
Project NECCTON No 101081273 Start / Duration 2023-2026

Dissemination Public Nature Report

Date 31 January 2024 Version 1.1

This project has received funding from Horizon Europe RIA under Grant
Number 101081273

Page 1 of 40

Deliverable 3.1

Best practices for implementing new BGC process
modules in CMEMS/FABM

Deliverable
Contributors: Name Organisation Role / Title

Deliverable Leader Jorn Bruggeman BB Task leader

Contributing Author(s)

Veli Çağlar Yumruktepe NERSC WP3 contributor

Paolo Lazzari OGS WP3 contributor

Sarah Albernhe CLS WP3 contributor

Ute Daewel HEREON WP7 contributor

Nicolas Azaña Schnedler-
Meyer BB

WP3 contributor

Reviewer(s)
Diego Macías JRC External reviewer

Final review and
approval Stefano Ciavatta MOi Project lead

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 2 of 40

Document History:

Release Date Reason for Change Status Distribution

0.0 22/01/2024 Initial document, to be reviewed Released Internal

1.0 31/01/2024 Final revised report Released Public

1.1 01/02/2024 Fixed formatting/referencing
issue Released Public

To cite this document

Bruggeman, J., Yumruktepe, VC., Lazzari, P., Albernhe, S., Daewel, U., Schnedler-Meyer, NA (2024).
D3.1 “Best practices for implementing new BGC process modules in CMEMS/FABM”. Deliverable
report of project Horizon Europe NECCTON (grant 101081273), Doi 10.5281/zenodo.10604683

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 3 of 40

TABLE OF CONTENTS

 Executive Summary ... 5
 Scope ... 5
 Introduction .. 6
About FABM .. 6
Modularity ... 7
Aim of this document .. 8

 Coupling and modularity .. 9
Common ingredients of FABM-based models .. 9

Models, instances and modules .. 9
Variables .. 10
Routines ... 10
Source terms and surface/bottom fluxes ... 10
Aggregate variables ... 11

A modularisation example .. 11
Conservation checks .. 16
Coupling specification ... 17
Particles: grouped couplings and generalized access.. 18
Child models and mapping across domains ... 21
Your diagnostic, my state variable .. 23

 New functionality for coupling 2D and 3D .. 24
Base type .. 25
Dependencies on depth-averaged variables .. 26
Distributing depth-integrated source terms over the pelagic .. 27
Applying loss terms to pelagic prey .. 29

 Recommendations ... 34
In general .. 34

Modularity .. 34
Registering variables ... 35
Coupling to other modules ... 35
Providing source terms and diagnostics .. 35
Vertical movement of pelagic state variables .. 35

Specific component models .. 36
Phytoplankton .. 36
Predators (e.g., zooplankton) .. 36
Carbonate system .. 36

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 4 of 40

Irradiance ... 36
Higher trophic levels (2D) .. 36

 Model testing .. 37
Debugging ... 37
Light-weight testing options .. 37
Production use .. 38

 Code distribution .. 39
 References ... 39

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 5 of 40

 Executive Summary
A central objective of NECCTON is the construction of a new interlinked model framework for the
Copernicus Marine Service (CMEMS). Existing CMEMS models, new models ported in WP3, and new
process descriptions delivered by WP5-8 will build on this framework to ensure their interoperability
and usability across CMEMS Monitoring and Forecasting Centres (MFCs). The framework chosen for
this purpose is the Framework for Aquatic Biogeochemical Models (FABM), which underpins a wide
range of marine biogeochemical models. This currently includes implementations of most
biogeochemical models in use within CMEMS (ERSEM, BFM, PISCES, ECOSMO, ERGOM?) and more
CMEMS biogeochemical models will be included in NECCTON (BAMHBI). A core strength of FABM is
its ability to interface with numerous hydrodynamic models, including those used within CMEMS
(NEMO, HYCOM).

FABM provides a well-documented minimal foundation for biogeochemical/ecosystem models, on
top of which different developers have over the years introduced their own conventions for
describing new biogeochemical and ecological processes. For example, they have introduced ad-hoc
approaches for modularisation (e.g., ERSEM, BFM) and coupling to higher trophic level models
(MIZER, ECOSMO E2E). In many cases these approaches use undocumented FABM functionality. In
NECCTON, we have reviewed existing FABM-based models used by project partners, within CMEMS
and beyond. Based on this review, we have (1) identified and consolidated a common set of
development conventions (“best practices”) that can support NECCTON’s needs for process model
development, interoperability and exchange, (2) refined and documented the previously-
unpublished FABM functionality needed to support these conventions, (3) introduced new
functionality (“connectors”) to support two-way coupling to higher trophic level models, and (4)
made numerous improvements in the FABM code that increase performance for configurations with
very large numbers (> 500) of coupled model variables.

This document outlines “best practices” for biogeochemical/ecological model development within
NECCTON and documents the FABM functionality introduced to support this. Specifically, (1) it
describes the concepts of modular model development and its practical implementation in FABM,
(2) it gives recommendations for the implementations of common types of process models, and (3) it
provides guidance for model testing and distribution of code. These best practices will guide the
implementation of new process models in NECCTON, e.g., FABM implementations of the remaining
CMEMS models (BAMHBI, SEAPODYM-LMTL, the latest ERGOM release) in WP3. This will optimize
the interoperability of NECCTON model components and the potential for exchanging/sharing them
across the CMEMS MFCs.

 Scope
This document formulates conventions for modular ecosystem model development and best
practices for the implementation of specific types of process models developed by NECCTON
partners, as well as by possible external stakeholders and future users of the NECCTON outputs,
such as the Copernicus Marine Service developers. As part of this, it documents the Application

https://fabm.net/
https://fabm.net/wiki

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 6 of 40

Programming Interfaces (APIs) in FABM that make this possible – some newly introduced for
NECCTON, some previously available but undocumented. This document does not repeat the
documentation of FABM existing core APIs, which is available from its wiki.

All functionality described here is currently available from the “neccton” branch of the public FABM
repository (https://fabm.net/code). It will be integrated in FABM’s main branch by the end of 2024.
This deliverable will provide the basis for a live document that is to become part of the FABM wiki
and will be further developed over the course of NECCTON in response to feedback and requests
from partners.

 Introduction
About FABM

The Framework for Aquatic Biogeochemical Models (FABM, https://fabm.net, Bruggeman &
Bolding, 2014) is a Fortran programming framework for biogeochemical models of marine and
freshwater systems. Models written in this framework are directly usable in any hydrodynamic
model with a FABM interface. This includes a wide variety of models with different spatial
dimensions (0D, 1D, 3D), horizontal grids (unstructured and structured) and vertical coordinates
(e.g., z, sigma, isopycnal). Notably, both 3D hydrodynamic models used within the Copernicus
Marine Service (CMEMS; https://marine.copernicus.eu) – NEMO (Madec, 2008) and HYCOM (Bleck,
2002) – can interface with FABM.

hydrodynamics

box model

Python

C

R

GOTM

GLM

BROM-tp

MATLAB

GETM

MOM

FVCOM

NEMO

ROMS

ESMF

SCHISM

HYCOM

FESOM-C

HAMSOM

FABM

biogeochemistry

MEDUSA

BSEM

MedERGOM

SELMA

WET/PCLake

NORWECOM

BROM-bio

DEB

seagrass

mizer (fish)

spectral irradiance

MAECS

suspended sediment

ShellSIM

3D

1D

0D

scripts

ecosystem
models

process
models

ECOSMO

ERGOM

ERSEM

BFM

PISCES

UVic

TMM

zooplankton DVM

MOPS

iHAMOCC

BSH-ERGOM

BAMHBI

SEAPODYM-LMTL

FEISTY

https://fabm.net/wiki
https://fabm.net/code
https://marine.copernicus.eu/

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 7 of 40

Figure 1. Hydrodynamic and biogeochemical models currently linked to FABM. Models shown with
arrows are currently being developed within either NECCTON or in the Horizon Europe OceanICU

project. Icons to the left of model names indicate their use in CMEMS (), earth system models (
), and the JRC marine modelling framework ().

By design, FABM places minimal constraints on the design of biogeochemical models: while these
need to use specific interfaces to define their variables, parameters and source terms, FABM does
not specify which processes or variables should be represented, what units they use, and how the
underlying code is structured.

Modularity

A key design feature of FABM is that it allows multiple biogeochemical/ecosystem model
components – from complete ecosystem models to individual processes – to be active at the same
time. These processes, called “instances” in FABM, can freely exchange information. This
functionality can be used to create modular ecosystem models, in which for example phytoplankton
and zooplankton are coded separately as stand-alone building blocks. These can then be combined
and coupled at runtime in FABM’s configuration file (fabm.yaml). The same functionality can also be
used to combine ecosystem building blocks from different origins and authors, for example, to share
components for oxygen, the carbonate system, suspended particular matter, or underwater
radiative fluxes, or to combine lower and higher trophic level ecosystem models in two-way coupled
setting, as we will do in NECCTON

As mentioned before, FABM does not specify the internal organization of biogeochemical/ecosystem
models, and thus, does not require modular design. It is and will always remain possible to write
monolithic biogeochemical models in FABM, with all processes coded in a single source file (or even
subroutine). This is common practice for models with smaller numbers of variable and processes,
e.g., the NPZD, Fasham, MedERGOM and BSEM models in FABM. However, some degree of
modularisation of ecosystem models in FABM has proven benefits.

The first benefit of modularisation is that it enables distributed development (different processes
are coded by different authors/institutes) and code sharing. Some processes lend themselves well
for implementation in separate modules: those processes that have few, well-defined links to the
rest of the ecosystem, and relatively complex internal processes and/or calculations. This commonly
applies to models for the carbonate system, suspended particular matter, or underwater radiative
fluxes. By coding these once, in a modular fashion, they become reusable by others – no source code
changes necessary. For example, the operational version of ECOSMO (Yumruktepe et al., 2022) used
in the Copernicus Marine Service leverages the ERSEM (Butenschön et al., 2016) carbonate system
to add dissolved inorganic carbon, alkalinity and pH.

The second benefit of modularisation in FABM is that is allows for a single codebase to support
different ecosystem configurations. In complex models, extensive modularisation allows you to write
generic building blocks for a functional type, and then to re-use those multiple times with different
parametrisations to compose the runtime ecosystem. For example, the present FABM

https://www.neccton.eu/
https://ocean-icu.eu/
https://joint-research-centre.ec.europa.eu/
https://github.com/fabm-model/fabm/blob/master/src/models/gotm/npzd.F90
https://github.com/fabm-model/fabm/blob/master/src/models/gotm/fasham.F90
https://github.com/fabm-model/fabm/blob/master/src/models/jrc/med_ergom/med_ergom.F90
https://github.com/fabm-model/fabm/blob/master/src/models/jrc/bsem/bsem.F90

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 8 of 40

implementations of ERSEM, BFM (https://www.bfm-community.eu, Vichi et al., 2020) and PISCES
(https://www.pisces-community.org, Aumont et al., 2015) each have coded single generalized
“phytoplankton” and “zooplankton” components, which are instantiated multiple times to create an
ecosystem with multiple phytoplankton and multiple zooplankton types. ERSEM additionally used
the same code-once, instantiate-multiple-times approach to add multiple types of benthic fauna and
bacteria. This level of modularisation is particularly appealing for models that experiment with
different numbers of species/populations/functional types, e.g., to test different representations of
biodiversity.

Modularisation of biogeochemical/ecosystem models in FABM generally does not come at the
expense of computational performance. Splitting up a code over multiple modules does not increase
the number of spatially explicit fields, or the amount of data read and written whenever FABM is
called. The main consequence of modularisation is that single spatial loops (e.g., those that calculate
source terms) are split into multiple loops. As a result, the interior of individual loops becomes
simpler. This often allows the compiler to perform additional optimizations. For example, it is not
uncommon for compilers to give up on vectorizing loops due to the presence of many conditional
statements (“if”). Splitting such a loop into multiple ones can allow the compiler to vectorize at least
a subset of calculations; it may even allow the compiler to vectorize all new loops, e.g. because the
number of conditional statements per loop was reduced.

Aim of this document

This document is aimed at developers of biogeochemical/ecosystem models in FABM, either within
the NECCTON consortium, or within the external community of potential users of the NECCTON
outputs, such as developers of the Copernicus Marine Service MFCs. It outlines how one can develop
modular and interoperable model components that can be shared among institutes, individuals, and
setups.

This document exemplifies the existing and new functionality offered by of FABM by focusing on
NECCTON and CMEMS needs, i.e. by referring to models (e.g. ERSEM, BFM, PISCES) and processes
(e.g., modules for oxygen, carbonate chemistry, irradiance, suspended particulate matter, plankton
functional types and higher trophic levels, among others) that will be revised or newly developed
within the project.

Over the past 15 years, FABM has proven to be a stable basis for biogeochemical model
development, flexible enough to accommodate a wide variety of processes and modelling
approaches. This is demonstrated by the fact that some of the most complex biogeochemical models
– e.g., ERSEM, BFM, PISCES used by NECCTON partners as well as by the Copernicus Marine Service –
have successfully been implemented in FABM. Part of such implementation occurred in the
framework of the EU Horizon 2020 SEAMLESS project (grant agreement 101004032), which was a
Copernicus Service evolution project developing a new prototype (EAT) for new ensemble data
assimilation methods to be implemented in the CMEMS MFCs (Bruggeman, Bolding, Nerger, Teruzzi,
Spada, Skákala, et al., 2023; Bruggeman, Bolding, Nerger, Teruzzi, Spada, Wakamatsu, et al., 2023).

https://www.seamlessproject.org/
https://www.seamlessproject.org/SEAMLESS_EAT

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 9 of 40

FABM’s core functionality is extensively documented. We are not aiming to replicate this
documentation in this document. However, over time, several conventions have emerged that build
on top of FABM’s core functionality to facilitate modular development of biogeochemical/ecosystem
models. In practice, these conventions take the form of additional Application Programming
Interfaces (APIs) that, for example, reduce the number of explicit coupling instructions users need to
provide (in fabm.yaml) and that enable FABM to perform automatic unit conversions (e.g., between
mg carbon m-3, mol carbon m-3, and mmol carbon m-3) between models/variables being coupled. In
general, the additional APIs make it easier to code self-contained process modules, without prior
knowledge about the context they will be used in. Over the past 5 years, these APIs have become
more widely adopted, and will form a cornerstone for development within NECCTON. However,
these APIs have until now been poorly documented. This document aims to rectify this by:

1. reiterating the concept of model coupling within FABM;
2. describing how the new APIs fit into this and how they can be used;
3. providing specific recommendations for the base structure of new modules for a range of

processes.

The latter in particular aims at increasing interoperability between model components developed by
different authors, and more specifically, between processes descriptions developed within NECCTON
for the different CMEMS Monitoring Forecasting Centres (MFCs) and beyond.

 Coupling and modularity
Common ingredients of FABM-based models

Models, instances and modules
FABM places emphasis on the runtime configurability of biogeochemical/ecological models. Its
runtime configuration file, fabm.yaml, does not only specify the values of parameters, but also which
model components are to be activated. That list may be short, for example “NPZD and carbonate
system”, or, in more modular models, very long: “4 phytoplankton types, 2 microzooplankton types,
1 mesozooplankton types, …”. The user specifies the list of components to activate as well as the
connections between them. In FABM, each active component is called an “instance”. In fabm.yaml,
each instance is given a name, a pointer to the code that contains its actual implementation (e.g., all
calculations), and any options that the code declares as user-configurable (e.g., parameter values).
For example, the section in ERSEM’s fabm.yaml that adds an instance “P1” begins with:

P1:
 long_name: diatoms
 model: ersem/primary_producer
 parameters:
 sum: 1.375
 …

https://github.com/fabm-model/fabm/wiki/Developing-a-new-biogeochemical-model

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 10 of 40

Here, “model: ersem/primary_producer” points FABM to the code (specifically, the Fortran derived
type) that implements the behaviour appropriate for the diatom instance. In this case, this is a
generic primary producer code, flexible enough to describe any type of phytoplankton. Accordingly,
new phytoplankton instances (P2, P3, P4) introduced later in this specific configuration file use the
same “model: ersem/primary_producer” implementation. The takeaway message is that multiple
instances can use the same code, though they will typically set different parameter values. In the
sections below, we use “module” to refer to the implementation of model instances in source code.

Variables
The central components of a FABM module are its variables: a model’s own state variables and
diagnostics, and any external dependencies that describe the model environment:

• State variables are initialized at the start of the simulation and are changed by providing
sources and sinks (instantaneous rates of change). In the case of pelagic (3D) state variables,
they additionally change due to transport (advection, diffusion) calculated by the
hydrodynamic model that FABM is embedded in. The current value of a state variable is
determined by its initial value and its entire history of sources and sinks.

• Diagnostic variables can be calculated at any time from the model state and environment.
• Dependencies are variables that need to be provided by an outside component, e.g.,

temperature from the hydrodynamic model, or pH from a carbonate system module.

A variable is linked to a specific domain upon its declaration: the “interior” (pelagic), the water
surface, or the bottom. More details about the types of variables and their handling is available on
the FABM wiki.

Routines
The routines that calculate source terms and diagnostics in a FABM-based model are specific to a
single domain: “do” operates over the pelagic, “do_bottom” over the bottom, “do_surface” over the
water surface. Each of these routines may operate on slices of the spatial domain, since they contain
placeholders (preprocessor macros) for spatial loops, but they are not aware of the dimensionality of
the host model (0D, 1D, 2D, 3D), the interpretation of different dimensions (e.g. depth vs.
horizontal), their ordering (e.g., surface-to-bottom or bottom-to-surface), or land-sea masking. This
is intentional: biogeochemical logic can then be written as local (grid-cell-specific) operations, and
the host model and FABM can internally optimize spatial looping.

Where grid-aware operations are needed, they typically involved vertical loops, for example to loop
from the water surface to the bottom to calculate the light field. For these, FABM supports one
additional routine: “do_column”. This processes a single column in the pelagic, with explicit control
over the direction (surface-to-bottom or bottom-to-surface). It should be noted that the
“do_column” routine is often more computationally expensive to use than “do”; its use should
therefore be limited to case where iteration over the vertical is truly essential.

Source terms and surface/bottom �luxes
FABM-based models change their state variables by providing “sources”: the instantaneous rate of
change of the variable due to the biogeochemical/ecological processes described by the model. In

https://github.com/fabm-model/fabm/wiki/Developing-a-new-biogeochemical-model#adding-variables

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 11 of 40

FABM, these source terms can be positive (the variable increases) or negative (the variable
decreases), so in practice they are equivalent to the sources-minus-sinks tracked in e.g. NEMO.

For interior [pelagic] state variables, FABM-based models can additionally prescribe surface and
bottom fluxes: the instantaneous flux of the variable over the surface and bottom interface of the
water column. These are positive for inward fluxes (i.e., fluxes that increase the pelagic variable).

Aggregate variables
FABM-based models can register any variable they like, in whatever unit they like. However, to
facilitate coupling between models, and to allow FABM to verify conservation of mass (e.g., totals of
chemical elements), FABM asks models to declare how their variables contribute to “standard
variables”, e.g., total carbon, total nitrogen. These links are registered as part of model initialization
by calling add_to_aggregate_variable. For example, the nitrogen-based NPZD example would use

call self%add_to_aggregate_variable(standard_variables%total_nitrogen, self%id_p)

in its phytoplankton module.

In models that track multiple chemical elements, this routine would be called multiple times for a
biomass pool with constant stoichiometry. For example,

call self%add_to_aggregate_variable(standard_variables%total_nitrogen, self%id_p)
call self%add_to_aggregate_variable(standard_variables%total_phopshorus,
self%id_p, scale_factor=1.0_rk/16.0_rk)
call self%add_to_aggregate_variable(standard_variables%total_carbon, self%id_p,
scale_factor=106.0_rk/16.0_rk)

This would be appropriate for a phytoplankton pool represented in mmol N m-3, and a carbon :
nitrogen : phosphorus elemental ratio of 106 : 16 : 1. Note that the unit of standard variables is
defined as part of the standard variable and therefore fixed (typically mmol m-3); models that
internally use different units must use the scale_factor argument to convert to standard variable
units.

A modularisation example

Every FABM module contains an initialize routine that registers its state variables, diagnostics
and dependencies. In the simple Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) model shown
in Figure 2, this routine calls FABM’s register_state_variable routine four times:

call self%register_state_variable(self%id_n, 'n', 'mmol m-3', 'nutrients')
call self%register_state_variable(self%id_p, 'p', 'mmol m-3', 'phytoplankton')
call self%register_state_variable(self%id_z, 'z', 'mmol m-3', 'zooplankton')
call self%register_state_variable(self%id_d, 'd', 'mmol m-3', 'detritus')

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 12 of 40

Figure 2. The state variables and source terms of a simple NPZD model. In practice, such a model will
also contain environmental dependencies, diagnostics and parameters. These are not shown here.

The source terms for each of these four state variables must be provided by the developer in an
accompanying “do” subroutine, which processes the pelagic point by point. While doing so, it has
read access to all registered state variables and dependencies, increment access to the state
variables’ source terms, and write access to any registered diagnostics. Note that in FABM, source
terms are accumulated: they are reset to 0 by FABM when the host (hydrodynamic) model asks for
the source terms and then incremented by all model instances that are active.

If we were to modularise the NPZD model, that is, to split it in multiple components coded in
different sources files, one intuitive approach would be to separate its four constituents: nutrients,
phytoplankton, zooplankton, detritus. Each then gets its own source file, its own “initialize” routine,
and its own “do” routine to specify pelagic source terms. The result could look like Figure 3. Source
calculations are now distributed over three of the four modules (p, z, d). This also shows why in
FABM, each module increments its source terms instead setting them; this ensures the total sources
for each of the four state variables are accumulated to ultimately equal the equations shown in
Figure 2.

NPZD

d: detritus

z: zooplankton

p: phytoplankton

n: nutrient

𝑑
𝑑𝑡
𝑛 += −𝑝ℎ𝑜𝑡 + 𝑟𝑒𝑠𝑝𝑃 + 𝑟𝑒𝑠𝑝𝑍 + 𝑟𝑒𝑚𝐷

𝑑
𝑑𝑡
𝑝 += 𝑝ℎ𝑜𝑡 − 𝑟𝑒𝑠𝑝𝑃 − 𝑚𝑜𝑟𝑡𝑃 − 𝑔𝑟𝑎𝑧

𝑑
𝑑𝑡
𝑧+= 𝑔𝑟𝑎𝑧 − 𝑟𝑒𝑠𝑝𝑍 −𝑚𝑜𝑟𝑡𝑍

𝑑
𝑑𝑡
𝑑 += 𝑚𝑜𝑟𝑡𝑃 +𝑚𝑜𝑟𝑡𝑍 − 𝑟𝑒𝑚𝐷

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 13 of 40

Figure 3. The first iteration of a modular NPZD model. Each coloured box represents a separate
module, coded in a stand-alone source file. Cylinders represent state variables. Those with solid
borders and bold font are “owned” by the module itself, those with dashed borders are state
dependencies. Arrows represent the coupling links make at runtime based on the specification in
fabm.yaml. For example, the nutrient state dependency of the “phytoplankton” instance is fulfilled
by coupling to the nutrient state variable in the “nutrient” instance.

Each module now makes just one call to register_state_variable: the nutrient module registers
“n”, the phytoplankton module register “p”, the zooplankton module register “z” and the detritus
module registers “d”. Thus, the final combined model still has only four state variables (tracers).
However, the modules compute source terms that affect not just their own state variable, but
several others as well. For example, in the phytoplankton module, the difference between
photosynthesis and respiration comes at the expense of the nutrients; the loss of phytoplankton due
to mortality increases detritus. To represent this, FABM has the concept of state variable
dependencies: state variables that are not “owned” by the module itself but must come from
another active model instance. For example, in addition to its own state variable, the phytoplankton
module registers two state dependencies by calling register_state_dependency:

n: nutrient

n: nutrient

z: zooplankton

d: detritus

z: zooplankton

p: phytoplankton

n: nutrient

𝑑
𝑑𝑡
𝑛 += 𝑟𝑒𝑠𝑝𝑍

𝑑
𝑑𝑡
𝑝+= −𝑔𝑟𝑎𝑧

𝑑
𝑑𝑡
𝑧+= 𝑔𝑟𝑎𝑧 − 𝑟𝑒𝑠𝑝𝑍 − 𝑚𝑜𝑟𝑡𝑍

𝑑
𝑑𝑡
𝑑 += 𝑚𝑜𝑟𝑡𝑍

p: phytoplankton

d: detritus

p: phytoplankton

n: nutrient

𝑑
𝑑𝑡
𝑛 += −𝑝ℎ𝑜𝑡 + 𝑟𝑒𝑠𝑝𝑃

𝑑
𝑑𝑡
𝑝+= 𝑝ℎ𝑜𝑡− 𝑟𝑒𝑠𝑝𝑃 −𝑚𝑜𝑟𝑡𝑃

𝑑
𝑑𝑡
𝑑 += 𝑚𝑜𝑟𝑡𝑃

d: detritus

d: detritus

n: nutrient

𝑑
𝑑𝑡
𝑛 += 𝑟𝑒𝑚𝐷

𝑑
𝑑𝑡
𝑑 += −𝑟𝑒𝑚𝐷

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 14 of 40

call self%register_state_variable(self%id_p, 'p', 'mmol m-3', 'phytoplankton')
call self%register_state_dependency(self%id_n, 'n', 'mmol m-3', 'nutrients')
call self%register_state_dependency(self%id_d, 'd', 'mmol m-3', 'detritus')

It is then free to increment source terms for each of these three state variables.

There is no direct link (e.g., a Fortran use statement) made from the phytoplankton source code to
the nutrient and detritus source codes. Instead, the phytoplankton module is a stand-alone code
that registers its dependencies on nutrients and phytoplankton, but then leaves these to be resolved
at runtime. In FABM, the specification of which modules to activate, and how they are to be coupled,
is deferred till runtime; there is no global compile-time register of active modules and available
variables. One benefit of this is that each of the four modules is self-contained and can be compiled
independently (if desired, all four can be compiled in parallel). It also means that the conversion of
the original NPZD code to N, P, Z, and D components can be done in a straightforward manner:

1. create four copies of the original code
2. replace register_state_variable by register_state_dependency for all but the

“owned” state variable
3. drop redundant variables and source terms
4. rename externally visible Fortran modules and types (e.g., npzd  p).

How should we allocate the individual source terms to the new stand-alone modules? For example,
why is the change in detritus due to plankton mortality (mortP and mortZ) specified in the
phytoplankton and zooplankton modules, rather than to the detritus module? Part of the answer is
that we want to compute each process just once, as the underlying calculation may be complex and
computationally expensive; we then use the result of the calculation in as few places (modules) as
possible to minimize code complexity. However, this rule of thumb would still permit mortalities
mortP and mortZ to be calculated in the detritus module, and their impact on p, z and d to be
represented there. The argument against doing this is that it would make the detritus module
dependent on the presence of the phytoplankton and zooplankton modules. Similarly, if we were to
move the calculation of the grazing rate to the phytoplankton module, it would become dependent
on the presence of the zooplankton module. The current partitioning of source terms has the
appealing feature that it is possible to build mini-ecosystems with a subset of modules, without any
code changes: it is perfectly feasible to compose an NPD model where zooplankton has been
removed, or even an ND model that describes remineralization of detritus only (although in the
absence of a detritus source, its behaviour will not be very interesting) – all without changes to the
source code. In practice, we have found that basing modules on “integral physical entities” (chemical
compounds such as nutrients and oxygen, generalized compounds such as classes of particulate and
dissolved organic matter, plankton functional types) provides a degree of modularity that is both
useful and intuitive. Nevertheless, it remains perfectly possible to write modules for larger part of an
ecosystem (e.g., the complete NPZD example) or for individual processes.

The above is sufficient to deliver a modular NPZD model. However, the individual components in Fig.
3 still clearly expect to embedded within the original NPZD context. This is most obvious in their
naming of dependencies. For example, zooplankton still refers to “phytoplankton” as it prey, even

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 15 of 40

though it could in principle consume any type of prey: it might be coupled to detritus as “prey” to
make it a detritivore. Another loose end is the naming of the “owned” state variables. Since the
instance name already describes the component (nutrient, phytoplankton, etc.), these is no need for
the internal state variable to repeat that name – since in output, variables are named
<instance>_<variable>, it would lead to redundancy in variable names, e.g., short names such as
“p_p” and long names such as “phytoplankton_phytoplankton”. Therefore, the final stage in
modularizing a FABM-based model is often the renaming of variables and dependencies to (1)
indicate the newly acquired flexibility, and (2) avoid repletion within variable names. This is shown
for the NPZD model in Fig. 4. The changed variable names reflect that the model has in essence
become a collection of four generic building blocks, which can be put together in completely new
configurations. For example, is very feasible to add a second zooplankton instance that feeds on
detritus instead of phytoplankton.

Figure 4. The final iteration of the modularized NPZD model, in which variables and dependencies
have been renamed to emphasize the flexibility of the four building blocks.

n: nutrient

c: concentration

z: zooplankton

mortality_target

c: concentration

prey

respiration_target

𝑑
𝑑𝑡
𝑟𝑒𝑠𝑝𝑖𝑖𝑟𝑎𝑡𝑖𝑖𝑜𝑛_𝑡𝑎𝑟𝑔𝑒𝑡+= 𝑟𝑒𝑠𝑝𝑍

𝑑
𝑑𝑡
𝑝𝑟𝑒𝑦+= −𝑔𝑟𝑎𝑧

𝑑
𝑑𝑡
𝑐𝑐 += 𝑔𝑟𝑎𝑧 − 𝑟𝑒𝑠𝑝𝑍 − 𝑚𝑜𝑟𝑡𝑍

𝑑
𝑑𝑡
𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑖𝑡𝑦_𝑡𝑎𝑟𝑔𝑒𝑡 += 𝑚𝑜𝑟𝑡𝑍

p: phytoplankton

mortality_target

c: concentration

respiration_target

𝑑
𝑑𝑡

nutrient_source += −𝑝ℎ𝑜𝑡

𝑑
𝑑𝑡

respiration_target += 𝑟𝑒𝑠𝑝𝑃

𝑑
𝑑𝑡
𝑐𝑐 += 𝑝ℎ𝑜𝑡 − 𝑟𝑒𝑠𝑝𝑃 −𝑚𝑜𝑟𝑡𝑃

𝑑
𝑑𝑡
𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑖𝑡𝑦_𝑡𝑎𝑟𝑔𝑒𝑡 += 𝑚𝑜𝑟𝑡𝑃

d: detritus

c: concentration

remineralization_target

𝑑
𝑑𝑡
𝑟𝑒𝑚𝑖𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑖𝑧𝑎𝑡𝑖𝑖𝑜𝑛_𝑡𝑎𝑟𝑔𝑒𝑡+= 𝑟𝑒𝑚𝐷

𝑑
𝑑𝑡
𝑐𝑐 += −𝑟𝑒𝑚𝐷

nutrient_source

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 16 of 40

Conservation checks

One of the few overarching principles in the development of biogeochemical models is that they
should conserve mass. This makes mass conservation checks one of the most valuable tools in the
toolbox of biogeochemical model developers. These checks become even more powerful when
models are modularised.

Mass conservation is often verified by summing the total of each represented chemical element
(e.g., nitrogen) across all biogeochemical state variables, and ascertaining whether this total stays
the same (or if allowing for numerical inaccuracies and drift: “nearly the same”) over time within a
closed model domain.

An equivalent mass conservation check can be made at the level of source terms in the
biogeochemical model: if we sum the contributions of all source terms1 to the total change of a
chemical element, this sum should be numerically indistinguishable from 0 (in practice: less than 10-

15 times the largest source term, if using double precision). For example, summing all source terms in
the nitrogen-based NPZD model (Fig 2) shows that the change in total nitrogen (n+p+z+d) equals 0.
Such checks on the rate of change are generally more precise, and therefore more informative, than
checks on the model state, because unlike the latter, (a) they are not influenced by external sinks
and sources (e.g., open boundaries, rivers, precipitation), (b) they are not influenced by inaccuracies
or conservation issues in numerical schemes for transport and time integration, or any clipping that
these apply, and (c) any errors do not accumulate over time.

Mass conservation applies to all sources combined (e.g., Fig. 2), but also at the level of individual
model instances: the sum of all sources of a chemical element within a single instance should also
equal 0. It is easily verified in Figs 3 and 4 that the sum of all source terms is indeed zero within each
of the four instances. Such checks are very useful in complex models with tens to hundreds of source
terms. If these models show a gap in the mass balance, it is often tedious and time-consuming to
determine which of the many source terms is at fault. However, if such a model is split over tens of
model instances, mass conservation of sources can be checked on each of these instances
individually. The problem then reduces to first identifying the offending module (e.g., “it is due to
the pelagic source terms computed in the diatom module”), and then, within that, the offending
term. This is a much quicker procedure.

Fortunately, FABM makes such granular mass conservation checking easy: if you add a single
“check_conservation: true” switch at the top level of fabm.yaml, FABM will calculate the total
change in all known conserved quantities for every active module, e.g., the change in total nitrogen
due to phytoplankton, the change in total nitrogen due to zooplankton, etc. This is done separately
for the pelagic (i.e., sources computed from the “do” routine), the bottom (“do_bottom” routine)
and surface (“do_surface”). Each of the resulting sums is available as a diagnostic for output, with
names of <instance_name>_change_in_<standard_variable_name><_domain>_calculator_result,

1 In FABM, sources can be positive or negative as described under “Source terms and surface/bottom fluxes”. Thus “source terms” here is
equivalent to the “sources minus sinks” used elsewhere (Madec, 2008).

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 17 of 40

with <domain> being empty (for the pelagic), “at_surface”, or “at_bottom”. This greatly increases
the number of metrics available to for checking model validity.

For FABM to generate appropriate conservation diagnostics, it needs to be aware of the link
between model variables (e.g., “phytoplankton”) and conserved quantities (e.g., “total nitrogen”).
These links are registered as part of model initialization as described in section “Aggregate
variables”.

Finally, it should be noted that the generation of source conservation diagnostics is computationally
costly: First, it requires FABM to trap each source term before it is added to the accumulated per-
variable sources. Second, it will result in the calculation of large numbers of sums (number of model
instances × number of conserved quantities × 3 for interior, bottom and state). Thus, this feature
would typically be active during testing, but deactivated in production/operational simulations.

Coupling specification

As mentioned above, the coupling between modules is deferred until runtime. Specifically, the links
between modules are set in the “coupling” sections of FABM’s runtime configuration file, fabm.yaml.
For the NPZD example from Fig. 4, that would look like:

instances:
 n:
 model: examples/npzd/n
 p:
 model: examples/npzd/p
 coupling:
 nutrient_source: n/c
 respiration_target: n/c
 mortality_target: d/c
 z:
 model: examples/npzd/z
 coupling:
 prey: p/c
 respiration_target: n/c
 mortality_target: d/c
 d:
 model: examples/npzd/d
 coupling:
 mineralization_target: n/c

FABM also supports an implicit form of coupling through the use of “standard variable” identities. If
one module specifies that it depends on a standard variable named “x” and another module
registers one of its state or diagnostic variables with the same identify “x”, FABM will couple them
automatically. In this case, no entries in fabm.yaml are necessary.

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 18 of 40

Particles: grouped couplings and generalized access

The coupling functionality described above is suitable for many purposes, but it suffers from two
problems:

1. All variable links between models have to be specified explicitly in the FABM configuration
file, fabm.yaml. For more complex models, e.g., those with many functional types and
multiple elemental cycles (e.g., Fig 5), this can quickly result in coupling statements
dominating the configuration file altogether. For example, ERSEM’s mesozooplankton
couples to 9 prey types, and for each it needs access to 5 constituents (C, N, P, Si, CaCO3).
Thus, its coupling specification in fabm.yaml would require 9×5=45 coupling statements,
each on its own line. This becomes difficult to manage and error prone.

2. Variable links can only be made if the supplying and receiving model both use the same
units. This is fine when components are all designed and implemented by the same
institute/author, but problematic when they come from different institutes/authors. That is
because different authors often prefer different units (e.g., ERSEM uses mg C, mmol N,
mmol P where PISCES uses mol C throughout). This would hinder interoperability of model
components.

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 19 of 40

Figure 5. Coupling in more complex models with multiple functional types and multiple chemical
elements. Rectangles with rounded corners represent model instances, cylinders represent state
variables, rectangles read-only dependencies. Variables with solid borders are “owned” by the
instance that contains them; those with dashed borders are dependencies. Simple variable
dependencies (e.g., phosphate in diatoms, temperature in diatoms and mesozooplankton) are
resolved as before (see “Coupling specification”). Other dependencies are grouped. For example, the
diatom module registers dependencies on the individual components of detritus (where waste is to
be deposited). These components are grouped together by a single dependency on a model instance
named “detritus”. As a result, the user only needs to specify a target for “detritus” (e.g., to point it to
the medium-size particulate organic matter pool). Connections to its individual C, N, P, Si, Fe
constituents are made automatically. Similarly, mesozooplankton accepts multiple prey, each
quantified by several constituents (C, N, etc.). For each prey, these are grouped via a dependency on
a single model instance “prey1”, “prey2”, etc. These high-level couplings (“prey1: diatoms”) are the
only ones the user needs to specify in fabm.yaml.

To address these issues, FABM introduces the concept of a “particle model”, representing a
coherent physical entity. It is implemented in type_particle_model, defined in the fabm_particle
module. Models that inherit from this type acquire the ability to couple to entire model instances by
name, and to automatically set up links to variables from such a coupled instance. For example,
ERSEM’s mesozooplankton couples to 9 prey instances (set in fabm.yaml), and from each of those
requests (in code) its total carbon, nitrogen, phosphorus, silicon and calcite. To make this possible, a
new section was added at the end of the mesozooplankton initialize routine:

do iprey = 1, self%nprey

 write (index,'(i0)') iprey

mesozooplankton

prey
1

prey
1

prey 1

C

Fe

Si

P

N

C

temperature

diatoms

Chl

phosphate

phosphate

P

temperature

hydrodynamic model

salinity

temperature

medium POM

Fe

Si

P

N

C

Fe

Si

P

N

C

detritus

Fe

Si

P

N

C

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 20 of 40

 call self%register_model_dependency(self%id_prey(iprey), 'prey' // trim(index))

 call self%request_coupling_to_model(self%id_preyc(iprey), self%id_prey(iprey),standard_variables%total_carbon)

 call self%request_coupling_to_model(self%id_preyn(iprey), self%id_prey(iprey),standard_variables%total_nitrogen)

 call self%request_coupling_to_model(self%id_preyp(iprey), self%id_prey(iprey),standard_variables%total_phosphorus)

 call self%request_coupling_to_model(self%id_preys(iprey), self%id_prey(iprey),standard_variables%total_silicate)

 call self%request_coupling_to_model(self%id_preyl(iprey), self%id_prey(iprey),total_calcite_in_biota)

end do

The APIs request_model_dependency and request_coupling_to_model were introduced with
type_particle_model. request_model_dependency registers a dependency on an entire model
instance, identified by name and to be coupled at runtime in fabm.yaml. For instance, in the above,
the mesozooplankton module registers a dependency on “prey1”, “prey2”. Each of these is a model
instance (e.g. “diatoms”), i.e., not a single variable but a collection of variables. In the next step,
request_coupling_to_model is called to request specific variables from the coupled instance (e.g.,
“diatom carbon”). These requests use standard variables (e.g., total_carbon), which allows them to
work independent of implementation details (e.g., variable names and units) of the coupled
instance. In the above example, totals of different chemical elements (total_carbon, etc.) from
each prey instance are linked those totals to previously registered dependencies (self%id_preyc,
etc.). Thus, the above lines supplement but not replace the variable-specific registration commands
in mesozooplankton’s “initialize” routine. The lines are added to group couplings together (the user
can couple “prey1” in one go in fabm.yaml, instead of micromanaging links to “prey1c”, “prey1n”,
etc.) and to link them based on standard identities (total_carbon, etc.) with known units.

In the example above, total contained carbon, nitrogen, phosphorus, silicon and calcite are obtained
for every prey type. The standard variables used for this purpose, e.g., total_carbon, have fixed
units, typically mmol m-3. FABM guarantees that the requesting model (mesozooplankton) will
receive the requested variable in these fixed units. This is non-trivial, as a few examples show:

• Many prey types do not have silicon or calcite. This is known to FABM, as the prey instance
(e.g., microzooplankton) then does not call add_to_aggregate_variable for total_silicate or
total_calcite_in_biota. In response, FABM couples mesozooplankton’s corresponding
id_preys(iprey) and/or id_preyl(iprey) to a field filled with zeros.

• ERSEM’s functional types express carbon in mg C m-3, not mmol C m-3 implied by the
total_carbon standard variable. This is known to FABM, as the prey instance (e.g.,
microzooplankton) calls add_to_aggregate_variable for total_carbon with a scale factor of
1/12.011 (12.011 being the atomic mass of carbon). In response, FABM creates a temporary
variable for prey in mmol C m-3 in the background. FABM calculates the value of this new
variable on demand by dividing prey carbon in mg C m-3 by 12.011 and providing the result
to mesozooplankton’s id_preyc(iprey).

• If a prey contains multiple state variables that contribute to total carbon, FABM calculates
the sum of these variables in mmol C m-3 on demand and provides that to mesozooplankton.

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 21 of 40

Thanks to such automatic unit conversions, the predator does not need to be aware which elements
the prey does or does not contain. Correct links between predator and prey are made even if they
internally operate in different units.

The particle-specific coupling described above allows the requesting model to always see (i.e., read)
all desired prey properties in predictable units. However, this functionality is not sufficient to apply
grazing losses to prey. Predators generally calculate a specific loss rate (e.g., in d-1) that applies to
prey biomass as a whole, i.e., to all its constituents. If that prey is defined in carbon units only, with
fixed C:N and C:P, that specific loss rate should apply only to its carbon state variable. If the prey has
variable stoichiometry with explicit state variables for C, N and P, the specific loss rate should apply
to all three state variables. In both cases, the predator sees non-zero values for prey carbon,
nitrogen and phosphorus – it cannot tell the prey types apart. How can it apply the correct loss rates
without knowing the internal structure of the coupled prey instance? The current solution to this is
to have the predator loop over all state variables of the prey, without knowing their identity, and to
then apply the same specific loss rate to each. For example,

do iprey = 1, self%nprey
 do istate = 1, size(self%id_prey(iprey)%state)
 GET(self%id_prey(iprey)%state(istate), preyP)
 _ADD_SOURCE_(self%id_prey(iprey)%state(istate), -sprey(iprey)*preyP)
 end do
end do

Here, sprey(iprey) is the previously calculated specific loss rate, different for each prey type.

An added bonus of this approach is that any non-tracked state variables of the prey are destroyed
along with all others, since they are included in the “state” array in the example. In ERSEM, that
means that chlorophyll of phytoplankton functional types is (correctly) destroyed by predation, even
though the predator code does not handle chlorophyll explicitly.

Child models and mapping across domains

Even for a module for a single physical particle (e.g., a phytoplankton or zooplankton functional
type), it can be convenient to split calculations over different routines. In some cases, it is preferable
or even unavoidable to place these routines into separate modules. For example:

ERSEM’s mesozooplankton switches between active and overwintering behaviour based on the
quantity of depth-integrated prey. All its source terms and diagnostics are pelagic and thus
implemented in a “do” routine. For the overwintering behaviour, calculations in this routine have a
dependency on the depth integral of the sum of all its 9 prey types. This dependency is registered at
module (mesozooplankton) level. In FABM, calculation of depth integrals must be done in a
“do_column” routine; summation of pelagic variables is best done in a “do” routine. It is worth
recalling that the “do” routine cannot do the job on its own, as it performs local operations in the
pelagic without being of different spatial dimensions and their interpretation; moreover, it typically

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 22 of 40

only sees a fraction of the pelagic at a time, and this fraction typically does not encompass all of the
vertical.

Thus, a combination of “do” and “do_column” is unavoidable. The ideal processing order would be:

1. a “do” routine calculates the sum over all prey;
2. a “do_column” routine depth-integrates this sum;
3. a “do” routine uses the depth integral to determine whether to activate overwintering;

based on that, it calculates all source terms and diagnostics.

This three-step logic cannot be implemented in a single mesozooplankton type, since that only has a
single “do” routine. The solution to this issue is to place the calculation of the sum and of the depth
integral in separate modules, created as children of the mesozooplankton module (i.e., they are
created and configured in code, not by the user through fabm.yaml). To support this, FABM allows
modules to allocate and configure model instances of any type and to add them by calling the
FABM’s built-in add_child subroutine.

FABM already has built-in modules for summation and depth integration. Therefore, a simple
implementation in mesozooplankton’s “initialize” could look like:

use fabm_builtin_sum, only: type_weighted_sum
use fabm_builtin_depth_integral, only: type_depth_integral

class (type_weighted_sum), pointer :: totprey_summation
class (type_depth_integral), pointer :: totprey_integrator

! Set up the sum over all prey types
allocate(totprey_summation)
do iprey = 1, self%nprey
 write (index,'(i0)') iprey
 call totprey_summation%add_component('../prey' // trim(index) // 'c')
end do
call self%add_child(totprey_summation, 'totprey_summation')

! Set up the depth integral
allocate(totprey_integrator)
call self%add_child(totprey_integrator, 'totprey_integrator')
call totprey_integrator%request_coupling('source', '../ totprey_summation/result')

! Couple our dependency on depth-integrated prey to the child model calculating it
call self%register_dependency(self%id_intprey, 'intprey', 'mg C m-2', 'depth-
integrated prey')
call self%request_coupling(self%id_intprey, '../totprey_integrator/result')

This creates two children of mesozooplankton: totprey_summation calculates the sum of all prey
across the pelagic, totprey_integrator subsequently calculates its depth integral. The terms to
include in the summation are set by calling add_component. This is a custom routine of
type_weighted_sum that ensures a dependency on the term will be set up and coupled to the

https://github.com/fabm-model/fabm/blob/master/src/builtin/sum.F90
https://github.com/fabm-model/fabm/blob/master/src/builtin/depth_integral.F90

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 23 of 40

specified named variable (the first argument to add_component). The field to integrate is set by
coupling the “source” of the integrator to the “result” of the sum, by calling request_coupling. The
final dependency on depth-integrated prey is linked to the result of the depth integration by another
call to request_coupling.

These operations happen under the hood and are not visible to the user of your model, or
configurable in fabm.yaml, since the responsible models are created and added (with add_child) and
coupled (with request_coupling) automatically.

You may note that the above design can only work if FABM respects the intended call order:
summation, then depth integration, then mesozooplankton sources. This is the case. FABM infers
from the dependencies between the three modules which needs to be called first and guarantees
that this will be done correctly.

Your diagnostic, my state variable

The standard rules for coupling variables between modules are straightforward: models can either
register a dependency (access: read-only) that is fulfilled by coupling to a state variable or diagnostic
from another model, or they can register a state variable dependency (access: read value, increment
sources) that must be fulfilled by coupling to a state variable from another model (e.g., Fig 3). FABM
enforces this: you cannot couple a state variable dependency to a diagnostic variable, as there is
then no destination for the source terms associated with the state variable dependency.

However, in some scenarios it is helpful if these rules can be relaxed. For example, many
biogeochemical models calculate the change in alkalinity that is associated by their uptake or
exudation of dissolved compounds. Thus, they register a state variable dependency on total
alkalinity. Still, someone may want to use these model components with a simple carbonate system
in which alkalinity is parameterized as function of salinity: it is a diagnostic rather than a state
variable. The simple carbonate module can prepare for this scenario by explicitly stating that other
modules may try to provide source terms for its alkalinity variable. This is done by registering it with
argument act_as_state_variable=.true. FABM will then allow another module (e.g.,
phytoplankton) with a state variable dependency on alkalinity to couple to this diagnostic. Any
source terms (or surface/bottom fluxes) that it provides for alkalinity will then simply be discarded.

A more interesting scenario is when the source terms (or surface/bottom fluxes) for such a
diagnostic-masquerading-as-state-variable should not be discarded but collected and processed in
some way. For example, when ERSEM is configured to use parameterized alkalinity, it calculates an
abiotic reference value of alkalinity from salinity, but it simultaneously tracks the change in alkalinity
due to biological processes in a new state variable called “bioalkalinity”. The (diagnostic) total
alkalinity is computed as the sum of the salinity-based reference value and the current bioalkalinity.
In this way, the impact of biogeochemical processes on alkalinity is still represented. To achieve this
in FABM, the diagnostic total alkalinity is registered with act_as_state_variable=.true.
ERSEM’s modules will couple to this variable and calculate source terms for it. These terms are now
no longer discarded, but applied instead to the bioalkalinity state variable. That is achieved in a few
lines:

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 24 of 40

call self%register_diagnostic_variable(self%id_TA_diag,'TA','mmol/m^3','total
alkalinity', act_as_state_variable=.true.,
standard_variable=standard_variables%alkalinity_expressed_as_mole_equivalent)

call
self%register_state_variable(self%id_bioalk,'bioalk','mmol/m^3','bioalkalinity')

call copy_fluxes(self,self%id_TA_diag,self%id_bioalk)

Here, the copy_fluxes routine takes the total sources for the diagnostic total alkalinity and
redirects them to state variable bioalkalinity.

The benefit of this implementation is that all other modules (phytoplankton etc.) do not need to
know whether alkalinity is purely diagnostic, diagnostic with representation of bioalkalinity, or fully
prognostic (a normal state variable). Their code, configuration and coupling can stay exactly the
same.

The ability to make diagnostics masquerade as state variable may seem exotic, but it provides vital
functionality that would be difficult to implement in any other way. It underpins, among others,
ERSEM’s implicit representation the vertical structure of the sediment. For example, ERSEM
represent a class of organic matter in the sediment with just two state variables: the depth-
integrated density (mmol C m-2, mmol N m-2, etc) and a mean penetration depth (m). The
concentration of organic matter is assumed to be exponentially distributed in depth (the highest
concentration at the sediment surface, asymptotically approaching 0 at depth); this allows us to
diagnose the quantity of organic matter over a given depth interval from the density and
penetration depth. Each type of benthic fauna has a habitat in the sediment defined by depth range;
this defines among other the amount of particulate organic matter available as food. Thus, its food is
a diagnostic calculated from the organic matter integrated over the sediment column, the
penetration depth, and depth range that the fauna inhabits. From the perspective of the fauna, the
food is a state variable. Accordingly, organic matter calculated over a specified depth interval is
registered with act_as_state_variable=.true. The change in food calculated by benthic fauna is
not discarded but used twice: the (negative) source term is directly applied to the state variable for
column-integrated organic matter, and additionally converted into a rate of change of penetration
depth.

 New functionality for coupling 2D and 3D
The coupling functionality in FABM was foremost designed to enable local interaction between
multiple model instances. Here, each instance is active in the same domain: in the pelagic, at the
water surface, and/or at the bottom. However, numerous applications in NECCTON and beyond
would benefit from the ability to couple depth-integrated variables (2D) with depth-explicit [pelagic]
ones (3D). Notably, several higher trophic level (HTL) models featured in NECCTON, including
ECOSMO E2E (Daewel et al., 2019), SEAPODYM-LMTL (Lehodey et al., 2010, 2015) and a spatially
explicit implementation of the Community Size Spectrum Model (Cheung et al., 2018), represent HTL

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 25 of 40

biomass by depth-integrated quantities that interact with an arbitrary part of the water column, for
example, to obtain prey and dissolved oxygen, or to inject waste products such as CO2. To underpin
this interaction, the predator has a vertical “distribution”, “habitat” or “search range”, specified by
weights that indicate what proportional of time the HTL spends in each layer. Such logic previously
was difficult to implement in FABM: while possible (https://doi.org/10.5281/zenodo.4593394), it
required use of poorly documented APIs (e.g., “do_column”) and, due to the need for explicit and
complex 2D-3D mapping, it led to hard-to-read code.

In the “neccton” branch of FABM, new functionality has been added to facilitate the mapping
between the 3D pelagic environment (e.g., temperature, net primary production, prey) and 2D
higher trophic levels, while respecting the vertical distribution of the predator and guaranteeing
mass conservation. This is specifically designed to facilitate the coupling between lower and higher
trophic level models – a central pillar in NECCTON.

Base type

The primary way to use this new functionality is to have your predator module inherit from the new
type_depth_integrated_particle type introduced in new Fortran module
“fabm_builtin_depth_mapping”:

 type, extends(type_depth_integrated_particle) :: type_depth_integrated_predator
 …
 end type

The type_depth_integrated_particle type adds several subroutines that give access to depth
integrals and depth averages of depth-explicit dependencies. These routines can be used, for
example, to access temperature or prey averaged over a predator’s vertical habitat. The depth
integration logic needs to be provided with weights for every layer, which define the depth
distribution of your predator: to have the predator inhabit only the top 100 m of the water column,
you would set these weights to 1 in cells at depths ≤ 100 m, and to 0 in all other ones. The weights
are allowed to vary in time and space, and thus can account for behaviours such as diurnal or
seasonal vertical migration. The weights are not restricted to 0 and 1: they can take any real value.
Moreover, within a water column, only the relative value of the weights matters (i.e., scaling the
weights with an arbitrary depth-independent constant has no impact on results). Thus, to have the
predator distribution track prey availability, the weights can be set equal to the prey concentration.
In that case, the fraction of time spent in each layer becomes proportional to prey concentration
(formally, this fraction equals 𝑤𝑤𝑖𝑖ℎ𝑖𝑖/∑ 𝑤𝑤𝑘𝑘ℎ𝑘𝑘𝑘𝑘 , with 𝑤𝑤𝑖𝑖 being the weight in layer 𝑖𝑖, and ℎ𝑖𝑖 the layer’s
thickness).

In many cases, you will want to create your own simple child model to calculate these weights as a
function of environmental variables, depth and/or time. That allows you to prescribe custom
recipes, e.g., “make the predator distribution proportional to pelagic prey but avoid areas with
oxygen ≤ 5 mmol m-3”.

https://doi.org/10.5281/zenodo.4593394
https://github.com/fabm-model/fabm/blob/neccton/src/builtin/depth_mapping.F90
https://github.com/fabm-model/fabm/blob/neccton/src/builtin/depth_mapping.F90

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 26 of 40

Dependencies on depth-averaged variables

To add a dependency on depth-averaged temperature to your predator, you add a surface (i.e.,
depth-independent) dependency to your type as usual:

type (type_surface_dependency_id) :: id_temp

This is registered in your “initialize” routine as usual:

call self%register_dependency(self%id_temp, 'temp', 'degrees_Celsius', 'depth-averaged
temperature')
The one new step is to couple the new dependency to the actual depth-average of temperature,
which is done with a single call to request_mapped_coupling:

call self%request_mapped_coupling(self%id_temp, standard_variables%temperature,
average=.true.)

This sets up a child model (see also “Child models and mapping across domains”) that performs the
depth-averaging, as shown in Fig 6. request_mapped_coupling will ensure that this child model will
respect the vertical weights that specify the predator habitat. The argument average=.true.
ensures that id_temp will receive the depth average ∑ 𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘ℎ𝑘𝑘𝑘𝑘 ∑ 𝑤𝑤𝑘𝑘ℎ𝑘𝑘𝑘𝑘⁄ , with 𝑤𝑤𝑘𝑘, 𝑐𝑐𝑘𝑘 and ℎ𝑘𝑘
representing local distribution weights, temperature, and layer thickness, respectively. If the
average argument is omitted or set to .false., id_temp receives the depth integral ∑ 𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘ℎ𝑘𝑘𝑘𝑘
instead.

Figure 6. A depth-integrated predator type with a dependency on depth-averaged temperature. All
ellipses indicate variables; dependencies are indicated by ellipses with dashed border. The depth-
integrated predator would have its own entry in fabm.yaml; conversely, the child model “integrator”
is automatically created by the call to register_mapped_coupling.

The very similar request_mapped_coupling_to_model provides access to the depth average or
depth integral of a variable from another model instance. For example, the following links
id_prey_c to the depth-averaged total carbon from a coupled model instance named “prey”.

integrator
depth-integrates “source” using

weights “w”, places resulting
value in “result”. Divides by

depth-integral of “w” to obtain
average (if requested)

sourceresult w

depth-integrated predator
(inheriting from type_depth_integrated_particle)

w: vertical distribution weights

temperature

temp

A call to register_mapped_coupling sets up a dependency on depth-
explicit temperature, and a child model “integrator” to depth-

average it. “temp” is then coupled to the result of this child model.

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 27 of 40

call self%request_mapped_coupling_to_model(self%id_prey_c, 'prey',
standard_variables%total_carbon, average=.true.)

This “prey” instance must be coupled to an actual model instance in the “coupling” section of the
predator in fabm.yaml. An example where the predator is coupled to a fixed-stoichiometry
zooplankton instance “Z4” is shown in Fig 7.

Figure 7. A depth-integrated predator type with a dependency on depth-averaged prey carbon. All
ellipses indicate variables; dependencies are indicated by ellipses with dashed border. Both the
depth-integrated predator and the mesozooplankton would have its own entry in fabm.yaml;
conversely, the child model “integrator” is automatically created by the call to
register_mapped_coupling_to_model.

More information about coupling to model instances and the use of standard variables such as
“total_carbon” can be found in section “Particles: grouped couplings and generalized access”.

Distributing depth-integrated source terms over the pelagic

The above examples set up read-only dependencies: they allow you to easily obtain the value of the
depth average or integral of a depth-explicit variable. What if you also want to return source terms
for this variable? In that case, the syntax is the same, except that the receiving variable should be a
state variable dependency (access: read, increment sources), rather than a plain dependency (read
access only). For example, to link to a pelagic waste pool to which you want to direct a depth-
integrated carbon flux, the dependency would be declared like:

type (type_surface_state_variable_id) :: id_waste_c

It would be registered in your initialize subroutine as usual:

integrator
result w

depth-integrated predator
(inheriting from type_depth_integrated_particle)

Z4: mesozooplankton

C

w: vertical distribution weights

prey_c

prey:total_carbon

total_carbon
add_to_aggregate_variable

coupling based on
prey: Z4
in user’s fabm.yaml

sourceA call to register_mapped_coupling_to_model sets up
a dependency on depth-explicit total carbon in coupled

instance “prey”, and a child model “integrator” to
depth-average it. “prey_c” is then coupled to the result

of this child model.

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 28 of 40

call self%register_state_dependency(self%id_waste_c, 'waste_c', 'mmol C m-2', 'depth-
integrated carbon waste')
Finally, it would be coupled to the depth-integrated total carbon of a “waste” instance with

call self%request_mapped_coupling_to_model(self%id_waste_c, 'waste',
standard_variables%total_carbon)
In this case, we do not specify argument average=.true., since we will provide a depth-integrated
waste source. Accordingly, the dependency has units mmol C m-2.

The above syntax is all nearly identical to the treatment of depth-averaged temperature and prey
described earlier. However, the fact that id_waste_c is a state variable changes the behaviour of
the depth-integrating child model, as shown in Fig 8. It now sets up a child instance that collects
source terms for the depth-integrated carbon waste and redistributes them over the original depth-
explicit waste; all while respecting the predator’s depth distribution.

Figure 8. A depth-integrated predator type with a dependency on depth-integrated carbon in a
pelagic waste pool. Unlike previous examples (Figs 6, 7), this state variable dependency allows the
predator to feed back a depth-integrated source term, which then gets redistributed over the
original depth-explicit waste pool. All ellipses indicate variables; dependencies are indicated by
ellipses with dashed border. Both the depth-integrated predator and the particulate matter would
have its own entry in fabm.yaml; the child models “integrator” and “rate_distributor” are
automatically created by the call to register_mapped_coupling_to_model.

The default rule for distributing a depth-integrated fluxes over a pelagic state variable is to direct
fraction 𝑤𝑤𝑖𝑖ℎ𝑖𝑖/∑ 𝑤𝑤𝑘𝑘ℎ𝑘𝑘𝑘𝑘 of the depth-integrated flux 𝑓𝑓 to layer 𝑖𝑖. Here, 𝑤𝑤 represents the weights that
define the predator’s vertical distribution and ℎ the layer thickness. Expression, ∑ 𝑤𝑤𝑘𝑘ℎ𝑘𝑘𝑘𝑘 is the
depth-integral of weights for the local water column. The local change in the pelagic state variable is
the depth-integrated flux divided by layer thickness, i.e., 𝑓𝑓𝑤𝑤𝑖𝑖/∑ 𝑤𝑤𝑘𝑘ℎ𝑘𝑘𝑘𝑘 . Note that this ensures that
the flux is zero where the predator is absent (i.e., where 𝑤𝑤𝑖𝑖 = 0). Additionally, only the relative value

integrator

result
w

depth-integrated predator
(inheriting from type_depth_integrated_particle)

R8: particulate matter

C

w: vertical distribution weights

waste_c

waste:total_carbon

total_carbon
add_to_aggregate_variable

coupling based on
waste: R8
in user’s fabm.yaml

source

A call to register_mapped_coupling sets up a
dependency on depth-explicit total carbon in coupled

instance “waste”, and a child model “integrator” to
depth-integrate it. “waste_c” is coupled to the result of
this child model. Because “waste_c” is a state variable,

the result of the integrator is made to act as a state
variable. This causes “integrator” to add a child model

that distributes depth-integrated sources to the original
“source”

rate distributor
takes a depth-integrated

source “sms_int” and applies
that to depth-explicit “target”,

according to weights “w”

sms_int

target
w

result_sms

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 29 of 40

of weights 𝑤𝑤 matter for the redistribution rule: scaling the weights with an arbitrary depth-
independent constant does not change the final redistributed source term.

The rate distributor module supports one alternative redistribution rule, under which the flux
directed into each layer is proportional to the local concentration of the pelagic state variable (as
well as being proportional to predator weights 𝑤𝑤). Such proportionality between the local flux and
the local concentration is appropriate for certain loss terms, notably the loss of prey due to
predation. The local redirected flux is now proportional to 𝑤𝑤𝑖𝑖𝑐𝑐𝑖𝑖, with 𝑐𝑐𝑖𝑖 denoting the pelagic
concentration. To ensure mass conservation (the depth integral of redirected flux must equal the
originally specified depth-integrated flux), it follows that the local change must equal 𝑓𝑓𝑤𝑤𝑖𝑖𝑐𝑐𝑖𝑖/
∑ 𝑤𝑤𝑘𝑘𝑐𝑐𝑖𝑖ℎ𝑘𝑘𝑘𝑘 . To use this alternative redistribution rule, register_mapped_coupling_to_model must
be called with argument proportional_change=.true.

Applying loss terms to pelagic prey

The final new component is the ability to access (loop over) all depth-integrated state variables of a
coupled pelagic instance, and to provide depth-integrated rates of change for each. This is typically
used to apply the same relative loss rate to all constituents of a prey (e.g., carbon, nitrogen,
phosphorus, chlorophyll, etc.), without having to know the prey’s implementation details. It allows
the same prey treatment as described near the end of section “Particles: grouped couplings and
generalized access”. To use this functionality, you first add a model dependency to the model type:

type (type_model_id) :: id_prey_int

This is registered from initialize by calling the new register_mapped_model_dependency:

call self%register_mapped_model_dependency(self%id_prey_int, 'prey',
proportional_change=.true., domain=domain_surface)

Here, the use of proportional_change=.true. specifies that when redistributing prey loss terms
over the vertical, the local change in prey must be proportional to the local prey concentration (see
the discussion of the alternative distribution rule above). By specifying domain=domain_surface, we
ensure that all depth-integrated prey variables become available as id_prey_int%surface_state.
These variables can then be read and changed by specifying source terms from do_surface:

do istate = 1, size(self%id_prey_int%surface_state)
 _GET_SURFACE_(self%id_prey_int%surface_state(istate), p)
 _ADD_SURFACE_SOURCE_(self%id_prey_int%surface_state(istate), -prey_loss_rate * p)
end do

Here, prey_loss_rate is the specific loss rate of the depth-integrated prey, in s-1. In the
background, registered_mapped_model_dependency takes care of setting up depth-integrated
variables for each of the prey’s original pelagic state variables, along with the appropriate integrator
child models and rate distributors, as shown in Fig. 9. It is worth emphasizing, however, that all new
functionality can be used without being aware of the underlying implementation.

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 30 of 40

Figure 9. A depth-integrated predator type with a dependency on a pelagic prey instance. By calling
register_mapped_model_dependency, the predator gets access to all depth-integrated state
variables of the prey, irrespective of their identity. It is then free to prescribe rates of change for
each, e.g., to apply the same specific loss rate. These rates get redistributed over the original depth-
explicit state variables of the prey. All ellipses indicate variables; dependencies are indicated by
ellipses with dashed border. Both the depth-integrated predator and the mesozooplankton would
have its own entry in fabm.yaml; the child models “particle_integrator” and all necessary instances
of “integrator” and “rate_distributor” are automatically created by the call to
register_mapped_model_dependency.

A comprehensive example that uses combines all functionality described above is included in the
“neccton” branch of the FABM repository. Its current version is repeated verbatim here:

#include "fabm_driver.h"

module templates_depth_integrated_predator

 ! This module describes a predator that feeds across (part of) the water column.
 ! It is represented by a depth-integrated biomass and a prescribed vertical
distribution.
 ! This would be appropriate for predators that move very fast in the vertical.
 !
 ! The predator has constant C:N:P stoichiometry
 ! Its elemental ratios are defined by parameters NC and PC below.
 ! It accepts one prey type that may have variable C:N:P stochiometry.
 ! At each point in time, ingested fluxes of C, N and P are calculated.
 ! Based on the most limiting of these, a growth rate is calculated.
 ! Unused ingested fluxes and dead biomass are sent to a coupled waste pool.
 !
 ! Extensions:
 ! * Different vertical distributions, including time-varying ones:
 ! create a new depth distribution type (your equivalent of type_vertical_depth_range
 ! defined in the fabm_builtin_depth_mapping module) and calculate your custom
 ! vertical distribution weights in its "do" routine. These can depend on any

rate distributorrate distributor

integratorintegrator

particle integrator

integrator

result w

depth-integrated predator
(inheriting from type_depth_integrated_particle)

Z4: mesozooplankton

C

w: vertical distribution weights

coupling based on
prey: Z4
in user’s fabm.yaml

source

register_mapped_model_dependency sets
up a dependency on a depth-explicit
model instance “prey”, and a child

instance “particle integrator” that depth-
integrates its state variables by creating a

per-variable integrator. Changes in prey are
applied to each depth-integrated state

variable, accessed by coupling our
“prey_int” dependency to the particle

integrator. The per-variable rate distributor
is then responsible for projecting the

change over pelagic prey.

stateint(1)stateint(1)stateint(1)

prey

source

state(1)state(1)state(1)

prey_int

stateint(1)stateint(1)surface_state(1)

rate distributor
sms_int target w

result_sms

loops over all depth-explicit state
variables of the coupled “source”
instance, and expose the depth-

integrated equivalent

https://github.com/fabm-model/fabm/blob/neccton/src/models/examples/particle/depth_integrated_predator.F90
https://github.com/fabm-model/fabm/blob/neccton/src/models/examples/particle/depth_integrated_predator.F90

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 31 of 40

 ! environmental input or parameter, e.g. temperature, light, time of day,
 ! depth, prey availability.
 ! * Multiple prey types: declare id_prey_c and the like as allocatable arrays,
 ! get number of prey types as parameter, allocate identifier arrays (id_prey_c etc.)
 ! and move all prey handling to the inside of a loop over all prey
 ! * Additional prey constituents (e.g., silicon, calcium carbonate): as for
 ! current treatment of N and P. If not incorporated in predator biomass,
 ! their ingested fluxes can be sent directly to the waste pool.
 ! * More complex dynamics for predation, predator population growth, etc.:
 ! modify logic in do_surface accordingly. Additional parameters should be added
 ! to the type_depth_integrated_predator type and their value retrieved from
 ! initialize. Additional environental inputs can be handled just like
 ! temperature. Any additional waste pools (e.g., to distinguish dissolved
 ! and particulate wastes) can be implemented analogous to the current waste.

 use fabm_types
 use fabm_particle
 use fabm_builtin_depth_mapping

 implicit none

 private

 type, extends(type_depth_integrated_particle), public :: type_depth_integrated_predator
 type (type_surface_state_variable_id) :: id_c
 type (type_surface_dependency_id) :: id_prey_c, id_prey_n, id_prey_p
 type (type_surface_state_variable_id) :: id_waste_c, id_waste_n, id_waste_p
 type (type_surface_dependency_id) :: id_temp
 type (type_surface_diagnostic_variable_id) :: id_net_growth, id_prey_loss_rate
 type (type_model_id) :: id_prey_int

 real(rk) :: clearance_rate
 real(rk) :: mortality
 contains
 procedure :: initialize
 procedure :: do_surface
 end type

 ! Redfieldian N:C and P:C ratios of predator biomass
 real(rk), parameter :: NC = 16.0_rk/ 106.0_rk
 real(rk), parameter :: PC = 1.0_rk / 106.0_rk

contains

 subroutine initialize(self, configunit)
 class (type_depth_integrated_predator), intent(inout), target :: self
 integer, intent(in) :: configunit

 class (type_vertical_depth_range), pointer :: depth_distribution

 allocate(depth_distribution)
 call self%set_vertical_distribution(depth_distribution)

 ! Predator biomass and its contribution to different elemental pools
 call self%register_state_variable(self%id_c, 'c', 'mmol C m-2', 'density')
 call self%add_to_aggregate_variable(standard_variables%total_carbon, self%id_c)
 call self%add_to_aggregate_variable(standard_variables%total_nitrogen, self%id_c,
scale_factor=NC)
 call self%add_to_aggregate_variable(standard_variables%total_phosphorus, self%id_c,
scale_factor=PC)

 ! Parameters

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 32 of 40

 ! NB rates are in d-1 in fabm.yaml and scaled here to s-1 using the scale_factor
argument
 call self%get_parameter(self%clearance_rate, 'clearance_rate', 'm3 d-1 mmol-1',
'clearance rate', scale_factor=1.0_rk / 86400.0_rk)
 call self%get_parameter(self%mortality, 'mortality', 'd-1', 'mortality',
scale_factor=1.0_rk / 86400.0_rk)

 ! Diagnostics
 call self%register_diagnostic_variable(self%id_net_growth, 'net_growth', 'mmol C m-2
d-1', 'net population growth rate')
 call self%register_diagnostic_variable(self%id_prey_loss_rate, 'prey_loss_rate', 'd-
1', 'specific prey loss rate')

 ! Depth-averaged dependencies
 call self%register_dependency(self%id_temp, 'temp', 'degrees_Celsius', 'depth-
averaged temperature')
 call self%register_dependency(self%id_prey_c, 'prey_c', 'mmol C m-3', 'depth-averaged
prey carbon')
 call self%register_dependency(self%id_prey_n, 'prey_n', 'mmol N m-3', 'depth-averaged
prey nitrogen')
 call self%register_dependency(self%id_prey_p, 'prey_p', 'mmol P m-3', 'depth-averaged
prey phosphorus')
 call self%register_state_dependency(self%id_waste_c, 'waste_c', 'mmol C m-2', 'depth-
integrated carbon waste')
 call self%register_state_dependency(self%id_waste_n, 'waste_n', 'mmol N m-2', 'depth-
integrated nitrogen waste')
 call self%register_state_dependency(self%id_waste_p, 'waste_p', 'mmol P m-2', 'depth-
integrated phosphorus waste')

 ! Derive depth-averaged dependencies from depth-explicit sources
 ! * Environmental variables are typically depth-averaged over the predator habitat,
 ! as temperature is below (note average=.true.)
 ! * Prey concentrations are here depth-averaged as well; they will be multiplied with
a clearance rate
 ! (volume searched per unit time per predator) to obtain ingestion rates.
 ! Prey destruction in handled separately by coupling to all prey state variables at
once
 ! (see the call to register_mapped_model_dependency below)
 ! * Waste pools are depth-integrated as they will receive depth-integrated fluxes of
waste
 ! produced by the predator population. These fluxes will be vertically distributed
 ! accordingly to the predator's vertical distribution, i.e., the waste flux
injected
 ! locally will be proportional to the local weight of the predators's
 ! vertical distribution.
 call self%request_mapped_coupling(self%id_temp, standard_variables%temperature,
average=.true.)
 call self%request_mapped_coupling_to_model(self%id_prey_c, 'prey',
standard_variables%total_carbon, average=.true.)
 call self%request_mapped_coupling_to_model(self%id_prey_n, 'prey',
standard_variables%total_nitrogen, average=.true.)
 call self%request_mapped_coupling_to_model(self%id_prey_p, 'prey',
standard_variables%total_phosphorus, average=.true.)
 call self%request_mapped_coupling_to_model(self%id_waste_c, 'waste',
standard_variables%total_carbon)
 call self%request_mapped_coupling_to_model(self%id_waste_n, 'waste',
standard_variables%total_nitrogen)
 call self%request_mapped_coupling_to_model(self%id_waste_p, 'waste',
standard_variables%total_phosphorus)

 ! Access depth-integrated prey state that we will apply specific loss rates to.

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 33 of 40

 ! The local (depth-explicit) prey loss is expected to be proportional to prey
biomass.
 ! This is specified by proportional_change=.true. The result of this is that the
 ! same specific prey loss rate (multiplied by distribution weights) will be applied
over
 ! the predator depth range.
 call self%register_mapped_model_dependency(self%id_prey_int, 'prey',
proportional_change=.true., domain=domain_surface)
 end subroutine

 subroutine do_surface(self, _ARGUMENTS_DO_SURFACE_)
 class (type_depth_integrated_predator), intent(in) :: self
 _DECLARE_ARGUMENTS_DO_SURFACE_

 real(rk) :: c, temp, prey_c, prey_n, prey_p, prey_s, w_int
 real(rk) :: ingestion_c, ingestion_n, ingestion_p, prey_loss_rate, p, net_growth
 integer :: istate

 _SURFACE_LOOP_BEGIN_
 ! Get depth-integrated predator biomass
 _GET_SURFACE_(self%id_c, c)

 ! Depth-averaged environmental dependencies and prey concentrations
 _GET_SURFACE_(self%id_temp, temp)
 _GET_SURFACE_(self%id_prey_c, prey_c)
 _GET_SURFACE_(self%id_prey_n, prey_n)
 _GET_SURFACE_(self%id_prey_p, prey_p)

 ! Calculate ingested fluxes of different chemical elements
 ! Predator population growth will be based on the most limiting of these
 ingestion_c = self%clearance_rate * c * prey_c
 ingestion_n = self%clearance_rate * c * prey_n
 ingestion_p = self%clearance_rate * c * prey_p
 net_growth = min(ingestion_c, ingestion_n / NC, ingestion_p / PC) - self%mortality
* c

 ! The specific loss rate of prey is the depth-integrated ingestion,
 ! divided by depth-integrated prey biomass, e.g., ingestion_c / prey_c_int.
 ! In turn, prey_c_int is related to depth-averaged prey as prey_c = prey_c_int /
w_int,
 ! with w_int representing the depth-integral weights of the predator's vertical
distribution.
 ! Thus, the specific loss rate is ingestion_c / (prey_c * w_int), which simplifies
to
 ! clearance_rate * c / w_int (see expression for ingestion_c above)
 _GET_SURFACE_(self%id_w_int, w_int)
 prey_loss_rate = self%clearance_rate * c / w_int

 ! Source term for predator
 _ADD_SURFACE_SOURCE_(self%id_c, net_growth)

 ! Apply the same specific loss rate of all state variables of the prey
 do istate = 1, size(self%id_prey_int%surface_state)
 _GET_SURFACE_(self%id_prey_int%surface_state(istate), p)
 _ADD_SURFACE_SOURCE_(self%id_prey_int%surface_state(istate), -prey_loss_rate *
p)
 end do

 ! Send unused ingested matter and dead biomass to waste pools
 _ADD_SURFACE_SOURCE_(self%id_waste_c, ingestion_c - net_growth)
 _ADD_SURFACE_SOURCE_(self%id_waste_n, ingestion_n - net_growth * NC)
 _ADD_SURFACE_SOURCE_(self%id_waste_p, ingestion_p - net_growth * PC)

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 34 of 40

 ! Save diagnostics
 _SET_SURFACE_DIAGNOSTIC_(self%id_net_growth, net_growth * 86400.0_rk)
 _SET_SURFACE_DIAGNOSTIC_(self%id_prey_loss_rate, prey_loss_rate * 86400.0_rk)

 _SURFACE_LOOP_END_
 end subroutine

end module

 Recommendations
In general

Modularity
The minimum level of modularity that you need follows from the components you want to exchange
with others, now or in the future. To support developments planned in NECCTON, modules for
oxygen, carbonate chemistry, irradiance, suspended particulate matter and higher trophic levels are
best written as stand-alone module, as this will allow them to be used in the different CMEMS
Monitoring and Forecasting Centres.

The optimum level of modularity depends on the intended uses of the model. In practice, many have
found it useful to use one module instance per “integral physical particle”, e.g., a chemical
compound (e.g., dissolved nitrate, oxygen), generalized compound (e.g., a class of particulate or
dissolved organic matter) or organism (e.g., a plankton functional type). Each instance has a separate
entry in fabm.yaml. In this scenario, the model code would typically include modules (Fortran types,
each coded in a separate source file) for a generalized passive tracer, generalized phytoplankton,
and generalized zooplankton. In fabm.yaml, the tracer module is used for nutrients, dissolved
organic matter classes and particulate organic matter classes, the phytoplankton module is used for
every instantiated phytoplankton type, and the zooplankton module is used for every instantiated
zooplankton type.

Particle-based modularisation has several benefits:

1. the same code can be used to construct different ecosystem configurations (by adding or
removing plankton functional types in fabm.yaml);

2. consolidated codes for generic phytoplankton and generic zooplankton are written once (no
separate copies for pico-, nano-, and microphytoplankton, diatoms, califyers, etc.), which
reduces code size, guarantees consistency among plankton functional types, and reduces
the risk for bugs;

mass conservation can be diagnosed per module, which makes conservation checking much easier
(see “Conservation checks”).

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 35 of 40

Registering variables
• Each module can register any mixture of state variables, diagnostic variables, dependencies

and state dependencies that it needs (see also “Variables”).
• To simplify implicit coupling (see “Coupling specification”), link your state variables and

diagnostic variables to a predefined standard variable identity where appropriate. This is
done by supplying the standard_variable argument during registration, e.g.,
standard_variable=standard_variables%alkalinity_expressed_as_mole_equivalent when you
register alkalinity. Note that if you do this, you promise that units of your variable and the
predefined standard variable are identical.

• Register the contributions of your state and diagnostic variables to aggregate variables (see
“Aggregate variables”). This is essential for conserved quantities such as total carbon,
nitrogen, phosphorus, silicon, iron, since aggregate variable are use both for model coupling
(see “Particles: grouped couplings and generalized access”). However, it is also useful for
additional aggregate quantities such as total chlorophyll, which is widely used by irradiance
models to compute attenuation, and net primary production, which is used by higher trophic
level models (e.g., SEAPODYM-LMTL).

• If you see a need for additional standard variable identities, please contact the authors or
post a message on the FABM discussion forum.

Coupling to other modules
• Where possible, couple based on predefined standard variable identities. These can be used

to access fields from the hosting hydrodynamic model (e.g., temperature), but also fields
from other modules, e.g., alkalinity. Note that standard variables have specific defined units.

• When coupling to other “particles”, e.g., nutrients, a class of particulate organic matter,
another functional type (e.g., prey), use the standard variable-based coupling (see “Particles:
grouped couplings and generalized access”). For example, register a dependence on a “pom”
instance (couplable in fabm.yaml) and then use the request_coupling_to_model API to
couple (in code) to individual constituents such as total carbon, nitrogen, etc. Note that the
resulting variables have specific defined units.

Providing source terms and diagnostics
Use the standard routines where possible: “do” for the pelagic, “do_bottom” for the bottom,
“do_surface” for the water surface (see also “Routines”). These are designed to operate efficiently,
and easy to implement as they always operate locally (given the local environment and state,
calculate local sources and diagnostics). Only use “do_column” if there is no other way to achieve
what you need, as it is relatively inefficient. If you do use it, consider doing so only for the minimum
of calculations possible, by moving these into a stand-alone child module (see “Child models and
mapping across domains”).

Vertical movement of pelagic state variables
 To apply constant vertical velocities (e.g., sinking), register your state variable with the
vertical_movement argument. To use time- and/or space varying velocities, implement the
“get_vertical_movement” routine. This is also needed to add vertical velocities (constant or variable)

https://github.com/fabm-model/fabm/wiki/List-of-standard-variables
https://github.com/fabm-model/fabm/discussions
https://github.com/fabm-model/fabm/wiki/List-of-standard-variables
https://github.com/fabm-model/fabm/wiki/Developing-a-new-biogeochemical-model#state-variables
https://github.com/fabm-model/fabm/wiki/Developing-a-new-biogeochemical-model#state-variables
https://github.com/fabm-model/fabm/wiki/Developing-a-new-biogeochemical-model#time-andor-space-varying-vertical-movement
https://github.com/fabm-model/fabm/wiki/Developing-a-new-biogeochemical-model#time-andor-space-varying-vertical-movement

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 36 of 40

to a state variable dependency, e.g., to add migration behaviour. Remember to apply the same
vertical velocity to all state variables.

Specific component models

Phytoplankton
• Register your contribution to total chlorophyll, even if you do not normally track it, and

would only assume it to be proportional to biomass. That is because chlorophyll is a crucial
quantity in many models you may be coupled to (e.g., irradiance)

• Register you contribution to net primary production to support selected higher trophic level
models (e.g., SEAPODYM)

Predators (e.g., zooplankton)
• Use particle conventions to obtain prey biomass (read-only) and destroy your prey by

applying the same specific loss rate to all state variables (see “Particles: grouped couplings
and generalized access”)

• Consider generalizing the zooplankton type of accept any number of prey, configurable and
couplable in fabm.yaml, instead of using a fixed set of prey types with hardcoded names.
Together with the particle convention (previous item), this would enable your zooplankton
implementation to work within other biogeochemical/lower trophic level models.

Carbonate system
• If using parametrized alkalinity, register it with act_as_state_variable=.true. (see “Your

diagnostic, my state variable”)
• If you are using not-trivial logic to calculate alkalinity, consider placing it in a stand-alone

alkalinity module, separate from the rest of the carbonate system. That module can then be
re-used with other carbonate system solvers.

Irradiance
• For more complex models (e.g., spectrally resolving), consider separating the atmospheric

component (if any), the underwater radiative transfer model, and the calculation of
(broadband/wavelength-explicit) absorption/scattering/attenuation properties summed
across Inherent Optical Properties (IOPs). This allows the first two components to work
unmodified with new parametrisations (e.g., new absorption and scattering spectra) and
new IOPs.

Higher trophic levels (2D)
This section discusses organisms that move fast in the vertical, to the extent that that they can be
represented by depth-integrated biomass and a prescribed vertical distribution. This distribution
may be variable, for example, dependent on time, depth, environmental variables such as
temperature, or prey availability.

• If you are implementing such a model in FABM anew, we recommend you review the new
functionality introduced for this purpose (see “New functionality for coupling 2D and 3D”). It

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 37 of 40

provides a flexible method for mapping 2D predators over the pelagic, and ensures their
interactions with pelagic variables are mass conserving.

• The recommendations for generic predators (“Predators (e.g., zooplankton)”) apply: by
permitting the number and names of prey to be defined at runtime in fabm.yaml, and by
accessing prey constituents through standard names (“total_carbon”, etc.), your HTL model
will be compatible with a wide range of biogeochemical/lower trophic level models, and
thus shareable across CMEMS Monitoring and Forecasting Centres.

 Model testing
Debugging

Best practices for debugging biogeochemical models in FABM are not unique to NECCTON and they
are mostly documented on the FABM wiki. Nevertheless, it is worth listing the main steps worth
taking:

1. Make FABM perform additional runtime checks by compiling it in Debug mode. This verifies,
among others, whether your biogeochemical model actually provides values for the
diagnostics it has registered, and whether the source terms that your model provides are
finite (not NaN). To compile FABM in debug mode, run provide -DCMAKE_BUILD_TYPE=Debug
when you run cmake.

2. Make the compiler perform additional runtime checks. This can catch additional issues,
notably the scenario where a biogeochemical model reads or writes variables that it has not
registered. Different compilers require different flags to activate runtime checks, for
example, gfortran needs -fcheck=all, Intel fortran needs -check all. These flags can be
set through environment variable FFLAGS before you run cmake, or by passing -
DCMAKE_Fortran_FLAGS=<FLAGS> to cmake. Further information is available on the wiki.

3. Verify mass conservation per model instance, per chemical element, and per domain
(interior, surface, bottom) by setting check_conservation: true in fabm.yaml. Further
information is provided in the section “Conservation checks”.

Each of these three options comes at the expense of performance. Activating them all at once can
easily increase runtime by a factor 4. Therefore, it is good practice to activate them during the early
stages of model development, but none of these options should be used for production/operation
simulations.

Light-weight testing options

Before running newly coded biogeochemical/ecosystem models or process descriptions in
production setups (e.g., within computationally expensive 3D models configured for CMEMS
domains), it is good practice to evaluate their behaviour in more lightweight setting, for example, in
a 0D box model, a 1D water column model, or a coarse resolution 3D model. This is very feasible in
FABM, as it has been interfaced to a wide range of physical models (Fig 1), including some

https://github.com/fabm-model/fabm/wiki/Tips-and-tricks
https://github.com/fabm-model/fabm/wiki/Building-and-installing
https://github.com/fabm-model/fabm/wiki/Building-and-installing
https://github.com/fabm-model/fabm/wiki/Tips-and-tricks#setting-compiler-flags-to-control-optimization-runtime-checks-etc

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 38 of 40

specifically designed for low computational cost, short simulation times, and repeated runs. The
following are often useful:

• pyfabm: the Python interface to FABM can be used to run simulations in box model setting
(0D). Instructions on how to build and use pyfabm are available on the wiki. A specific
example for running simulations from Python is included.

• GOTM (Burchard et al., 2006; Li et al., 2021): a 1D water column model that can perform
multi-year simulations under realistic forcing in minutes. Setups for any location across the
globe can be generated on the fly using https://igotm.bolding-bruggeman.com/. Instructions
for using GOTM with FABM are available on the wiki. For GOTM-FABM simulations,
dedicated packages are available for sensitivity analysis and calibration (parsac) and for data
assimilation (EAT), which was developed in the framework of the European Horizon 2020
SEAMLESS project (grant agreement No 101004032).

• fabmos: the FABM Offline Simulator that is being developed within NECCTON WP3 supports
efficient 3D simulation with prescribed [offline] transports. It has a flexible architecture into
which new transport engines can be added. The EU project OceanICU has delivered an
efficient global simulation engine based on the Transport Matrix Method (Khatiwala, 2007),
which can perform efficient (~ 1 simulated year/minute) coarse resolution global
simulations. Instructions on how to build fabmos are available on its wiki. Examples for
specific biogeochemical models including ERSEM and PISCES are available from its
repository.

Production use

To embed your developments in simulations comparable to those run within CMEMS, you will want
to use the corresponding hydrodynamic models: HYCOM (Bleck, 2002) for the Artic MFC, NEMO
(Madec, 2008) for all other ones. Both of these have been coupled to FABM:

• For HYCOM, a FABM coupler is maintained and developed by the Nansen Environmental and
Remote Sensing Center. This codebase is available on GitHub.

• For NEMO, FABM couplers for several NEMO versions are maintained and developed by the
Plymouth Marine Laboratory. These are available from GitHub for NEMO 3.6 and NEMO 4.0.
A FABM coupler for NEMO 4.2 is currently being developed by a consortium of institutes
including NECCTON partners (e.g., BSH, PML).

For advice on model configurations and code versions, we recommend contacting NECCTON
partners that actively contribute to the Monitoring and Forecasting Centre(s) that you are interested
in.

It is worth noting that NEMO-FABM couplers are widely used, both within NECCTON and beyond.
Internationally, at least 10 different organizations currently use NEMO with FABM included, that is,
they use the modified NEMO source codes distributed by PML. These codes do not always track the
central NEMO repository and its updates, and even if they did, that would come with some delay.
This is suboptimal. For the many organizations that use both NEMO and FABM, and for NECCTON

https://fabm.net/python
https://github.com/fabm-model/fabm/wiki/python#run-a-simulation
https://igotm.bolding-bruggeman.com/
https://github.com/fabm-model/fabm/wiki/GOTM
https://github.com/BoldingBruggeman/parsac
https://doi.org/10.5194/gmd-2023-238
http://www.seamlessproject.org/SEAMLESS_EAT
https://ocean-icu.eu/
https://github.com/BoldingBruggeman/fabmos/wiki
https://github.com/BoldingBruggeman/fabmos
https://github.com/BoldingBruggeman/fabmos
https://github.com/fabm-model/fabm/wiki/HYCOM
https://github.com/fabm-model/fabm/wiki/HYCOM
https://github.com/nansencenter/NERSC-HYCOM-CICE
https://github.com/fabm-model/fabm/wiki/NEMO
https://github.com/fabm-model/fabm/wiki/NEMO
https://github.com/pmlmodelling/NEMO3.6-FABM
https://github.com/pmlmodelling/NEMO4.0-FABM

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 39 of 40

and CMEMS in particular, it would clearly be beneficial if the FABM coupling layer were included
within the authoritative NEMO repository. This is an option we recommend the NEMO consortium
to consider.

 Code distribution
There are three ways to distribute new FABM-based biogeochemical/ecological models:

1. Integrate them directly in the FABM repository. This is suitable for compact model codes
without external dependencies. It is the way that various ERGOM strains and the operational
version of ECOSMO are currently distributed. To distribute your code like this: fork the FABM
repository, commit your changes, and create a pull request. After this pull request is
accepted, all FABM users will have access to your model(s).

2. Place your source code (the equivalent of your “institute directory” in FABM) in a stand-
alone repository. This is the way the FABM-based implementations of ERSEM, BFM and
PISCES are currently distributed. Users obtain your code by cloning your repository; they
then integrate it in their FABM builds by providing additional arguments to cmake (e.g., -
DEXTRA_FABM_INSTITUTES=pisces -DFABM_PISCES_BASE=<piscesdir>)

3. As the previous option, but additionally your repository is included in the fabm-plus
repository as a submodule. This repository is the basis for public distributions of GOTM and
fabmos, among others (see “Light-weight testing options”), which means that users of these
distributions will automatically get access to your model(s). The fabm-plus repository
currently includes ERSEM and PISCES, among others.

 References
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., & Gehlen, M. (2015). PISCES-v2: An ocean biogeochemical

model for carbon and ecosystem studies. Geoscientific Model Development, 8(8), 2465–2513.
https://doi.org/10.5194/gmd-8-2465-2015

Bleck, R. (2002). An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates.
Ocean Modelling, 4(1), 55–88. https://doi.org/10.1016/S1463-5003(01)00012-9

Bruggeman, J., & Bolding, K. (2014). A general framework for aquatic biogeochemical models.
Environmental Modelling and Software, 61, 249–265. https://doi.org/10.1016/j.envsoft.2014.04.002

Bruggeman, J., Bolding, K., Nerger, L., Teruzzi, A., Spada, S., Skákala, J., & Ciavatta, S. (2023). EAT v0.9.6: a
1D testbed for physical-biogeochemical data assimilation in natural waters. Geoscientific Model
Development Discussions, under review. https://doi.org/10.5194/gmd-2023-238

Bruggeman, J., Bolding, K., Nerger, L., Teruzzi, A., Spada, S., Wakamatsu, T., Yumruktepe, Ç., Skákala, J., &
Ciavatta, S. (2023). SEAMLESS Public release and full documentation of the SEAMLESS prototype.
D2.4. https://doi.org/10.5281/zenodo.10581313

https://github.com/fabm-model/fabm/blob/master/src/models/nersc/ecosmo/ecosmo_operational.F90
https://github.com/fabm-model/fabm/blob/master/src/models/nersc/ecosmo/ecosmo_operational.F90
https://github.com/fabm-model/fabm/fork
https://github.com/fabm-model/fabm/fork
https://github.com/fabm-model/fabm/wiki/Developing-a-new-biogeochemical-model#create-an-institute-directory-for-your-model
https://github.com/pmlmodelling/ersem
https://github.com/BoldingBruggeman/fabm-pisces
https://github.com/fabm-model/fabm/wiki/Building-and-installing
https://github.com/fabm-model/fabm-plus
https://github.com/fabm-model/fabm-plus
https://github.com/fabm-model/fabm-plus/tree/master/extern
https://github.com/fabm-model/fabm-plus/tree/master/extern

Project NECCTON No 101081273 Deliverable 3.1

Dissemination Public Nature Report

Date 1 February 2024 Version 1.1

Page 40 of 40

Burchard, H., Bolding, K., Kühn, W., Meister, A., Neumann, T., & Umlauf, L. (2006). Description of a flexible
and extendable physical-biogeochemical model system for the water column. Journal of Marine
Systems, 61(3–4), 180–211. https://doi.org/10.1016/j.jmarsys.2005.04.011

Butenschön, M., Clark, J., Aldridge, J. N., Allen, J. I., Artioli, Y., Blackford, J., Bruggeman, J., Cazenave, P.,
Ciavatta, S., Kay, S., Lessin, G., van Leeuwen, S., van der Molen, J., de Mora, L., Polimene, L., Sailley,
S., Stephens, N., & Torres, R. (2016). ERSEM 15.06: a generic model for marine biogeochemistry and
the ecosystem dynamics of the lower trophic levels. Geoscientific Model Development, 9(4), 1293–
1339. https://doi.org/10.5194/gmd-9-1293-2016

Cheung, W. W. L., Bruggeman, J., & Butenschön, M. (2018). Projected changes in global and national
potential marine fisheries catch under climate change scenarios in the twenty-first century. In M.
Barange, T. Bahri, M. C. M. Beveridge, K. L. Cochrane, S. Funge-Smith, & F. Poulain (Eds.), Impacts of
Climate Change on fisheries and aquaculture: Synthesis of current knowledge, adaptation and
mitigation options. FAO Fisheries Technical Paper 627. FAO.
http://www.fao.org/3/I9705EN/i9705en.pdf

Daewel, U., Schrum, C., & Macdonald, J. I. (2019). Towards end-to-end (E2E) modelling in a consistent
NPZD-F modelling framework (ECOSMO E2E_v1.0): application to the North Sea and Baltic Sea.
Geoscientific Model Development, 12(5), 1765–1789. https://doi.org/10.5194/gmd-12-1765-2019

Khatiwala, S. (2007). A computational framework for simulation of biogeochemical tracers in the ocean.
Global Biogeochemical Cycles, 21(3), n/a-n/a. https://doi.org/10.1029/2007GB002923

Lehodey, P., Conchon, A., Senina, I., Domokos, R., Calmettes, B., Jouanno, J., Hernandez, O., & Kloser, R.
(2015). Optimization of a micronekton model with acoustic data. ICES Journal of Marine Science,
72(5), 1399–1412. https://doi.org/10.1093/icesjms/fsu233

Lehodey, P., Murtugudde, R., & Senina, I. (2010). Bridging the gap from ocean models to population
dynamics of large marine predators: A model of mid-trophic functional groups. Progress in
Oceanography, 84(1–2), 69–84. https://doi.org/10.1016/j.pocean.2009.09.008

Li, Q., Bruggeman, J., Burchard, H., Klingbeil, K., Umlauf, L., & Bolding, K. (2021). Integrating CVMix into
GOTM (v6.0): a consistent framework for testing, comparing, and applying ocean mixing schemes.
Geoscientific Model Development, 14(7), 4261–4282. https://doi.org/10.5194/gmd-14-4261-2021

Madec, G. (2008). NEMO ocean engine. In Note du Pole de modélisation (Vol. 27). Institut Pierre-Simon
Laplace (IPSL).

Vichi, M., Lovato, T., Butenschön, M., Tedesco, L., Lazzari, P., Cossarini, G., Masina, S., Pinardi, N.,
Solidoro, C., & Zavatarelli, M. (2020). The Biogeochemical Flux Model (BFM): Equation Description
and User Manual. BFM version 5.2. http://bfm-community.eu/

Yumruktepe, V. Ç., Samuelsen, A., & Daewel, U. (2022). ECOSMO II(CHL): a marine biogeochemical model
for the North Atlantic and the Arctic. Geoscientific Model Development, 15(9), 3901–3921.
https://doi.org/10.5194/gmd-15-3901-2022

	1. Executive Summary
	2. Scope
	3. Introduction
	About FABM
	Modularity
	Aim of this document

	4. Coupling and modularity
	Common ingredients of FABM-based models
	Models, instances and modules
	Variables
	Routines
	Source terms and surface/bottom fluxes
	Aggregate variables

	A modularisation example
	Conservation checks
	Coupling specification
	Particles: grouped couplings and generalized access
	Child models and mapping across domains
	Your diagnostic, my state variable

	5. New functionality for coupling 2D and 3D
	Base type
	Dependencies on depth-averaged variables
	Distributing depth-integrated source terms over the pelagic
	Applying loss terms to pelagic prey

	6. Recommendations
	In general
	Modularity
	Registering variables
	Coupling to other modules
	Providing source terms and diagnostics
	Vertical movement of pelagic state variables

	Specific component models
	Phytoplankton
	Predators (e.g., zooplankton)
	Carbonate system
	Irradiance
	Higher trophic levels (2D)

	7. Model testing
	Debugging
	Light-weight testing options
	Production use

	8. Code distribution
	9. References

