
Abstract—In the current research, we present an operation

framework and protection mechanism to facilitate secure

environment to protect mobile agents against tampering. The system

depends on the presence of an authentication authority. The

advantage of the proposed system is that security measures is an

integral part of the design, thus common security retrofitting

problems do not arise. This is due to the presence of AlGamal

encryption mechanism to protect its confidential content and any

collected data by the agent from the visited host . So that

eavesdropping on information from the agent is no longer possible to

reveal any confidential information. Also the inherent security

constraints within the framework allow the system to operate as an

intrusion detection system for any mobile agent environment. The

mechanism is tested for most of the well known severe attacks

against agents and networked systems. The scheme proved a

promising performance that makes it very much recommended for

the types of transactions that needs highly secure environments, e. g.,

business to business.

Keywords—Mobile Agent Security, Mobile Accesses,

Agent Encryption..

I. INTRODUCTION

N a broad sense, a software agent is any program that acts

on the behalf of a user, just as different types of agents

(e.g., travel agent and insurance agents) that represent other

people in day-to-day transactions in real world. Applications

can inject mobile agents into a network, allowing them to

roam the network on either a predetermined path, or agents

themselves determine their paths based on dynamically

gathered information. Having accomplished their goals, the

agents return to their “hosts” in order to report their results to

the user.

However; the mobile agent paradigm also adds significant

problems in the area of security and robustness. Malicious

agents are similar to viruses and trojans, they can expose

hosts, they visit, to the risk of system penetration. While in

transient, the agent’s state becomes vulnerable to attacks in

different ways. An agent is likely to carry-as part of its state-

Manuscript received March 19, 2005. (Write the date on which you

submitted your paper for review.)

K. E. Negm is with the Etisalat College of Engineering, Sharjah, POB 980,

UAE (corresponding author to provide phone: 50-482-1316; fax: 6-522-5937;

e-mail: knegm@eim.ae).

sensitive information about the user identity, e.g., credit card

information, personal confidential preferences, or any other

form of electronic credentials. Such data must not be reveled

to any unauthorized hosts or modified by unauthorized users.

Unless some countermeasures are taken, such agents can

potentially leak or destroy sensitive data and disrupt the

normal functioning of the host.

In the current research we present a protection scheme for

the mobile agents that incorporate standard cryptographic

mechanisms into the agent transfer protocol functions. The

use of the one-way-hashing and digital signatures is two fold;

first detect active, passive and tampering attacks, and second

to establish the identity of the servers participating in the anti-

tampering program (ATP) [1,2]. Also encryption is used to

prevent passive attacks on the agent's state while it is in

transient [3,4].

II. MOBILE AGENT SECURITY ANALYSIS

Mobility allows an agent to move among hosts seeking

computational environment in which an agent can operate.

The host from which an agent originates is referred to as the

home host that normally is the most trusted environment for

an agent [5-7].

In the mobile agent environment, security problem stems

from the inability to effectively extend the trusted

environment of an agent’s home host to other hosts. The user

may digitally sign an agent on its home host before it moves

onto a second platform, but this resembles a limited

protection. The next host receiving the agent can rely on this

signature to verify the source and integrity of the agent’s

code, data, and state information provided that the private

key of the user has not been compromised. For some

applications, such minimal protection may be adequate

through which agents do not accumulate state. For other

applications, these simple schemes may prove inadequate.

For example; the Jumping Beans agent system addresses

some security issues by implementing a client- server

architecture, whereby an agent always returns to a secure

central host first before moving to any other platform [8-10].

Some other category of attacks on the agent involves

tampering by its executing visited hosts. As such, if that

Design, Implementation and Testing

of Mobile Agent Protection

Mechanism for MANETS

Khaled E. A. Negm

I

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:1, No:5, 2007

765International Scholarly and Scientific Research & Innovation 1(5) 2007 scholar.waset.org/1307-6892/4625

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, E

le
ct

ri
ca

l a
nd

 C
om

pu
te

r
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

w
as

et
.o

rg
/P

ub
lic

at
io

n/
46

25

http://waset.org/publication/Design,-Implementation-and-Testing-of-Mobile-Agent-Protection-Mechanism-for-MANETS/4625
http://scholar.waset.org/1307-6892/4625

server is corrupted or becomes malicious, the agent's state is

vulnerable to modification [11]. Although a lot of research

has been done in this area, one of the remaining problems is

the presence of an untrusted malicious host that attacks

mobile agents, for example; a travel agency’s agent system

might modify the best offer the agent has collected, so that its

own offer appears to be the cheapest one. Also, the travel

agency might change the list of travel agencies that the agent

is going to visit to increase its chances to propose a better

offer and/or get the prices of other travel agencies before

making its offer to the agent. All of these attacks involve

eavesdropping and tampering and yet all the published

schemes represent a simple mechanism of protection that can

not guarantee secure transactions for the agents.

III. PROTECTION SCHEME AND ITS IMPLEMENTATION

In the current research we implement a mechanism by

which tampering of sensitive parts of the state can be detected,

stopped, and reported to the Master Agent (MA). The

framework is composed of different modules.

First the initialization module in which we have the user,

two coordinating entities MA and Slave Agents (SAs). The

user resides on its own platform and/or on a server to create

the MA acquiring only that MA must exclusively reside on a

secure trusted host. Then the MA creates SAs on another host

(or the same MA host) in which being created on a secure host

is not a must. Next MA defines tasks and subtasks to the SAs

to achieve based on the user preferences. Then the SAs move

from host to host to finish the tasks (and/or subtasks) given

from the MA (that includes a central knowledge-base and a

central management components.).

The second module is the Constraints Module that contains

conditions and rules for each agent to follow. This module

presents the first line of defense in which the characteristic

details and operational parameters of the visited host are

listed. The third Module is the Encryption Module,

presenting the second line of defense to afford the security for

the agents’ states. The encryption module contains two parts.

The startup part, allows the user to declare which part of the

agent as a read-only in which any tampering with the

read-only objects can be detected. The second part is a secure

storage container, that allows the agent to create an

append-only container by which the agent can check in data

(when executed) and store it in the container, so no one can

deleted or modify it without detection.

A. The Initialization Module

The concept of MA-SA was first introduced by Buschmann

in 1996 to support fault tolerance, parallel computation and

computational accuracy [12]. Also Lange demonstrated in

1997 that it is also applicable to support tasks at remote

destinations and extended it to fit mobile agents [14]. The

MA-SA concept is interacting as follows: the MA creates

SAs, then the master delegates the subtasks to the SAs, and

finally after the slaves have returned the results, the master

combines the results. The master can assign more than one

task at a time and the slaves can execute them concurrently. A

major benefit of this abstraction is the exchangeability and the

extensibility in which decoupling the SA from the MA and

creating an abstract slave class allows to exchange the slaves’

implementation without changes in the master’s code.

Depending on the MA-SA concept, we built up a system to

facilitate a solution to the mobile agent security problem. To

achieve this, confidential data is contained in a secure place

that is the MA host (or heavily protected if carried by the

SAs). Then the SA must carry essential data to fulfill the task

assigned by the MA [14].

Tables I and II present the two listings of the pseudo code

implementation of MA and SA. First, the doTask() method

is called so the MA moves to the first host where it uses its

strategies to split the tasks into subtasks. Then the MA

assigns subtasks to the SAs. Afterwards it waits for the results

which will be returned by the SAs.

TABLE I

MA PSEUDO CODE

Public class MA extends Agent {

 private ConstarintManager cm;

 private Vector Tasks;

private vector sentSAIds;

 protected void doTask() {

 do {

 getCurrentHost().transfer(this object)

 splitTasks();

 waitForResults();

 mergeResults();

 } while (!supertask.finished());

 sendResultsMAHome();

 }

 private void splitTask() {

 // 1. apply strategy to divide the task

 // 2. refine constraints for the subtasks

 for (int i=0; i < tasks.size();++){

 SA w= new SA (subtask, constraints);

 sentWorkIds.add(w.getId());

 w.doTask();

 }

 }

}

TABLE II

SA PSEUDO CODE

Public class SA extends Agent {

 private ConstarintManager;

 private Vector Tasks;

SA (Task t){task=t; }

 protected void doTask() {

 do {

 task.execute();

 addResult(task.getResults());

 getCurrentHost().transfer(this object)

 } while (!task.finished());

 }

 private void addResult(Results=r){

 if (cm.checkConstarints(task,r))

 sendResulstToMA;

 }

}

B. The Constraint Module

After starting the initialization module, the constraints

module starts running in a supervisory parallel fashion during

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:1, No:5, 2007

766International Scholarly and Scientific Research & Innovation 1(5) 2007 scholar.waset.org/1307-6892/4625

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, E

le
ct

ri
ca

l a
nd

 C
om

pu
te

r
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

w
as

et
.o

rg
/P

ub
lic

at
io

n/
46

25

http://waset.org/publication/Design,-Implementation-and-Testing-of-Mobile-Agent-Protection-Mechanism-for-MANETS/4625
http://scholar.waset.org/1307-6892/4625

the transactions. The constraints module is composed of three

parts:

a. Routing Constraints: which define variables for the

agent’s itinerary that lists hosts, operating systems’ type and

version number including hopes to travel. This type has to be

checked every time before an agent moves to another location.

b. Execution Constraints: which define requirements on the

SA visited system’s environment which contain a limitation

list of hardware (the amount of memory storage) or software

(for example a specific version of the database-access

software or an LDAP-service) requirements.

c. Merging Constraints: which define the relations between

subtasks that are generated by the strategies. In contrast to the

other constraints, merging constraints are stored exclusively

by the MA.

C. The Cryptography Module

The cryptography module provides a secure container for

any credentials that the agent might carry and acts as an

intrusion detection system to discover tampering. This

protection mechanism contains two parts:

a. The read only-state: in which it function to assign part of

the “agent’s object” as read-only sub-object in which its

credentials could not be modified by anyone, and thus are

read-only during its travels. To protect such read-only state

we have to declare the associated objects as constants and

incorporate a cryptographic mechanism to protect these

constants.

In Table III we list the pseudo code of this object. It

contains a vector of objects of arbitrary type, along with the

agent owner's digital signature on these objects. The

digital signature is computed by first using a one-way hash

function to digest the vector of objects down to a single

128-bit value, and then encrypt it using the private key of the

agent’s owner. The Digital Signature Algorithm (DSA) is

used for this purpose [15].

objshKsign A

The verify method of the ReadOnlyContainer

object allows any host on the SA’s path to check whether the

read-only state has been tampered via contacting the

certifying authority to honor the user’s signature (while it

needs an access to the agent's public key.) It uses the public

key to decrypt the signature, and compares the result with a

recomputed one-way hash of the vector of objects. If these

values match, the visited host can assume that none of the

objects has been modified since the signature was computed.

Thus, the condition it checks are:

signKobjsh A .

The read-only container mechanism is limited in utility to

those parts of the state that remain constant throughout the

agent's travels. But in real life, SAs collect data from the

hosts it visits and need to prevent any subsequent modification

of the data. This could be termed as write-once data.

b. Append-only logs: This object guarantees that the

stored entries within it can not be deleted, modified or read by

an unauthorized user. When data object needs to be

nonmodifiable for the remainder of the agent's journey, it can

be inserted into this append only log and to provide secrecy,

the data is then encrypted with the MA’s public key before it

is stored in the log file. We used this module to preserve the

results that the SA’s had gathered. The pseudo code of this

object is shown in Table 4.

The AppendOnlyContainer object contains vector of

objects to be protect, along with their corresponding digital

signatures and the identities of the signers (in case of MA

only). It also contains a checkSum array to detect

tampering. When an SA is created, its

AppendOnlyContainer is empty. The checksum is

initialized by encrypting a nonce with the agent's public key

aA NKcheckSum

This nonce Na is not known to any host other than the MA’s

host, and must be kept secret. Therefore, it is not carried by

the SA. The encryption is performed using the ElGamal

cryptosystem [16]. At any stage during the SAs travel, the

agent can use the checkIn method to insert an object X (of

any type) into an AppendOnlyContainer. For example,

after collecting a quotation from a travel agent, it can check

TABLE III

THE READONLYCONTAINER PSEUDO CODE

class ReadOnlyContainer {

 Vector objs; // the read-only objects being carried along

 byte[] sign; // owner's signature on the above vector

 // Constructor

 ReadOnlyContainer(Vector o, PrivateKey k) {

 objs = o;

 sign = DSA—Signature (hash(objs), k);

 }

 public boolean verify(PublicKey k) {

 // Verify the agent owner's signature on the objects

 // using the owner's public key

 }

}

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:1, No:5, 2007

767International Scholarly and Scientific Research & Innovation 1(5) 2007 scholar.waset.org/1307-6892/4625

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, E

le
ct

ri
ca

l a
nd

 C
om

pu
te

r
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

w
as

et
.o

rg
/P

ub
lic

at
io

n/
46

25

http://waset.org/publication/Design,-Implementation-and-Testing-of-Mobile-Agent-Protection-Mechanism-for-MANETS/4625
http://scholar.waset.org/1307-6892/4625

TABLE IV

THE APPENDONLY PSEUDO CODE

class AppendOnlyContainer –{

 Vector objs; // the objects to be protected

 Vector signs; // corresponding signatures

 Vector signers; // corresponding signers' URNs

 byte[] checkSum; // a checksum to detect tampering

 // Constructor

 AppendOnlyContainer(PublicKey k, int nonce) {

 objs = new Vector(); // initially empty

 signs = new Vector(); // initially empty

 signers = new Vector(); // initially empty

 checkSum = encrypt (nonce); // with ElGamal key k

 }

 public void checkIn (Object X) {

 // Ask the current server to sign this object

 sig = host.sign (X);

 // Next, update the vectors

 objs.addElement (X);

 signs.addElement (sig);

 signers.addElement (current server);

 // Finally, update the checksum as follows

 checkSum = encrypt (checkSum + sig + current server);

 }

 public boolean verify (PrivateKey k, int nonce) {

 loop {

 checkSum = decrypt (checkSum); // using private key k

 // Now chop off the ''sig'' and server's URN at its end.

 // These should match the last elements of the signs and

 // signers vectors. Verify this signature.

 } until what ever is left is the initial nonce;

 }

}

the in-value, in order to protect it from any further

modification. The checkIn procedure requests the current

server “C” to sign the object using its own private key. The

object, its signature and the identity of the signer are inserted

into the corresponding vectors in the

AppendOnlyContainer. Then, the checksum is updated

as follows

CXSigcheckSumKcheckSum CA .

First, the signature and the signer's identity is concatenated

to the current value of the checksum. This byte array is then

encrypted further using the MA’s ElGamal public key,

rendering it to be unreadable by anyone other than the agent's

owner. Then, the encrypted version of the object would be

carried along and protected from tampering. When the agent

returns, the user can use the verify method to ensure that the

AppendOnlyContainer has not been tampered. As

shown in Table IV, the verify process works backwards,

unrolling the nested encryptions of the checksum, and

verifying the signature corresponding to each item in the

protected state. In each iteration of this loop, the following

decryption is performed

SXSigcheckSumcheckSumK SA ,

here S is the server in the current position of the signers

vector, and X is the corresponding object in the objs vector.

The verify procedure then ensures that

XhXSigK SS .

If any mismatches are found, the agent’s owner knows that

the corresponding object has been tampered and then it can

discard the value. The objects extracted up to this point can

still be relied upon to be valid, but other objects whose

signatures are nested deeper within the checksum can not be

used. When the unrolling is complete, we are left with the

random nonce that was used in the initialization of the

checksum. This number is compared with the original random

number Na. If it does not match, a security exception can be

thrown.

IV. TESTING ENVIRONMENT

The basic goal of the testing is to monitor the system

behavior against malicious attacks and measure the network

utilization for different operational scenarios. We executed

the most common well know attacks for agents, systems, and

networks against the proposed system and collected the results

to study the feasibility [17]. Five traffic generators are

installed and distributed among its testing network to simulate

the real world environment. Additional normal www traffic is

generated while activating and running the system to

introduce the normal competitive packet dynamics and

latencies within the queuing buffers in each router [8].

The major role of the utilization testing is to evaluate the

network resources usage while implementing the framework.

Also we performed functionality testing of the framework in

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:1, No:5, 2007

768International Scholarly and Scientific Research & Innovation 1(5) 2007 scholar.waset.org/1307-6892/4625

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, E

le
ct

ri
ca

l a
nd

 C
om

pu
te

r
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

w
as

et
.o

rg
/P

ub
lic

at
io

n/
46

25

http://waset.org/publication/Design,-Implementation-and-Testing-of-Mobile-Agent-Protection-Mechanism-for-MANETS/4625
http://scholar.waset.org/1307-6892/4625

Host 11

LINUX RH

Host 10

WIN2000

Host 9

WINXP

Host 12

LINUX MDK

Traffic Generator 5

Host 6

LINUX RH Host 7

WINXP

Traffic Generator 3

Host 8

BSD
Host 5

LINUX MDK

Cisco 7000M

W/VLAN

Shared Backbone

CISCO 1700

VPN Host

Client Private Key

Constrainst System

BlackBoard System

CISCO 3600

CISCO 2950

FIRE WALL 2

Cisco 535

CISCO 2950

IDS Sensor

WKST

LINUX

Router

DMZ SERVER

Host 4

LINUX RH

Traffic Generator 1

Host 3

WIN2000

Host 2

WINXP

Host 1

LINUX MDK

NET 1

NET 2

NET 3
VPN Concentrator

Cisco 7210

FIRE WALL 1

Cisco 535

Traffic Generator 2

Traffic Generator 4

Public Key

Certifying Authority

Figure a: The testing network

TABLE V

TESTING SCENARIO PARAMETERS

Scenario Client Master (I/O) Slave Host: ports Target Hosts

1 VPN

host

VPN host:

(4444/3333)

DMZ host: 3062

DMZ host: 3063

DMZ host: 3064

H1: 3155

H5: 3150

H10: 2774

2 VPN

host

DMZ host

(44444/60000)

H4: 3009

H11: 3010

H12: 3011

NET1

NET2

NET3

TABLE VI

PARALLELIZING AND PRIMARILY TEST PARAMETERS

packet

s

Bytes Source Ports Destination Ports

20 3000 Any 3150

40 7050 Any 3155

14 2683 Any 2774

56 6388 Any All the remaining

138 19121 All traffic All traffic

which “Parallelizing” scheme enables concurrent task

execution. In every testing scenario, there is a list of hosts for

the SAs to visit according to their respective predefined

strategy.

A. Parallelizing and Primarily Security Test

In this scenario, the client operates from the VPN host at

which he creates the MA Then the MA creates three ASs on

the DMZ host from which they start traveling to their

designated hosts according to the predefined constraints.

Each SA queries its target host via the dedicated port for

such a process. Then each SA will activate a security query to

the CVE host requesting security clearance to communicate to

the dedicated target hosts. On receiving the clearance it will

proceed to collect and/or communicate to the target host. In

case of successful transaction, the collected information is

returned to MA. Then the MA prepares the final report and

pass it to the user. Note that this is not a fully guaranteed

security check, but it helps in some ways to eliminate some

security risks especially for home users.

In here two of the SAs are targeting hosts 5 and 10 will stop

execution due to the fact that the dedicated ports of

communication assigned by these host match malicious

attacks (according to the CVEs) on the SA itself, namely the

deep throat, the Foreplay and the Mini BackLash attacks on

port 3150 and the subseven, and subseven 2.1 Gold on port

2774. This is achieved through the confirmation channel

between the SAs and the MA to approve communication via

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:1, No:5, 2007

769International Scholarly and Scientific Research & Innovation 1(5) 2007 scholar.waset.org/1307-6892/4625

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, E

le
ct

ri
ca

l a
nd

 C
om

pu
te

r
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

w
as

et
.o

rg
/P

ub
lic

at
io

n/
46

25

http://waset.org/publication/Design,-Implementation-and-Testing-of-Mobile-Agent-Protection-Mechanism-for-MANETS/4625
http://scholar.waset.org/1307-6892/4625

the designated port by the visited host. The MA confirms

communication after checking the CVEs list.

B. DDoS Attack Test

In this scenario malicious software is activated at Host 1

acting against the three networks in which host 6 and 9 are

trojaned to be malicious to deny any execution to all arriving

agents. In general the MA creates five the SAs at Host 5.

Then each one moves to all hosts to collect the desired

information. During this test, the MA enforces a new

constraint that concerns retry in denial-of-service attacks as:

* if repeatedCreation() < 3 then begin
true end
else alarm_user(); false end.

The method repeatedCreation() returns the number

of already done retries to create a SA for a certain task. So for

example if one of the SA failes and the MA creates another

one, then the return value of this method would be one. The

constrains for the SAs are the same as in the previous

scenario:

* if placename == "Host 2 12" then begin
true end.
* if ostype == "LINUX MDK or RH" then
begin true end.

In here the system information is not collected from hosts in

NET1 because it suffers from DDoS and host 11 because it

does not have the correct name and the last one because it is

not the desired Linux machine. But the encryption module

will detect this behavior, file it, and report it back to the user

via the blackboard system.

The DDoS will not propagate from NET1 to the other

networks because of the network intrusion detection systems

(NIDS) and host based intrusion detection systems (HIDS)

installed to filter out any traffic back and forth. The SA that

moves to host 1 do not return any status report or result within

the given deadline so the MA retried to send it several time.

After retrying it twice the MA’s constraint number one returns

false. Thus, the MA stops trying to send an agent to these

hosts and returns a special report to the user.

This shows that a malicious host can not trap or stop the

overall process by a denial of service attack. When the SA

does not return within a given deadline the MA could start

another one or redefine the subtasks and then start a new one.

V. SUMMARY AND CONCLUSION

Mobile agents differ from other techniques in regard to

security issues and security mechanisms, whose requirements

are not met by classical security systems. Concerning security

in traditional operating systems, the system is always trusted.

This is not true for mobile agents, here the visited operating

system can be the untrusted one and the agent is the trusted

one. The problem arising is that the users have no chance to

check the functionality of the operating system.

To eliminate some of the security risks we incorporate a

sophisticated mechanism to be built in within the mobile agent

design by which none would be able to retrofit into the

application. This aim is fully accomplished. The framework

limits the risks of leakage and tampering as the data stored in

the Master Agent will never be accessible to potential

malicious hosts, since it will only reside on trusted hosts. In

addition to implementing the MA-SA system in an enhanced

way to facilitate full optimized operation and protection to the

agent system.

Besides the main intent to make mobile agent technology

more secure the Master Agent-Slave Agent Framework

provides additional benefits and boosts some of the mobile

agent’s advantages due to its design and structure (e.g.

flexibility, simplicity, separation of concerns, etc.). Its

separation of code focusing on coordination and code

focusing on computation make the pattern an ideal basis for

the framework. This design allows easy integration of this

framework in applications and eases porting to other mobile

agent systems.

The framework consists of a coordinating entity (the MA)

and several independent entities (the SAs). The MA holds all

the current knowledge found by the Slave Agents and uses

this knowledge to accomplish its task. The key difference to

the client-server paradigm is that the MA component is mobile

as well. So it can move to a host near the area its SAs

scenarios will operate in. The only prerequisite is that the MA

must exclusively visit secure trusted places. In the worst case

this is the host where it has been initialized. We have

demonstrated that this framework solves special aspects of

mobile agent security, in addition to that eavesdropping

information and tampering the agent is no longer possible or

does not reveal any confidential information.

Every time the agent departs a host, its server inserts a log

entry into the AppendOnlyContainer. This entry includes the

current server's name, the name of the server from which the

agent arrived, and the name of its intended destination. This

travel log can be used by the agent's owner when the agent

returns, to verify that it followed the itinerary prescribed when

it was dispatched.

If the agent's itinerary is known in advance of its dispatch,

we can insert a copy of the itinerary into the agent's

ReadOnlyContainer. Thus, each host visited by the agent

has access to the original itinerary, as intended by the agent's

creator. The receiving host can check the current itinerary to

ensure that the agent is following the specified path, and that

the method to be executed is as specified originally.

This ensures that any tampering with the method's

parameters by any host on the agent's path can be detected,

before the agent is allowed to execute. In addition, an audit

trail of the agent's migration path can be maintained using an

instance of the AppendOnlyContainer class. One

limitation of AppendOnlyContainer scheme is that the

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:1, No:5, 2007

770International Scholarly and Scientific Research & Innovation 1(5) 2007 scholar.waset.org/1307-6892/4625

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, E

le
ct

ri
ca

l a
nd

 C
om

pu
te

r
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

w
as

et
.o

rg
/P

ub
lic

at
io

n/
46

25

http://waset.org/publication/Design,-Implementation-and-Testing-of-Mobile-Agent-Protection-Mechanism-for-MANETS/4625
http://scholar.waset.org/1307-6892/4625

verification process requires the agent's private key, and can

thus only be done by the agent's host.

FUTURE WORK

Currently we are working on enhancing the IDS feature of

the system by adding a backboard system to the encryption

module. But in this case we have to implement a rigorous

reporting mechanism from the slave agents to the master

agent.

ACKNOWLEDGEMENT

The author would like to thank Cisco systems in Dubai,

UAE to support this research by the needed Cisco equipments.

Also the author would like to acknowledge the Etisalat

Academy in Dubai to facilitate the premises to run this

research.

REFERENCES

[1] D. Vincenzetti and M. Cotrozzi, ATP anti tampering program,

in Edward DeHart, ed., Proc. of Security IV Conf.-USENIX

Assoc., pp 79-90, 1993.

[2] R. Sielken, Application Intrusion Detection, Univ. of Virginia

Computer Science Technical Report CS-99-17, 1999.

[3] V. Roth, “Scalable and Secure Global Name Services for

Mobile Agents,” 6
th

 ECOOP Workshop on Mobile Object

Systems: Operating System Support, Security and

Programming Languages, 2000.

[4] R. Gray, “D’Agents: Security in a Multiple Language, Mobile-

Agent System,” in Mobile Agents and Security, G. Vigna, ed.,

LNCS 1419 pp. 154-187, Springer, 1998.

[5] Fuggetta, G, Picco, and G. Vigna, "Understanding Code

Mobility," IEEE Transactions on Software Engineering, 24,

pp. 342-361, 1998.

[6] "Agent Management," FIPA 1997 Specification, part 1, ver.

2.0, Foundation for Intelligent Physical Agents, 1998.

[7] "Mobile Agent System Interoperability Facilities

Specification," OMG-TC-orbos/97, 1997.

[8] “Jumping Beans White Paper,” Ad Astra Engineering Inc., CA,

1998.

[9] Khaled E. A. Negm, “Implementation of Secure Mobile Agent

for Ad-Hoc Networks, WEAS Transactions on

Communications, Vol. 2, 2003, pp. 519-526.

[10] Khaled E. A. Negm and Wael Adi, “Secure Mobile Code

Computing in Distributed Remote Environment, Proc. the

2004 IEEE International Conference on Networking, Sensing

and Control, 2004, pp. 270-275.

[11] W. Farmer, J. Guttman, and V. Swarup, Security for Mobile

Agents: Issues and Requirements. In Proc. of the 19
th

International Information Systems Security Conference, pp.

591-597, 1996.

[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.

Stal, “Pattern-Oriented Software Architecture: A System of

Patterns,” John Wiley, UK, 1996.

[13] J. White, “Mobile Agents,” in Software Agents (J. Bradshow,

ed.), ch. 18, pp. 437-472, MIT Press, 1997.

[14] A. Tripathi, N. Karnik, N. Vora, T. Ahmed, R. Singh,
Mobile Agent Programming in Ajanta, Proc. of 19th IEEE

International Conference on Distributed Computing Systems,
pp. 190-197, 1999.

[15] M. Bellare, S. Goldwasser, and D. Micciancio, “Pseudo-

Random Number Generation with Cryptographic Algorithms:

the DSS Case, Crypto 97, LNCS 1294, pp. 1-12, Springer,

1997.

[16] T. ElGamal, “A public Key Cryptosystem and a Signature

Scheme Based on Discrete Logarithms, Proc. of Crypto ’84,

LNCS 196, pp. 10-18, 1984.

[17] Common Vulnerability Exposure (CVE) http://cve.mitre.org/.

[18] TG: Traffic Generator, http://www.postel.org/services.html.

K. Negm, Ph.D., SMIEEE, CISSP, CISA, Associate Professor in Etisalat

College of Engineering and Senior Security Specialist Dr. Negm is a member

of the Information Systems Security Association (ISSA)-USA and

Information Systems Audit and Control Association (ISACA)-USA. He is the

Associate Chairman for the Security Standards Committee and Secretary for

the Scientific Committee of the ISSA for the Middle East and Asia. Also he is

a member of the Technical Committee of Security Standards of the IEEE and

the USENIX group. He is a member of many IEEE committees as: Technical

Committee on Computer Communication, Technical Committee on Security

and Privacy, Task Force on Information Assurance.

Currently he is an Associate Professor in Etisalat College of Engineering,

UAE. He have various International collaborations, TRIUMF-Canada, ICTP-

Italy, and ECT*-Italy, NATO -Italy. For the last 18 years he have been

involved in carrying out responsibilities for the Network Security

Architecture, including the design, implementation, and administration of

firewalls, Web servers, proxy servers, SecureID and other network security

components for several Governmental Departments, Security Agencies,

Banks and Educational Institutes. He provided training and consulting in the

areas of security solutions and security audits. This involved writing the

corporate security policy, designing and implementing the corporate firewall

solution, and providing secure access for remote systems. Dr.

Dr. Negm has authored over 60 papers in refereed technical journals and

international conferences. He is a Senior Member of the IEEE and Member of

the Applied Computational Society. He is a regular reviewer for Modeling

and Simulation Journal, IEEE Security and Privacy and Computer Security

Journal.

Dr. Negm is an author of well knows published three IDS based on neural

networks algorithms. Currently he is interested in IPSEC, Wireless Security,

IT Forensics and the AAA Wireless Problems. Dr. Negm is listed in Who’s

Who in Information Technology and Networks Systems Security and

Nominated to be the Professional of the Year 2004 (of IT Security) by the

International Association of Networking Professionals-USA.

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:1, No:5, 2007

771International Scholarly and Scientific Research & Innovation 1(5) 2007 scholar.waset.org/1307-6892/4625

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, E

le
ct

ri
ca

l a
nd

 C
om

pu
te

r
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

w
as

et
.o

rg
/P

ub
lic

at
io

n/
46

25

http://waset.org/publication/Design,-Implementation-and-Testing-of-Mobile-Agent-Protection-Mechanism-for-MANETS/4625
http://scholar.waset.org/1307-6892/4625

