. Using a single 
trained weights file, 30 second recordings will be taken at each position. The recording is then 
parsed through the algorithm and the resulting estimated positions are saved to a file. The 
actual positions of these 16 positions will be manually measured, as shown in Figure 4.4.1. As 
the algorithm updates position on every object detection, this length of recording should 
produce at least 1000 measurements. 
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Figure 4.4.1: Recording locations on the 3D plotter 

The recorded x and y coordinates from the file are then fed into MATLAB. The code calculates 
a mean average error between the estimated and actual values, is shown in Figure 4.4.2. The 
output is then shown in multiple graphs. A snippet of the MATLAB code is shown below. 

 

Figure 4.4.2: Code calculates a mean average error between estimated & actual values 

This code reads the coordinate values and passes them through a KF. It also calculates the 
mean average of all points. For each position on the plotter, the following actual positions 
were found. Note that the origin is kept the same as Figure 4.3.33. Actual distances for each 
position on the 3D Plotter is shown in Table 4.4.1. 

Table 4.4.1: Actual distances for each position on the 3D Plotter 

Plotter Position Coordinates (x,y) 
1 (1.608,0.814) 
2 (1.608,1.240) 
3 (1.608,1.662) 
4 (1.608,2.084) 
5 (1.176,0.813) 
6 (1.196,1.242) 
7 (1.196,1.666) 
8 (1.196,2.090) 
9 (0.784,0.814) 

10 (0.784,1.242) 
11 (0.784,1.666) 
12 (0.784,2.090) 
13 (0.337,0.814) 
14 (0.345,1.242) 
15 (0.337,1.666) 
16 (0.337,2.090) 
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The estimated x and y graphs as well as their errors for positions 1, 11, and 16 are show in 
appendix IV-1, IV-2, and IV-3 respectively. To allow for a fair comparison, the number of data 
points have been capped at 1000. 

Each position’s mean error against the actual position will be shown on the following error 
map in Figure 4.4.3.  

 

Figure 4.4.3: Estimated Position Error map 

By examining each sector in the error map, the ranges heavily vary. The x coordinate varies by 
up to 5.4cm and y by up to 9.1cm. This large discrepancy could be due to multiple reasons 
such as poor object tracking, or poor actual measurements. A percentage error map is present 
in appendix E. This will be further discussed in the limitations section. 

4.5 Comparing against the Requirements 

As described in section 4.3.2, the functional requirements are at the core of this project. 
Therefore, the developed system must be assessed in accordance with it. The Table 4.5.1 
below tests whether the system has met these specifications. The tests were performed 
against the recordings taken in section 4.4.1 

Table 4.5.1: Testing the developed system against the Functional Requirements 

Functional Requirements Testing Methodology Evidence Outcome 
The LIDAR system should 

correctly detect and map the 
surrounding environment. 

Each recording was checked 
on whether it displayed 

correctly. 

The LIDAR is able to take a 
point cloud of the complete 

environment. 

Pass 

The system should 
automatically identify 
landmarks within the 

environment. 

Each recording must have 
had at least 3 detected 

landmarks. 

The system was producing at 
least three detections in each 

recording. 

Pass 

The system must be able to 
determine distance from 

landmarks. 

The system was tasked to 
produce distances for 
position estimation. 

Figure 4.6.2.3 Shows the 
object detector correctly 
calculating and displaying 

distance. 

Pass 
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Functional Requirements Testing Methodology Evidence Outcome 
The system must estimate 

position in real-time. 
Each recording was 
required to produce 
estimated positions. 

The system is able to estimate 
position in real-time. It was 

able to do so with both 
recordings and live data. 

Pass 

The position estimation must 
work in the event a number 
of landmarks are blocked. 

A new recording was 
created, where three 

positions were blocked. 

Figure 4.6.1.4 shows that 
YOLO is able to run even with 
certain shapes blocked. As the 

algorithm only requires 3 
shapes, position estimate can 

still occur. 

Pass 

The landmarks should be 
standalone, and not require 

any continuous setup. 

Landmarks were checked 
on whether they needed 

extra setup once deployed. 

The landmarks in Figure 
4.2.1.1 were static objects, 

with no electronic 
maintenance required. 

Pass 

 

Although the system meets the functional requirements, it must also be assessed against the 
KPIs described in Table 4.3.2. 

4.6 Testing Against the KPIs 

In order to test the system against the KPIs, the system must be heavily utilised in the 
processes described in section 4.3.2. Tests were conducted against the recordings developed 
in section 4.4.1. 

Table 4.6.1: Testing the developed system against the KPIs 

Key Performance Indicator Testing Methodology Evidence 
Distance measurements should 
be within 5% of actual distance. 

The estimated distances from 
Position 6 were compared against 

actual distances. 

Testing shows that the measured 
distances to shapes were within 

5%. 

Object detection should occur 
at least once per frame. 

The software is capable to write 
detections to file. 

For each recording, the 
detections file listed at least 300 

frames. 
The object detector should have 
a false positive rate of less than 

5%. 

Each recording was visually checked 
for false positives against total 

detections.  

The percentage for false 
positives came to 11% out of all 
detections across all recordings.  

Distance measurements should 
occur at least once per frame. 

The software is capable to write 
distances to file. The number of rows 
should equal the number of frames. 

For each recording, the output 
file detected files exceeding 300 

rows. It equals the number of 
frames. 
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Key Performance Indicator Testing Methodology Evidence 
Position estimation should be 

within 5% error in both x and y 
coordinates. 

Comparing the error map produced 
in appendix E. 

Appendix E shows that out of 32 
estimations (both x and y), the 

percentage error exceeds 5% on 
5 occasions (15.63%). 

 

The testing of KPIs show that the system is able meet most indicators although not to the 
requested standards.  

4.7 System Limitations 

Overall, the system is able to complete its task of finding the position of the sensor within the 
environment. However, there are multiple limitations restricted this project as a whole: 

• The high variance between actual and estimated positions as seen on the error map. 

• The LIDAR’s low-resolution output is not detailed enough for YOLOv5 to run perfectly 
on. 

• It is unsure where on the LIDAR distance measurements are being from. 

• The exterior frame’s non-uniformity could case errors in determining the coordinates 
of the landmarks. 

• The processing power required for YOLO may be too high for day-to-day use. 

• The test environment is an almost ideal situation for landmarks as they are quite close. 

• The trilateration algorithm is only for a two-dimensional space, which has limited 
applications. 

The varying error in estimated positions could be due to multiple factors. The measuring of 
actual position may have been done with an inaccurate method, in addition to not knowing 
where the LIDAR is taking measurements from. IT could be assumed that the LIDAR is taking 
measurements from the edge, which this project has assumed. Or it could be from the centre 
of the LIDAR, meaning that a four-centimetre offset must be included to all distance 
measurements. Moreover, the fact that frame on which the landmarks are attached to is not 
uniform, meant that the process of measuring the coordinates of the landmarks was far from 
straightforward. In addition to the difficulty measuring, it could have also led to erroneous 
coordinates, ultimately resulting to poor estimation results. 

Speaking in regard to YOLO itself, the object detector is accelerated using a graphics card in 
this project. In situations where there is no such card, processing of position may be far too 
delayed to be practical. Furthermore, the LIDAR’s output already struggles within this testing 
environment; it is beginning to struggle in distinguishing detailed shapes such as the octagon 
from distances greater than 0.5m, causing a loss in detection or even a false detection as the 
circle. In events where multiples of the same class are detected, the localisation algorithm has 
the potential to produce erroneous results. This is where the camera would immediately 
improve the system due to its greater image quality and resolution. 
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5 Data combination and data selection for SLAM 
improvement 

5.1 Aim of experiment 

Utilizing the optical spectrum is considered a promising strategy for advancing future 
networks, enabling themselves to accommodate high-density and high-capacity connectivity 
requirements. However, there is also an elevated risk of localization failures or degraded 
performance when User Equipments (UEs) to localize are in motion in the considered area. 
This is due to the possibility of not receiving certain signals, leading to data missing. 

To address the issue of data missing in the localization field, solutions can be categorized into 
three groups: 1) Map-based localization which is limited by the time-consuming and labour-
intensive calibration. It can be applied only when the map of the indoor environment and the 
locations of Access Points (APs) are known in advance. 2) Data completion for localization can 
be proposed aiming to complete missing data based on the noisy partially known received 
data. However, estimating unknown signal parameters can cause a degradation of the 
localization accuracy if the generation is based on a small amount of noisy known received 
parameters. 3) Data combination for localization which is based on combining data from 
different sources or different technologies. Three levels of combination exist (see Figure 5.1.1) 
including: i) Parameters fusion which cannot be a good solution for the data missing problem. 
Since, once the signal is not received, different parameters are unknown. ii) Sensors’ fusion 
which is applied only when we have data from different sensors with various natures. iii) 
Technologies fusion integrating measurements from different communication technologies. 
To boost Optical Wirelees Communication (OWC) based localization performance, WiFi is 
proposed in this work due to its low cost without need to add extra infrastructure. If we apply 
the classical combination method for localization considering OWC data and WiFi data, we can 
obtain higher localization error compared to the classical OWC localization system. This can 
be done to the fact that WiFi signals can be heavily affected by noise and multi-path.  

In this work, we propose a two-step localization system to improve the performance of the 
data fusion method. Our approach is distinctive in its dual phase execution: an offline phase 
and a subsequent online phase. The main contributions of this study are:  

• A selection process is integrated in the localization system based on classification using 
a Deep Neural Network (DNN) model, trained offline. Such model applied online is 
going to take the Received Signal Strength (RSS) received from both considered 
technologies and the output will be class 1 or class 2. If class 1, we will apply localization 
based on OWC only and if class 2, we will apply localization based on technologies 
combination. For the authors’ best knowledge, it is the first time that a hybrid 
localization model based on technology-based data selection is conducted.  

• The proposed system is validated based on simulated data generated using realistic 
propagation models considering two environmental configurations and varying 
simulation parameters. Obtained performance are compared to OWC-based system 
and fusion-based system. 
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Figure 5.1.1: Data combination for localization. 

5.2 Hybrid localization system using WiFi (2.4GHz) and OWC 

An innovative hybrid localization system is necessary to improve the fusion localization 
accuracy. The key to the hybrid system is to choose which Neural Network (NN) model to use 
for location estimation depending on the considered technology whether we apply OWC - NN 
or fusion - NN. Therefore, we rise the selection process using NN-based classifier. Different 
steps of the proposed hybrid localization system are shown in Figure 5.2.1. During the offline 
phase, RSS data is collected at T UEs received from N OWC APs and M WiFi APs. These data 
associated to the corresponding coordinates are organized to construct the training database 
of size (T, N +M +2). Each fingerprint is composed of (N + M) RSS values and the 2D 
corresponding coordinates. During the offline phase, three NNs (i.e., Selector - NN, OWC - NN 
and fusion - NN) are built and optimized to be used online.  

• OWC - NN: This model, used for localization based on OWC signals, is trained, and 
validated based on OWC data. To build it, we consider a database of size (T_r, N + 2) 
and for validation (T_v, N + 2), where T = T_r + T_v. T is the total number of UEs 
positions, T_r is the number of training positions and T_v is the number of validation 
positions. The inputs are the RSS vectors, and the outputs are the 2D corresponding 
coordinates.  

• Fusion - NN: This NN is used for localization based on combined data. During this model 
training, we consider (T_r, M +N) RSS as inputs and its corresponding (T_r, 2) 
coordinates as outputs. For validation, the remaining T_v measurements are 
considered.  

• Selector - NN: Once both NN models used for localization are built, a labeling step is 
going to be performed. In fact, for each UE, we compare the obtained localization 
errors using OWC only and combining it with WiFi. This comparison is performed 
calculating the difference between the real coordinates and the estimated coordinates 
based on the used localization NN. If the OWC – NN is better, a label = 1 is assigned to 
the corresponding fingerprint. Else, a label = 2 is assigned. At the end of this step, two 
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classes are formed: a first class with label 1 which contains the sub-set of data having 
better localization results with OWC data and a second class with label 2 which results 
are better when combining OWC and WiFi data. Then, the selection - NN, which is 
formed as a binary classification problem, is trained based on OWC - RSS combined 
with WiFi - RSS as inputs and the class label (1 or 2) as output. In the online localization 
process, when a UE receives raw data that contains OWC - RSS and WiFi - RSS, the 
selection process is applied at first using the trained Selector NN in order to predict 
the class label. If the estimated label is equal to 1, OWC - NN is applied and otherwise, 
fusion - NN is performed. Eventually, the estimated localization is obtained. 

 

Figure 5.2.1: Architecture of the proposed hybrid localization system. 

5.3 Simulation results and analysis  

Two environmental configurations (L x W x H) are settled to evaluate the localization 
performance of the proposed system. The first one is the small room with the size of L = 5 m, 
W = 5 m and H = 5 m. The second one is the big room with the size of L = 20 m, W = 20 m and 
H = 10 m. We consider N = 4 OWC APs and M = 10 WiFi APs for both configurations. 

To simulate the data missing phenomena, the weakest signals in a certain proportion (eg. 20% 
or 50%) are set to 0. Besides, considering that different noise cases can exhibit different 
localization accuracy, we simulate noise scenarios including a noise-free case and Signal-to 
Noise Ratio (SNR) of 40/50 in OWC transmission, with sigma shadowing of 2 dBm and 5 dBm 
in WiFi transmission cases as well. In summary, three parameters (room configuration, data 
missing and noise proportion) are varied in this work to verify the fusion localization 
performance in different use cases under different parameters values to generalize the 
obtained results. Localization tasks are assisted by NNs. To generate the offline database, 1156 
UEs locations are considered, and 5 measurements are taken at each location to minimize the 
effect of RSS variations. Therefore, T = 5780 fingerprints are constructed and each one is 
constructed by 16 fields (4 OWC - RSS, 10 WiFi - RSS and 2D coordinates). 70% data are 
considered as T_r training data and the T_v rest is used for validation or test. Hyperparameters 
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and architectures of different used DNNs have been optimized based on corresponding input 
data via an exhaustive simulation process. 

At first, we compare the localization performance of the OWC-based localization (i.e., a DNN 
is applied to localize targets based on OWC - RSS only) and Fusion-based Localization (i.e., a 
DNN is applied to localize targets based on fusion - RSS). Localization results obtained with 
both environmental configurations varying the noise value and the percentage of missing data 
are shown in Table 5.3.1: Obtained Localization Errors Considering Both Environmental 
Configurations.. We can easily notice that no matter the room configuration, data missing 
proportion and noise value, mean localization error using fusion-based localization method is 
always less than the one using OWC signals only. This means that fusion method does 
generally make effective. However, when WiFi signals become noisier (sigma shadowing = 5), 
performance associated to fusion-based method are heavily affected reaching only 1 % and 
0.51 % of improvements compared to OWC-based method when considering the first room. 
This is since WiFi signals are noisy and cannot serve efficiently for localization. Also, if we check 
the percentage of UE positions where location estimation is better when using only OWC 
signals, we notice that we have a significant percentage where the signals’ fusion increases 
the localization error. Thus, the fusion methodology is insufficient, and a hybrid localization 
system based on the selection is proposed to choose OWC- based localization or fusion-based 
localization. 

Table 5.3.1: Obtained Localization Errors Considering Both Environmental Configurations. 

 

 

To evaluate the performance of our hybrid proposed localization system, simulations are 
conducted with the same OWC transmission and WiFi transmission parameters. We present 
results when considering the second environmental configuration with SNR equal to 50 in 
OWC transmission and sigma shadowing equal to 5 dBm in WiFi transmission. We present only 
this scenario to simplify the presentation, however, interpretations and conclusions still 
available for other scenarios. In Table 5.3.2, we compare the localization performance for four 
schemes:  

• OWC-based localization system using OWC - NN.  

• Fusion-based localization system using fusion – NN. 

• Classical selection-based scheme: this is the ideal selection process. Using this 
selection, for each UE to localize, OWC-based localization and Fusion-based 
localization are applied. Then, both predicted positions are compared to real 
coordinates and the best estimation is held. This method has two disadvantages: i) the 
two DNNs are applied, and the comparison process is held online which increases the 
online computation complexity. ii) to proceed the comparison, we need to know the 
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real coordinates. However, in reality, these coordinates are not known. Thus, this 
scheme is used as unrealistic benchmark which we want to reach using the proposed 
selection.  

• Proposed hybrid system based on the selection process: Such system is based on the 
use of three different NNs: OWC NN, Fusion NN and Selector NN.  

Table 5.3.2: Comparison of localization errors using different approaches considering the 
second configuration with SNR = 50 and sigma shadowing = 5. 

 

 

To verify that the classical selection-based system is working correctly, we check the 
percentage of UE locations where OWC-based localization is better than this selection scheme 
in Table 5.3.2: Comparison of localization errors using different approaches considering the 
second configuration with SNR = 50 and sigma shadowing = 5.. An ideal selection is conducted 
as a control group without the classification error. Using the NN selector, we aim to improve 
fusion-based localization performance to minimize the percentage of targets where OWC only 
outperforms the fusion estimations. We focus on the mean localization error of different 
localization methods. It turns out that when data missing proportion is 20%, the mean 
localization error decreases by 7.68% and 1.54% compared to the one of OWC localization 
concerning the proposed hybrid scheme and the fusion scheme, respectively. This 
improvement can also be observed in the percentage of locations where OWC localization 
outperforms others. This percentage decreases from 69.11% when using fusion to 51.46% 
when using the NN-based selection. This verifies the out-performance of the proposed 
localization system. Results obtained with 50% of missing data confirm the ones obtained with 
20%. Consequently, our proposed model improves the localization accuracy of the OWC-
based localization and the fusion-based localization by integrating the decision step which 
does not add significant extra online complexity since we just apply a model totally trained 
offline. 
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6 Federated Learning (FL)-based localization  

6.1 Aim of experiments 

VLC and FL together offer a powerful and innovative approach for indoor localization. VLC 
utilizes visible light as a communication medium, leveraging existing lighting infrastructure to 
transmit data at high speeds, while also providing illumination. This unique dual-purpose 
capability makes VLC an attractive solution for indoor positioning. On the other hand, 
Federated Learning ensures privacy and data security by enabling on-device model training 
and updates, without sharing raw data externally. The combination of VLC and FL addresses 
the challenges of indoor localization, offering high-speed data transmission, improved 
positioning accuracy, and enhanced privacy protection. 

Advantages of VLC over other wireless communication technologies  

• Utilization of Unregulated Visible Light Spectrum: One of the major advantages of VLC 
lies in its utilization of the visible light spectrum, which is unregulated and free to use. 
Unlike radio frequencies, which are often subject to interference and congestion due 
to the proliferation of wireless devices, VLC leverages light waves to transmit data. As 
a result, it operates on a relatively unused portion of the electromagnetic spectrum, 
minimizing the risk of interference and providing a reliable means of communication.  

• Enhanced Security and Privacy: VLC offers an inherent advantage in terms of security 
and privacy compared to traditional wireless communication technologies. The nature 
of visible light propagation restricts its coverage to the line of sight, making it 
challenging for signals to penetrate through walls or other solid objects. Consequently, 
VLC transmissions are less susceptible to unauthorized interception, eavesdropping, 
or signal snooping, enhancing data security and ensuring private communication 
channels. 

• Impregnable Physical Layer Security: Incorporating VLC in wireless communication 
systems adds an extra layer of security, as eavesdroppers attempting to intercept the 
transmission from outside the communication area are rendered ineffective. The 
limited range of visible light ensures that unauthorized individuals cannot access the 
data being transmitted without physically entering the illuminated zone, making VLC 
an attractive option for secure communication in sensitive environments. 

• Energy-Efficiency Through Low Power Consumption: VLC’s reliance on Light Emitting 
Diodes (LEDs) as the light source contributes to its remarkable energy efficiency. LEDs 
require significantly lower power to operate compared to traditional wireless 
communication systems. This characteristic is particularly advantageous in scenarios 
where energy conservation is crucial, such as in battery-powered devices or energy-
constrained environments. VLC’s low energy consumption not only reduces 
operational costs but also aligns with the growing demand for sustainable and eco-
friendly technological solutions.  

Challenges of VLC and its Mitigation through Machine Learning Techniques 

It is important to note that VLC-based localization in dynamic indoor environments can be 
challenging.  

One of the primary hurdles is the fluctuating position of the transmitters, which emit the 
visible light signals to establish communication and determine the location of the receiving 
device. In dynamic indoor settings, the transmitters may be subject to relocation, alterations, 
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or reorientation to accommodate changes in the layout or functions of the indoor space. 
Consequently, this variability in transmitter positions introduces uncertainties and 
complexities, leading to suboptimal localization outcomes.  

Moreover, the presence of obstacles within the indoor environment worsens the localization 
challenges. As visible light signals traverse through the space, they encounter various 
obstacles, such as walls, furniture, and other objects. These obstacles create multipath effects, 
wherein the signals reflect, refract, or scatter, giving rise to multiple signal paths to reach the 
receiver. The multipath phenomenon can lead to signal interference and propagation 
abnormalities, contributing to inaccuracies in the localization process. 

The presence of these challenges lead to high localization errors in terms of accuracy, 
reliability, and scalability. Accuracy refers to how closely the estimated location aligns with 
the actual position of the target device, while reliability relates to the consistency and 
dependability of localization results across different instances. Additionally, the scalability of 
the localization system is crucial for its effectiveness in large or complex highly dynamic indoor 
environments. To overcome these limitations and enhance the efficiency of VLC-based 
localization in dynamic indoor environments, we need machine learning techniques for data-
based localization to mitigate this problem. By adopting machine learning techniques, we can 
significantly improve the performance of VLC-based localization. 

Adapting Federated Learning approach 

With the rapid advancements in communication technologies and integration of digital 
services and industries, the volume of data generated within indoor environments has surged 
exponentially. Sending such vast amounts of data to a central server poses several challenges 
and concerns. Firstly, the centralized approach raises data security and privacy risks, as 
sensitive information may be vulnerable to breaches or unauthorized access during 
transmission and storage. Additionally, the sheer volume of data being transmitted over the 
network imposes significant strain on available bandwidth, potentially leading to network 
congestion and degraded performance.  

To address these critical issues, the adoption of the Federated Learning approach becomes 
increasingly appealing. By leveraging Federated Learning, data remains localized and confined 
within each device, thereby significantly reducing the exposure of sensitive information to 
potential threats. This local processing and model training also enable reduced data 
transmission, resulting in lower latency and alleviating the bandwidth burden on the 
communication infrastructure.  

Moreover, the implementation of Federated Learning aligns well with the emerging emphasis 
on energy efficiency and resource optimization. Centralized Learning necessitates continuous 
data transmission to the central server, consuming substantial energy resources in the 
process. On the other hand, Federated Learning’s decentralized nature reduces the need for 
frequent data transmissions, leading to energy savings and improved sustainability. These 
advantages make FL a compelling and promising approach to address the challenges posed by 
dynamic indoor environments and pave the way for more robust and resilient indoor 
positioning solutions in our increasingly connected digital world.  
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6.2 Centralized learning and Federated learning background 

Machine learning techniques play a vital role in improving the performance of indoor 
localization models. Among them, two distinct approaches stand out: Centralized Learning 
and Federated Learning. These techniques offer unique advantages and cater to different 
privacy and scalability requirements in the context of indoor localization. 

• In Centralized learning, all the data is collected and stored in a central server, and the 
model is trained on this server. So basically, this central server is responsible for 
aggregating the data from different sources, performing the training, and then send 
the trained model to the participating devices. Centralized learning is best suited for 
situations where the data is centralized and the computational resources are available 
on the central server. However, localization methods based on centralized learning 
require collecting data from IoT devices into a central server/unit, resulting in a lot of 
data exchange with the server (time-consuming, resource-intensive), privacy concerns, 
and a high reliance on the server. This requires high bandwidth and assumes the server 
to be trustworthy. ED is a short form of End Device. 

• Federated Learning addresses the privacy and communication challenges of 
centralized approaches. It enables model training directly on the devices themselves 
without sharing data with a central server. Each device performs local model training 
using its own data, and only model updates (weights) are sent to the central server. 
The central server aggregates these updates to create a global model, which is then 
redistributed to the devices for further refinement in an iterative process. A system 
model of a typical federated learning network is shown in Figure 6.2.1. In the context 
of indoor localization, the choice between these techniques depends on the specific 
requirements of the indoor localization system and the level of data privacy and 
communication overhead allowed by the deployment scenario.  

 

 

Figure 6.2.1: Illustrations of system model of a typical federated learning network. 
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6.3 Use case and description of FL framework 

Main contributions  

The main focus of this work is to first design a hierarchical learning scheme for the joint 
building, floor, and precise 2D coordinates prediction in multi-building and multi-floor indoor 
environments. Then, regarding the resource constraints of IoT devices, we propose a 
federated learning framework to train the proposed hierarchical model, yielding a 
communication efficient collaborative and privacy-preserving indoor localization solution. The 
main contributions of this work can be summarized as follows:  

• We develop a novel 3D indoor positioning system with a new DNN architecture 
incorporating the hierarchical nature of indoor localization tasks within multi-building 
and multi-floor indoor environments. Our approach involves a single hierarchical DNN 
model that accurately predicts the buildings, floors, and precise 2D coordinates of 
users simultaneously. To validate our solution and ensure its practicality for indoor IoT 
applications, we rigorously tested it using a publicly available experimental indoor 
localization dataset.  

• We propose a federated training of the proposed architecture to preserve IoT devices 
location data privacy and save the bandwidth of the wireless infrastructure. 
Consequently, we provide a collaborative, bandwidth optimization, and privacy-
preserving indoor localization solution for IoT applications.  

• Being aware of the exponential growth of IoT networks, we investigate the scalability 
of the proposed FL framework and we provide an analysis of different wireless 
transmission 

Different steps of the proposed framework 

In a multi-building and multi-floor indoor environment, the position of the target can be 
recursively obtained in a hierarchical manner starting with the building identification followed 
by the floor identification, and finally the fine-grained location of the target. Thus, we can 
expect to determine the position of the target with more precision. Let’s consider a smart city 
which have 3 buildings (B0, B1, B2). Each building has 4 floors (F0, F1, F2, F3). Each building 
has its own set of Wi-Fi access points (APs).   

The goal is to implement Federated Learning to train a central model for predicting the 
longitude and latitude coordinates inside buildings based on Received Signal Strength 
Indicator (RSSI) data from multiple buildings. Please be aware that, in order to maintain 
clarity, due to the absence of readily accessible VLC public data, we will employ Wi-Fi RSSI 
data for the training of our model. Once measurements collected at Bosch Germany will be 
pre-processed, we will proceed to test it. Subsequently, we will apply our model to the VLC 
data to assess its effectiveness, identifying both its strengths and limitations. Figure 6.3.1 
illustrates a hierarchical representation of our federated learning process that outlines the 
process.  

• Data Collection: Data will be collected from multiple buildings in a smart city. Each 
building (B0, B1, B2) has four floors (F0, F1, F2, F3). Each floor is treated as a user in 
the FL setup, and their data will be used to train floor models. 

• Training Local Models (Floor Models): Each floor from each building trains its own 
floor model using its local Wi-Fi APs and the associated RSSI data. This is done 
independently on each floor without sharing raw data with the central server. Each 
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floor model aims to predict the longitude and latitude coordinates of locations inside 
its corresponding building. 

• Aggregating Floor Models to Regional Models (Building Models): After the floor 
models are trained, the weights of these models are aggregated to create building-
level models, referred to as regional models. For each building (B0, B1, B2), the floor 
models’ weights are combined to create a regional model that represents the 
collective knowledge of that building. 

• FL Central Model (Global Model): The regional models from the three buildings (B0, 
B1, B2) are further aggregated to create the FL Central Model. This central model will 
be the main model that predicts the longitude and latitude coordinates of locations 
inside all the buildings in the smart city. 

• Monitoring and Validation: Key Performance Indicators (KPIs) are monitored and 
validated using the training results of the FL Central Model. This step is essential to 
ensure the model’s performance is up to the desired standards. 

• Hyperparameter Tuning: If needed, the model hyperparameters like learning rate, the 
number of layers, and floor selection (data quality, computation, etc.) can be adjusted 
to optimize the FL Central Model’s performance. 

• Sharing Weights with Regional and Local Floor Models: Once the FL Central Model is 
trained and evaluated, its updated weights are shared back with the regional models. 
This allows each building to benefit from the knowledge learned across the smart city 
without sharing sensitive data centrally. Additionally, the local floor models can also 
receive updates from the FL Central Model, enhancing their prediction capabilities. 

• Iterations: The process of aggregating and sharing weights between floor models, 
regional models, and the FL Central Model will go through multiple rounds of training 
and updating to continually improve their performance. 

 

 

Figure 6.3.1:  Hierarchy of federated learning infrastructure for location Estimation. 
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6.4 Validation of the proposed framework based on a publicly available 
database 

For performance evaluation, we will train our model proposed FL model based on the publicly 
available UJIndoorLoc database which covers almost 110 000 m². This database is multi-floor 
and multi-building with 3 buildings and 4/5 floor per building.  

To optimize different used DNN models during training, we employ a customized error 
function that aligns with the learning objectives and dataset characteristics. The error function 
used in our federated learning setup is the Mean Absolute Error (MAE). Different models’ 
configuration which will be applied is depicted in Table 6.4.1. Note that for fair comparison, 
we will use the same configuration for our FL as well as for the Centralised Learning (CL) model. 
And Simulation settings for our Federated Learning approach are provided in Table 6.4.2. 

Table 6.4.1: DNN Models' Configuration 

Floor model Building model Central model 

 Hidden layers 256 – 64  Hidden layers 256 – 64  Hidden layers 256 – 64 

Dropout layer 0.25 – 0.1 Dropout layer 0.25 – 0.1 Dropout layer 0.25 – 0.1 

Input activation ReLU Input activation ReLU Input activation ReLU 

Output activation Linear Output activation Linear Output activation Linear 

 

Table 6.4.2: FL simulation settings 

Parameter Value 

 Model optimizer Adam 

Learning rate 0.0005 

Exponential decay rates 0.1, 0.99 

Number of Users (Floors) 12 

Batch size 32 

Number of epochs per local iteration 10 

Number of epochs per central iteration 1000 

Communication rounds 100 

 

In Figure 6.4.1, we show the training and validation performance of the FL learning and the CL. 
In fact, we present the variation of the localization error in meters as a function of the number 
of epochs. The training localization error is equal to 5.32 m for the CL model and 5.45 m for 
the FL. The obtained validation error reached after convergence is almost equal to 10.8 m for 
both models. In Table 6.4.3, we compare the mean localization error of three different 
localization schemes (FL-based localization, CL-based localization and K-Nearest Neighbors 
(KNN) for localization). Based on this table, we can approve results obtained in Figure 6.4.1 
and we can also mention the outperformance of the NN-based localization models compared 
to the conventional KNN model.   
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We easily notice that using the FL approach, we can maintain the same localization 
performance as the CL approach improving the aspects of data privacy, scalability and the 
adaptability of the localization model. This can cause some increase on the training complexity, 
however, this process is offline and does not impact the required real-time response for 
localization systems even in large sensor networks. 

 

Figure 6.4.1: Training performance Vs Validation performance. 

 

Table 6.4.3: Localization error comparison 

Approach Localization Error (Meters) 

KNN 12.18 

Centralized Model 10.81 

FL Central Model 10.86 
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7 Novel Beacon Positioning Signal Design To Unlock the 
Strict Time Synchronization 

7.1 System Model and Positioning Beacon 

With the widespread application of light-emitting diode (LED)-based illuminating and the rapid 
development of visible light communication systems, visible light positioning (VLP) technology 
has become a promising solution for indoor positioning systems [7-1] and [7-2]. Different from 
the traditional indoor positioning technologies, such as wireless fidelity (Wi-Fi), ultrasonic, 
Bluetooth, and ultra-wideband (UWB), the VLP system can obtain high accuracy positioning 
with densely distributed LEDs and license-free spectrum resource. 

Numerous studies have been devoted to enhancing positioning performance based on 
advanced modulation, synchronization, and positioning schemes. These works can efficiently 
enhance positioning accuracy in the case of rich hardware resources. Specifically, a high 
sampling rate is usually required to sample the input signal to avoid the aliasing effect, which 
leads to increased implementation complexity and power consumption. In other words, the 
performance of the VLP system depends heavily on the wide bandwidth of the LED-based 
transmitter and a high sampling rate of the photodetector (PD)-based receiver [7-3] and [7-4]. 
However, there are many resource-limited scenarios, especially in the Internet-of-Things (IoT) 
networks, the VLP system in these scenarios should meet the requirements of low hardware 
cost and power consumption. The authors in [7-5] and [7-6] pointed out that the direct use of 
low-cost PD-based receivers at low sampling rates results in distortion effects. Moreover, due 
to the large junction capacitance and package inductance of LED, the bandwidth of LED is 
generally less than 10 MHz. Thus, it is meaningful to investigate a suitable positioning scheme 
to alleviate both the bandwidth and sampling rate requirements in the resource-limited VLP 
systems.  

To solve this issue, an indoor beacon construction and low sampling rate positioning scheme 
is proposed based on on-off keying (OOK) modulation pulse pairs. Different from the 
traditional time of arrival (TOA)-based positioning scheme, this positioning scheme does not 
require stringent time synchronization. Moreover, the proposed scheme achieves high 
positioning performance with a low sampling rate and low bandwidth. Specifically, inspired by 
the ease of implementing both communication and illumination services with small 
modulation bandwidth, the OOK modulation is exploited in the considered VLP systems. Then, 
the OOK-based pulse pairs are proposed to design the positioning beacon signal without the 
synchronization requirement. Moreover, considering the fact that the sampling rate is usually 
low in the practical resource-limited scenario, a high-precision pulse reconstruction method 
is introduced to eliminate the distortion effect resulting from the low real sampling rate and 
to alleviate the positioning errors caused by the time measurement errors. Note that this work 
has been published in International Conference on Indoor Positioning and Indoor Navigation 
(IPIN) 2023 and achieved 4th best paper award [7-7].  
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Figure 7.1.1: The VLP system model. 

In a typical indoor scenario, even number of lamps are commonly installed to fulfil uniform 
illumination. Thus, as shown in Figure 7.1.1, four LEDs are uniformly deployed and are 
powered and controlled by a unified power grid in the VLP system. In order to facilitate 
deployment with lower costs, a general-purpose single bipolar timer is installed in each LED 
to control the bias current and then to achieve the OOK modulation. Except for the unified 
power wiring, there are no other connections between the four LEDs, and there are no 
synchronization requirements among these timers. Benefiting from these settings, the 
proposed positioning scheme can be easily applied to any VLP system with more than four 
LEDs. 

The proposed positioning scheme first performs OOK modulation on the bias current of the 

-thi  LED and forms a positioning beacon signal 
[ ]ix t . Then, the received signal from -thk  

pulse pair of the -thi  LED to location s  is defined as 

, , , 0( ) [ ( ) ] ,ii s i s i i i sy k P h x k n =   + +
 

where iP  is the radiation power of the -thi  LED, ,i sh  is the channel gain between the -thi  

LED and the -ths  PD. Moreover, 
( )i k

 is the radiation time of the -thk  pulse pair at the -thi  

LED, ,i s
 is the transmission time of the coded pulse pair between the -thi  LED and the -ths  

PD. Channel noise 0n  obeys the Gaussian distribution. 

Since the channel gain is inversely proportional to the square of the distance, the non-line-of-
sight (NLoS) gain is much weaker than the line-of-sight (LoS) gain. Without loss of generality, 
it is safe to assume that the LoS path dominates the channel gain. Moreover, it is assumed 

that the LED radiation model follows the Lambertian model. Therefore, the channel gain ,i sh  
is expressed as follow. 
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where ,i sd  is the distance between the -thi  LED 
( , , )i i ix y z

 and the -ths  PD 
( , , )s s sx y z

. m  is 

the Lambertian radiation order, PDA  is the detection area of PD. ( )G   and ( )T    are the 
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gains of optical filters (OF) and optical concentrators (OC), respectively. Moreover,   and    
are the radiation angle and incident angle between the LED and PD. It is assumed that the 

normals of LED and PD are parallel to each other. Thus, given the channel gain ,0ih  and 

distance ,0id  from the -thi  LED to the reference position 0 0 0( , , )x y z
, the relationship 

between the path channel gain ,i sh  and distance ,i sd  from the -thi  LED signal to -ths  PD is 
expressed as 
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Based on above equation, the signal , ( )i sy k
 received from the emission pulse at time 

( )i k
 

follows the Gaussian distribution, and it is given by 
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where the Gaussian distribution with mean    and variance 
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the mean item in the above equation, , ( )
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between the expected pulse observation window and the actual observation window to the 

pulse width wT , and it is calculated as 

,

,

w,

,

,

, w ,

( )
, ( ) 0

( )

( ) 0,

( ) ( ) ( ) ,

0
i

i s

i s

s

i s

i s

i s i i s

t k
t k

Tw k

t k

d
t k T k t k

c





D
D 

=

D 

D = − +






−



 

where c  is the light speed, , ( )i st k
 is the arrival time of the -thk  pulse pair, 

a
 represents the 

absolute value of a . 

In the low-cost or resource-constrained VLP system, the bandwidth of LED is limited. Thus, the 
OOK is chosen to cope with this challenge. However, the low switching rate and response time 
result in a slow rise speed of the OOK modulation pulse. In other words, the traditional OOK 
modulation-based positioning scheme is difficult to obtain high-precision performance. 
Therefore, a novel OOK-based coded pulse pair is proposed to inherit the bandwidth-cost 
advantage of OOK and alleviate the limitation of OOK. The main idea behind this beacon is to 
modulate the bias current of each LED according to the predefined requirements, and then 
control the intensity of each LED to obtain the pulse pair between LEDs. 
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Figure 7.1.2: Example of positioning beacon design with the four LEDs. 

The example of the positioning beacon design profile with four LEDs is shown in Figure 7.1.2. 

It can be seen that each LED has an equal pulse width wT   and a pulse pair interval IT  

( I wT NT=
, N  is any positive integer). The guideline of this positioning beacon and practical 

choice of the interval parameters are given as follows. Firstly, in order to facilitate the receiver 

to distinguish the beacons of different LED, the pulse interval iT  of each LED is required to be 

different from that of other LEDs, and any two pulse intervals iT  and jT  are mutually prime. 

Moreover, the pulse interval iT  is much larger than t,max e,max( ) +
 to avoid overlap between 

pulses, where t,max
 and e,max

 denote the maximum transmission delay in the considered 
indoor space and the upper limit of time error, respectively. Furthermore, the pulse pair 

interval IT   is greater than any pulse interval iT  to ensure that all beacon signals can be 

transmitted in a pulse pair interval IT . 

7.2 Pulse Reconstruction and Position Estimation 

Due to the strong dependence between the positioning performance and the sampling rate, 
it is important to provide a high sampling rate for achieving high accuracy positioning. 
However, a high sampling rate in the receiver significantly increases the cost and power 
consumption of the receiver, while the hardware resources and energy in the receiver are 
usually limited. Therefore, in order to maintain the low cost and low power consumption in 
resource-limited VLP systems, a high-precision pulse reconstruction method is proposed. 
Specifically, based on the sampling rate conversion method, the approximation of a high 
sampling rate pulse is obtained from a low sampling rate pulse sequence, and then a maximum 
a posteriori (MAP)-based position estimation method is proposed. 

This subsection introduces the high-precision pulse reconstruction method based on the 
rational factor sampling rate conversion, which can reconstruct discrete-time signals under 
ideal conditions and resample continuous-time signals at different sampling rates. For any 

continuous-time signal ( )x t  , a discrete-time signal ( )x nT  can be obtained by the sampling 
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rate of 
1 /x xf T=

. Then, based on the interpolation idea, ( )x nT  can be converted to a 

continuous-time signal ( )y t , and ( )y t  is defined as 

( )( ) ( ),x x

n

y t x nT g t nT


=−

= −
 

where 
( )xg t nT−

 is the reconstruction function. However, ( )y t  is difficult to reconstruct the 

original ( )x t  in a practical scenario. In practice, the reconstruction signal 
( )yy mT

 with a high 

sampling rate of 
1/y yf T=

 is given as 

( ) ( )( ) ,y x y x

n

y mT x nT g mT nT


=−

= −
 

where xnT  and ymT
 correspond to the input and output time of the signal, respectively. The 

above equation represents a linear time-invariant system in the case of the sampling rate

x yf f=
. On the contrary, when x yf f

, it is re-formulated by changing the sum index variable 

from n  to mk k n= −
 and is given by 

( ) ( ) ( )( ) ,y x m x m x

k

y mT g kT T x k k T


=−

= + D −
 

where 
/m y xk mT T =    and 

/m y x mmT T kD = −
, the 

     denotes  floor function. 

The key in the  reconstruction process is to determine the corresponding value of ( )g n . Thus, 

in order to facilitate this reconstruction process, the ratio of 
/ /y xT T D I=

 is limited as a 

rational number. Then, mD  has only I  unique values. The corresponding 
( )m xg nT

 has I  

different value sets, and it has a period of m , namely, 

( ) ( ) , 0, 1, 2,m x m rI xg nT g nT r+= =   
 

In order to preserve the spectral characteristics of the original signal as much as possible, the 
proposed high-precision pulse reconstruction is conducted by first interpolating and then 
sampling. The details of the proposed high-precision pulse reconstruction structure are shown 

in Figure 7.2.1. Specifically, 1I −  zeros are firstly inserted between adjacent sample points of 

( )x n  to achieve the upsampler with factor I . Then, the filter is utilized to remove the 

unnecessary frequency components in the ( )X w . Moreover, the signal ( )y m  is extracted 

from the ( )w l  using the downsampler with factor D . Thus, for the input signal ( )x n  with 

sampling rate xf , the sampling rate of the reconstructed signal ( )y m  is
( ) /xIf D

 . 

 

Figure 7.2.1: The proposed high-precision pulse reconstruction structure. 
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Moreover, the frequency response 
( )vF 

 of the low-pass filter must balances the effects of 

up-sampling and down-sampling. Thus, 
( )vF 

 is given by 

( )
, 0 min( / , / )

0,  otherwise.
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= 
  

Finally, the spectrum of the output sequence ( )y m  can be obtained and it is written as 

( )
, 0 min ,

0, otherwise.
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Where ( )X w  is the spectrum response of the input signal ( )x n . Then, the MAP-based 
position estimation is presented as follows. 

MAP is a probability estimation method based on the Bayesian theorem, which is used to 
estimate the most likely value of an unknown random variable under the condition of given 
observations. The goal of MAP estimation is to find the parameter value with the maximum 
posterior probability, where the posterior probability refers to the conditional probability of 
the parameter value in the case of a given observation [7-8]. Based on the MAP detector, the 

optimal location MAPŝ
 for the -ths  PD estimated by the proposed scheme is given by 
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where rey  is the reconstructed high sample rate signal and re,iy  is the reconstructed signal 

corresponding to the -thi  LED. The process ( )a   holds since the rey  is composed of re,iy . 

Moreover, iΦ  is the set of all possible radiation times i  of the visible light pulse emitted by 

the -thi  LED. Since the measured time error and the terminal position distribution are 
independent and the random variables of both the measured time error and terminal position 

obey the uniform distribution, the joint probability 
( , )ip s

 in the above equation is rewritten 
as 

( ) ( ) ( )
1 1

, = = ,i i

i

p s p p s  
Φ S

 

where i
Φ

 and 
S

 are the potentials of the measurement time value set and the terminal 
position value set, respectively. 

In the time domain, the positioning method described in the equation of MAPŝ
 mainly includes 

three types of time errors. Firstly, the time error among the emission time of the pulse pair at 
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each LED is caused by the difference in the arrival time of the pulse source to the LED. Note 
that this time error remains unchanged when the cable layout is determined. The second type 
of time error results from the difference in the response of each LED. Fortunately, the property 
difference of LEDs in the same scenario is small to achieve better illumination quality, so its 
time error can be ignored. Finally, there is a random error in the arrival time of the pulse 
estimated by the terminal, it is caused by the link noise. 

The first two errors determine the centre value offset of the radiation time set iΦ  in each 

LED. The third error determines the divergence degree of radiation time iΦ . Moreover, since 
the pulse pairs from each LED to the same receiver are affected by the same link noise 

environment, it is reasonable to assume that the radiation time set iΦ  of the four LEDs 
estimated by the receiver has the same characteristic in the proposed scheme. Thus, the joint 

probability of time error of each LED and -ths  PD in the above equation are same. Then, 

substituting the above equation into the equation of MAPŝ
, it can be further simplified as 
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In order to reduce the computational complexity, the logarithmic operation is applied to the 
above equation, and the mean value is calculated. Then, based on the equations of channel 
gain and ratio of the overlap time, the final positioning optimization problem is reformulated 
as 
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where tiny constant   is the preset positioning error threshold. Moreover, ,0 ( )it k
 is the 

arrival time of the -thk  pulse pair observed by the receiver at the reference position. Then, 

the solving process for problem 0P
 is introduced in the following. 

Given the position error threshold  , pulse width wT , pulse interval IT , LED coordinate

( , , )i i ix y z
, LED radiation power iP , reference position coordinate 0 0 0( , , )x y z

, and time 

domain search progress factor   is given in the considering VLP system. The distance ,i od  can 
be obtained. Meantime, for the fixed terminal at the reference position, the pulse signal is 

detected and the corresponding number of pulse pairs K  is counted. Then, the 

distinguishable pulse ,0 ( )iy k
 and pulse arrival time ,0 ( )it k

 of the -thi  LED in the -thk  pulse 

pair interval are measured. Thus, the reconstructed signal re, ,0 ( )iy k
 is obtained by using the 

proposed pulse reconstruction. Moreover, the channel gain ,0ih  and the radiation time 
(0)i  

of 0-th  pulse pair are calculated as: 
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Secondly, the time error is calculated as 
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The radiation time 
( )i k

 of -thk  pulse pair is calculated as 

( ) (0) .i i Ik k T = + 
 

Considering the fact that the probability that the value is distributed in ( 3 , 3 )   − +  is 

99.74%, the -thi  LED possible radiation time set iΦ  is calculated as 
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Based on the given iΦ , the likelihood ratio   is calculated as 
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Finally, when the   is found, the optimal estimates of the radiation time 
ˆ ( )i k  and position 

ŝ  of   are obtained. 

7.3  Laboratory Experimental Testbed 

An experimental testbed is constructed to verify the effectiveness of the proposed positioning 

scheme in the typical 
35 5 3 m   scenario. Based on the mutually prime principle and the 

maximum transmission delay, the pulse intervals iT  of LED1-LED4 are set as 11 s , 7 s , 

3 s , and 5 s , respectively. Figure 7.3.1 depicts the structure of the semi-physical 
experimental testbed and the detail of the transceiver front end. Specifically, the proposed 
OOK-based beacon generation is realized by the field programmable gate arrays (FPGA) board 

(ZYNQ7000-XC7Z035). An oscilloscope with a low sampling rate of 100 MHz  is exploited to 
measure the signal received by PD. Then, the measured data is processed with MATLAB. 
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Figure 7.3.1: The structure of the semi-physical experimental testbed. 

7.4 Experimental results and analysis 

Firstly, the characteristic of positioning beacon is analyzed. Figure 7.4.1 shows the received 
waveform at the reference point. It can be seen that the highest pulse consists of the first 
pulse of the four LED pulse pairs. In other words, although the propagation time error of 
different LEDs results in the width of the first received pulse being wider than the other pulses, 
the first pulse of the four LED pulse pairs arrives at the reference point almost simultaneously. 
Thus, it is beneficial for the receiver to extract the arrival time of beacon. Moreover, the high 
level of each pulse has numerous and non-negligible glitches.  This reveals that high-precision 
pulse reconstruction is very urgent in the resource-limited scenario with low sampling rate. 
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Figure 7.4.1: The received beacon waveform at the center point. 

Secondly, the performance comparison is conducted to further verify the superiority of the 
proposed positioning scheme. The following results are obtained by analyzing the data 
measured from PD at random positions in MATLAB platform. Specifically, Figure 7.4.2 depicts 
the cumulative distribution function (CDF) related to positioning error with different sampling 
rate. Note that the transmit signal-to-noise ratio (SNR) is set as 30 dB and the red curve is 

reconstructed from 100 MHz   to 2 GHz . It can be observed that the CDF achieved by 
positioning with pulse reconstruction significantly outperforms that obtained by positioning 
without pulse reconstruction. Moreover, the positioning performance achieve by 

reconstruction-based 2 GHz  pulse is close to that obtained by the real 2 GHz  sampling pulse. 
The result confirms the effectiveness of the high-precision pulse reconstruction method. 

 

Figure 7.4.2: The CDF related to the location estimation error with and without high-
precision pulse reconstruction. 

Then, the positioning performance under different conditions is evaluated. Specifically, Figure 
7.4.3(a) shows the CDF of positioning error achieved by the proposed positioning scheme 
versus the bandwidth. Note that the transmit signal-to-noise ratio (SNR) is set as 30 dB and 

the reconstructed sampling rate is 2 GHz . It can be observed that positioning performance 

in 90% positioning error corresponding to 50 MHz , 30 MHz , and 10 MHz  bandwidth of LED 
is 4.5cm, 9.2cm, and 25.7cm, respectively. In other words, the positioning performance 
decreases with the decreasing bandwidth. This is attributed to the fact that the LED with 
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higher bandwidth can provide a flatter response and thus the corresponding beacon 
waveform is closer to the rectangle waveform. It is worth emphasizing that the positioning 

accuracy remains within 30cm even if the bandwidth of LED is generally less than 10 MHz . 
Therefore, the proposed positioning scheme achieves high-precision positioning under low 
bandwidth. 

 
 

Figure 7.4.3(a) The CDF versus the transmit SNR. (b) The CDF versus the transmit SNR. 

Figure 7.4.3(b) illustrates the CDF of positioning error achieved by the proposed positioning 

scheme versus the transmit SNR. Note that the bandwidth of LED is set as 50 MHz  and the 

reconstructed sampling rate is 2 GHz . It can be seen that positioning performance increases 
with the increasing modulation of transmit SNR. Specifically, positioning performance 
corresponding to 50 dB, 30 dB, and 15 dB transmit SNR is 1.7 cm, 4.5 cm, and 16.8 cm, 
respectively. The experimental results further demonstrate that the proposed positioning 
scheme achieves high positioning performance even under low sampling rates and low 
bandwidth conditions. 
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8 Secure Mutual Localisation Simulation  

8.1 Aim of Experiment 

High accuracy localisation1 schemes are highly dependent on continuous Line of Sight (LoS) 
access between at least three position-calibrated anchor nodes and the user equipment (UE) 
for which positions need to be determined. There are scenarios where three-anchor LoS 
cannot be guaranteed at all times. In these situations, other techniques should be considered, 
such as dead reckoning [8-1], using an inertial measurement unit (IMU) [8-2], different 
measurements (angle & distance) from fewer anchors, or iterative trilateration using 
neighbouring UEs that act as anchor nodes once they have determined their position 
beforehand [8-3]. 

In this experiment, we explored the feasibility of iterative trilateration based on a light-weight 
secure messaging scheme. For a multi-device environment where a UE’s identity is unknown 
to neighbouring UEs a trust framework is required that excludes malicious UEs from the 
collective localisation process. We propose a Control Point based approach where UEs need 
to present proof of their identity, thus labelling them as trustworthy and initializing them to 
collaborate on the localisation effort using key-pair signed messages for both localisation 
information exchange as well as propagating membership changes within the UE node 
network. 

The aim of the simulation is to demonstrate the feasibility of the messaging scheme for 
different setups of number of UEs, spatial scenarios with varying levels of obstructedness, 
wireless communication latencies, and different communication ranges. 

8.2 Background Theory 

8.2.1 Abstract Scenario 

The messaging scheme presented here is designed to be applied to scenarios where devices 
move around a controlled area, e.g. a factory floor or a lab campus. The devices need to 
determine their positions periodically. For the positioning effort, they either communicate 
with base stations that have a calibrated position, or with each other, to leverage other 
devices knowledge of their own position. 

Communication between nodes (referred to as “agents” from here onwards) must be secured 
such that only messages from trusted partners (other agents) should be accepted, i.e. 
information from malicious nodes should be discarded. 

Participation in the communication network (i.e. entrance to the controlled area) is controlled 
by a so-called “Control Point”. Before a device is allowed to enter the area, it has to present 
its identity/origin to the Control Point in a secure manner - an approach for this identity proof 
presentation has been described within 6GBRAINS deliverable 6.2 [8-4] in the form of 
Verifiable Credentials, leveraging Hyperledger projects Indy and Aries. This initial 
communication between entering devices and the Control Point is “out-of-band” from the 

 

1 Note: The term localisation is used synonymously to positioning in this context, not in the language localisation 
sense. 
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perspective of the messaging scheme presented here. Once the device has entered the area, 
it only communicates via the proposed messaging scheme. See Figure 8.2.1. 

 

Figure 8.2.1. Abstract scenario for secure messaging scheme  

The general security assumption for the messaging scheme is that agents can only be 
malicious as long as they have not passed the control point, e.g. they were not (yet) able to 
prove their identity. Once they accomplished this, they are considered trustworthy, so 
“hacking” of a device once it has passed the identification proof process is out of scope. 

8.2.2 Iterative Trilateration 

The idea of trilateration, i.e. to use distances to (in the 2D case) three position-calibrated 
anchors to calculate a device’s position, is covered in section 4.3.12. In this chapter, we 
leverage that idea to not only calculate the position based on fixed anchors, but to iterate on 
that, i.e. let a moving device be a positioning anchor itself for other devices once this device 
knows its own position. See Figure 8.2.2 for details: Device 1 can calculate its position based 
on the position+distance information from three fixed anchors, which could be radio base 
stations. Once device 1 knows its position, it can serve as an anchor for device 2 since device 
2 can only see two fixed anchors, but can leverage the information from device 1 to perform 
trilateration. 
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Figure 8.2.2. Iterative Trilateration  

8.2.3 Digital Signature Scheme 

The messaging scheme all agents communicate with is based on a Private/Public Key Pair (SK 
= secret key, PK = public key). The key pair is self-generated by the device. 

The key pair satisfies the digital signature2 scheme using the following cryptographic functions 
generate(), sign() and verify(): 

• generate(random number source) = (SK, PK) 

• sign(SK, message) = signature 

• verify(PK, signature, message) = True 

generate() is executed only once by every agent, which then stores both keys locally. The SK 
should never leave the agent’s security context. 

sign() is executed by a message’s sender for every message intended to be sent, and the 
resulting signature is sent alongside the message to the receiver. The receiver then executes 
the verify() function using the sender’s public key, the signature, and the message received by 
the sender. 

For the secure messaging scheme described here, we assume that localisation data does not 
require privacy measures, therefore, encryption is not leveraged. 

8.2.4 Public Key List 

For the messaging scheme to work, the public keys (PK) of participating agents need to be 
made available to each other. This is accomplished through the Public Key List where the 
public keys of all participating nodes are present. The list’s “master” version is managed by 
the Control Point, which takes care of distributing it to all participating agents. 

For position-fixed agents, like base stations and the Control Point, their public keys constitute 
version 1 of the Public Key List. For moving agents, their public key is presented to the Control 

 
2 Digital Signature: https://en.wikipedia.org/wiki/Digital_signature  

https://en.wikipedia.org/wiki/Digital_signature


Deliverable D6.4 6G BRAINS H2020-ICT 101017226 

© 6G BRAINS consortium 2024 Page 129 of (168)  

Point as a special credential within the Hyperledger-based approach of the previous project 
stage (see respective deliverable [8-4]). The Control Point then updates the Public Key List by 
storing the presented public key and distributes (broadcasts) the update to the agent network 
through the secure messaging. The public key also serves as an ID for the device. This on-
boarding procedure is visualized in Figure 8.2.3. 

 

Figure 8.2.3. Public Key List distribution after device on-boarding  

The Public Key List can be interpreted as the collection of agents that are in a controlled area. 
All agents that are in this list can be considered trustworthy since they have passed the Control 
Point proof verification using the Hyperledger-based Verifiable Credentials. 

The Public Key List contains an associative array (or hashmap) with the following key/value 
pairs: 

public key => time stamp when added 

Static agents with calibrated positions (Base stations, Control Point) have the smallest possible 
time stamp (e.g. Unix epoch time = 0). 

8.2.4.1 Public Key List Update History 

Additionally, the Public Key List also contains an (associative) array of all updates it has 
received and applied. This is used by a device to keep track of changes and identify missing 
gaps, and subsequently react accordingly. 

Each entry in the updates history is referenced by the version number, and has the following 
format: 

• Insertions: (Public key => Time stamp) entries of devices that are added through this 
version 

• Deletions: List of public keys of devices that are deleted through this version 

8.2.5  Messages and Message Format 

Messages are the foundation of information exchange in the scheme presented here. For the 
positioning efforts, two message realms can be distinguished: Localisation requests and 
information, and identity (public key) updates and update requests. 
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A message in this context comprises the following elements: 

• Message ID 
When an agent creates a message, it assigns it a message ID. 
When an agent receives and forwards a message, the ID is not changed. 
When an agent receives a message that it has received before (same ID), it discards 
it. 

• Type 
The following types of messages are a minimum set for the secure localisation scheme: 

o Localisation request messages (Broadcast, no receiver’s public key) 
o Localisation information messages (Dedicated messages after a localisation 

request) 
o Public Key List update requests (Broadcast) 

Whenever a device encounters gaps in its copy of the list (or an old version), it 
requests the missing list elements. 

o Public Key List updates (Either broadcasts, or dedicated receiver if it is a reply 
to an update request) 
Insertions and deletions to the list. 
This message is sent by the Control Point if a device enters or leaves the 
controlled area, forwarded by agents that have received it (as a broadcast), or 
sent by agents that have received an update request message by a 
neighboring agent. 

• Payload: The message’s content, depending on the type of message. See subsection 
8.2.5.1. 

• Time stamp: ... when the message has been generated. Taken from the sender’s device 
clock, so these clocks must be synchronized. 

• Receiver’s public key: If a message is not broadcast, but directed towards some 
specific receiver, the receiver’s public key is used as an identifier. Dedicated messages 
(localisation, Public Key List update) are replies to request messages (localisation 
request, list update request). 

• Sender’s public key: The public key must be present in the Public Key List. 

The whole message described here is signed with the sender’s public key. The signature is sent 
alongside the message, in order for receivers to verify the message. See section 8.2.3 for 
details. 

8.2.5.1 Payload per message type 

Localisation request 

No further information. 

Localisation information 

• Distance between an anchor node (other agent; message sender) and the device that 
requested localisation beforehand (message receiver) 

• (x,y)-position of anchor node (message sender) 
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Public Key List update request 

Either ... 

• Current version of Public Key List at the sender’s side. This is needed for receivers to 
compare it against their latest version and, if different, send Public Key List updates 
to the requesting party, subsequently. 
This variant of the update request message is sent when a device has encountered 
several message receptions by senders whose public keys were not part of the 
device’s copy of the Public Key List. 

... or ... 

• List of missing updates. This is needed for receivers to look up whether they can 
provide some of the missing updates to the requester. 
This variant of the update request message is sent when a device detects gaps in its 
update history of the Public Key List (after having received an update). 

Public Key List update 

• List of updates. This is sent either by the Control Point when a device entered or left 
the controlled area (= modification of the “master” Public Key List that resides at the 
Control Point), or when an agent received an update request by a neighboring agent. 

8.2.6  Message Verification 

The verification of a sent message by the receiver consists of the following steps. If any of 
these steps fails, a message is discarded. 
 

1. Does the message have a known message type? 
See “Type” in section 8.2.5 above. 

2. Has the message not been received before? 
The message’s ID is checked against a history buffer maintained by the receiver. If 
the message’s ID is found on this list, the message is discarded. For practical reasons, 
we introduce a buffer size of received message IDs. If the buffer reaches its limit, the 
first ID added to it will be removed from the list (Circular buffer). 

3. Does the message satisfy the digital signature scheme? 
See section 8.2.3 above. 

4. Is the sender’s public key part of the Public Key List? 
Messages are only considered valid that are sent from trustworthy senders. Senders 
are trustworthy when their public keys can be found in the Public Key List. 

5. Has the message been sent recently? 
If the time stamp (see previous section) of a message is too far away in the past, the 
message is no longer valid. This measure prevents the execution of replay attacks, i.e. 
re-sending messages that have been eavesdropped before. 

6. If the field Receiver’s public key is set within a message, does it match the actual 
receiver’s public key? 
If a message is dedicated to a different receiver, it should be discarded. 
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8.2.7  Events 

The following events trigger actions at agents (devices, base stations, Control Point), and 
message transmissions between agents. In this section, “agent” refers to both moving and 
fixed agents, while “device” refers only to moving agents. 

Device enters controlled area (through Control Point) 

• Device sends Public Key to Control Point (through “out-of-band” communication 
channel, e.g. Hyperledger Aries, see previous deliverable [8-4] 

• Control Point saves device’s Public Key onto Public Key List and thus generates new 
version 

• Control Point broadcasts Public Key List update 

• Control Point initializes device with current public key list (incl. complete update 
history) through “out-of-band” communication channel 

• Device generates message: Localisation request 

Device leaves controlled area (through Control Point) 

• Control Point deletes device’s public key from Public Key List and thus generates new 
version 

• Control Point broadcasts Public Key List update 

Agent receives Public Key List update 

• Agent updates its copy of the Public Key List 

• Agent checks if copy is complete / the latest. 
=> If not, device generates message: Public Key update request 

• Agent broadcasts (=forwards) Public Key list update 

Agent receives Public Key List update request 

• Agent checks own copy of Public Key List if it contains updates that were requested. 
=> If so, agent generates message dedicated to requester: Public Key update 

Device’s position information gets invalidated (time- or movement-triggered) 

• Device generates message: Localisation request 

Agent receives Localisation request 

• Agent checks if it knows its own position. 
=> If so, agent generates message dedicated to requester: Localisation information 

Device receives Localisation information 

• Device saves localisation information 

• Device checks whether enough information is present for trilateration 
(three localisation information receptions), and whether positions of anchors are not 
on or near a common line (ambiguous position calculation) 
=> If so 

o Trilaterate own position 
o Set “knows own position” as true in order to serve as localisation anchor for 

other devices from there on 
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8.3 Experimental Simulation Setup  

8.3.1  General assumptions 

For the simulation experiments the following assumptions and simplifications were put in 
place: 

• 2D scenario only 
We consider localisation using three anchors, i.e. only 2D scenarios are covered. 

• Line of Sight (LoS) and maximum communication range 
Our communication scheme abstracts from a specific radio communication 
technology, but we assume only line of sight communication. This means that 
whenever an obstacle blocks line of sight between two devices (or base stations), 
message transmission does not occur. 
Furthermore, we introduce a communication range. Whenever two devices are more 
than this communication range away from each other, transmission of a message 
does not occur. For simplicity reasons, all transmitters, be they fixed or moving, have 
the same communication range. 

• Devices have no spatial extent. 
Devices don’t block line of sight (and therefore, message transmission) between 
other agents. 

• Measurement-agnostic distance calculation 
The calculation of distances is not part of the messaging scheme. Localisation 
messages contain distances that have been determined with whatever method 
beforehand. 

• 100% Accuracy 
Transmitted distances are 100% accurate within the simulation. 

• Expiration of position knowledge 
Within the simulation, a device forgets its position after a configured time span. This 
can be justified by the movement of a device and the increasing uncertainty. As a 
consequence, the device a) needs to request a new position,  and b) it cannot serve 
as a positioning anchor itself until it has calculated its new position. 

• Simplified message verification 
The simulation does not cover the behaviour of malicious devices, since it focuses on 
the feasibility of the introduced messages and the improvement that iterative 
trilateration could bring to the scenario. Therefore, the above mentioned checks 
regarding digital signature scheme and time stamp validity do not need to be 
performed in the simulation. 

• Simplified movement: constant velocity, and only along x and y axis 
In the simulation, devices move only 1 unit (pixel) per time step, and only in one of 
the four cardinal directions (N, S, E, W). Movement of devices is only covered to 
distribute devices in the controlled area, starting at the Control Point, to render a 
semi-realistic campus-like motion behaviour. The movement frequency is 
configurable. 

• Distance-independent wired and wireless latency 
The communication latency, i.e. the time between transmission and reception of a 
message, is configurable, but independent from the distance between sender and 
receiver. Two different latencies are configurable, one for wired connections 
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(=between fixed anchors, including the Control Point) and one for wireless 
connections (=where a moving device is involved). 

• Constant scenario size 
Spatial scenarios all have the same size, so that both simulation parameters and 
results are comparable. 

• Obstacles 
Obstacles in the scenarios are all x-/y-axis aligned rectangular objects. They both 
block line of sight and device movement. When a moving device reaches an obstacle, 
it changes its movement direction by 90° in one of the two possible relative 
directions randomly. 

8.3.2  Simulation implementation 

The simulation has been implemented using Python based on the asyncio3 library. This library 
is used to execute concurrent code asynchronously. This property is leveraged to implement 
the above-mentioned messaging communication between agents, taking into account 
simulated latencies, as a discrete event simulation. 

Base stations, the control point, and moving devices are implemented as a dedicated Agent 
class. Agents are able to verify messages (8.2.6), decode the defined message types (8.2.5) 
and react according to the defined events (8.2.7). The control point, implemented as the 
ControlPoint subclass of Agent, additionally manages the control flow and public key list 
update actions when devices enter or leave the controlled area. 

The message passing between agents is managed by a central MessageHandler class that 
implements all the control logic needed to decide which agent receives which message, taking 
into account line-of-sight detection, and message deferral due to latency considerations. 

The digital signature scheme is implemented using the Python cryptography 4  library, 
specifically the Ed25519 classes/functions. 

The spatial scenario that determines where base stations, the control point, and obstacles are 
situated and where devices can move, is implemented as a separate Scenario class. This class 
handles reading scenarios from a JSON file, giving information for line-of-sight and movement 
decisions, and is able to visualize either the static scenario (borders, obstacles, fixed anchors), 
a dynamic scenario (static + current positions of moving devices + LoS lines) and a trilateration 
coverage visualization. 

A simulation follows these process steps: 

• Initialization with scenario and parameter configuration 

• Save configuration & scenario as metadata to a JSON file. 

• Initialization of logging and measurement-capturing files. 

• Creation of Agent objects for all defined base stations and the Control Point. 

• Definition of recurring events as asyncio tasks: 
o Introduction of new devices to the controlled area 

New devices are created at the control point periodically. The frequency of 
how often this occurs is configurable and part of the experiment parameter 

 
3 asyncio - Asynchronous I/O: https://docs.python.org/3/library/asyncio.html  

4 pyca/cryptography: https://cryptography.io  

https://docs.python.org/3/library/asyncio.html
https://cryptography.io/
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space. This behaviour is intended to represent a typical IoT factory scenario 
where new agents appear and helps to assess whether the distribution of 
changes in the node network works. 

o Position invalidation (implicit): Once a device has been created, it requests to 
receive localisation information for itself. The device implicitly schedules 
events to refresh its localisation information, making the current one invalid. 
The frequency in which a position gets invalidated is also configurable. 

o Movement of devices 
Devices are moved around the area at some specified frequency. This is also 
configurable. Movement is part of the simulation since it helps assessing 
whether devices are able to establish a trilateration setup each coming from a 
starting position, which also represents the factory scenario where 3rd party 
devices enter a controlled area. 

o Statistics collection 
For the analysis of the simulation’s outcomes several KPIs and measurements 
need to be collected and written to a file. Evaluation is done as a post-
processing of multiple simulation runs in order to compare them. 

• The simulation’s duration is implemented as an asyncio.sleep() call. The duration is 
configurable. 

8.3.2.1 Configuration Parameters 

The simulation can be configured with a variety of parameters, from which only the most 
important ones are mentioned here. 

Constant parameters for the simulation runs used for the experiments covered here: 

• Simulation duration => 180 seconds. 

• Spatial scenario size => 120x72 pixels 
Note that all spatial parameters are given as pixels, but could be interpreted as any 
spatial unit. 

• Localisation refresh rate => 1 second 
Rate at which devices “forget” their positions and request new localization 
information. 

• Movement rate => 0.5 seconds 
Rate at which devices change their position, i.e. make one step. 
Statistics collection rate => 0.05 seconds 
Rate at which all relevant statistics are collected and written to a file. 

• Start at Control Point (Yes/No) => No 
If “Yes”, all devices that are emitted to the controlled area start at the position of the 
Control Point, making it more realistic wrt. an actual physical scenario. 
If “No”, all devices’ start positions are randomly seeded over the whole scenario area 
(except from obstacles), having a better distribution of devices for iterative 
trilateration. 

Dynamic parameters, that constitute simulation runs when varying them: 

• Communication range: see 8.3.1, “Line of Sight” 
=> Default value: 53 pixels. This is the value for an 100% unobstructed scenario of size 
120x72px with the basestations and the control point positioned as can be seen in 
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the following section. 
=> Variation: 10 .. 80 pixels 

• Fixed trilateration coverage (FTC): see following section 8.3.2.2 
=> Default value: ≈0.5 (random scenario with FTC = 0.5 .. 0.59) 
=> Variation: 0.08 .. 1 

• Wireless latency: see 8.3.1, “Distance-independent wired and wireless latency” 
=> Default value: 0.001 seconds 
=> Variation: 0.001 .. 0.1 seconds (logarithmic variation) 

• Device creation interval: Interval in which devices are created and introduced to the 
controlled area. This affects the average number of devices roaming around in the 
area. 
=> Default value: 5 seconds 
=> Variation: Simulation duration / (10 .. 110 devices) 

• Devices as trilateration anchors (Yes/No) 
This parameter is varied in every simulation experiment: Since this parameter 
represents the feature that enables iterative trilateration and is therefore at the core 
of the evaluation, each simulation run is actually two runs: One where this parameter 
is enabled, and one where it is not. These two are then compared wrt. the 
effectiveness of the measure. 

8.3.2.2 Spatial Scenario Generation 

Studying the effect of variations in simulation parameters is quite straight-forward for most 
parameters, e.g. communication range, number of devices, frequency of position invalidation 
etc. Comparing different spatial scenarios is more complicated: It requires some metric that 
accounts for the “fixed trilateration effectiveness” of a scenario, and how the messaging 
scheme used for iterative trilateration can conquer this. Secondly, a method of creating 
scenarios with different levels of this metric is essential to run different simulations that vary 
this parameter. 

In order to assess the “obstructedness” of a spatial scenario, we introduce a fixed trilateration 
coverage (FTC) metric that calculates how many points within an area can be determined 
using trilateration from any three of the fixed localisation anchors, like base stations and the 
Control Point, taking into account all obstacles. Note that the communication range is not 
factored into this metric, since it should be treated as a separate simulation parameter. To 
keep calculation effort reasonable, we take only a sample size of points, with their (x,y) 
coordinates evenly distributed. The fixed trilateration coverage of a scenario is thus 
calculated as 

𝐹𝑇𝐶 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡𝑟𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
 

The possible values range from 0 (totally obstructed) to 1 (all points can be reached using fixed 
trilateration). 

For the simulation experiments, multiple scenarios with varying FTCs are needed. There are 
several approaches to accomplish this. We have decided on a grid layout of vertical and 
horizontal line obstacles with gaps in it to allow device movement. The maximum grid is 
depicted in Figure 8.3.1. The blue dots mark base stations, the magenta dot is the control 
point. 
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Figure 8.3.1. Grid scenario to derive different coverage levels  

The “full” grid shown here has an FTC of around 7%. To come up with different FTC values, we 
randomly choose subsets of the obstacles to create new scenarios, and calculate the 
respective FTC values. Finally, we select a set of scenarios with FTC values ranging from 8% to 
100% that make up the parameter space as to scenario selection. 

8.3.3  Statistics collection 

For each time step of the statistics collection task, the following metrics are collected: 

• Time stamp 

• Number of moving devices 

• Number of moving devices that are aware of their own position 

• Number of moving devices that use the latest Public Key list version 

• For each message type (see 8.2.5) 
o Number of messages sent so far 

8.4 Experimental Simulation Results and Analysis  

8.4.1 List of experiments 

The following parameter variations were used to perform sets of simulations. For all 
parameters not varied in a specific set, the default values mentioned in 8.3.2.1 were used. 

• Communication range: 10 .. 80 pixels, step size 2, 10 random scenarios with FTC≈0.5 

• FTC: 0.05 .. 1 (interval size 0.05), 17 scenarios per FTC interval 

• Latency: 0.001 .. 0.1, logarithmic step size 10-0.2, 10 random scenarios with FTC≈0.5 

• Device creation interval: Simulation time / (12 .. 112 devices), step size 4 devices, 10 
random scenarios with FTC≈0.5 

• Communication range & FTC 
o Communication range: 35 .. 83 pixels, step size 8 
o FTC: 0.05 .. 1 (interval size 0.05), 5 scenarios per FTC interval 

• Device creation interval & FTC 
o Device creation interval: Simulation time / (12 .. 112 devices), step size 20 

devices 
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o FTC: 0.05 .. 1 (interval size 0.05), 5 scenarios per FTC interval 

• Device creation interval & Communication range 
o Device creation interval: Simulation time / (12 .. 112 devices), step size 20 

devices 
o Communication range: 35 .. 83 pixels, step size 8 

8.4.2 Effectiveness of secure messaging scheme 

The first question to investigate is about the capability of the secure messaging scheme to 
ensure the communication between all of the participating agents. A good indicator for the 
effectiveness of the secure messaging is the fraction of moving devices that are working on 
the current (latest) version of the Public Key list, i.e. the one that is maintained by the control 
point. If a device is not up-to-date wrt. the Public Key list, that could mean that it is moving in 
an area where it does not receive identity updates at all, or only by devices that are new to it, 
i.e. which it could not find as trustworthy entities on its own copy of the Public Key list. A high 
percentage of agents working on the latest Public Key list version indicates that the messaging 
scheme works. 

Figure 8.4.1 shows the fraction of devices working with the current version of the Public Key 
list for each time step over the course of a single simulation run. Nearly all of the time all 
devices work on the latest version, and when this is not the case, this is always corrected 
quickly. 

 

Figure 8.4.1. Fraction of agents with latest Public Key list version for one simulation run  

This measurement can be summed up over the simulation run, and the result can be 
compared to other simulation runs with varying parameters. In nearly all scenarios, this metric 
is near 1, with two exceptions: When the communication range is low, or when the FTC is very 
low, the number of “current” agents decreases, as can be seen in Figure 8.4.2 and Figure 8.4.3. 
The number of devices in a scenario, at least in the range covered here, and the wireless 
latency don’t affect this metric. 
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Figure 8.4.2. Fraction of agents with latest Public Key list for varying communication 
ranges  

 

 

Figure 8.4.3. Fraction of agents with latest Public Key list for varying fixed trilateration 
coverage levels.  

In summary, the secure messaging scheme works in almost all of the covered parameter 
combinations, except from edge cases. 

8.4.3 Localisation success 

The second question to tackle is the capability of the iterative trilateration to help agents 
determine their positions. For this evaluation, we calculated the fraction of agents that know 
their position, after having acquired localization information from three anchors, for every 
time step of a simulation run. As stated, we compare this value for these two cases: 1. Only 
fixed anchors (i.e. base stations) can provide positioning information, and 2. additionally, 
moving devices aware of their own position can provide positioning information to (other) 
devices. To measure the success of a simulation run based on a parameter set, we again sum 
up the single-time-step values. 

As can be seen in Figure 8.4.4, the number of devices capable of determining their position 
using trilateration fluctuates around some value when only fixed anchors can be consulted 
(orange line). On the other hand, the number of successful localizations increases in the case 
of moving and fixed anchors (blue line) when more devices enter the area. Fluctuations in 
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both cases are due to individual devices moving into areas where no three anchors are 
reachable. 

When this measurement is summed up over a whole simulation run, we can again compare it 
against other parameter sets. Figure 8.4.5 to Figure 8.4.8 show the results for different 
variations of one parameter each, keeping the others to default values according to section 
8.3.2.1. The findings for the different variations are: 

• Communication range: For short ranges, trilateration is not possible at all. For medium 
ranges, the success of trilateration increases, with a significant improvement when 
moving anchors can be leveraged, since they not only help getting around obstacles, 
but also “bridge” short communication ranges. For long communication ranges, the 
improvement compared to the “fixed anchors only” scenario diminishes a bit, but is 
still significant. 

• Fixed trilateration coverage (FTC): The trilateration success increases continuously in 
the fixed anchors case. In the moving anchors case, the improvement is small for low 
FTC values (i.e. high obstructedness) and  significant over most of the middle FTC 
values. For highly unobstructed scenarios, devices do not help anymore since most of 
the fixed base stations can be reached for positioning efforts. 

• Wireless latency: In the range covered in our simulations, latency does not matter very 
much. Only high latency values affect the positioning success negatively since devices 
need to refresh their position at some rate, making them unaware of it most of the 
time (see parameter “Localisation refresh rate” in section 8.3.2.1). 

• Number of devices (... emitted to the area): Adding more devices to the controlled area 
does of course not help in the scenario where only fixed anchors are used. In the case 
of additional moving anchors, they help up to a saturation point where more devices 
don’t provide any more improvement. This finding is relevant when it comes to the 
examination of the “messaging footprint” of the scheme, since more devices means 
even more device-to-device messages being sent around (see below). 

 

Figure 8.4.4. Trilateration success for one simulation run  
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Figure 8.4.5. Trilateration success for varying communication ranges  

 

 

Figure 8.4.6. Trilateration success for varying FTC levels 

 

 

Figure 8.4.7. Trilateration success for varying wireless latencies  
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Figure 8.4.8. Trilateration success for varying number of devices within the scenario  

We also evaluated parameter combinations where two of them are varied simultaneously. For 
this, we defined separate runs of simulations (see section 8.4.1). The metric to assess is the 
absolute improvement of the positioning success when moving anchors are introduced, 
additionally to fixed anchors, since we considered an improvement from 0% to 20% equally 
effective compared to one from 80% to 100%. The findings from these simulation runs are: 

• FTC and Communication Range (Figure 8.4.9): For short communication ranges (blue 
and orange line) in very obstructed scenarios (small FTC values), there is no 
significant improvement in the positioning success since it is quite hard for moving 
devices to get to every point that needs an adequate anchor coverage. In contrast, 
unobstructed scenarios (high FTC values) benefit from moving anchors when the 
communication range is short due to the effect of “bridging” the communication 
range by devices. 
Once the communication range is high enough, highly “accessible” scenarios (high 
FTC) can be served by fixed anchors only. 

• FTC and number of emitted devices (Figure 8.4.10): For highly unobstructed scenarios, 
again, there is no need for moving devices supporting the positioning effort. It also 
comes clear that the number of devices needs to be above some level to increase the 
positioning success significantly. 

• Communication Range and number of emitted devices (Figure 8.4.11): One general 
finding is that the longer the communication range, the smaller the improvement of 
trilateration. Additionally, the number of devices needed to improve positioning is 
saturated at some point where more devices don’t improve the result anymore. For 
very small communication ranges, the number of devices shouldn’t be too small to see 
an effect at all. 
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Figure 8.4.9. Improvement of trilateration success for varying FTCs and communication 
ranges  

 

 

Figure 8.4.10. Improvement of trilateration success for varying FTCs and number of 
emitted devices  
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Figure 8.4.11. Improvement of trilateration success for varying number of devices and 
communication ranges  

The success rate of the sheer identity updates (previous section) is way higher than the 
positioning success since for the former only one reachable device is needed, in contrast to 
three anchors needed for trilateration. 

The findings in this section can only serve as a baseline consideration for trilateration. To 
assess a concrete scenario, the simulator can be used when planning a setup and dimensioning 
it properly. 

8.4.4 Messaging footprint 

Finally, we want to examine the “cost” the messaging scheme causes when moving anchors 
are introduced for the positioning effort, and its composition. 

Similar to the previous chapter, we collected the number of sent messages for different 
parameter variations, and compared the two cases with only fixed and additional moving 
anchor agents. As visualized in Figure 8.4.12, the number of messages increases when the 
obstructedness of scenarios goes down (increasing FTC). What’s more important is that when 
moving anchors are enabled, the number of messages is increased by a factor of four, due to 
the following causes: 

1. When only fixed anchors can be used for trilateration, localization requests can only 
be answered by fixed anchors. 

2. Additionally, there is no need for the Public Key list messages to be sent around, or to 
even manage a Public Key list at all, since no trust between devices is needed. 
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A similar curve can be observed for the number of emitted devices (diagram not shown here): 
The more agents are emitted to the area, the higher the number of messages between them. 

When it comes to latency, as can be seen in Figure 8.4.13, the number of sent messages 
decreases for high latencies since most messages are replies to requests, which results in 
fewer messages during the constant simulation time over all experiments. 

 

Figure 8.4.12. Number of sent messages for varying FTC values  

 

 

Figure 8.4.13. Number of sent messages for varying wireless latencies  

One final inspection has been made regarding the composition of message types. Figure 8.4.14 
shows the proportion of the four message types for varying communication ranges. For short 
communication ranges, the overall number of messages is comparably small due to the 
previous finding that most of the messages are answers to request messages. This makes the 
relative number of localization request messages (green) quite high since most devices don’t 
get enough answers and retry to get localization information. For public key list messages, the 
initial messaging starts at the control point that distributes the Public Key list changes, which 
are relayed by all agents (base stations, moving devices) that have received it. Since the 
absolute number of messages is small for short communication ranges, even update requests 
(red) are relatively significant. For longer communication ranges, the LOCALIZATION_INFO 
messages prevail over LOCALIZATION_REQUEST’s since the former happen as answers to the 
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latter by all nearby devices, most of which are ignored by the requesting device because after 
three answers trilateration can be executed. The number of Public Key list messages is only a 
fraction of that of localization. This is partly due to the Localisation Refresh Rate of 1s (see 
section 8.3.2.1), but should be a typical proportion in general since new agents should not 
appear (or leave) that often compared to the frequent need of devices to calculate their 
positions. 

 

Figure 8.4.14. Proportion of message types for varying communication ranges  
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9 Optimised Architecture for Block Chain Integration in 
Industrial IoT 

9.1 Architecture 

The proposed system architecture leverages a combination of Raspberry Pi modules, 
decentralized IPFS storage, and blockchain technology to enable efficient storage, retrieval, 
and processing of data in an Industrial IoT (IIoT) environment. The framework consists of three 
main modules, described in the following subsections. 

9.1.1 Raspberry Pi Module for Data Collection and Processing 

To maintain the security of the system, the processed data is encrypted using the Tiny-AES 
encryption algorithm, bolstered by a shared key. This cryptographic shield secures the data 
against unauthorized access and supports transferring the data blocks safely. After sending 
the blocks of data to IPFS for storage, we retrieve the IPFS hash. At this point, the system 
initiates a blockchain transaction with relevant metadata, including IPFS hash, for smart 
contract execution and storage in the Harmony blockchain. 

 

Figure 9.1.1: Proposed System Architecture 

9.1.2 Decentralized IPFS Storage and Blockchain Smart Contract Module 

The IPFS, ensures data ensures data integrity and global accessibility, while data encryption is 
done via with Tiny-AES to ensure privacy. The IPFS hashes are stored in the Harmony 
blockchain along with metadata using a sharding mechanism for concurrent transaction 
processing. The system utilizes the Beacon chain consensus mechanism to coordinate the 
network, validate transactions across shards, and update the overall network state. The 
Harmony Virtual Machine executes smart contracts in respective shards, updating contract 
states and incorporating modified data into the shard blockchain. After the transaction, the 
system issues transaction receipts, which contain essential details, including shardID, 
transaction fee, gas used, and cryptographic signatures. 
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9.1.3 User DApp Module for Data Retrieval and Monitoring 

The User DApp is a decentralized application with a frontend and backend for industrial users, 
it enables users to register with unique Network ID, enabling authentication and connection 
to the deployed IIoT setups. During deployment, shared secret keys are exchanged securely 
for data encryption. Users are capable to query the blockchain with metadata (e.g., Raspberry 
Pi Node ID, location, date range) to retrieve data. The smart contract returns IPFS hashes, 
which are used to fetch encrypted data from IPFS. The application utilises shared secrets for 
decrypting data, making data readable for analysis and monitoring. User DApp can run either 
a Harmony blockchain light client or a fully functioning Harmony node, depending on resource 
constraints. 

In summary, the proposed framework utilizes decentralized storage to ensure secure, efficient, 
and privacy-preserving data handling in Industrial IoT environments. The system promotes 
data integrity, immutability, and accessibility while providing a user-friendly interface for data 
retrieval and monitoring. 

9.2 Aim of Experiment 

9.2.1 Overall Aim 

Explore the integration of blockchain in Industrial IoT (IIoT) for efficient data handling with a 
focus on privacy and trust. 

9.2.2 Research Question 1 (RQ1): Privacy and Trust in IIoT 

Identify and study security vulnerabilities in IIoT deployment. 

Examine the role of Encryption and Distributed Ledger technology in ensuring privacy and 
trust. 

9.2.3 Research Question 2 (RQ2): Integration of Blockchain with IIoT: 

Survey and review different approaches to integrate blockchain in IIoT. 

Identify challenges, benefits, and complexities in adopting blockchain in IIoT. 

Design a blockchain-based architecture for storing, processing, and retrieving data in IIoT. 

Develop and deploy the system using available resources on User equipment (mUEs). 

9.2.4 Research Question 3 (RQ3): Evaluation of Blockchain Integration in IIoT 

Identify evaluation metrics for Security, Efficiency, and Sustainability. 

Evaluate and compare the performance and sustainability of the proposed blockchain-based 
architecture with other solutions. 

9.3 Background Theory 

9.3.1 Technological Evolution 

Breakthroughs in electronics, wireless communication, and miniaturized technologies have 
led to a shift from the physical to the digital world. 
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Increased number and reduced costs of electronic devices contribute to the growth of the 
Internet of Things (IoT). 

IoT, comprising wireless sensor networks and RFID, facilitates real-time data generation, 
enabling automation, actionable insights, and the development of smart cities, grids, and 
homes. 

9.3.2 Industrial IoT (IIoT) and Industry 4.0 

IIoT aims to create smart factories and enhance manufacturing through process automation 
and data exchange. 

Industry 4.0 integrates IIoT with Cyber-Physical Systems to digitize and optimize supplier 
markets, manufacturing, and sales. 

Real-time monitoring and data sharing enhance productivity and product quality, making 
businesses smarter and more efficient. 

9.3.3 Challenges in IIoT and Role of Blockchain 

Trustworthy handling of IoT data is crucial, requiring a distributed service that is reliable and 
ensures data integrity. 

Blockchain, with its decentralized structure and storage mechanism, addresses IoT challenges, 
particularly in data protection and privacy. 

9.3.4 Scope of Research 

Focus on addressing challenges in the growing Industrial IoT sector, emphasizing privacy, 
efficient storage, and retrieval of IIoT data. 

Aim to provide insights into Blockchain layers, optimizing energy consumption, and 
integration with IIoT environments. 

9.4 Research Motivations 

9.4.1 Privacy and Trust Mechanisms 

Rapid growth in IIoT faces challenges like single points of failure, lack of transparency, privacy 
risks, and security vulnerabilities. 

Blockchain technologies explored to ensure privacy and trust, creating a secure system for 
storing, processing, and retrieving information in IIoT. 

9.4.2 Performance Evaluation 

Blockchains gain popularity in enterprise use but incur performance overheads. 

Investigation of performance evaluation metrics to optimize blockchain integration in power-
constrained environments of IIoT. 
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9.5 Experimental Setup 

9.5.1 Proof-of-Concept Implementation 

For the practical validation of our proposed architecture, we have implemented a laboratory-
scale TestBed. This experimental setup consists of three Raspberry Pi RPI400 devices and one 
laptop. Each Raspberry Pi is equipped with a 1.8GHz 64-bit quad-core ARM v8 CPU, a Micro 
Storage Card running Raspberry Pi OS, 4GB RAM, and essential wireless, Bluetooth, and other 
ports. These devices collectively function as data collection and processing modules within 
our proposed framework. 

9.5.2 Key Components and Functions 

The Raspberry Pi devices serve as the core components, responsible for initial data interaction 
with sensors, implementing processes such as data normalization, encryption, and processing 
as outlined in our framework. Their specifications are carefully chosen to ensure ample 
computing power, memory, and connectivity for seamless execution of the proposed 
architecture. The proof-of-concept aims to demonstrate the feasibility and functionality of the 
architecture in a controlled laboratory environment. 

9.6 Experimental Procedure 

In our proof-of-concept implementation, the TestBed integrates three Raspberry Pi RPI400 
devices, each running blockchain clients such as geth v1.11.6. To simulate the interaction 
between nodes, we employed web3.js for submitting transactions and invoking smart 
contracts, utilizing JSON-RPC and bash scripts. Complementing these devices is an ASUS laptop, 
featuring 8GB RAM, a 2.1 GHz Octacore AMD Ryzen 5 processor, and running Windows 10. 
This laptop serves a dual role, hosting both the Private Blockchain Network and the User DApp. 

The TestBed is configured to replicate real-world data collection and processing scenarios 
within the proposed architecture. This controlled environment facilitates systematic testing 
and refinement of the framework. The Raspberry Pi devices, equipped with wireless and 
Bluetooth capabilities, enhance communication channels, while standardized operating 
systems and storage ensure seamless compatibility. 

9.7 Experimental Results and Analysis 

9.7.1 Performance Evaluation and Proposed Architecture 

The study comprehensively evaluates various performance metrics of blockchain-based 
systems, including block production time, confirmation time, system throughput, transaction 
cost, gas cost, and transaction latency. Results indicate that the Proposed Architecture 
consistently outperforms existing platforms across all parameters. Notably, the architecture 
addresses security concerns related to blockchain forks and double-spending attacks by 
achieving an average 2-second block production and confirmation time, enhancing real-time 
integration effectiveness. The system&apos’s throughput stands out, reaching nearly 4000, 
surpassing other mechanisms, and the proposed Harmony-based architecture demonstrates 
scalability potential up to 1 million transactions per second. 

Furthermore, the investigation extends to transaction latency and cost measurements, 
showcasing the Proposed Architecture&apos’s superiority. With a 1-second transaction 
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latency and minimal gas consumption, the architecture aligns with the resource constraints of 
IIoT devices, making it ideal for resource optimization and real-time responsiveness. The study 
also delves into data storage and retrieval time measurements, revealing that the integration 
of IPFS in the proposed architecture ensures global data access without significant processing 
delays. Despite the impressive results, the study acknowledges the limitation of a 
homogeneous environment in the lab-testbed and outlines intentions to address this by 
designing and extensively testing the architecture in a heterogeneous environment. 
Additionally, future work aims to evaluate the impact of large-scale deployment on 
registration and authorization and improve resource utilization in the consensus and network 
layers. 

9.7.2 Challenges and Future Directions 

The integration of IIoT and blockchain presents challenges in computation, scalability, privacy, 
and storage. Existing solutions struggle to achieve higher throughput without compromising 
security and decentralization. The proposed architecture emerges as an optimized solution, 
showcasing the fastest block finality, minimal transaction cost, and the highest throughput 
while ensuring privacy. Lightweight encryption models and interoperability features 
contribute to the architecture&apos’s operational versatility. Future work involves 
implementing the proposed architecture in real-world scenarios for further performance 
evaluation, investigating the impact of registration and authorization in large-scale 
deployment, and enhancing resource utilization in the consensus and network layers. 
Additionally, the study aims to develop an end-to-end energy consumption measurement for 
the proposed architecture, ensuring a holistic understanding of its sustainability in diverse 
deployment scenarios. 
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10 Conclusions 

In Section 3 an experiment to measure distance using sub 6GHz ToA was performed. It was 
found that signal multipath from UE transmissions of an isotropic antenna rendered the 
system to be inoperable. Using UE transmissions of a beamforming antenna produced a 
sufficiently good received signal for distance accuracy of between 3.5 to 4.5 cm accuracy was 
obtained. Close analysis of the   frequency distribution of the measured data recorded 
Standard Deviations of around 1.7 cm which corresponded to a 95% Confidence interval of 3.4 
cm accuracy. This largely agreed with the distance accuracies that was measured. This 
accuracy was obtained despite the presence of periodic noise which was suspected to have 
been induced from either flatbed plotter stepper motor, or cooling fan motor or induced 
internally within the RU FPGA. 

In section 4 an object detector (YOLOv5) was paired with a LIDAR to produce a location from 
landmarks system. This detector was trained to find certain passive landmarks within this 
environment. The detector then communicates with this LIDAR to measure distances from the 
closest point of these objects, and provided that these objects coordinates were already 
measured, a trilateration algorithm was able to find the coordinates of the UE within the 
environment. 

Upon completion of this system, testing was conducted to determine whether this is a viable 
option for localisation. Although the system passed its functional requirements, it did not 
meet the KPIs. When tested against 16 different positions, 15% of the estimated coordinates 
were deviated by 5%. This was not the complete case however, as there were also occasions 
where accuracy was below 1% for both x and y coordinates in certain positions. A list of 
potential points of failures were drawn with the major issue being the lack of detail for YOLOv5 
to accurately detected images upon. A potential solution to this would be to introduce sensor 
fusion with a 360-degree camera. The object detector could work on the higher quality camera 
images, and then pass on the bounding box data to the LIDAR. The LIDAR would then have to 
simply measure distances, ultimately resulting in better position estimations. 

Overall, the system has the potential to estimate positions of LIDAR-equipped UEs but requires 
further assistance in terms of better visual sensors, such as a camera to become reliable.  

In section 5 the localization performance of the fusion technology is analysed and improved 
by a novel hybrid localization system. The proposed localization system uses a decision 
process to choose which localization technologies to apply. Simulation results verify the 
effectiveness of the proposed system. In the future, the NN generalization will be studied and 
fulfilled to generalize the model used for localization and adapt it to different environments. 
We intend also to validate our model based on experimental real data collected in our 
laboratory. 

In section 6 the localization performance of the FL and CL models was compared. The training 
of models demonstrated encouraging progress, with both training and validation losses 
steadily decreasing over the epochs. The FL model, executed for 1000 epochs, showcased 
impressive improvements in localization accuracy. The model’s localization error significantly 
reduced from an initial high of approximately 30 meters to almost 10 meters at the end of the 
validation phase. Also, the CL model demonstrated steady progress reaching around 5 meters 
by the conclusion of the 1000 epochs.  
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Our proposed algorithm is going to be validated and tested using real data collected in Bosch 
Germany as mentioned before in order to prove that it can be adapted to different types of 
input data independently from the used communication technology.  

In section 7, a novel indoor beacon construction and low sampling rate positioning scheme 
using on-off keying (OOK) modulation pulse pairs has been proposed. This scheme, unlike time 
of arrival (TOA)-based schemes, doesn't require strict time synchronization, and it achieves 
high positioning accuracy with low sampling rates and bandwidth. The OOK modulation, 
beneficial for its minimal modulation bandwidth, is employed in VLP systems. The OOK-based 
pulse pairs are designed to form positioning beacon signals without synchronization needs. 
Additionally, a high-precision pulse reconstruction method is introduced to counteract the 
distortion from low sampling rates and reduce positioning errors due to time measurement 
inaccuracies. This research has been recognized at the International Conference on Indoor 
Positioning and Indoor Navigation (IPIN) 2023, where it received the 4th best paper award. 

In section 8 a messaging scheme based on public/private key pairs was proposed that 
distributes identity information as well as localization data where both fixed and moving IoT 
devices can serve as trilateration anchors for other devices. The application of the scheme has 
been simulated for different configurations of number of devices, communication ranges, and 
different obstructedness levels and shows significant improvements in localization success 
compared to fixed-anchors-only trilateration while discussing the trade-off as to the increased 
messaging effort the scheme introduces. 

In section 9 the integration of IIoT and blockchain presents challenges in computation, 
scalability, privacy, and storage. Existing solutions struggle to achieve higher throughput 
without compromising security and decentralization. The proposed architecture emerges as 
an optimized solution, showcasing the fastest block finality, minimal transaction cost, and the 
highest throughput while ensuring privacy. Lightweight encryption models and 
interoperability features contribute to the architecture’s operational versatility. Future work 
involves implementing the proposed architecture in real-world scenarios for further 
performance evaluation, investigating the impact of registration and authorization in large-
scale deployment, and enhancing resource utilization in the consensus and network layers. 
Additionally, the study aims to develop an end-to-end energy consumption measurement for 
the proposed architecture, ensuring a holistic understanding of its sustainability in diverse 
deployment scenarios. 
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Appendix I Cassino Cards setup 

1.1 RunEL Cards Driver (Cassino Cards)  

Open directory with name cassino_26 and copy all the driver files into  
this directory, get the files from RunEL.  
Go to xdma_cassino_v537/xdma and do make and sudo make install.  
Go to xdma_cassino_v537/tools and do make and sudo make install.  
Go to cassino_26/rawcardtool_cassino_v1.3.0 and do make and sudo  
make install.  
Reboot system, after reboot do this:  
#First remmber to load xdma drivers every time after reboot: 
cd cassino_26/xdma_cassino_v537/tools/  
sudo ./load_driver.sh  
you should get DONE or OK , if problem go to directory  
xdma_cassino_v537/xdma and do make clean and make and suo make  
install, no need to reboot again, just go to xdma_cassino_v537/tools/ and  
again sudo ./load_driver.sh.  
To check if Cassino cards ok do this:  
Go to cassino_26/rawcardtool_cassino_v1.3.0 and run:  
For first card run this:  
sudo ./rawcardtool_cassino --device /dev/xdma0_user –status  
For Second card run this:  
sudo ./rawcardtool_cassino --device /dev/xdma0_user --status 
 

1.2 Ethernet fifo Cards Driver (Cassino Cards)  

To connect Cassino cards from Linux we are using special drivers,  
open cassino_32 and copy all the driver files into this directory, get the  
files from RunEL.  
#To compile drivers for fifo(xdma0) to host do this:  
#First remmber to load xdma drivers:  
cd cassino_26/xdma_cassino_v537/tools/  
sudo ./load_driver.sh  
#After load xdma drivers from cassino_26 go to cassino_32 dir:  
cd /home/runel/cassino_32/axis-fifo-tools/files  
make 
sudo make install-host  
sudo install -m 0755 axis-fifo-send /usr/local/bin/  
sudo install -m 0755 axis-fifo-recv /usr/local/bin/  
sudo install -m 0755 axis-fifo-eth /usr/local/bin/  
sudo test -d /etc/systemd/system && sudo install -m 0644 init.d/axis 
fifo-eth.service /etc/systemd/system  
sudo test -d /etc/systemd/system && systemctl daemon-reload  
sudo systemctl start axis-fifo-eth  
sudo ip addr add dev asf0 172.31.0.10/24  
sudo ip link set dev asf0 up  
#Check if asf0 exist:  
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ifconfig  
ping 172.31.0.80  
#With puty ssh to 172.31.0.80 , save it as DU_RX  
#To copy files to ps , with the ssh to PS mkdir rcv (or other name)  
scp -r * root@172.31.0.80:/home/root/rcv  
#To compile drivers for fifo1(xdma1) to host do this first if need to load  
drivers:  
#First remmber to load xdma drivers:  
cd cassino_26/xdma_cassino_v537/tools/  
sudo ./load_driver.sh  
#After load xdma drivers from cassino_26 go to cassino_32 dir:  
cd /home/runel/cassino_32/axis-fifo1-tools/files  
make  
sudo make install-host  
sudo install -m 0755 axis-fifo1-send /usr/local/bin/  
sudo install -m 0755 axis-fifo1-recv /usr/local/bin/  
sudo install -m 0755 axis-fifo1-eth /usr/local/bin/  
sudo test -d /etc/systemd/system && sudo install -m 0644 init.d/axis 
fifo1-eth.service /etc/systemd/system  
sudo test -d /etc/systemd/system && systemctl daemon-reload  
sudo systemctl start axis-fifo1-eth 
sudo ip addr add dev asf1 172.31.1.11/24  
sudo ip link set dev asf1 up  
#Check if asf1 exist:  
ifconfig  
ping 172.31.1.100  
#With puty ssh to 172.31.1.100, save it as DU_TX  
#To copy files to ps , with the ssh to PS mkdir rcv (or other name)  
scp -r * root@172.31.1.100:/home/root/rcv  
 

1.3 After boot always do just this:   

#First remember to load xdma drivers:  
cd cassino_26/xdma_cassino_v537/tools/  
sudo ./load_driver.sh  
#Note: if problem go to xdma dir, make clean, make, sudo make install ,  
do same in tools dir  
sudo systemctl start axis-fifo-eth  
sudo ip addr add dev asf0 172.31.0.10/24  
sudo ip link set dev asf0 up  
sudo systemctl start axis-fifo1-eth  
sudo ip addr add dev asf1 172.31.1.11/24  
sudo ip link set dev asf1 up  
#Open Putty and ssh to 172.31.0.80 (or load DU_RX if already saved).  
#Only if need (usually no need), Open Putty and ssh to 172.31.1.100(or  
load DU_TX if already saved). 
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Appendix II Power up DU & RU Sequence.  

Power first LINUX server and immediately after RU0/RU1  
Both RU should connect to same power on button.   
Do 1.3 section above.  
#Open Terminal and run if only on RU as TX and RX:  
./ping.sh  
#If we have 2xRU:  
./ping_ru1.sh 

 
#Open Putty serial interface to /dev/ttyUSB0 (speed 115200)  
#Login: root/root  
ls  
#if you see “i_m_rrh0” it means it is RU0 (RU TX)   
#if you see “i_m_rrh1” it means it is RU1 (RU RX)   
#Open Putty serial interface to /dev/ttyUSB4 (speed 115200)  
#Login: root/root  
ls  
#if you see “i_m_rrh0” it means it is RU0 (RU TX)   
#if you see “i_m_rrh1” it means it is RU1 (RU RX)   
Note: /dev/ttyUSB0 or 4 can be 8 or 12  
#Open Putty and ssh to 172.31.0.80 (or load DU_RX if already saved). 
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Appendix III Operate DU and RU for Distance measurement 

#On DU server, open new terminal, and type from downlink:  
cd /home/runel/almog/du_downlink_test  
#Open new tab in terminal and type for uplink only when one DU as TX  
and RX (RU0 as TX and RX):  
cd /home/runel/almog/git/uplink_test  
#Upling when rx from second RU (RU1):  
cd /home/runel/arik/full_spect_4rx_01_64_2xru/uplink_test/uplink_test  
#open new tab for distance program:  
cd /home/runel/almog/git/statistics_animate  
#Please do in this orer  
#1. In downlink tab type:  
./run.sh  
2. in distance program type:  
./zion.sh or ./zion_nolna.sh in case of only one RU (RU0)  
3. in uplink tab type:  
./run.sh (password 1234 or another password if it will be changed). 
 
Please note that after every powerup needs to calibrate again with:  ./calib.sh  
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Appendix IV Position estimation 

IV.1 Appendix IV-1. Position 1 Estimation 
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IV.2 Appendix IV-2. Position 11 Estimation  
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IV.3 Appendix IV-3. Position 16 Estimation 
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