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Abstract—This paper unifies power optimization approaches
various energy converters, such as: thermal, sclamical, and
electrochemical engines, in particular fuel celfhermodynamics
leads to converter's efficiency and limiting poweEfficiency
equations serve to solve problems of upgradingdovangrading of
resources. While optimization of steady systems lieppthe
differential calculus and Lagrange multipliers, dgmic optimization
involves variational calculus and dynamic programmniln reacting
systems chemical affinity constitutes a prevailoamponent of an
overall efficiency, thus the power is analyzed ennts of an active
part of chemical affinity. The main novelty of theesent paper in the
energy yield context consists in showing that tleaegalized heat
flux Q (involving the traditional heat fluxy plus the product of
temperature and the sum products of partial ergeopind fluxes of
species) plays in complex cases (solar, chemiahk#ttrochemical)
the same role as the traditional hgat pure heat engines.

The presented methodology is also applied to pdivwets in fuel
cells as to systems which are electrochemical #agines propelled
by chemical reactions. The performance of fuelsdslidetermined by
magnitudes and directions of participating streant mechanism of
electric current generation. Voltage lowering beltve reversible
voltage is a proper measure of cells imperfectidre voltage losses,
called polarization, include the contributions bfee main sources:
activation, ohmic and concentration. Examples spower maxima
in fuel cells and prove the relevance of the extensf the thermal
machine theory to chemical and electrochemicalesyst The main
novelty of the present paper in tR€ context consists in introducing
an effective or reduced Gibbs free energy changedes productp

variables to describe these systems. In the pregerk we
itreat generalized power yield problems systemsfiithwvboth
temperature3 and chemical potentiajg are essential. This is
associated with engines propelled by fluxes of lestérgy and
substance. In a process of power production showrig. 1
two subsystems differing in values Bfand i interact through
the set of power generators (engines). The proolugtiocess
is propelled by diffusive and/or convective fluxeflsheat and
mass transferred through ‘conductances’ or bountaygrs.
The energy flux (power) is created in each generaitated
between the resource stream (‘upper’ fluid 1) asaly, an
waste stream (‘lower’ fluid, 2).

Basically, both transfer mechanisms, flows and eslof
conductances of boundary layers influence the o&teower
generation [2-5]. Local fluxes of heat and powemdb change

along the steady process path only when both sgream

(reservoirs) in Fig.1 are infinite. Whenever onay,supper,
stream is finite, its thermal potential decreadesdthe path,
which is the consequence of the energy balance. fikitg

stream is thus a resource reservoir. It is theuregoproperty
or the finiteness of amount or flow of a valuabldbstance or
energy which changes the upper fluid propertieaglts path.
For the engine mode of the system and a very |doger’

stream (sometimes the stream of the environmeloiidl) f one
observes stage-wise relaxation of the upper str8am the

and reactants which take into account the decrease of voltagk arequilibrium with an infinite lower reservoir. Thiss a

power caused by the incomplete conversion of tlezahreaction.

Keywords— Power yield, entropy production, chemical engines;

fuel cells, exergy.

I. INTRODUCTION

I n a previous work [1] we have analyzed models of/gyo
production and power optimization towards energyits in
purely thermal systems with finite rates. In patée, radiation
engines were treated as important nonlinear systggwsrned

cumulative effect obtained for a resource fluidiat, a set of
sequentially arranged engines, and an infinite H&th An
tnverse process, which needs a supply of an extposer,
may be referred to the upgrading of the resource imeat
pump [7]. Studies of resource downgrading or upgigadpply
methods of dynamical optimization [8]. Indeed, the
developments shown in Fig.1 may be regarded asnuigaa
processes since they evolve through sequence tekstither
in the chronological time or in holdup (spatiaipé.

Fuel cells working in the power production mode also

by laws of thermodyr?amjcs and_ transport phenome”éngine-type systems. In fact, they are electroctainfiow
TemperaturesT of participating media were sole necessarkngines propelled by chemical reactions. Downggadim
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upgrading of resources may also occur in the systefrthe
fuel cell type. The performance of fuel cells e&eatmined by
magnitudes and directions of participating stresamsl by
mechanism of electric current generation. Voltageeking in
fuel cells below the reversible value is a good snea of their
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imperfection which influences the downgrading apdrading

(each conductor) is assumed at each stage)( andg,= q.),

of reagents. Yet, in this paper we restrict to sheady-state the property which does not hold in the case whest transfer

fuel cell systems.

Section Il of the present paper derives relevantrots in
power systems, the so called Carnot variables. €l hesults
are common for all processes considered here. Erkigen
systems are treated in Sects IlI-VIIl of this papBole of
chemical affinities for chemical conversion is geih out in
Sec. X. Electrochemical systems (fuel cells) aralyaed in
Sect Xl. Sections XIlI and XllI present, respectyefinal
remarks and basic conclusions.

Il. DEVELOPMENT OFCONTROLS INPOWERSYSTEMS.

Here we shall recall and then use definitions ofnGa
control variables (Carnot temperature and chenpo#éntial)
whose derivations and applications were originaitedour
previous work [9, 10]. Since diverse control vakisbof heat
and mass transfer can accomplish the task of aisabte
energy conversion, alternative (more traditionalpteols are
also possible. However, the mathematical formules the
simplest in terms of Carnot controls.

We begin with the simplest case of no mass transéerwe
shall consider a steady, internally reversible @mversible’)
engine with perfect internal power generators dattarized at
each stage by temperatures of circulating flliid and T,,
Fig.1.

flowing reagents
with high chemical potential G
“1 w
S ny X4 #4947 S f—»
M f
1 &
. Wy 5T f
¥ 1T "
Y power
**"‘ur 1 2 generators] k N e P
T power output
b g, ——— ] yf
[N —— e ] — Y2
X5 H2q2 1
reagents with lower
chemical potential G
pp=p® T,=T®
i environment /f
yi ypf -

Fig.1. A discrete scheme of chemical and/or therengine.G is the
flux of Gibbs thermodynamic function (flu@ in Egs. (11) and (12)).

The stream temperatures, attributed to the bulkah dluid
areT, andT,. The inequalitie§,>T:>T,>T, are valid for the
engine mode of the system. The internal entropgrua of a
perfect engine at an arbitrary stage yields

42 _ 1

a2 - 1

Ty Tp @)
Continuity of pure heat fluxes through each boupdayer
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is coupled with transfer of substances.

As a flux can be normalized by dividing it by a stant
resource mass flux we neglect dots over symbdisixds.

Total entropy balance of a system’s stage leadsotial
entropy source; as the difference of outlet and inlet entropy
fluxes

Jszqi—ﬂ:ik—&:&(k—-r_z)_ (2)
T, Tt oIy T T, Ty Ty

With an effective temperature called Carnot tenpesa

Ty
T=T,— 3
2T2- €))

entropy production of the endoreversible procegs(®), takes
the following simple form

o = qﬂ%—T—ll) @)

This form is identical with the familiar expressiobtained for
processes of purely dissipative heat exchange batvi@o
bodies with temperaturds andT'.

From the entropy and energy balances of an intgrnal
reversible process the “endoreversible” thermaliciefficy
follows in terms of temperatures of the circulatfhgd

ﬁ:n:]___' (5)
1

In terms of temperaturg’ of Eq. (3) this efficiency assumes
the classical Carnot form containing the tempegatar the
bulk of the second reservoir and temperaiure

/7:1—? (6)

This property substantiates the name “Carnot teatpes” for
the control variabld”. When a control action takes place, the
superiority of Eqg. (6) over Eqg. (5) consists innggiin (6)
single, free controll’, instead of two constrained controls of
Eq. (5) (linked by an internal balance of the epyo
Moreover, the endoreversible power is also of atas$orm

T
p=ngq = [1‘ T—Z,j(h (7

In terms of T' description of thermal endoreversible cycles is
broken down to formally “classical” equations whiobntainT’

in place ofTy. Importantly, the derivation of Eqgs. (1) - (7) doe
not require any specific assumptions on the nabfrédeat
transfer. In irreversible situations Carnot tempee T'
efficiently represents temperature of the uppesriesr, T,. Yet,
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at the reversible Carnot point, whélre = T; andTy = T,, Eq. (thermal and chemical efficiencies). The relategling forces
(3) yields T = Ty, thus returning to the classical reversibleare the temperature difference and chemical affinit
theory. These properties of Carnot temperature erend When mass transfer is included the internal enttiggince of
descriptions of endoreversible and reversible sydamilar. the perfect engine has in terms of total heat futhe same
They also make the variablé a suitable control in both static structure as Eqg. (1) in termsapfi.e.
and dynamic cases [9, 10].

For the purpose of this paper it is worth knowihgttin terms Q
of Carnot temperatur€’ the linear (Newtonian) heat transfer is i - f
described by a simple kinetic equation

(13)

The continuity of energy and mass fluxes through rifsistive
layers leads to ‘primed’ fluxes in terms of those the bulk.
Assuming a complete conversion we restrict to poyedd by a

whereg is overall heat transfer conductance i.e..theanbdf a  simple reaction A-A,=0 (isomerisation or phase change gf A
total exchange area and an overall heat transégficent [8]. into A,). The energy balance

For a linear resource relaxing to the thermodynamic
equilibrium along the stationary Lagrangian pathfar an
unsteady relaxation, the kinetics related to Eq. {8s the
linear form

h=9(M-T), )

E=E+D (14)

ﬂ:T'—Tl gy and the mass balance in terms of conserved fluxesigh
dr ’ cross-sections 1' and 1 as well as 2’ and 2

where the non-dimensional tintesatisfies Eq. (38) below and
is related to the overall conductargef Eq. (8). Subscript 1 is
neglected in equations describing dynamical paths.

The resource (or a finite “upper stream”) is upgad are combined with Eqg. (13) describing the contingif the
whenever Carnot temperaturE is higher than resource’s entropy flux in the reversible part of the systdihis yields
temperaturel;. Whereas the resource is downgraded (relaxes to
the thermodynamic equilibrium with an infinite “lew stream” £~y _ €y — lyNy
or the environment of temperaturg,) whenever Carnot T T (16)
temperaturd” is lower than resource’s temperatiiie In linear ! 2
systems, power-maximizing' is proportional to the resource’s
temperaturd’; at each time instant [6]. For more details and,
particular, the case of two finite streams with stant heat
capacities see a book by Sieniutycz argski [11]. S _& P MM 17

The notion of Carnot temperature can be extendetigmical Ty Ty
systems where also the Carnot chemical potentiatges [10]. \whence
We shall also make some remarks here.

The structure of Eq. (1) also holds to systems witiss
transfer provided that instead of pure heat fiuthe so called
total heat flux (mass transfer involving heat fl@x)s introduced
satisfying an equation

nl = n2 (15)

ifliminating &, andn, from these equations yields

P _&a-th_&a-fhh (18)
T T Tr

which leads to a power expression

Q=q+Tsm +..TsN..+ TSN, (10)
| | pre-5=80-2)+ T -F2n  (19)
or, since the heat flux equals the difference betwéotal Ty T Ty
energy fluxe and flux of enthalpies of transferred components,
g=&h, In Eqg. (19) powep is expressed in terms of fluxes continuous
through the conductors. To proceed further we reedider
Q=e&— .. [yNy...— UpNm- =€ -G (11) quantitatively the entropy produced in the system.

The entropy production in the system follows frotre t

whereG is the flux of Gibbs thermodynamic function (Gibbg2@lance of fluxes in the bulks of the streams
flux). The equality
£=Q+G (12) 9 _

US:
T,

%+(52 -s)m (20)
1

is fundamental in the theory of chemical enginesndicates
that power can be generated by two propelling Bukeat flux Eliminating g, from this resultwith the help of the energy
Q and Gibbs fluxG, each generation having its own efficiencybalance (14) we obtain
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1 1
os = (g +hn)(—-2)
T, T
w (21)
+ (A _Hay P
(Tl Tz)l T2
An equivalent form of this equation is the formula
T o M
=g (1-=5)+TH (= -5y -Tro 22
p=é( Tl) z(T1 Tz)nl 205 (22)

which may be compared with the same power evaldated
the endoreversible part of the system

- |2' Hr _ Ho
p=&1l-—=)+Tx(=—-==)n 23
1( T]_' ) 2 (T]_' T2- ) 1 (23)

The comparison of Eqgs (22) and (23) yields an etyual

T
a1-2) + (X - L2y, Ty,
T T T 24)
_ Ty M Hy
=g (1-22)+ T, (A H2
1 ( Tl-) 2(T1- T2-)n1

from which the entropy production can be expressadrms
of bulk driving forces and active driving forcesdasures of
process efficiencies). We finally obtain

oy =212

T, T T

,UZ 1% ﬂl _H H (29)
(B () - 2)

T T T

This expression generalizes Eq. (3) for the casnvehsingle

R h_ Y
fl(T T1)+(1 =

(28)
Introducing into the above formula total he@t satisfying
Q =& — 1ym we finally obtain

— 1 1 -
g, .= ———)+tn ———,
S Ql(-l-l T) nl

1

(29)

where Q;=0;+T,51n; is the total heat flux propelling the power
generation in the system.

Carnot variable§” andy/ are two free, independent control
variables applied in power maximization of steadyd a
dynamical generators. The resulting equation (&%pimally
equivalent with a formula obtained for the purelgsipative
exchange of energy and matter between two bodigs wi
temperature$; andT’ and chemical potentialg and/.

lll.  INTERNAL IMPERFECTIONS INENERGY SYSTEMS

The ideas referring to endoreversible systems may b
generalized to those with internal dissipationsutch cases a
single irreversible unit can be characterized by twops
shown in Fig. 2 which presents the temperatureepptr
diagram of an arbitrary irreversible stage. Eaalgestcan work
either in the heat-pump mode (larger, external loopig. 2)
or in the engine mode (smaller, internal loop ig. ).

Tp heat pump

— enwironment —  —

s —» Ty

reaction A+A,=0 undergoes in the system. Equation (25)rig. 2. Two basic modes with internal and extedisipation: power

leads again to the definition of Carnot temperatime
agreement with Eq. (3) and to Carnot chemical pi@knf
the (first) component

=Hz

“ (b Ly, (26)

72
T, T,

—
N—|

In a special case of an isothermal process theeafmwmula
yields a chemical control variable
H' = o + iy = (@7)
which has been used earlier to study an isotheengihe [12].
After introducing the Carnot temperature in accoogawith Eq.
(3), total entropy production of the endoreversidewer
generation by the simple reaction+A,=0 (isomerisation or
phase change ofAnto Ay), takes the following simple form
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yield in an engine and power consumption in a lpeshp. Primed
temperatures characterize the circulating fluid.

The related analysis follows the earlier analysésthe
problem which take into account internal irreveitgies by
applying the factor of internal irreversibilitiesp [11]. By
definition, @= AS,/AS,. (whereAS;: andAS, are respectively
the entropy changes of the circulating fluid alothg two
isothermsT,;: andT, in Fig. 2) equals the ratio of the entropy
fluxes across the thermal maching,= Js,/ Js;. Because of
the second law inequality at the steady state,fdHewing
inequalities are validls»/Js; >1 for engines ands,/Js; <1 for
heat pumps; thus the considered ratianeasures the internal
irreversibility. In fact, @ is a synthetic measure of the
machine’s imperfection® satisfies inequalityp >1 for engine
mode and® <1 for heat pump mode of the system. A typical
goal is to derive efficiency, entropy productiondapower
limits in terms of@. Applications of this quantity are discussed
in the book by Sieniutycz andzevski [11].
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We shall now present an exposition of the formulas

describing efficiencies, power yield and entropgdarction in
systems with internal imperfections.
corresponds with the assumption that it is an @ekalue of
@, evaluated within the boundaries of operative paters of
interest which is used in most of analyses of tlatmmachines.

In the analysis we shall make use of the fact thrat,

agreement with Eqg. (13), the thermal efficiency poment of
any endoreversible thermal or chemical engine daaya by
written in the forms=1-Q,/Q;. By evaluatingtotal rate of

This preseéotat

djg = %
TI T2l

(33)

We have already stressed that one can evalftateom the
averaged value of the internal entropy productidmat
describes the effect of irreversible processesimitie thermal
machine. Clearly, in many casés is a complicated function
of the machine’s operating variables. In those dermpases

one applies the data af™ =dS™ / dtto calculateaveraged

entropy productioros (the sum of external and internal partsyalues of the coefficien®. In our analysis the quantitg is

as the difference between the outlet and inlebggtfluxes we
find in terms of the first-law efficiency

_Q@-n _Ql _Q T (30)
g B ?—?(1 n ?)
2 1 2 1
0,03 = BETIE-D)
enitopy A
production
Newton
- Fourler
t=0
short circut
point Carnot power consumption
engine t-t, range
range ofen citcuit
pomt
0 [ efficiency t'

Fig. 3. Qualitative sketch illustrating entropy guztion in chemical
engines versus chemical efficiengy in a flow operation with
simultaneous mass transfer and power production. tRermal

engines the picture is qualitatively similar proxidthat the chemical

efficiency (is replaced by the thermal efficiengy

treated as the process constant. For chillers amefge
generators experimental dataatnt = dSint / dt are available

that allow the calculation of. For more information, see the
book by Sieniutycz and dewski [11] and many references
therein.

Consequently, thermal efficieneycan be evaluated in terms
of suitable parameters characterizing the imperfeathine

|m) -I-2I .
Q T T1-

/7:1—(5: :_’]_—(_']_+T1 (34)

After eliminating 7 from Eqgs. (30) and (34) we conclude
that, quite generally, total entropy productioneratan be

written as

(-1,

T, T

%( 2 2) Ql( (7 'I:})j (35)
T 1

The first term in the resulting expression the dbss the

| internal entropy source (within the thermal machiaed the

second one the external entropy source (withimglervoirs).
Equivalently, after using the definition of the emal

Equation (30) is a general relationship as no meciirreversibilityfactor (32) we obtain for the enpyppgeneration

assumptions are involved in its derivation. It esathat the
entropy production in an arbitrary engine is diectlated to
the deviation of the thermal efficiency from theresponding
Carnot efficiency. This conclusion leads to an intgpat
analytical formula for the total entropy sourcetthdl enable
its direct optimization. The entropy balance ofiaaversible

machine contains internal entropy productigft as a source

term in the expression

Qz Ql int (31)

After defining the coefficient

®=1+T,oM/Q (32)

T 4 1 1
Os =?1,dS?t +dQ(?‘?)'
1

(36)

In the last two equations the Carnot temperaflirewvas
introduced that satisfies the thermodynamic dedini{3)

T =T,T,/T, 3

In terms of the Carnot temperatufe and factor @ the
efficiency 7 , Eq. (33), assumes the simple, pseudo-Carnot
form

n=1-o12 . (37)

-l-r

which is quite useful and general enough to desdtilermal,

radiative and chemical engines.

called the internal irreversibility factahe internal entropy A particularly interesting role of the above formsil is

balance takes the form usually applied for thenmathines
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observed for radiation engines which are energyesys
driven by the black radiation. In these systems&ittux G =
0, whereas total heat fllQ is identical with the energy flug
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i.e. Q = & Their power of entropy production follows from evaluate the efficiency worsening. Yet, the knowgkedf the

Egs. (35) and (36) as

o.=& @_,1) +(1,—£) (38)
T T T
or
T 1 1
O :%Ulsm +51(?‘*1)' (39)

The first of these equations can be applied imntelgiathe

entropy productiong; is also necessary in calculations of
generalized exergies [11]. In the dynamical cassemial is
also the best time behavior af

The majority of research papers on power limitsligshled
to date deals with systems in which there are tmfmite
reservoirs. To this case refer steady-state armlyggethe
Chambadal-Novikov-Curzon-Ahlborn engine (CNCA emgin
in which energy exchange is described by Newtotaan of
cooling [2], or of the Stefan-Boltzmann engineyatsm with
the radiation fluids and energy exchange governgdhle

second calls for a functiofi,(Ty, &) as the one shown below Stefan-Boltzmann law [3]. Entropy production chaesistic

of Eq. (40).

When the energy exchange in both reservoirs depamdise
difference of temperatures in powar(a=4 for the radiative
energy exchange and 1 for the Newtonian one)are.

Q=&=0(T?-T9 (40)

then, sinceT, = (T2-¢,/g,)"?, from the radiation law, the
following formula describes the power of entropygetion

Ti-&/9)"® 1 1

+g(=-2)-
£ )

o, = (41)

This means that only in the “endoreversible” case,when
the power of internal entropy production vanishbs,external
entropy production is simply related to the prodoicenergy
flux & and the suitable difference of temperature reciisy
(T (T)?, as in the two-body contact. In the general cdse
a finite internal entropy production the externartpof o
follows in terms of its internal part in the form

o (42)

/ '
ext — (Tf_gllg})l T o +£1(i’ _1) ,
T T T
or the sum of both parts of the entropy productigrees with
Eq. (42). Therefore, the analytical description tbérmal
converters in terms of the Carnot temperature rticodarly
simple.
The efficiency worsening caused by the dissipatien
described in a general way by the inverted fornia3
n=n.-T,o.l& (43)
Of course, the pseudo-Carnot formula, Eq. (37) akslongs
to the class of imperfect efficiencies since it tenexpressed
in the form
1

D
=1 _Tz(F__) .

T, (44)

This result implies the rati@gy& consistent with Eqgs. (35)
and (38). Equations for entropy producti@q, presented
above, are helpful in definite situations when avents to
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for these systems is shown in Fig. 3.

In a CNCA engine the maximum power point may be
related to the optimum value of a single, free (unstrained)
control variable which may be efficienay heat fluxqg,, or
Carnot temperaturel’. When the internal irreversibilities
within the power generator play a role, the pseGdaaot
formula (37) applies in place of Eq. (6), wher@ is the
internal irreversibility factor [5].

In terms of bulk temperaturek;, T, and @one finds for
linear systems at the maximum power point

Topt = (T @T,) Y2, (45)

For the Stefan-Boltzmann engine exact expressiorihe
optimal point cannot be determined analyticallyt, yéis
temperature can be found graphically from the cpaf{T’).

A pseudo-Newtonian model, [5, 7], which treats #tate
dependent energy exchange with coefficiefi®), omits to a
Eonsiderable extent analytical difficulties asstemlawith the
use of the Stefan-Boltzmann equation. The resuésiming
from this model show that the formula (45) is a @joo
approximation also in nonlinear cases.

IV. A THEORY FORDYNAMICAL ENERGY PRODUCTION

Whenever the resources are finite the previousadgie
analysis is replaced by a dynamic one, and the enatical
formalism is transferred from the realm of functoto the
realm of functionals. This refers to the case whér
propelling fluid flows at a finite rate; in this £&a the Carnot
temperature and the resource temperature decréasg the
process path. Here the optimization task is to éindoptimal
profile of the Carnot temperatuiié along the resource fluid
path that assures an extremum of the work consuamed
delivered and — simultaneously — the minimum ofititegral
entropy production. Figure 4 below illustrates the evalwati
idea of the dynamic work limit for a system of @aarce and
infinite bath. This idea leads to a generalizedrgxefor a
finite duration of the state change and a minimrahiersibility.

Dynamical energy vyield requires the knowledge of an
extremal curve rather than an extremum point. Téesls to
variational metods (to handle extrema of functiehah place
of static optimization methods (to handle extrem& o
functions). For example, the use of a pseudo-Ndatomodel
to quantify the dynamic power yield from radiatigives rise
to a non-exponential optimal curve describing thdiation

scholar.waset.org/1307-6892/4816


http://waset.org/publication/An-Unified-Approach-to-Thermodynamics-of-Power-Yield-in-Thermal,-Chemical-and-Electrochemical-Systems/4816
http://scholar.waset.org/1307-6892/4816

International Science Index, Chemical and Molecular Engineering Vol:4, No:6, 2010 waset.org/Publication/4816

World Academy of Science, Engineering and Technology
International Journal of Chemical and Molecular Engineering
Vol:4, No:6, 2010

relaxation to the equilibrium. The non-exponergiahpe of the
relaxation curve is the consequence of nonlineapgmties of
the radiation fluid. Non-exponential are also otlwerves
describing the radiation relaxation, e.g. thoséofahg from

exact models involving the Stefan-Boltzmann equefib 5,
7]. Optimal (e.g. power-maximizing) temperature tife
resource,T(t), is accompanied by the optimal contB(t);

numerical problem leads to Bellman's recurrenceaggu,
solvable by the method of the dynamic programmibg].[
The problem of generalized exergy falls into théegary of
finite-time potentials, an important issue of conporary
thermodynamics [8]. This problem is solved with ttmacept
of multistage energy production or consumption, rgheach
stage

they both are components of the dynamic optimimatiooperation [3], as in Fig.1.

solution.

Energy limits of dynamical processes are
connected with exergies, the classical exergy dsdrate-
dependent extensions. To obtain the classical gx&am
work functionals it suffices to assume that the rrifed
efficiency of the system is identical with the Gatrefficiency.
On the other hand, non-Carnot efficiencies, infaeeh by
rates, lead to ‘generalized exergies’. The benéfitm
generalized exergies is that they define strongergy limits
than those predicted by classical exergies [1,8]9,1

The classical exergy defines bounds on the commuonk w

delivered from (or supplied to) slow, reversibl®gesses [8].
Such bounds are reversible since the magnitudéeofvork
delivered during the reversible approach to equilib is
equal to the one of the work supplied, after thigginand final
states are inverted, i.e. when the second proegssses to the
initial state of the first. Our approach leads thet
generalization of the classical exergy for finitges. During
the approach to the equilibrium the so-called emgitode of
the system takes place in which the work is relgadaring
the departure- the so-called heat-pump mode odoundich

inherently V. DYNAMICAL ENERGY GENERATION FROMRADIATION

Energy transfer rates in reservoirs (streams) withlinear
media can be described by various models. As ameaof
the above theory we consider the radiation engiviash are
thermal machines driven by the radiation fluidmadium
exhibiting nonlinear properties. Usually one asssittat the
energy transfer in a reservoir is proportionalte difference
of absolute temperatures in certain poveerThe case ch =4
refers to the radiatiom=-1 to the Onsagerian kinetics aaetl
to the Fourier law of heat exchange. (In the Onsagecase
the quantitiesg, are negative in the common formalism
considered.)

As the first case of the radiation engine modeling
consider a “symmetric nonlinear case” in which ttne energy
exchange process in the energy exchange in eaehvoes
satisfies the Stefan-Boltzmann equation. Next wesicer
“hybrid nonlinear case” in which the upper-temperatfluid
is still governed by the kinetics proportional te tdifference

of (T%;, whereas the kinetics in the lower reservoir is

work is supplied. WorkW delivered in the engine mode isy\awtonian.

positive by assumption. In the heat-pump m@édes negative,

or the positive work {A) must be supplied to the system. To

find a generalized exergy, optimization problems set, for
the maximum of the work delivered [ma&] and for the
minimum of the work supplied [min\)], e.g. [12]. While the
reversibility property is lost for such exergy, ikinetic)
bounds are stronger and more useful
thermostatic bounds. This substantiates role ofetkiended
exergy for evaluation of energy limits in practisgtems.
With the functionals of power generation (consuimp}iat
disposal one can formulate the Hamilton-Jacobi+Befl
theory (HJB theory) for the extended exergy andatesl
extremum work. The HJB theory is the basic ingnedi@
variational calculus and optimal control [8,11]. KJB
equation extends the classical Hamilton-Jacobi tmueby
the addition of extremum conditions, and it is esisé to

than classical

Here are the equations of tlgmmetric nonlinear casé@he
energy exchange process in the upper reservosfisatiEq.
(40), and an equation of the same type and withsdrae

coefficient a is valid for the energy exchange in the lower

reservoir, namely

&= Qz = gz(Tg _Tza) (46)
To express the internal balance equation for ti®py
PG (TE-TH/Tr = &(T3-TH/T2 (47)

in terms of T" and T, we substituteT, =T, T, /T"into

(47). Next we solve the result obtained with resgecT;-.
This leads to an equation describing (in term3$’pthe upper

develop numerical methods in complex cases (wititest temperature of the circulating flui}

dependent coefficients) when the problem cannosdieed
analytically. Due to the direct link between theBHtheory
and dynamic programming the associated numericéhode
make use Bellman’s recurrence equation [13]. Tihesthods
are complementary with respect of the Pontryagiriisciple
[8], as both are effective seeking methods of fiomet
extrema. Yet, in spite of its power, Pontriaginmpiple does

not yield the principal functio’/ which is a general work

potential describing the change of the extendedggxehe
main result being sought. Otherwise, when a HJBaggn is
known, the exergy (or work) is explicit, and thesaete
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Ti-T"

1/a
T. = a_ . (48)
' (Tl % o, (T T,y + ng

From this expression and Eq. (40) the energy £iuollows
in terms ofT". This flux is obtained in the form

Tf _-I-ra
g, (T'/T)*  +g,

& =09, (49)
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which represents “thermal characteristics” of thstesm. An We consider nowhybrid nonlinear casein which the
expression forT, corresponding with (48) follows from the radiation law governs the energy flow only in thpper
thermodynamic  definiton of Carnot temperaturereservoir, whereas the lower one is governed bi\thgtonian
T, =T,T,/T". Also, &= &(1-1), wherer is defined by the model
pseudo-Carnot expression, Eq. (37). Thus all necgss & =0,(T, -T,) . (53)
guantities are known.

For a=1 the kinetics of heat exchange depends on theThe efficiency of an imperfect unit is still satedt by
difference of two temperaturély —T', as in the case of the expressiory = 1 - @T,/Ty, Eq. (37). To express the internal
direct two-body contact. Yet, in nonlinear procasie heat balance equation for the entropy
flux (49) emerges as function of three (not merekpo)
temperatures]’, T, andT,. This means that the modeling rule 4_T14 = o .
involving the formalism of the two-body contact t{sked 20, Tl)/Tl 9(T; Tz)/TZ 4
whena=1) is invalid in the case of nonlinear proces&isl
we can evaluate power limits by maximizing the powe
related to equation (49) with respect to the fraenGt control,
T'; see Eq. (52) below.

For a=4 the model describes the radiation engine usually &g, (T1-T1) = 9,(T, - T) (55)
called the Stefan-Boltzmann engine. In spite of tiedel’s
simplicity, its two “resistive parts” take rigordysnto account and whence to the mechanical poyen terms ofT,.. The
the entropy generation caused by simultaneous Bmisgd thermal efficiency of the engine can be obtainetheform
absorption of black-body radiation, the model's paxy
which some of FTT adversaries seem not to be awfarEhis T OT
entropy generation is just the external part oftdtal entropy Y :1_¢—2, =1- 42 ay/
production that follows as the “classical” sum: T Ty = Pg,(T1 ~T1)/ 9

in terms ofT" and T;- we substituter,, =T, T, /T’ into (54).
This leads tal” in terms ofTy

(56)

which contains the temperatufle: as an effective control
(50) variable. This result leads to the mechanical poswgression
with the explicit controlly:
where eachy, is determined by the Stefan-Boltzmann law.
For the “symmetric’kinetics”, governed by the difeces in &T.
T W= Istydt-]g(T T 1- 2
the Carnotrepresentation of the total entropy production 1 1 — yR—
T, =g, (Ti-T1)/ 9,
follows from equations (38) and (49)

a-sexI = El(Tl'_l _Tl_l) +é&, (Tz_l _Tle) ,

Jdt (57)

T2-T® (@- ]) 1 1 51 Since from Eq. (40)T, = (T8—&,/9,)"?, the energy flux
s =99 @gl(r'/-rz)a-1+gz( T (-|— T)j (1) representation of Eq. (57) is obtained in the form
Superiority of Carnot control” over the energy flux control W = IJ‘ endt=¢ (1_ - ‘pk J (58)
& may be noted. Since the energy flux expressioh ¢a8not (Ti-&l9)" -P&lg,

be inverted to get an explicit functiom’ (&), analytical
expressions for the energy-flux representationhef éntropy Equations (57) or (58) allow analytical or graphica
production or the associated mechanical powecannot maximization of work with respect to a single cohtrariable,
generally be found in an analytical form. Still wan express T,or &. This leads to the limits on work production in
the entropy production and powein terms of Carnot control, imperfect units. A suitable control may be the @arn
T', and then evaluate the work limit by maximizingriw®V temperature itself, its function or an operatotérms of the
with respect to the free Carnot control;’. The work process variables. Operator structure ©f is frequent in
expression to be minimized is dynamical problems.
In dynamical systems differential forms of expressi are

TE-T'® T, necessary. For a suitably defined timéassociated with the
—1( —(D—]dt (52) . )
g, (T'IT,)* +g, resource fluid; see Eq. (32) belowhd for an arbitrary heat

transfer (Newtonian or not) the internal entropgdurction is

t t!
= .[51’7(3“ = I 09,
t t

Whenever analytical difficulties occur (fardifferent from
the unity), the maximization can be performed nucady by

dynamic programming using Carndtas the free control. S = IC(T)T @ T)TdTl (59)
1
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whereas its external part

ext _
SO'

jc(T)( Dytar,.

T T ©0

The minimization must involve total entropy prodantas
the quantity which determines the lost work in thakr
equations of availabilities. The sum of Egs. (584 #60)
the integral

T d 1
= j Cm(F ﬁ)Tld 7. (61)

The limiting production or consumption of mechahica

energy is associated with extremum work (52) or) (b7
minimum of overall entropy production (31). Oftengossible
to determine explicit form of functions describir@arnot
temperatureT’ in terms of the current fluid’s temperatufe
and its time derivative. Such functional structaléows to
apply the variational calculus in the optimizatianalysis. If
this function is difficult to find in an explicitofm then
equations (59) and (60) should be written in thenfan which

T'and T; are two variables in the Pontryagin’'s algorithm o

the optimal control. In that case a differentiahstvaint must
be added which links rateTddt with state variablel; and
control T' (Eq. (63) below).

We shall again specialize with what we calgdnmetric
nonlinear caselt involves the radiative heat transfar=4) in
both upper and lower reservoirs and correspondstivt form
(51) of the intensity of total entropy production.

We shall define the nondimensional timeby the equality

& 19, =-Gc(T)dT, /(aa,FdX) =—-dT, /dr, (62)
which means that the driving energy flux can besuezd in
terms of the temperature drop of the propellingdfiper unit
of the nondimensional time. Comparing the resultaivied
with & of Eq. (49) we obtain the basic differential edumat

Tf_T'a

' — . (63)
&g, (T'/T,)* "+ 9,

dT,/dr, = -9,

This formula constitutes the differential consttain the
problem of minimization of the total entropy protioa (61)
by Pontryagin’s maximum principle. This is part@aty
important in view of the fact that the method ofiational
calculus cannot effectively be used (as opposethé¢ocase
considered below).

We shall now specialize to what we called thgbrid
nonlinear caselt involves the radiative heat transfer=4) in
the upper reservoir and a convective one in thefomne. In
terms of the ratd, =dT, / dz, we obtain
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st == oy o1 Tdr,  (64)
v T +TE ); +T,09,/9,
and
S§Xt = —jC(Tl)( 1 L _Ti)TldTl' (65)

r (Tla +Tla ); +T1‘pgl /19, !

To obtain an optimal path associated with the limgit
production or consumption of mechanical energy gt of
the above functionals i.e. the overall entropy piatibn

@ (66)

Tv 1 .
- [ ; )Tz,
P (Eetefetogrg, O

has to be minimized for a fixed duration and defirend
states of the radiation fluid. The most typical wey do
accomplish the minimization is to write down aneérihsolve
the Euler-Lagrange equation of the variational peob

Analytical solution is very difficult to obtain, tis one has to

rest on numerical approaches. For Eqgs. (61) or (66%e
approaches involve the dynamic programming algosth
(Bellman’s equations; [8, 13]) which are, in facliscrete
representations of the HJB equations of the vanafi
problem. Analytical aspects of HIB equations aralyaed
throughout the Sects. 6-9 of the present paper.

VI. FINITE RESOURCES ANDFINITE RATE EXERGIES

Two different kinds of work, first associated witie resource
downgrading during its relaxation to the equililoniiand the
second — with the reverse process of resource dipgraare
essential. During the engine mode work is releadedng heat-
pump mode work is supplied. The optimal work folkoim the
form of a generalized potential which depends @nethd states
and duration. For appropriate boundary condititvesgrincipal
function of the variational problem of extremum Wwat flow
coincides with the exergy as the function that abt@rizes
quality of resources.

We are now in position to formulate the HJB thedoy
systems propelled by energy flex Total power obtained from
an infinite number of infinitesimal stages represen the
resource relaxation is determined as the Lagramgetibnal of
the following structure

ti
wT! T]—I%UTkn—deUMTTFm
t' t'
wheref, is power generation intensitg - resource fluxg(T)-
specific heat,n(T, T) - efficiency in terms of statd and
control T°, further T — enlarged state vector comprising state
and time, t — time variable (residence time or holdup time) fo
a resource contacting with energy transfer surfdesr. a

(67)
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power per unit mass flux, i.e. the quantity of sfieavork — (70)

constant mass flux of a resource stream, one ctengize vV 2
: —c{\/Te - T(1+c_16V/6T)} =0
T

dimension called ‘work at flow'. A non-dimensiontine 7 is

often used in the description ) ) ) ) )
which is the Hamilton-Jacobi equation of the prahldts

X a'a,F daEv  t solution can be found by the integration of workeirsity

==Y x=" t=—. (68) along an optimal path, between limifsand T'. A reversible

Hry  Ge Ge X (path independent) part &fis the classical exergy(T, T®, 0).

Whenever analytical difficulties are serious methot

This definition assures that is identical with the number of dynamic programming is applied to solve a discretiB

the energy transfer units, and related to systéimis constants, equation which is in, fact, Bellman's equation ofndmic
X andHyy (relaxation constant and height of the transfet).un programming for a multistage cascade process [13].

Equation (68), which links non-dimensional and ptsistimes, Details of modeling of multistage power productiam

contains resource’s flovs, stream velocity through cross- Sequences of engines are discussed in the previous
nE)éjbllcatlons [5, 9, 11].

T=

section A, and heat transfer exchange surface per unit volu

a, [5]-

. . . - VIl. EXAMPLES OFHJB EQUATIONS IN POWER SYSTEMS
The functionfy in Eq. (67) contains thermal efficiency, ) _ Q ) i )
described by a practical counterpart of the Cafootula. [0 this section we shall display some Hamilton-k&co

WhenT > T, efficiency 7 decreases in the engine mode belo/€llman equations for the power systems with réafiatA
ne and increases in the heat-pump mode abryvet the limit swtablt_e example is a radiation engine whose pantegral is
of vanishing rateslT/dt= 0 andT' - T. Work of each mode approximated by a pseudo-Newtonian model of ramat
simplifies then to the classical exergy. er']I'ehrtgal );nixdc(;a}g %G;sociated with an optimal function
Solutions to work extremum problems can be obtaibgd P
variational methods, i.e. via Euler-Lagrange emqumtiof y
variational calculus. However, such solutions dd emntain DT f o fy o A P N, . (71)
direct information about the optimal work functiot = MUNLELIL )_rT“-(%X !Gmcm(l ¢ T')"(T'T)OIt
max(W /G). Yet, V can be obtained by solving the related

Hamilton-Jacobi-Bellman equation (HJB equationiBg).

whereu =a(T?)(T"-T). Alternative forms use expressions of
Carnot temperaturé’ in terms of other control variables [5].

§ . . .
o s [, o Optimal power (71) can be referred to a pseudolik@wtics
o e ” dT/dt = f(T, T') consistent with rate=a(T*)(T’-T). A general

form of HIB equation for work functiovi is

work released
engine mode

oV ov
bl ———+may fo(T,T")-——f(T,T)|=0, 72
‘hattery mode at T,(t;{ 0 (T ) aT (T )j ( )

W problem

work supplied
heat-pump mode

W =10
electrolyszer mode
min(-W) problem

wheref is defined as the integrand in Eq. (71).
A more exact model or radiation conversion relaxes
assumption of the pseudo-Newtonian transfer andiespthe

N : T
'1‘"2 environment (infinite batny | K Stefan-Boltzmann law. For thgymmetricmodel of radiation
To=T%, o o conversion (both reservoirs composed of radiatieroltain
f
Fig. 4 In finite-rate processes limiting work produced aonsumed ot e a_ga
9. 4 P g P W:J'Gc(r) 12T K To-T dt- (73)
differ in both process modes ] T (@ iTeat syral

For the Newtonian energy transfer (linear kinetics) . 1, O :
Here @ = ¢y,/g, and coefficients = ga,c,, (py) " is related

v v Te to molar constant of photons densjfyand Stefan-Boltzmann
—— - max; (- (L= ))(T'=T) =0 (69) i
ar T T T constanto. In the physical space, power exponer# for

) . ) _radiation anda=1 for a linear resource. With a dynamical state
Extremum work functionV = maxW /G) contained in equation following from Eq. (63)

equations of this type is a function of the fintdts and total

duration. dT Ta_Ta
After the evaluation of optimal control and its stituition to —=-

Eq. (69) one obtains a nonlinear equation dt @' (178 e

(74)
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applied in general Eq. (72) we obtain a Hetiation 1/2
_ T°T
T=l———| - (80)
v _ l+coVvV/aT

max{[Gc(l—tp-:) +0V /aT]ﬁ Ll } (75)

T @y T
This expression is next substituted into Eq. (#%;result is the
[5]. Dynamics (74) is the characteristic equatmiq. (75). nonlinear Hamilton-Jacobi equation
For a hybrid modelof the radiation conversion (upper
: o . )
reservoir composed of the radiation and lower weseof a —a—V+CT(\/1+c’16V/6T _\/—I—e/-l—) -0 (81)

Newtonian fluid), the power production expressias the form

which contains the energy-like (extremum) Hamiléoni

Tv

tf
W= - J' GC(T)[l— oT° ]udt (76)
7 H(T,%’) :CT(\/1+ coV/aT —\/Te/T)Z- (82)

whereas the related Hamilton-Jacobi-Bellman eqnatio
Expressing extremum Hamiltonian (82) in terms afest/ariable

e T and Carnot contrdl ' yields an energy-like function satisfying
~ OV maxd- G.(M@a- QST, )+67V ut=0 (77 the following relation
ot T L)
_ of, _ o (T'-T)?

where by definition: E(T,u) = fo - Ua_S = CTe—T,z . (83)

T'=(T%+p7T* )" + 07 T* g, / g, E is the Legendre transform of the work lagrandian - f, with
_ _ _ respect to the rate= dT/dr .
is the Carnot temperature of this particular pnab]8]. Assuming a numerical value of the Hamiltonian, baypne

The HJB approach can also be applied when onerig tie  can exploit the constancy dfl to eliminate 0V/T. Next
general equations of nonlinear macrokinetics [Iri}his case combining equatioti=h with optimal control (80), or with an

one may consider coupled transfer of masgsand energyd).  equivalent result for heat flow contnatT *-T
On this ground one can develop the nonlinear thaowhich
1/2
u= (—Te-r ] =T (84)

thermal conductances are variable i.e. are statifuns
1+cov/aT

VIIl. SOLUTIONS OFHJB EQUATIONS IN ENERGY SYSTEMS

By applying the feedback control, either optimahperature
T or some other optimal control is implemented asqfentity ;o5 optimal rateu=T in terms of temperaturd and the
maximizing the hamiltonian with respect to Carrenperature Hamiltonian constarti
at each point of the path. The Pontryagin's vaeafdr the
energy problem ig = - 0V/JT. Expressions extremized in HIB . . o
equations are some Hamiltoniahk, The maximization ofH T :{i\/h/CT (in\/h/CT )3T (85)
leads to two equations. The first expresses optaoiatrol T' in
terms ofT andz = - dV/AT. For the linear kinetics of Eq. (69) we A more general form of this result which appliessystems
obtain with internal dissipation (facto®) and applies to the pseudo-

Newtonian model of radiation is

a_V_afO(T,,T) :a_V+C(1_TeT):0 (78) .
or oT or T'? Tzt |l [1-4 | Do T=¢&(h,,@,T)T (86)
Voo, M Ve, (T) o
whereas the second is the original equation y@thout
maximizing operation The coefficientf, defined in the above equation, is an
intensity index andh,=h/T. The result is valid the temperature
ov oV _, T, dependent heat capacity,(T)=4a,T°. Positive & refer to
(T -T)+c-—)T'-T)=0 . 79 p pacity, :
or oT (T=T)+c T,)(I' =0 (79) heating of the resource fluid in the heat-pump maael the

negative - to cooling of this fluid in the engineode.
To obtain optimal control functio(z, T) one should solve the Therefore pseudo-Newtonian systems produce povexing
second equality in Eq. (78) in terms™®f The result is optimal With the optimal rate
Carnot controll" in terms ofT andz = - dV/dT,
T=¢é(h,,T,0)T (87)
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Equations (86) and (87) describe the optimal ttajgcin
terms of state variabl@ and constanh,. The corresponding
optimal control (Carnot control) is

T =@+&(h,,®,T))T . (88)

V=h-h -Ts - 5)
_ (4/3)a01/2h17/2@1/2-re(-ri3/2 -T f3/2) (91)
+ (413)a,Te (- )T =T ).

Generalized exergy chang® prohibits processes from

In comparison with the linear systems, the pseud@perating below the heat-pump mode (lower boundwiork

Newtonian relaxation curve is not exponential. Kufd] has
illustrated the optimal temperature of radiatiomdgraded in
engine mode or upgraded in the heat-pump modealsed4]
and [5].

HJB theory of energy systems can also be based
properties of entropy production. Equations (64}(6ontain
expressions representing Carnot temperaflirein terms of
the upper reservoir temperatufe and the time derivative of
this quantity. They prove that the success in atnie
Lagrange functionals (necessary when one wantgty dhe
method of calculus of variations) is crucially degent on the
possibility of getting Carnot temperatufein the form of an
explicit analytical function o’ and dr'/dt. For the symmetric
nonlinear model of the engine such explicit functids
impossible to find, yet the possibility exists hetcase of the
hybrid nonlinear model. For the latter model one tteerefore

supplied) and above the engine mode line (uppend@ar work
produced). The so-called endoreversible limitsezpond with
@ =1; weaker limits of classical exergy are représgiby the
straight lineA= A® The classical availability is potential or
Sfate function whose change between two arbitraafes
describes the reversible work. On the other haedemglized
availability functions are irreversible extensimfghis classical
function including minimally irreversible processes

Regions of possible improvements are found whereifapt
machines are replaced by those with better perfoceja
including limits for Carnot machines. The geneedizxergy of
radiation at flow, [14], follows in analytical forfnom Eq. (91)
after applying exergy boundary conditions. Yet thassical
exergy of radiation at flow resides in the discdssxergy
equation in Jeter's 1981 form, [15], rather thafPetela’s 1964
form, [14]. The zero-rate limit, i.e. the change déssical

write down explicit Euler-Lagrange equations of thgnermal availability appears in Eq. (91) in thengtard way.

variational problem and perform the minimization tife
entropy production.

IX. RATE DEPENDENTEXERGIES ASGENERALIZED WORK
POTENTIALS

Let us begin with linear systems. Substituting terafure
control (88) with a constanf into work functional (67) and
integrating along an optimal path yields an extiernvark
function

. X i
VT ) =oT -Tfy—cTeIn—

f
-
i
_CTe Llan
VeTe T

This expression is valid for every process modegiation of
Eq. (86) subject to end conditiofér)=T andT(7)=T leads to
Vin terms of the process duration.

For radiationc,(T)=4a,T®, wherea, is the radiation constant.
The optimal path consistent with Egs. (87) and {&®)the form

(89)

312
t(4/3)a01’2<151/2hg'l/2(T3/2 i )

-In(T/TY=¢-7

(90)

The integration limits refer to the initial staig §nda current
state of the radiation fluid, i.e. temperaturds and T

corresponding withe' and 7. Optimal curve (90) refers to the

case when the radiation relaxation is subject toomastraint
resulting from Eq. (87).

The corresponding extremal work function per uniume of
flowing radiation is

International Scholarly and Scientific Research & Innovation 4(6) 2010

426

X. POWERSYSTEMSDRIVEN BY CHEMICAL AFFINITIES

The developed approach can be extended to chemnichl
electrochemical engines. Here we shall make orflgwabasic
remarks. In chemical engines mass transports meatéc in
transformation of chemical affinities into mechahipower [12,
16]. Yet, as opposed to thermal machines, in chenooes
generalized streams or reservoirs are present,bleapaf
providing both heat and substance. Large streamisfinite
reservoirs assure constancy of chemical potenfatshlems of
extremum power (maximum of power produced and minim
of power consumed) are static optimization problefFsr a
finite “upper stream”, however, amount and chematential
of an active reactant decrease in time, and camrsldaroblems
are those of dynamic optimization and variationalcalus.
Because of the diversity and complexity of chemagatems the
area of power producing chemistries is extremeadbr

The simplest model of power producing chemical eads
that with an isothermal isomerization reactioptA,=0, [3, 12].
Power expression and efficiency formula of a chaimystem
follow from the entropy conservation and energyaheé of a
power-producing zone (‘active part). In an ‘endeesible
chemical engine’ total entropy flux is continuodsough the
active zone. When a formula describing this coitimis
combined with energy balance we find in an isotlzcase

P=(ta — o)y (92)
where the feed flux; equals ton, an invariant molar flux of
reagents. Process efficiengys defined as power yield per flux
n. This efficiency is identical with the chemicafiaity of our
reaction in the chemically active part of the syst®Vhile {is
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not dimensionless, it describes correctly the systa terms of
Carnot variabley/, which satisfies Eq. (27)
=4~y (93)
For a steady engine the following function desaibleemical
Carnot control/ in terms of fuel fluxa; and its mole fractior

-1
ﬂ=ﬂ2+zo+RTln(wJ (04)
nng + X2
Since Eq. (93) is valid, Eq. (94) also charactaribe efficiency
control in terms oh and fuel fractiorx.
Equation (94) shows that an effective concentratibrihe
reactant in upper reservoife; = X, —g; 1nis decreased, whereas

an effective concentration of the product in loveservoin,e;=

XI.

To understand the role of electrochemical reactionthe
power yield we consider performance bounds of fuells.
These systems are electrochemical flow enginesefiezbby
chemical reactions, which satisfy requirements isagb by
chemical stoichiometry. The performance of fuellsceb
determined by magnitudes and directions of allash®and by
mechanism of electric current generation. The mode
distinction for the work production and consumptianits
applies here as well. Units which produce power are
electrochemical engines whereas those which congpawer
are electrolyzers. Figure 5 illustrates a soliddexiuel cell
engine (SOFC) and refers to the power yield mode.

A fuel cell is an electrochemical energy conveniiich
directly and continuously transforms a part of cleanenergy
into electrical energy by consuming fuel and oxiddfuel
cells have recently attracted great attention Iojueiof their
inherently clean, efficient, and reliable performand heir

FUEL CELLS AT STEADY STATE CONDITIONS

X + g;'n is increased due to the finite mass flux. Theeefor, 4in advantage in comparison to heat engines is their

chemical efficiency decreases nonlinearly with
When the effect of resistancag)(" is ignorable or fluxn is
very small, reversible Carnot-like chemical effimg, ¢, is
attained. The power function, described by the pcod(n)n,
exhibits a maximum for a finite value of the fuebd n.
Application of Eq. (94) to the Lagrangian relaxatfmath leads
to a work functional

{Zﬁ RTIn[x J(L+ X) +dX/drlJ}dXdrl

w=-] _ (95)
5 X, — jdX /dr, dr,

whose maximum describes the dynamical limit of slystem.

Here X=x/(1-x) and equals the ratio of upper to lower mass

conductanceg,/g,.
The path optimality condition may be expresse@ims of the
constancy of the following Hamiltonian

H(X,X) = RTXZ(“X+JJ.
X X,

For low rates and large concentratiofis(mole fractions x
close to the unity) optimal relaxation rate of thel resource is
approximately constant.

Yet, in an arbitrary situation optimal rates am@estdependent
so as to preserve the constancyHoih Eq. (96). Extensions of
Eq. (94) are known for multicomponent, multireast®ystems
[17].

Power formula which treats the internal imperfettidas the
form generalizing “endoreversible” Eq. (23)

(96)

p=e0-012)+T, (K -ty (97)
T, T,

T T2'

where ¥ is the coefficient of chemical losses which takee
account the imperfections of the species transftioma caused
by incomplete conversions [17].

efficiency is not a major function of device size.

While both electronic and ionic transfers are nsags to
sustain power generation, it is the overall chemieaction
which is the source of power, and it is the chemigait
property which constitutes the first major compdnehthe
theory of power generation in fuel cell enginese ™econd
major component involves the kinetics of electroinic and
thermal transfer phenomena.

. Depleted fael
and water out

oy

fnode

e

1 Electrolyte
n

Crthade s

Fig. 5. Principle of a solid oxide fuel cell

The basic structure of fuel cells includes elegtmlayer in
contact with a porous anode and cathode on eitlts. s
Gaseous fuels are fed continuously to the anodgafive
electrode) compartment and an oxidant (i.e., oxyfgem air)
is fed continuously to the cathode (positive elsad)
compartment. Electrochemical reactions take platetha
electrodes to produce an electric current. Theti@ads the
electrochemical oxidation of fuel, usually hydrogemd the
reduction of the oxidant, usually oxygen. Thesepprties
make fuel cells similar to the chemical engine igf E.

This formalism can be genera”zed to Comp|exy multi VOltage Iowering in fuel cells below the I'everSinEEo

reaction chemical systems [17].
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is a good measure of their imperfection only wigrcan be
identified with the so-called idle run voltagg, see discussion
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below and Fig. 6a. With the concept of effectivenlimear represents ohmic losses throughout the fuel cslth& voltage
resistances operating voltage of a general fudl @t be losses increase with current, the initially inciegspower

represented as the departure from the idle ruagek,. begins finally decrease for sufficiently large @nts, so that
maxima of power are observed (Fig. 6b).
V = Ep - Vin= E “Vaet “Veone - Vonm The final voltage equation used for the calculatbthe fuel

cell voltage in Wierzbicki’'s model is:
= EO - I(Ract+ Rconc"' I'_\)ohm) (98)

The rate dependent losses, which are called pataig V:Eo(r,IOHZ)—iAR(pHZ)eXF{éE-jJ'BIn[l_i(TID)]’ ©9)
include three main sources: activation polarizatifc), b

ohmic polarization (Von), and concentration polarization o )

(Veond. They refer to the equivalent activation resiseaR,), WHere the limiting current is

equivalent ohmic resistance RJf,), and equivalent

concentration resistanc®,J). Large number of approaches exp(_Ea)p

for calculating these polarization losses has begiewed in i =C RT ™ (100)
the literature by Zhao, Ou and Chen, [18]. L T

a) Voltage-power-current characteristics of SOFC and C; is a experimentally determined parameter. Power

density is simply the product of voltayeand current density

0.30

T=800 °C . i. In an ideal situation (no losses) the cell vadtagdefined by
E the Nernst equation. Yet, while the first term of. §99)
2 ;“ defines the voltage without load, it nonetheledsedainto
z % account losses of the idle run, which are the effédlaws in
g electrode constructions and other imperfectionscividause
- that the open circuit voltage will in reality bewler than the
theoretical value. Activation polarizatiov is neglected in
this model. The losses include ohmic polarizationd a
Wy g2 B0 3 08 1o concentration polarization. The second term of E8Q)
Current density [A/em?] ap . . . ..
guantifies ohmic losses associated with electrgistance of
Power density 100 % H, —— Power density 60 % H, electrodes and flow resistance of ions throughetleetrolyte.
Power density 40 % H, -~ Power density 25 % H, The third term refers to mass transport lossesn@iya is the
particular current arising when the fuel is consdnie the
b) Characteristics of SOFC at various & . reaction with the maximum possible feed rate. Fonparison,
aracteristics o B the data ofzhao, Ou and Chen, [18], are shown in Fig. 7.
1.2 0.30
g 0.25 Voltage, power and polarizations
o
= o8 020 % Cipen circuit voltage Fower den531ty
) g Wim?xll
8 06 015 F 04 I3
< \\‘\\\ 800°C Ei =
L y 75 — EN e & ctivation
/ \\ 7?)0\6\ }’\ = £ 08 N 4
0.2 £ \ \ \ 0.05 =
0 T T T T T T T T T 0.00 03 Crharde 2
0.0 0.1 0.2 0.3 0.4 0.5. 0.6 , 0.7 0.8 0.9 1.0 T e ratic Ty
Current density [A/em?]
Power density at 800 °C Power density at 750 °C Power density at 700 °C "o 05 1 15 g 25

Clurrent density A/m=xl EI4

Fig. 6. Voltage-current density and power - curradgnsity
characteristics.of the SOFC for various fugls impgrature 80t Fig. 7. Data of the cell voltage, polarizationsd arower density in
(a) and at various temperatures (b). Continuousslirepresent the iorms of current density for a fuel cell using fogiEn (97% H + 3%

Aspen Plu§” calculations testing the model consistency with th H,0) as fuel and air (21% O+ 79% N) as oxidant (Zhao, Ou and
experiments. These lines were obtained in WierzkiddsD thesis  cpen [18]), consistent with the data of Wierzbigkg].

[19], supervised by the present author and J. &voints refer to
experiments of Wierzbicki and Jewulski in Warsavstituite of

Energetics (Wierzbicki, [19], and his ref. 18). Xl FINAL REMARKS

The present paper provides the unifying thermodyoam
Activation and concentration polarizations occur ketth method for determining power production limits ineegy
anode and cathode locations, while the resistiarization systems. These limits are enhanced in comparistin thibse
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predicted by the classical thermodynamics. As opgds the
classical thermodynamics, these bounds depend migtom

changes of the thermodynamic state of participat@spurces
but also on process irreversibilities, ratios akatn flows,
stream directions, and mechanism of heat and meassfer.

To understand the problem of bounds and theirraistin
for the work production and consumption, recalt tihe@ work-
producing process is the inverse of the work-comsgm
process (the final state of the second procedwmittial state
of the first, and conversely), when durations oé ttwo
processes and their end states are fixed to bsathe.

In thermostatics the two bounds on the work, theniloon
the work produced and that on the work consumenhcitte.
However thermostatic bounds are often too far freslity to
be really useful. The generalized bounds, obtaihed by
solving HJB equations, are stronger than thoseigtest by
thermostatics. They do not coincide for processesvark
production and work consumption; they are ‘thermefic'
rather than ‘thermostatic’ bounds. Only for in&hjt long
durations or for processes with excellent trangéer infinite
number of transfer units) the thermokinetic bourettuce to
the classical thermostatic bounds.

A real process which does not apply the optimatquaol
but has the same boundary states and duratioreagptimal
path, requires a real work supply that can onljdoger than
the finite-rate bound obtained by the optimizati&milarly,
the real work delivered from a nonequilibrium wgnieducing
system (with the same boundary states and durhtibmwith a
suboptimal control) can only be lower than the esponding
finite-rate bound. Indeed, the two bounds, for@cpss and its
inverse, which coincide in thermostatics, diverge

thermodynamics, at a rate that grows with any ind

quantifying the process deviation from the stagbdwior, e.g.

Hamiltonian H. For sufficiently high values of rate indices
(large H), work consumed may far exceed the classical wor

work produced can be much lower than classical v@ane
vanish.

Functions of optimal work obtained via optimizatiane
generalizations of the classical exergy, [20], floe case of
imperfect (dissipation—involving) downgrading anilization
of resources. The generalized exergy in processeparting
from the equilibrium (resource relaxation, downgngdl is
larger than the one in processes approaching thiibegyum
(resource utilization, upgrading). This property eeges
because one respectively adds or subtracts theugtrad T
and entropy production in equations describinggtreeralized
availability. Limits for mechanical

those defined by the classical exergy. Thus, irh bubdes,
generalized exergies provide enhanced bounds irpaoson
with those predicted by classical exergy.

In the realm of fuel cells these issues are radtifresh but
there is a potential of implementing them especiati
connection with control problems [21, 22]. Electiemical
systems and particularly fuel cells are especiatigortant in
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consumption provided by exergidsare always stronger than
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this context by virtue of their inherently clearficent, and
reliable performance. The methodology extending fdailiar
for the classical thermal machines has also be&néed to
the complex multi-component and multi-reaction cloain
engines, [17].

XII.

Clearly, with thermokinetic models, we can conframd
surmount the limitations of applying classical thedynamic

CONCLUSION

bounds to real processes. The consequence are cedhan

power limits, stronger than those of classicalriynamics.
This is a direction with many open opportunitiespecially
for separation and chemical systems. More inforonatelated
to power limits in energy systems can be foundun earlier
papers [9, 23] and in the book [11]. A challengéxgension is
also the optimization of the fuel cell-heat engimgbrid

systems [24].

NOMENCLATURE
A, generalized exergy per unit volume [Jm

A" surface area perpendicular to flowm
a temperature power exponent in kinetic equation [-]
3z90:440/c constant related to the Stefan-Boltzmann coh§iam
K]
a, total area of energy exchange per unit volumé][m
E°, E; Nernst ideal voltage and idle run voltage, respelst
[Vl
G resource flux [g8, mols!]
g, g partial and overall conductance {857
i fo, fi profit rate and process rates

e'? Hamiltonian function

Hty height of transfer unit [m]

h numerical value of Hamiltonian [J? ]

b, hy specific and volumetric enthalpies Bgm?
I“electric current density [AH]

n flux of fuel reagents [g5 mols’]

p = W power output [J§]

p% molar constant of photons density [mdiki®s]

qheat flux between a stream and power generatd} [Js
Q total heat flux involving transferred entropies’|J

S S, entropy and entropy produced [JK

AS; entropy change of circulating fluid along isotheFgn
AS, entropy change of the circulating fluid along rerim T,
s, s, specific and volumetric entropy [Jig*, J K'm?¥|

T variable temperature of resource [K]

T,, T, bulk temperatures of reservoirs 1 and 2 [K]

Ty, T, temperatures of circulating fluid (Fig.1) [K]

T® constant temperature of environment [K]

T Carnot temperature control [K],

T = u rate of control off in non-dimensional time [K]

t physical time [s]

uandu rate controlsd 7-rand di/dt, [K, Ks]

V voltage,maximum work function, resp.[V, Jmil

v velocity of resource stream [ilis

W work produced, positive in engine mode [J]
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w specific work at flow or power per unit flux ofrasource
[J/mol] [1]
x mass fraction [-], length coordinate [m]
z adjoint variable

[2
Greek symbols 3]
a, @ partial and overall heat coefficients referred to
respective cross-sections [JstK ] [4
[ effective coefficient of radiation transfer reldtéo molar

constant of photons dens'm?n and Stefan-Boltzmann [5]
constant of radiatior = ga,c,, l( p,?])_l [s7]

etotal energy flux, conservative along a conducist][
n = plq, first-law thermal efficiency [-]

x = po(aa,)™ time constant assuring the identity of ratjp (7]
with number of transfer units [s]

(6]

4 chemical potential [Jmd] (8]
4 Carnot chemical potential [Jmil
@ factor of internal irreversibility [-] 9]

o Stefan-Boltzmann constant for radiation P&tk ™]
o, entropy production of the system [3&}]

Eintensity index [ (0]
{ chemical efficiency [-]
rdimensionless time or number of transfer units [-] [11]
Subscripts 2]
C Carnot point
m molar flow [13]
Vv per unit volume [14]
1,2 first and second fluid
0 idle run voltage [15]
Superscripts (16]
e environment
i initial state
finitial state [17]
0 ideal (equilibrium) voltage

o [18]
Abbreviations
CNCA Chambadal-Novikov-Curzon-Ahlborn engine
HJB Hamilton-Jacobi-Bellman
HJ Hamilton Jacobi equation. (29]
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