
A General Framework for Modeling Replicated
Real-Time Database

Hala Abdel hameed, Hazem M. El-Bakry and Torky Sultan

Abstract—There are many issues that affect modeling and

designing real-time databases. One of those issues is maintaining
consistency between the actual state of the real-time object of the
external environment and its images as reflected by all its replicas
distributed over multiple nodes. The need to improve the scalability
is another important issue. In this paper, we present a general
framework to design a replicated real-time database for small to
medium scale systems and maintain all timing constrains. In order to
extend the idea for modeling a large scale database, we present a
general outline that consider improving the scalability by using an
existing static segmentation algorithm applied on the whole database,
with the intent to lower the degree of replication, enables segments to
have individual degrees of replication with the purpose of avoiding
excessive resource usage, which all together contribute in solving the
scalability problem for DRTDBS.

Keywords—Database modeling, Distributed database, Real-
time databases, Replication.

I. INTRODUCTION
ANY real-time applications are inherently distributed in
nature, and need to share data that are distributed among

different sites. For example, military tracking, medical
monitoring, naval combat control systems and factory
automation etc. Such applications introduce the need for
distributed real time database systems (DRTDBs) [9]. A
DRTDBS is a collection of multiple, logically interrelated
databases distributed over a computer network [4]. A real-time
database has two distinguishing features: the nature of its data
that has a temporal constrains, and marinating a real-time
constraints on transactions [7]. Transactions in a real time
database are classified into three types, viz. hard, soft and
firm. A general model of distributed real-time systems was
presented by Kopetz & Verissimo (1994) [8]. This model
based on the interaction between real-time entities which is an
element of the environment whose state is relevant to the
DRTS such as temperature and pressure. A DRTS observes or

H. Abdel hameed is assistant lecturer with Faculty of Information

Technology – Misr University for Science and Technology – Al-Motamayez
District 6th of October City - Egypt. (e-mail: Hala_hameed@hotmail.com).

H. M. El-Bakry is assistant professor with Dept. of Information Systems -
Faculty of Computer Science and Information Systems – Mansoura University
– Egypt. (phone: +2-050-2349340, fax: +2-050-2221442, e-mail:
helbakry20@yahoo.com).

T. Soltan is professor with Faculty of Computer Science and Information
Systems – Helwan University, Helwan – Egypt. (e-mail:
torkyibrahimsultan@hotmail.com).

modifies the states of RT entities; for example, based on an
observation of the fluid level in a tank, the system could
modify the position of a valve that affects the fluid drain. A
DRTS interacts with the environment via sensors (hardware
that samples the state of RT entities, such as temperature and
motion sensors).

Many issues affecting the design of A DRTDBS to maintain
its requirements; Data Consistency and Scalability are the
main issues that are considered in this paper. All of those
critical systems need data to be obtained and updated in a
timely fashion, but sometimes data that is required at a
particular location is not available when it is needed and
getting it from remote site may take too long before which the
data may become invalid, this potentially leads to large
number of transactions miss their deadline and violating the
timing constraints of the requesting transaction. One of the
solutions for the above-mentioned problem is replication of
data in real-time databases. By replicating temporal data items,
instead of asking for remote data access requests, transactions
that need to read remote data can now access the locally
available copies which help transactions meet their time and
data freshness requirements. Replication in DRTDBs also, is
used to remove unpredictability of network delays or network
partitioning, that the database is fully replicated to all nodes. It
also improves fault tolerance for the main-memory resident
data. In order to suite the different needs of the distributed
real-time systems such as different data workloads and
database specifications, multiple ways to handle the
replication control and different replication schemes are
proposed. However, such a database has another scalability
problem since an update to an object of a fully replicated
database needs to be sent to all other nodes.

In a replicated system we can define three different types of
predicators for consistency; (i) External temporal consistency,
which deals with the relationship between an object of the
external world and its image on the server. (ii) Inter-object
temporal consistency which is the relationship between
different objects or events (within a single node) and it also
include the relationship between temporal data item and non-
temporal data item that depend on that item. (iii)Mutual
consistency, which reflects the relationship between the object
and its copy (replica) in different remote sites.

As illustrated earlier, real-time databases need a specific
and appropriate concepts and tools in their design, which are
not achieved using the ordinary methods. Although the
relational model is useful for many applications, we believe
that it is not as well-suited for applications that require

M

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1170International Scholarly and Scientific Research & Innovation 3(4) 2009 scholar.waset.org/1307-6892/5310

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
4,

 2
00

9
w

as
et

.o
rg

/P
ub

lic
at

io
n/

53
10

http://waset.org/publication/A-General-Framework-for-Modeling-Replicated-Real-Time-Database/5310
http://scholar.waset.org/1307-6892/5310

complex data, complex relationships among data, and support
for timing constraints. UML is a good option, but it couldn't be
used in its standard form. Recently, an UML profile for
Modeling and Analysis of Real-Time and Embedded systems
(MARTE) has been standardized by the OMG [15] [19]. In
this paper we try to give a model for designing a replicated
DRTDB considering both the consistency of data and
scalability requirements thought maintaining temporal aspects
of data and timing constraints of transactions.

II. RELATED WORK

Several UML approaches were already proposed to take
into account the real-time system requirements, such as UML-
RT. The UML profile for Modeling and Analysis of Real-
Time and Embedded systems (MARTE) has been adopted by
the OMG in June 2007. This profile provides support for
specification, design, and verification/validation stages and is
intended to replace the existing UML Profile for
Schedulability, Performance and Time. However, UML
constructs used by these approaches do not support real-time
database requirements. Real-time databases have all
requirements of traditional databases, such as the management
of accesses to structured, shared and permanent data, but they
also require management of time-constrained data and time
constrained transactions [2]. In the literature, there is a little
work for designing models for DRTDBS; RTSORAC (Real-
Time Semantic Objects Relationships And Constraints) is a
real-time object-oriented database model base on RT-Object
package. The RTSORAC model is based upon an earlier
model called SORAC [13]. The RTSORAC data model
combines features of the object-oriented [18] and semantic
data models [6]. As a correctness criterion, RTSORAC object
is defined in the context of Epsilon Serializability (on
transactions) and does not support the notion of QoD
introduced in [12]. The QoD concept allows a robust and
controlled behavior of real-time databases during transient
overloads. Another framework in [20], has been developed
using UML-RTDB, this profile consider factors such as sensor
data and derived data. Unlike RT-Object package, UML-
RTDB the profile of this framework supports the Quality of
Data (QoD) concept by introducing the notion of maximum
data error (MDE) introduced in [12]

This paper is divided in to two parts, in the first part of this
paper the database model proposed for small to medium scale
database and it could be distinguished from the previous two
models by considering replicated objects in the database
model and maintaining its consistency. In the second part we
considers segmenting the whole database on node allocation,
with the intent to lower the degree of replication, enables
segments to have individual degrees of replication with the
purpose of avoiding excessive resource usage, in particular
excessive bandwidth usage when replicating updates which all
together contribute in solving the scalability problem for
DRTDBS.

III. A FRAMEWORK TO MODEL REAL-TIME REPLICATED
DATABASE (FM-RRDB) MODEL

Real-time database models the relationships between its

objects and the external environment from time point of view.
We study a distributed real-time database system which
consists of a group of main memory real-time databases
connected by high-speed networks. We assume that a reliable
real-time communication is maintained, i.e., any messages
sent over the network is eventually delivered and have
predictable transmission time. According to the distributed
nature of the database, the objective is to give the clients the
illusion of service that is provided by one server and the
clients have no knowledge a bout the data existence behind.

Traditional RDBMS are based on the assumption that data
resides primarily on disk. In a dynamic runtime environment,
data might be on disk or cached in main-memory at any given
moment. Because disk input/output (I/O) is far more
expensive than memory access, main memory databases have
been used because of the high performance of memory
accesses and the decreasing main memory cost [2]. FM-RRDB
model consists of two components, Data Object model and
Transaction Model.

Data Object Model
We can define two different types of data items, temporal

and non-temporal data. Non temporal data doesn't change
with time, thus they don't have validity interval and they do
not need to be updated by periodic system updates, this type
includes static data, such as locations and lookup data, and
application Data, that used by different user transactions. On
the other hand, temporal Data change with time and have
validity interval and are updated periodically. It includes
sensor Data, which is collected from physical world. For
example, in a submarine control system, they could be ship
maneuvering data (such as position, speed and depth).
Replicated Data; items hosted by a specific site at which it is
not originated, as it will be illustrated next. Although,
replicated data has the same specifications of the sensor data,
it differs in the methods defined for that type which is invoked
by the transactions. And derived Data, the sensed data is
processed further to derive new data called Derived Data that
depends on past sensor data, for example the temperature and
pressure information pertaining to a reaction may be used to
derive the rate at which the reaction appears to be progressing
which is in turn could be used to derive a new data.

In our distributed real-time database model, a database D is

distributed over N nodes each database di (where 0 < i ≤ N)
resident in a node N called a site. Each site hosts a set of
temporal data objects and non-temporal objects. The site is
called the primary site for those data objects. Each site also
maintains a set of replicas of temporal data objects hosted by
other nodes. Fresh values of temporal data objects are
periodically submitted from sensors to their primary sites and
propagated to the replicas. For a specific data item, the data
copy at the primary site is called primary copy and the copies

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1171International Scholarly and Scientific Research & Innovation 3(4) 2009 scholar.waset.org/1307-6892/5310

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
4,

 2
00

9
w

as
et

.o
rg

/P
ub

lic
at

io
n/

53
10

http://waset.org/publication/A-General-Framework-for-Modeling-Replicated-Real-Time-Database/5310
http://scholar.waset.org/1307-6892/5310

that are replicated are called replicated copies or replicas. The
database size, D, is the total sizes of the databases at all sites
defined as follows:

D =∑ =

N

i
di

1
 (1)

As in ACCORD/UML approach [17] and [20], the data
object encapsulates time-constrained data, time-constrained
methods and concurrency control mechanisms. Each real-time
object is made of three components: (i) a set of real-time
attributes, (ii) a set of real-time methods (iii) a local controller.
But unlike those models which encapsulate also the inter
objects interactions and the exchanging information through
message passing they use a component called mailbox used to
store messages received by the RTO (Real-Time Object). A
mailbox is attached to an object and is generally for a given
object (instance). It is used only to store messages received by
the object and waiting to be processed. Our model mange this
interaction using transaction model as it will be illustrated
next.

The abstracted data object class consists of (N, A, M, CC)
where N is the name of the class, A is a set of attributes, and
M is a set of interface methods and CC is the local controller
associated with each object. The data object O is a logical
instance of the object class. As it was stated, our model
maintains the replicated data and the consistency of that data
items, an object replica r is a physical representation of a
logical object O. A replica r € R of logical object o is one
node’s local view of the state of o. Each node contains at most
one replica of a particular logical object. Ideally, all replicas of
an object o agree on a common, consistent state of object o
(i.e., their states are identical), and this is the responsibility of
the replication model used which is not considered here. Note
that the implementation of a non temporal data object is not
considered in this paper. Notes that, the replicated set R for
each node N, is dynamically changing, as the replica could be
created and deleted continuously, thus the local database at
each node consists of a set of its data object and a set of
remote replicas hosted by other nodes. We will distinguish
between two types of attributes for sensor or derived data
objects:

1- Attributes for sensor and replicated data object
Any object has the following specifications; for each a € A a=
(Id, PsiteId, value, TS, VI, BUF)
Id: is the unique identifier for the object on his primary site.
PsiteId: the site id where the object was originates, this attribute
give an indication of whether the object is a primary data
object or it is a replica e.g., if PsiteId = local site, this object is
a primary object originated at this site, if not it is a replica for
a remote data object. Value: is used to store the final attribute
value captured by the related last update method. This field is
used by the system to determine logical integrity constraints of
the attribute value. TS: is used to store the last time at which
the attribute's value was updated [7]. Time stamp is necessary
to determine temporal consistency of the object. For example,
if we store an attribute for storing the temperature, which a
sensor regularly provides readings, this update is reported

every 5 seconds. Thus the temperature object is considered
temporally inconsistent if the update does not occur within
that time frame. There are many ways to define timestamps. In
our model, the timestamp is the time when the value is
produced. If the value is produced by a sensor device, then
timestamp is the time when the value is read by the sensor. If
the value is produced by a transaction, then timestamp is the
time when the transaction completes. This field is used by the
system to determine whether or not timing constraints have
been violated. VI: denotes object's absolute validity interval
i.e., the length of the time interval following timestamp during
which the object is considered to have absolute validity.

As mentioned before, we need to maintain consistency
between the actual state of the environment and the state as
reflected by the contents of the database, this leads to the
notion of temporal consistency. Temporal consistency has two
components:

Absolute consistency: it reflects the state of the environment
and its image in the database.
Relative consistency: it reflects the consistency among the data
used to derive other data; this arises from the need to produce
the sources of derived data close to each other. So, it could be
stated that the value of the temporal object is logically
consistent if it satisfies all integrity constraints and it is
temporally consistent if it satisfies the Absolute consistency
(current time - timestamp) > VI. Another type of consistency
is related to the derived data objects called relative
consistency, for example if we considered two objects o1 and
o2 which have to timestamps TS1 and TS2 respectively, O1 and
O2 satisfied the relative consistency called relative valid
interval RVI if: │TS1 – TS2│ ≤ RVI

Consider the following example Suppose temperature rvi =5
and pressure rvi =10 R {temperature , pressure } and R rvi If
current time=100, then (a) temperature = (347,5,95) and
pressure = (50,10,97) are temporally consistent but (b)
temperature = (347,5,95) and pressure = (50,10,92) are not.
In (b) even though the absolute consistency requirements are
met, relative consistency is violated Whereas a given rvi can
be realized by sampling the corresponding real world
parameter often enough realizing an rvi may not be that
straight forward This is because achieving a given rvi implies
that the data items that belong to a relative consistency set
have to be observed at times close to each other. BUF: is the
Basic Update Frequency, for each temporal data object it is
updated periodically at a given update frequency received
from its primary site (sensor), while its replicas are updated at
a different general update frequency (GUF).

2- object attributes for derived data object
The object attributes have the following specifications; for

each a € A, a = (Id, PsiteId, value, RCS, RVI, BUF). Id: is the
unique identifier for the object on his primary site. PsiteId: as
for sensor object the site id where the object was originates.
Value:, the current value of the object and is used by the
system to determine logical integrity constraints of the
attribute value. RCS is the Relative Consistency Set, which

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1172International Scholarly and Scientific Research & Innovation 3(4) 2009 scholar.waset.org/1307-6892/5310

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
4,

 2
00

9
w

as
et

.o
rg

/P
ub

lic
at

io
n/

53
10

http://waset.org/publication/A-General-Framework-for-Modeling-Replicated-Real-Time-Database/5310
http://scholar.waset.org/1307-6892/5310

includes a set of sensor data objects from which the object is
derived. RVI denotes object's relative consistency as described
above. BUF, if this item is originated at another site, so it
could be replicated periodically at a given update frequency
received from its primary site.

3- Real-time methods

As in [20], we classify the real-time object methods into three
classes: periodic methods, sporadic methods, and aperiodic
methods.

Periodic methods:

These methods include the temporal consistency for
temporal data objects thought update of sensor data or update
remote replica for each data object, thus we can distinguishes
between two actions related to the replication strategy: push
action in which a replica updates are sent periodically at a
given update frequency, and pull action when the updates are
request from the remote sites. We define Update method using
BUF to update sensor data object, and Propagate method to
update its replica on a remote sites using GUF.

Sporadic methods:

These methods associated with the derived data that
calculated from sensor data [3]. We can define a Calculate
method to calculate its value from sensor data items specified
on its RCS. Another method Check could be defined to
maintain relative consistency of that object by checking RVI.

Aperiodic methods:

They include the remainder of methods that allow reading
the derived and sensor data objects as user transactions
typically arrive aperiodically. They do not write any temporal
data, but they can read/write non temporal data and only read
temporal data [3]. Another method Check validity could be
defined to check the validity of each item using timestamp and
its valid interval as described above.

4- Concurrency Controller CC

To improve performance and maintain temporal constrains
of both temporal data objects and transactions, CC associated
for each object allows the concurrent execution of transactions
thought allowing multiple methods to run concurrently, by
using any existing concurrency protocol supporting replicating
environment. Our framework depends on locking methods,
either local lock or global lock. We can distinguish between
read and write lock by defining a certain value for each data
object indicating its status and its availability to be locked by
incoming transaction or not.

Transaction Model
Transaction is a sequence of operations on the database that

maintain the ACID property, transaction is an Atomic unit that
executed all or nothing, and Consistent means it takes the
database for a consistent state to another consistent state. I, is
for Isolation, that the transaction execution is completely
independent from the execution of another one. The last D

means durability that when the transaction commits, its result
is written in permanent storage that can not roll back [5].

As mentioned earlier, data items are classified to temporal
and non temporal data items according to their timing nature
and requirements. Accordingly, transactions in a replicated
real-time database could be classified as replication
transactions, which concern with system update transactions
that include both sensor update transaction at the primary site
and the replica update transactions on the other nodes where
replicas for specific temporal data object resident. Application
transactions on the other hand includes all user requests for
both temporal and non temporal data items, here, we consider
only the transactions that manipulate the temporal data items
(either update or query). Transactions can also be classified
into local transactions, if all its operations are performed
locally without a need for any remote access to any other site.
And global transactions if at least one of its operations
executes on a remote site. It is the job of the transaction
manager to map the replication and application transactions to
both local and global transaction. Note that our model doesn't
consider or maintain replication guarantee for non temporal
data objects. According to the previous classifications a
general transaction can be donated as follow: T type =(Tid , Lsite
Id, Rsite id, DL, e).Where transaction type specifies its type,
replication or application transaction, Lsite Id is the id of the
site where the transaction was made, Rsite id is the site to
which the transaction is sent. DL and e is the dead line time
and execution time for the transaction respectively.

Replication transactions:
T update = (Tid , Lsite Id, Rsite id, WS, PUF, DL, e)
Where update type is a sensor data update transaction, WS, is the
write set of the transaction. GUF is the general update
frequency, and Lsite Id= Rsite id, PUF.
T propagation = (Tid , Lsite Id, Rsite id, WS, GUF, DL, e)
Type propagation is for updating replicas at remote sites.

Application Transactions:
T = (Tid , Lsite Id, Rsite id, RS, WS,DL, e), It includes all
transactions which all are performed either locally or remotely
.RS, WS, is the Read set and the write set of the transaction
respectively.

IV. REAL-TIME REPLICATED DATABASE MODEL WITH
SEGMENTATION (FM-RRDB WS)

As previously illustrated, replication is useful in improving
the availability of data. The most extreme case is replication of
the whole database at every site in the distributed system, thus
creating a full replicated database. This approach obviously
improves availability because the system can continue work as
long as at least one site is up and it also improves performance
by enabling both local access and retrieval of data. On the
other hand it leads to slow down system update, that each
update requires update all copies at all the other remote sites.
This problem is became worsen in the real-time systems
because of their timing requirements and the expensive cost to
replicate the sensor data especially in case of heavy work
loads. In real-time database systems, the workload of temporal

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1173International Scholarly and Scientific Research & Innovation 3(4) 2009 scholar.waset.org/1307-6892/5310

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
4,

 2
00

9
w

as
et

.o
rg

/P
ub

lic
at

io
n/

53
10

http://waset.org/publication/A-General-Framework-for-Modeling-Replicated-Real-Time-Database/5310
http://scholar.waset.org/1307-6892/5310

data update can be very high (e.g., over 500 up- dates/sec [11).
Thus, the cost of maintaining replicas for all data, especially
sensor data, is too high which causes a scalability problem,
with respect to bandwidth usage for replication of updates,
storage usage for replicas, and processing usage for
propagating, integrating and conflict resolving of detached
updates. The usage of each of these resources grows as O (n2),
where n is the number of nodes in the system, assuming that
the number of updates grows as O (n). The concept of "virtual
full replication” was introduced in [10] to address scalability
issues. In the paper, virtual full replication is provided by
segmenting the database and allowing different segments to
have different degrees of replication. Segment is a group of
data objects that share properties, capturing some aspects of
the application semantics, and is allocated to a specified subset
of the nodes (possibly temporarily inconsistent with each
other). Each segment is considered as a partition of the
database as units of allocation of replicas, which can be
individually replicated based on specified replication
requirements from all the clients at a certain database node. If
the specification indicates that a segment will never be used by
any clients on a node, it does not need to be replicated to that
node. In [10] a segmentation algorithm has been proposed that
uses a table to collect all properties of interest for a set of data
objects, the most important properties of data objects, or group
of objects, is the set of nodes where they are accessed by
transactions. And this is the addressed property needed by our
model. The algorithm has been omitted for space purposes.

The following tables illustrate the way by which a segment
regarding accessing the data object is performing. As in table
1(a), a database of 6 objects replicated to 5 nodes. Rows in the
table could represent groups of data objects, such as object
classes or user-defined object clusters that share the same
properties. By assigning a binary value to each column, each
row can be interpreted as a binary number. This object key
uniquely identifies the nodes where the object is accessed. By
sorting the table on the object key, we get the table in table.1
(b). Passing through this table once, we can collect rows with
same key value into unique segments.

A data object can be assigned to only one segment, by this
rule we can treat each segment independently and decide a
multiple replication degree. And we can use transaction
grouping, by witch the propagation transaction are grouped to
be by replicating the whole segment rather than replicate an
individual object to a certain site, thus contributing in solving
the scalability problem. To implement the segmentation
concept in our framework, each data object will have segment
specifications as follows: O = (N, A, M, CC, Sid), where Sid is
a unique identifier for the segment to which the object
belongs. Anyway, the implementation of this part is out of
scope of this paper, and is considered as a future work.

V. UML PROFILE

Complex systems, such as real-time database require the
modeling of dynamic properties for data and information.
Therefore, the development of methods to design real-time
databases with support for both static and dynamic modeling
is an important issue. In the literature, there are a few works
for real-time database modeling, taking into account the

replication and scalability issues. UML presents a number of
favorable characteristics for modeling complex real-time
systems, it also used for modeling object-oriented database
systems. In this paper we use an UML profile, entitled UML-
Magicdraw 15.5, which is a specialized variant of the UML
Profile for MARTE for real-time database applications.

In our work, we tried to supply the designers of real-time
databases, UML extensions to support real-time database
requirements. An UML extension is specified in the UML
metamodel by a stereotype. This latter allows designers to
extend the vocabulary of UML in order to create new model
elements, derived from existing ones, but that have specific
properties that are suitable for a particular problem domain. In
[20] UML-RTDB stereotypes extend metamodel classes with
specific sensor and derived attributes, specific periodic and
sporadic operations and a specific real-time class that allow
the design of class diagrams for real-time databases. While, in
our work, UML-RTDB stereotypes have been extended for
both data object and transaction object for specific sensor,
replicated, and derived attributes as illustrated in figuers 1 and
2. So, temporal real-time object is either sensor, derived, or
replica, so we define three stereotypes, <<Sensor>>,
<<Derived>>, and <<Replica>> to declare respectively
sensor, derived and replicated objects in the class diagrams.

VI. CONCLUSION AND FUTURE WORK

 A general framework to model a replicated real-time
database has been designed for small and medium scale
distributed real-time database systems. Both data and
transactions timing constrains are maintained. The presented
framework has been extended to model large scale database
systems. This has been done by presenting a general outline
that considers improving the scalability by using an existing
static segmentation algorithm applied on the whole database
on node allocation. It is desirable to implement this framework
on a real distributed real-time database system and evaluate it
with real transactions requirements. We are currently
developing a replication control algorithm. FW-RRDB will be
used as a framework for our real-time database. We are also
looking into implementing the segmentation part as a
contribution in solving the scalability problem of distributed
real-time database systems.

REFERENCES
[1] A. Bestavros, K.-J. Lin, and S. Son. "Real-Time Database System:

Issues and Applications", chapter Advances in Real-Time DataBase
Systems Research, in The Springer International Series in Engineering
and Computer Science, Vol. 396, Kluwer Academic Publishers, 1997,
pages 1–14.

[2] J.Baulier, P.Bohannon, S.Gogate, C.Gupta, S.Haldar, "DataBlitz storage
manager: Main memory database performance for critical applications",
in Proc. ACM SIGMOD international conference on Management of
data, vol 28, no.2, pp.519–520, June 1999

[3] B. Selic. "Using the object paradigm for distributed real-time systems".
In Proc of First IEEE International Symposium on Object oriented Real-
time distributed Computing (ISORC’98), Kyoto, Japan, April 1998, pp.
478–480.

[4] Y-W.Chen, and L.Gruenwald, “Effects of Deadline Propagation on
Scheduling Nested Transactions in Distributed Real - Time Database

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1174International Scholarly and Scientific Research & Innovation 3(4) 2009 scholar.waset.org/1307-6892/5310

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
4,

 2
00

9
w

as
et

.o
rg

/P
ub

lic
at

io
n/

53
10

http://waset.org/publication/A-General-Framework-for-Modeling-Replicated-Real-Time-Database/5310
http://scholar.waset.org/1307-6892/5310

Systems,” Journal of Information Systems, Vol. 21, No. 1, pp. 103 - 124,
1996.

[5] J.Gray and A.Reuter, “Transaction Processing: Concepts and
Technique,” Morgan Kaufman, San Mateo, CA, 1993.

[6] P.Joan, M.Fred, "Semantic data models, ACM Computing Surveys, vol
20, no. 3, pp. 153-189, September 1988.

[7] K.Ramamritham and C.Pu. "A Formal Characterization of Epsilon
Serialisability". IEEE Transaction Journal on Knowledge and Data
Engineering, vol 7, no.6, pp.:997–1007, December1995.

[8] H.Kopetz, and P.Verissimo, "Real time and dependability concepts", in
ACM Press Frontier Series, ed., ‘Distributed Systems’ 2nd Ed, New
York, NY, USA, Addison-Wesley, 1994, ch. 16.

[9] Lee Juhnyoung, “Concurrency Control Algorithms for Real-time
Database Systems”, PhD Thesis, Department of Computer Science,
University of Virginia, 1994.

[10] G. Mathiason and S.F. Andler "Virtual Full Replication: Achieving
Scalability in Distributed Real-Time Main-Memory Systems", in Proc.
Euromicro Conf. on Real-Time System, Porto Portugal, July 2003.

[11] M. Cochinwala and J. Bradley. "A multi database system for tracking
and retrieval of financial data". In Proc of 20th International Conf. on
Very Large Data Bases, Morgan Kaufmann Publishers Inc. San
Francisco,1994, pp. 714 – 721

[12] M. Amirijoo, J. Hansson, and S. H. Son. "Specification and management
of QoS in real-time databases supporting imprecise computations". IEEE
Transactions on Computers, vol. 55, no. 3, pp. 304–319, March 2006.

[13] D.Michael, P. Joan, and W.F.Victor. "Implementing relationships and
constraints in an object-oriented database using monitors". In Rules in

Database Systems, Proc. 1st International Workshop on Rules in
Database, pp. 347-363, 1993.

[14] N. Idoudi, C. Duvallet, R. Bouaziz, B. Sadeg, and F. Gargouri.
"Structural model of real-time databases: an illustration". In Proc. 11th
IEEE International Symposium on Object oriented Real-time distributed
Computing (ISORC’2008), Orlando, United State, May 2008, pp. 58 –
65.

[15] OMG,”UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems", Version 1.0, OMG Document Number:
formal/2009-11-02, available at URL:
http://www.omg.org/spec/MARTE/1.0, updated at November 2009.

[16] OMG. “UML Profile for Schedulability, Performance and Time", v1.1,
formal/2005-01- 02, January 2005, available at http://www.omg.org/cgi-
bin/doc?formal/2005-01-02.

[17] S. Gerard, C. Mraidha, F. Terrier, and B. Baudry. "A UML-Based
Concept for High Concurrency: The Real-Time Object", In Proc. 7th
IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC'04), Vienna, Austria, 2004, pp. 64-67.

[18] Z.Stanley and M.David. "Readings in Object Oriented Database
systems". Morgan Kau_man, San Mateo, CA, 1990.

[19] S. Demathieu, F. Thomas, C. André, S. Gérard, and F. Terrier. "First
experiments using the UML profile for MARTE". In Proc. 11th IEEE
International Symposium on Object oriented Real-time distributed
Computing (ISORC’2008), Orlando, United State, May 2008, pp. 50–57.

[20] S. G.Bruno, I.Nizar , L.Nada , D.Claude , B.Rafik , and G. Faiez " A
Framework to Model Real-Time Databases". International Journal of
Computing & Information Sciences Vol. 7, No. 1, January 2009.

 TABLE 1(a)
 ACCESS TABLE

 TABLE 1(b)
 SEGMENT TABLE

Accesses

Column
value

1 2 4 8 16

Objects

N1 N2 N3 N4 N5
Object

Key

O1 x x 9

O2 x x 18

O3 x x 6

O4 x 4

O5 x x 6

O6 x x 9

Column
value

1 2 4 8 16
Object

Key

Objects

N1 N2 N3 N4 N5
Segment

key

O1 x 4

O2 x x 6

O3 x x 6

O4 x x 9

O5 x x 9

O6 x x 18

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1175International Scholarly and Scientific Research & Innovation 3(4) 2009 scholar.waset.org/1307-6892/5310

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
4,

 2
00

9
w

as
et

.o
rg

/P
ub

lic
at

io
n/

53
10

http://waset.org/publication/A-General-Framework-for-Modeling-Replicated-Real-Time-Database/5310
http://scholar.waset.org/1307-6892/5310

Fig.1 Object Class Model.

Fig. 2: Transaction Class Model.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1176International Scholarly and Scientific Research & Innovation 3(4) 2009 scholar.waset.org/1307-6892/5310

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
4,

 2
00

9
w

as
et

.o
rg

/P
ub

lic
at

io
n/

53
10

http://waset.org/publication/A-General-Framework-for-Modeling-Replicated-Real-Time-Database/5310
http://scholar.waset.org/1307-6892/5310

