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Abstract—We present new insightful results on the uplink data
detection for massive multiple-input multiple-output systems with
1-bit analog-to-digital converters. The expected values of the soft-
estimated symbols (i.e., after the linear combining and prior to the
data detection) have been recently characterized for multiple user
equipments (UEs) and maximum ratio combining (MRC) receiver
at the base station. In this paper, we first provide a numerical
evaluation of the expected value of the soft-estimated symbols with
zero-forcing (ZF) and minimum mean squared error (MMSE)
receivers for a multi-UE setting with correlated Rayleigh fading.
Then, we propose a joint data detection (JD) strategy, which
exploits the interdependence among the soft-estimated symbols
of the interfering UEs, along with its low-complexity variant.
These strategies are compared with a naive approach that adapts
the maximum-likelihood data detection to the 1-bit quantization.
Numerical results show that ZF and MMSE provide considerable
gains over MRC in terms of symbol error rate. Moreover, the
proposed JD and its low-complexity variant provide a significant
boost in comparison with the single-UE data detection.

Index Terms—1-bit ADCs, joint data detection, massive MIMO.

I. INTRODUCTION

To leverage the wide bandwidths in the (sub-)THz spec-
trum, massive multiple-input multple-output (MIMO) arrays
are required at the transmitter and/or receiver to overcome
the strong pathloss and penetration loss [1], [2]. In this
respect, fully digital architectures are preferred to their hybrid
analog-digital counterparts as they provide highly flexible
beamforming and large-scale spatial multiplexing [3]. In this
context, using low-resolution analog-to-digital/digital-to-analog
converters (ADCs/DACs) is necessary to scale down the power
consumption and complexity [4]–[6]. Remarkably, fully-digital
architectures with few-bit or even 1-bit ADCs/DACs can
outperform hybrid analog-digital ones in terms of both spectral
and energy efficiency [7].

The data detection in massive MIMO systems with 1-bit
ADCs has been the subject of many recent studies, e.g., [8]–
[11]. In this paper, we extend our previous work [11], which
characterized the expected values of the soft-estimated symbols
(i.e., after the linear combining and prior to the data detection)
for multiple user equipments (UEs) and with maximum ratio
combining (MRC) receiver at the base station (BS). Considering
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K UEs and a transmit constellation of L data symbols, the
exhaustive single-UE data detection (SUD) method proposed in
[11] maps each soft-estimated symbol of the target UE to one
of the LK expected values of the soft-estimated symbols based
on the minimum distance criterion. This method has two main
drawbacks: on the one hand, it performs an exhaustive search
over the set of expected values of the soft-estimated symbols
corresponding to the target UE resulting from all the possible
data symbol vectors, whose size grows exponentially with the
number of UEs; on the other hand, it does not take advantage
of the interdependence among the soft-estimated symbols of
the interfering UEs as it treats each UE individually. Moreover,
the analysis in [11] is limited to the case of MRC, whereas
more sophisticated linear receivers such as the zero-forcing
(ZF) and minimum mean squared error (MMSE) receivers
generally lead to better performance.

Considering the key observations above, we first provide
a numerical evaluation of the expected values of the soft-
estimated symbols when ZF and MMSE are adopted at the BS.
Interestingly, these expected values can be obtained by simple
scaling of their MRC counterparts, for which a closed-form
expression was derived in [11]. Then, we propose new data
detection strategies based on the minimum distance criterion
with respect to the expected values of the soft-estimated
symbols. We begin by introducing a naive approach based
on the maximum-likelihood data detection adapted to the 1-
bit quantization, which is referred to as quantized maximum
likelihood (QML). This strategy, however, does not account
for the additive white Gaussian noise (AWGN) needed for
the proper scrambling of the 1-bit quantized signals at the
different antennas. Then, we propose a joint data detection
(JD) strategy that considers parallel data detection over all
the UEs and exploits the interdependence among their soft-
estimated symbols. Furthermore, we present a low-complexity
variant of JD obtained by reducing the size of the search space.
Numerical results show that ZF and MMSE provide substantial
gains in terms of symbol error rate (SER) compared with MRC
thanks to the reduced dispersion of the soft-estimated symbols
around their expected values. In addition, the proposed JD and
its low-complexity variant greatly outperform the exhaustive
SUD described in [11] since the latter does not account for
the interdependence among the soft-estimated symbols of the
interfering UEs.



II. SYSTEM MODEL

Let us consider a single-cell massive MIMO system where
a BS equipped with M antennas serves K single-antenna UEs
in the uplink. We use H ≜ [h1, . . . ,hK ] ∈ CM×K to denote
the uplink channel matrix, where hk represents the channel
vector of UE k. Considering a general correlated Rayleigh
fading channel model, we have hk ∼ CN (0,Chk

), ∀k,
where Chk

∈ CM×M is the channel covariance matrix
of UE k. Furthermore, we define h ≜ vec(H) ∈ CMK

and, accordingly, we have h ∼ CN (0,Ch), with Ch ≜
blkdiag(Ch1 , . . . ,ChK

) ∈ CMK×MK . For simplicity, and
without loss of generality, we assume that all the UEs are
subject to the same signal-to-noise ratio (SNR) ρ during
both the channel estimation and the uplink data transmission
(see, e.g., [5], [9]). Each BS antenna is connected to two 1-
bit ADCs, one for the in-phase and one for the quadrature
component of the received signal. In this context, we introduce
the 1-bit quantization function Q(·) : CA×B → Q, with

Q ≜
√

ρK+1
2 {±1± j}A×B and (see, e.g., [5], [9])

Q(X) ≜

√
ρK + 1

2

(
sgn(Re[X]) + j sgn(Im[X])

)
. (1)

A. Channel Estimation
As in [4], we utilize the Bussgang linear MMSE (BLMMSE)

estimator to estimate the channels. Let P ≜ [p1, . . . ,pK ] ∈
Cτ×K denote the pilot matrix, where pk ∈ Cτ represents the
pilot vector for UE k and τ is the pilot length. We assume
τ ≥ K and orthogonal pilot vectors among the UEs. During
the channel estimation, all the UEs simultaneously transmit
their pilots and the signal received at the input of the ADCs
at the BS is given by

Yp ≜
√
ρHPH + Zp ∈ CM×τ (2)

where Zp ∈ CM×τ is the AWGN matrix with i.i.d. CN (0, 1)
elements. At this stage, we vectorize (2) as

yp ≜ vec(Yp) (3)

=
√
ρP̄∗h+ zp ∈ CMτ (4)

with P̄ ≜ P ⊗ IM ∈ CMτ×MK and zp ≜ vec(Zp) ∈ CMτ .
The BS observes the quantized signal

rp ≜ Q(yp) ∈ CMτ (5)

and obtains the estimate of h via the BLMMSE estimator as
[4]

ĥ ≜
√
ρChP̄

TApC
−1
rp rp ∈ CMK (6)

with

Ap ≜

√
2

π
(ρK + 1)Diag(Cyp

)−
1
2 ∈ CMτ×Mτ (7)

and Crp ≜ E[rprHp ]. Finally, the estimate of H is expressed
as Ĥ ≜ [ĥ1, . . . , ĥK ] ∈ CM×K , with

ĥk ≜
√
ρChk

p̄T
kApC

−1
rp rp ∈ CM (8)

and p̄k ≜ pk ⊗ IM ∈ CMτ×M .

B. Data Detection

Let x ≜ [x1, . . . , xK ]T ∈ CK denote the data symbol vector
comprising the data symbols transmitted by the UEs. We
assume that x ∈ SK , where S ≜ {s1, . . . , sL} represents
the transmit constellation with L data symbols. During the
uplink data transmission, all the UEs simultaneously transmit
their data symbols and the signal received at the input of the
ADCs at the BS is given by

y ≜
√
ρHx+ z ∈ CM (9)

where z ∈ CM is the AWGN vector with i.i.d. CN (0, 1)
elements. The BS observes the quantized signal

r ≜ Q(y) ∈ CM (10)

where we note that the scaling factor
√

ρK+1
2 in (1) is such

that the variance of r coincides with that of y. Then, the BS
obtains a soft estimate of x via linear combining as

x̂ ≜ [x̂1, . . . , x̂K ]T (11)

= VHr ∈ CK (12)

where V ∈ CM×K is the combining matrix based on imperfect
channel estimation, which is carried out as described in
Section II-A.

Expected value of the soft-estimated symbols with MRC.
As in [11], let us assume that the MRC receiver is adopted
at the BS. The combining matrix is given by V(MRC) = Ĥ
and the soft-estimated symbol of UE k can be expressed as
x̂
(MRC)
k = ĥH

k r (cf. (12)), with ĥk and r given in (8) and (10),
respectively. Then, the expected value of the soft-estimated
symbol of UE k for a given data symbol vector x is given by

E
(MRC)
k ≜

√
ρtr(C−1

rp App̄
∗
kChk

Crrp) (13)

with Crp introduced in Section II-A and where Crrp ≜ E[rrHp ]
represents the cross-covariance matrix between the quantized
signals received during the uplink data transmission and channel
estimation. Note that Crrp can be written in closed-form as in
[11, Eq. (20)]. Considering K = 2 and 16-QAM (quadrature
amplitude modulation) data symbols, Fig. 1 shows the impact
of the data symbol vector x on the expected values of the
soft-estimated symbols of UE 1. In particular, we observe that
each of the L2 = 256 pairs of transmitted data symbols gives
rise to a different expected value.

III. ENHANCED DATA DETECTION

In this section, we first extend the analysis in [11], which
is limited to the MRC receiver, by providing a numerical
evaluation of the expected values of the soft-estimated symbols
with ZF and MMSE. Then, we propose enhanced data detection
strategies that account for the interdependence among the soft-
estimated symbols of the interfering UEs.
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Fig. 1. Expected values of the soft-estimated symbols of UE 1 when
UE 2 transmits all the possible data symbols from S; MRC is adopted
at the BS.

A. Expected Value of the Soft-Estimated Symbols with ZF and
MMSE

As done in Section II-B for MRC, we focus on the expected
value of the soft-estimated symbols when ZF is adopted at the
BS; the same steps can be followed for the MMSE receiver. The
combining matrix is given by V(ZF) = Ĥ(ĤHĤ)−1 and the
soft-estimated symbol for UE k can be expressed as x̂

(ZF)
k =

[(ĤHĤ)−1](k,:)Ĥ
Hr. Then, the expected value of the soft-

estimated symbol of UE k for a given data symbol vector x is
given by

E
(ZF)
k ≜ E[x̂(ZF)

k ] (14)

where the expectation is taken over H, z, and zp. Since the
expected values of the soft-estimated symbols with ZF/MMSE
are difficult to derive analytically, we use Monte Carlo
simulations in this paper and leave the derivation of tractable
expressions for future work. Considering K = 2 and 16-QAM
data symbols, Fig. 2 plots the expected values of the soft-
estimated symbols of UE 1 corresponding to the three different
linear receivers, i.e., MRC, ZF, and MMSE. Interestingly,
we observe that the expected values with ZF/MMSE can be
obtained by simple scaling of their MRC counterparts in (13).
In this respect, let αk denote the scaling factor to be applied
to the expected values with MRC so that they coincide with
their counterparts obtained with ZF for UE k. Regarding the
definitions in (13) and (14), let e

(MRC)
k and e

(ZF)
k ∈ CLK

denote the vectors containing all the possible expected values
of the soft-estimated symbols for UE k with MRC and ZF,
respectively. Then, αk can be computed as

αk ≜ argmin
t>0

∥e(ZF)k − t e
(MRC)
k ∥. (15)

Considering the same setup as in Fig. 2, Fig. 3 shows the above
scaling factor of UE 1 versus the SNR assuming correlated and
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Fig. 2. Expected values of the soft-estimated symbols of UE 1 when
UE 2 transmits all the possible data symbols from S; MRC, ZF, or
MMSE is adopted at the BS.
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Fig. 3. Scaling factor between the expected values of the soft-estimated
symbols of UE 1 obtained with MRC and ZF versus SNR; correlated
and uncorrelated Rayleigh fading are considered.

uncorrelated Rayleigh fading channels, where the former are
generated as described in Section IV. We observe that, with
uncorrelated channels, the scaling factor exhibits a significant
variation in the range of SNR values, whereas it appears more
consistent in the case of correlated channels.

B. Data Detection Strategies

The exhaustive SUD proposed in [11] maps each soft-
estimated symbol of the target UE to one of the LK expected
values of the soft-estimated symbols based on the minimum
distance criterion. This method is impractical since it performs
an exhaustive search over the set of expected values of the
soft-estimated symbols corresponding to the target UE resulting
from all the possible data symbol vectors, whose size grows
exponentially with the number of UEs. In addition, it does not
take advantage of the interdependence among the soft-estimated
symbols of the interfering UEs as it treats each UE individually.



Hence, we present three data detection strategies that exploit
this interdependence: 1) quantized maximum likelihood (QML),
2) joint data detection (JD), and 3) N -point joint data detection
(N -JD). The QML represents a naive approach that adapts
the well-known maximum-likelihood data detection to the 1-
bit quantization. On the other hand, the JD and N -JD use
the minimum distance criterion to map each soft-estimated
symbol in (11) to one of the expected values of the soft-
estimated symbols obtained as in (13) or (14) and, thus, to one
of the possible data symbols in S. In the following, we use
lk ∈ {1, . . . , L} and l⋆k ∈ {1, . . . , L} to denote the indices of
the transmitted and detected data symbol for UE k, respectively.

1) Quantized maximum likelihood (QML): This strategy
detects the data symbol vector x⋆ by simply finding the closest
match between the quantized received signal r and Q(Ĥx) for
all the possible data symbol vectors, i.e.,

x⋆ = argmin
x∈SK

∥∥r−√
ρQ(Ĥx)

∥∥ (16)

from which {l⋆k}k∈K can be extracted. We point out that
comparing the noisy quantized received signal r with Q(Ĥx),
which neglects the AWGN altogether, is highly detrimental.
In fact, a judicious amount of AWGN allows to effectively
scramble the 1-bit quantized signals at the M antennas [9],
[11] to recover the phase and amplitude of the transmitted data
symbol. Instead, by overlooking the AWGN, Q(Ĥx) yields
identical values for all the elements of Ĥx falling into the same
quadrant. Instead of examining the quantized received signal,
it is more meaningful to consider the soft-estimated symbols
obtained via linear combining, which embed the AGWN.

2) Joint data detection (JD): This strategy takes the expected
values of the soft-estimated symbols of the interfering UEs
into account, which leads to enhanced data detection of the
target UE. Regardless of which receiver is adopted at the BS,
let Ek,l(x−k) denote the expected value of the soft-estimated
symbol for UE k when xk = sl and the interfering UEs
transmit x−k ≜ [x1, . . . , xk−1, xk+1, . . . , xK ]T ∈ CK−1. For
simplicity, and without loss of generality, we consider K = 2
in the following. Let El,l′ ≜ [E1,l(sl′),E2,l′(sl)]

T denote the
vector containing the expected values of the soft-estimated
symbols of the two UEs when x1 = sl and x2 = sl′ . Let E ≜
{El,l′ ,∀(sl, sl′) ∈ S2} denote the set of vectors comprising
the expected values of the soft-estimated symbols for both
UEs resulting from all the possible data symbol vectors, with
|E| = L2. The soft-estimated symbol vector x̂ is mapped to
one of the vectors El,l′ ∈ E as

E⋆ = argmin
El,l′∈E

∥x̂− El,l′∥ (17)

from which {l⋆k}k∈K can be extracted. In general, this strategy
amounts to performing an exhaustive search over all the LK

possible vectors El1,...,lK ≜
[
E1,l1(x−1), . . . ,EK,lK (x−K)

]T
.

Hence, the complexity of this strategy increases exponentially
with K.

3) N -point joint data detection (N -JD): This strategy can
be seen as a low-complexity variant of JD. Let Ēk,l ≜
Ex−k

[Ek,l(x−k)] represent the average of the expected values
of the soft-estimated symbols of UE k when xk = sl. First,
we consider the N ≤ L values of Ēk,l that are closest
to each UE’s soft-estimated symbol x̂k. In this regard, let
S ′
k = {s(k)l1

, s
(k)
l2

, . . . , s
(k)
lN

} represent the set containing the
detected symbols of UE k, where s

(k)
li

denotes the detected
symbol corresponding to the ith closest value of Ēk,l to each
soft-estimated symbol of UE k. Regarding El1,...,lK defined
in Section III-B2, let EN -JD ≜ {El1,...,lK ,∀(sl1 , . . . , slK ) ∈∏K

k=1 S ′
k} denote the restricted set of vectors El1,...,lK resulting

from the data symbol vectors belonging to the Cartesian product
of S ′

k across all the UEs, with |EN−JD| = NK . The soft-
estimated symbol vector x̂ is mapped to one of the vectors
El1,...,lK ∈ EN−JD as

E⋆ = argmin
El1,...,lK

∈EN−JD

∥x̂− El1,...,lK∥ (18)

from which {l⋆k}k∈K can be extracted. As a result, the size
of the search space is NK , which can be made considerably
smaller compared with LK of JD by adjusting the value of N .

IV. NUMERICAL RESULTS

In this section, we evaluate the impact of the different
receivers (i.e., MRC, ZF, and MMSE) and the data detection
strategies described in Section III-B in terms of SER. We
consider either K = 2 or K = 3 UEs, and unless otherwise
stated, we assume that the BS is equipped with M = 128 an-
tennas. The set of data symbols S corresponds to the 16-QAM
constellation, i.e., S = 1√

10

{
±1±j,±1±j 3,±3±j,±3±j 3

}
,

which is normalized such that 1
L

∑L
l=1 |sl|2 = 1. The channel

covariance matrices are generated based on the one-ring channel
model [12] with angular spread of 30◦ for each UE and angular
separation of 30◦ between the UEs. All the UEs are subject to
the same (normalized) pathloss, such that tr(Chk

) = M, ∀k;
unless otherwise stated, we consider ρ = 0 dB. The orthogonal
pilots used for the channel estimation described in Section II-A
are constructed as Zadoff-Chu sequences, which are widely
adopted in the 4G LTE and 5G NR standards [13]; unless
otherwise stated, we fix τ = 31. All the SER results are
obtained by averaging over 4× 103 independent channel and
AWGN realizations and taking all the possible data symbols
into account.

Considering K = 2, Fig. 4 plots the SER as a function of the
SNR obtained with the data detection strategies described in
Section III-B. For comparison, we also include the exhaustive
SUD and the genie-aided data detection presented in [11]. As
detailed in Section III-B, the exhaustive SUD does not take
advantage of the interdependence among the soft-estimated
symbols of the interfering UEs, whereas the genie-aided
data detection assumes that the data symbols transmitted by
the interfering UEs are perfectly known when detecting the
symbols of the target UE. All the SER curves, except those
corresponding to QML, feature an optimal SNR operating
point: at low SNR, the AWGN is dominant; at high SNR,
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Fig. 4. SER versus SNR obtained with different data detection
strategies and different receivers.

the soft-estimated symbols corresponding to the data symbols
with the same phase are hardly distinguishable. In between
these regimes, the right level of AWGN produces a proper
scrambling of the 1-bit quantized signals at the M antennas.
This phenomenon does not manifest with QML, where the
SER decreases with the transmit SNR until it saturates. This
is due to the fact that QML neglects the AWGN altogether,
and its performance does not improve significantly even with
perfect channel state information (CSI). However, the QML
strategy outperforms JD with MRC at high SNR since the
former seeks to pick up the best data symbol vector x while
the latter does not account for the interference among the
different UEs. As demonstrated in Fig. 4, the genie-aided
strategy outperforms JD for any receiver adopted at the BS.
However, the genie-aided strategy cannot be implemented in
practice and is considered only to evaluate how the knowledge
of the data symbols transmitted by the interfering UEs impacts
the data detection performance for the target UE. On the
other hand, JD suffers from the error propagation between
the detected symbols of the UEs, particularly at high SNR.
Remarkably, there is a significant gain for all the data detection
strategies obtained with the ZF and MMSE compared with
their MRC counterparts. Here, the expected values of the soft-
estimated symbols with the ZF/MMSE receivers are computed
via Monte Carlo simulations. As demonstrated in Section III-A,
these expected values can be obtained with simple scaling of
the MRC counterparts in (13). As a result, the SER gain for
the ZF/MMSE receivers is not due to their expected values but
the reduced dispersion of the soft-estimated symbols around
them. The exhaustive SUD method developed in [11] considers
only the MRC receiver, but it can work with any receiver. In
this regard, we have that JD and N -JD with N = 3 provide a
significant boost in comparison with the exhaustive SUD with
the ZF/MMSE receivers. This means that taking advantage of
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the interdependence among the soft-estimated symbols of the
interfering UEs gives a notable gain over the data detection
strategies that treat each UE individually.

Considering again K = 2, Fig. 5 illustrates that N -JD
exhibits the same performance with respect to JD with N = 3.
This is because, with K = 2, there is significant overlap among
many of the 256 expected values of the soft-estimated symbols.
In addition, since there are three different amplitude levels
in the 16-QAM constellation, only 3 × 16 expected values
can be clearly distinguished (see Fig. 1). Fig. 6 extends the
insights of Fig. 5 to the case of K = 3. Here, there are
163 = 4096 different triplets of data symbols transmitted by
the three UEs, each corresponding to a different expected
value [11]. Remarkably, N -JD with N = 4 perfectly matches
JD. This is because we have more distinguishable expected
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values with K = 3 according to [11]. Therefore, we need to
increase the size of the search space for N -JD to achieve the
performance of JD perfectly.

Fig. 7 plots the minimum SER over the SNR ρ against the
number of UEs for N -JD. It can be readily seen that the gap
in Fig. 7 between N -JD with N = 4 and N = 1 does not
change as K grows and the system load M

K remains fixed.
This is because fixing M

K and increasing M and K lead to a
higher beamforming gain, which better mitigates the impact of
the interference among the different UEs. Considering K = 2
and the data detection strategies depicted in Fig. 7, Fig. 8
illustrates the impact of the number of BS antennas M on
the minimum achievable SER over the SNR ρ. We observe
that the minimum SER monotonically decreases as M grows
since higher granularity in the antenna domain contributes to
a proper scrambling of a larger number of the 1-bit quantized
signals.

V. CONCLUSIONS

Considering a multi-UE setting with correlated Rayleigh
fading, we investigated the uplink data detection in massive

MIMO system with 1-bit ADCs. In this study, we obtained the
soft-estimated symbols for the ZF/MMSE receivers based on
imperfectly estimated channels. Then, building on this result,
we designed efficient data detection strategies based on the
minimum distance criterion, which were compared in terms of
SER and complexity. In this regard, we proposed a joint data
detection strategy and its low-complexity variant, which take
advantage of the interdependence among the soft-estimated
symbols of the interfering UEs. Based on the numerical results,
the proposed strategies with the ZF/MMSE receivers showed
a significant gain in the SER compared with their counterparts
with MRC, thanks to the reduced dispersion of the soft-
estimated symbols around their expected values. Lastly, we
demonstrated that increasing the number of UEs does not affect
the SER gain in the proposed strategies over the exhaustive
single-UE detection, provided that the system load is fixed.
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