

Call: HORIZON-HLTH-2021-TOOL-06

Topic: HORIZON-HLTH-2021-TOOL-06-03

Funding Scheme: HORIZON Research and Innovation Actions (RIA)

Grant Agreement no: 101057062

AI powered Data Curation & Publishing Virtual Assistant

Deliverable No. 3.1

VA architecture (Application and Technical)

Approval by the European Commission Pending

Contractual Submission Date: 30/09/2023

Actual Submission Date: 29/09/2023

Responsible partner: P9: GND

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

2

Grant agreement no. 101057062

Project full title AIDAVA - AI powered Data Curation & Publishing Virtual Assistant

Deliverable number D3.1

Deliverable title VA architecture (Application and Technical),

Type1 R

Dissemination level2 PU

Work package number WP3

Work package leader P9-GND

Author(s) Bela Bihari, Daniel Dallos, Lorant Ferencz, Botond Kiss, Zoltan
Lazar, Alpar Tana (P9-GND)

Isabelle de Zegher (P2 - b!lo)

Remzi Celebi, Louis Powell, Shervin Mehryar, Ensar Emir Erol (P1-
UM)

Reviewer(s) Petros Kalendralis (P1 - UM)

Markus Plass (P7 - MUG)

Eno-Martin Lotman (P8 - NEMC)

Emmanuel Benoist (P13 - MIDATA)

Dan Bayley (P14 - DME)

Keywords virtual assistant, data curation, technical architecture,

microservice

Funded by the European Union. Views and opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union or the European Health and Digital
Executive Agency (HaDEA).

Neither the European Union nor the granting authority can be held responsible for them.

Document History

Version Date Description

V1 05.09.2023 Document ready for internal review

V2 30.09.2023 Final version

Table of Contents

1 Type: Use one of the following codes (in consistence with the Description of the Action):

 R: Document, report (excluding the periodic and final reports)
 DEM: Demonstrator, pilot, prototype, plan designs
 DEC: Websites, patents filing, press & media actions, videos, etc.

2 Dissemination level: Use one of the following codes (in consistence with the Description of the Action)

 PU: Public, fully open, e.g. web
 SEN: Sensitive, limited under conditions of the Grant Agreement

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

3

Contents
Executive Summary ... 5

1 Introduction ... 6

1.1 Prototype versus product .. 7

1.2 Architectural principles of AIDAVA .. 8

2 System Overview ... 9

2.1 Main components and their roles (Core) .. 10

2.1.1 Client apps ... 10

2.1.2 API Gateways ... 11

2.1.3 Microservices ... 11

2.1.4 Service communication ... 12

3 Architecture overview: Formal representation in C4 model .. 13

3.1 Context and Container level .. 13

3.2 Components level .. 15

4 Satellite applications ... 17

4.1 Portainer .. 17

4.2 Gitlab ... 18

4.3 SonarQube ... 19

4.4 Consul .. 20

4.5 Elastic Search ... 20

4.6 Kibana .. 21

4.7 RabbitMQ .. 22

5 Data architecture ... 24

5.1 SQL database ... 24

5.1.1 UserDirectory .. 24

5.1.2 MasterData .. 24

5.1.3 Library of Curation Tools ... 24

5.2 NoSQL .. 25

5.2.1 Datalakes RAW, Staging, Curated, Published .. 25

5.2.2 EventStore ... 25

5.3 GraphDB .. 25

6 Curation tools .. 26

6.1 Onboarding workflow .. 26

6.1.1 Onboarding tools ... 26

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

4

6.2 Curation workflow ... 27

6.2.1 Curation tools .. 28

7 Integration ... 29

7.1 Integration with Medical partners .. 30

7.1.1 MUG, UMUC, Maastro .. 30

7.1.2 NEMC ... 31

7.2 Integration with HDI .. 31

7.2.1 MIDATA.. 31

7.2.2 Digi.Me .. 31

8 Hardware Specifications .. 32

8.1 Assumptions .. 32

8.2 Infrastructure Requirements ... 32

8.2.1 Docker Containerization .. 32

8.2.2 Access Protocols .. 32

8.2.3 Https Access .. 32

8.2.4 Mail Server Access ... 32

8.2.5 Hardware Specification ... 32

9 Deployment & Testing ... 33

9.1 Backend - Unit, Integration tests ... 34

9.1.1 Testing tools - CI/CD - Focus on CI ... 35

9.2 Frontend -Unit tests, E2E tests .. 36

9.2.1 Testing tools - SorryCypress .. 37

9.3 Container deployment .. 38

9.3.1 CI/CD - Focus on CD ... 38

10 Conclusion ... 40

11 Next steps .. 40

List of Definitions

The definitions used in the deliverable are based on the AIDAVA Glossary [ref].

https://www.aidava.eu/helpdesk/glossary

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

5

Executive Summary

The objective of the AIDAVA project is to prototype an intelligent virtual assistant that will maximise

automation in data curation & publishing of heterogeneous personal health data while empowering

individual patients when automation is not possible due to lack of contextual information. The solution

includes a backend and a frontend described in the solution design (see Deliverable D2.3. Solution

Design).

This deliverable focuses on the technical and data architecture of the AIDAVA prototype and on its

deployment, integration and testing with the different evaluation sites.

As the consortium intends to develop a reusable prototype, we first clarify the difference between

product and prototype and confirm the importance of taking into account product constraints in the

technical architecture to ensure reuse. We also define a set of architecture principles that guided the

elaboration of the deliverable.

The technical framework relies on a microservices-based structure, encompassing numerous satellite

applications and curation tools. These components will be seamlessly integrated to facilitate the

automation process using predefined workflows that incorporate workflow orchestration tools.

Additionally, the architecture encompasses connectivity with various medical partners. In this context,

the system will acquire input data from file shares or databases and establish connections with health

data intermediaries, receiving data either through API endpoints or by utilising SDKs.

The data architecture expands on the components identified in the solution design deliverable, from

an implementation perspective.

As the AIDAVA project aims to test the solution in real life with real patients consenting to manage and

curate their data, an important part of this deliverable relates to integration in the different evaluation

sites, the needed hardware as well as deployment and testing.

This technical architecture is the consolidation of 1 year of efforts across different teams. It provides

the consortium with a solid description of the solution that needs to be implemented to successfully

meet the objectives of the project. While there are challenges ahead, there is confidence that the first

generation (G1) of the prototype can be successfully developed and deployed. The technical

architecture - and this document - will be updated for Generation 2 (G2) of the prototype, taking into

account the results of the evaluation by patients and clinical sites, the need to integrate more powerful

NLP curation tools and an improved human computer interaction front end developed in other work

packages of the project.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

6

1 Introduction

This document provides a detailed overview of how the various elements of the system work together
to achieve its intended functionality, performance, security, and scalability. It serves as a reference
point for developers, engineers, architects, and other stakeholders involved in the design,
implementation, and maintenance of the system.

The present Technical Architecture Document encompasses:

1. System Overview: An introduction to the system, its purpose, goals, and key features. This
section provides a high-level understanding of what the system aims to achieve, building on
the extensive work done on requirements in Deliverable 1.3 Business Requirements and on
automation in Deliverable 2.2. Data curation and publishing process.

2. Architecture Overview: This section provides a detailed description of the overall system
architecture, including the major components, their interactions, and the system's internal
and external interfaces. It builds on the Deliverable 2.3 Solution Design, and expand on the
C4 model representation of the system with the context, container and component level

3. Satellite Applications: Detailed descriptions of each major component next to the core
system which are ensuring seamless operation, efficiency, and comprehensive monitoring in
the system. This includes their functions, responsibilities, and dependencies on other
components.

4. Data Architecture: A description of how data is stored, retrieved, and managed within the
system - building on the different data stores described in Deliverable 2.3. Solution Design -
and what type of data storages will be used throughout the system.

5. Curation Tools: This section primarily centers around the curation workflows employed for
onboarding and data curation processes, as well as the tools selected for inclusion within the
curation workflows described in Deliverable 2.2. Details on data curation & publishing
process

6. Integration: An explanation of how data flows through the system, how the system
integrates with external systems, services, or APIs, including any standards or protocols used
for integration. This builds on the requirements on data sources identified in Deliverable 1.1.
Use cases description.

7. Hardware Specification: Description of hardware specifications for the AIDAVA prototype,
including docker requirements, access protocols and actual hardware configuration.

8. Deployment and Testing: Details about the deployment procedures with containerization,
including description of unit tests and integration tests for both frontend and backend, to be
executed in the different evaluation sites identified in Deliverable 1.1.

The intended audience for a Technical Architecture Document includes:

1. Developers and Engineers: Those directly involved in building and coding the system rely on
the document to understand the system's architecture, design, and interactions.

2. Solution Architects: Architects use the document to validate design decisions, ensure
alignment with the intended system goals, and guide the development team.

3. Project Managers: Project managers reference the document to understand the technical
aspects of the project, monitor progress, and allocate resources effectively.

4. Stakeholders: The European Commission can review the document to gain a technical
understanding of the system's capabilities and potential impact on the business.

5. Future Developers and Maintenance Teams: As the system evolves, new developers and
maintenance teams can rely on the document to understand the system's architecture and
design choices.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

7

1.1 Prototype versus product

The AIDAVA project will deliver a prototype of a medical device. The intent of the project is to further

develop this prototype into a product, if the result of the evaluation shows that the prototype can

solve the problem we want to address and if the discussions with the Sustainability Advisory Board

(SAB) confirm the envisioned market potential for the end product.

The main difference between a software product and a software prototype is their level of completion.

A software product is a finished and ready-to-use piece of software that has been fully tested and

debugged. A software prototype, on the other hand, is an early and incomplete version of a software

product that is used to test and refine the design and functionality.

They are different types of prototypes, as explained below (source: Bard)

● Throwaway prototypes are low-fidelity prototypes created quickly and easily. They are used

to test the feasibility of an idea or to gather feedback from users. Once the prototype has

served its purpose, it is discarded and not used to develop the final product.

● Reusable prototypes are higher-fidelity prototypes created with the intention of being used

to develop the final product. They are more expensive and time-consuming to create than

throwaway prototypes, but they can save time and money in the long run by reducing the need

for rework.

● Evolutionary prototypes are prototypes that are continuously improved and refined over

time. They are typically used in agile development projects, where the requirements are

constantly changing. Evolutionary prototypes can be either throwaway or reusable.

● Incremental prototypes are prototypes that are developed in stages. Each stage adds new

functionality to the prototype until it meets the final requirements. Incremental prototypes

are often used in waterfall development projects, where the requirements are well-defined at

the beginning of the project.

● Extreme prototyping is a type of prototyping that is used to quickly and easily create a

prototype that meets the user's needs. Extreme prototyping is often used in conjunction with

agile development projects.

AIDAVA is developing a reusable prototype in 2 stages. Generation 1 (G1) is based on the business

requirements acquired as part of Tasks 1.3 and developed with existing curation tools. Generation 2

(G2) is based on the same business requirements improved with some updates after evaluation of the

G1 prototype; the curation tools are the ones developed in the projects in Task 5.1 (NLP models) and

Task 5.2 (Verification and publishing tools). In addition G2 will be provided with an explainability

module.

The fact that we develop a reusable prototype directly impacts the technical architecture which is the

foundation of the whole system and cannot be easily modified between the prototype and the

product. Concretely, while designing the technical architecture we took into account all requirements

- even the ones deemed not needed for the prototype and not implemented during the project - to

define the technical architecture of the AIDAVA prototype.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

8

1.2 Architectural principles of AIDAVA

In the design and realisation of the architectural framework, several fundamental principles guide the

development of the system:

1. GDPR Compliance as Core: At the foundation of the solution lies an unwavering commitment

to GDPR compliance. Both the chosen technologies and the associated processes must

adhere to the stringent guidelines set forth by the General Data Protection Regulation. This

ensures that the handling of sensitive health data is done with the utmost consideration for

patient privacy and data protection.

2. Empowering Productization and Certification: The architectural blueprint is crafted with an

acute awareness of the potential for productization and certification. This strategic foresight

underscores the system's scalability and adaptability, allowing it to evolve into a certified

solution that can be readily deployed in a variety of contexts, providing consistent value

while meeting rigorous quality standards.

3. Personal Health Knowledge Graph (PHKG) Integration: The cornerstone of the architectural

vision revolves around the Personal Health Knowledge Graph. This intricate construct

seamlessly assimilates the diverse health data of an individual, sourced from various

repositories. This unified representation not only facilitates data sharing but also fosters a

comprehensive understanding of the patient's health journey.

4. Patient-Centric Consent-Based Transactions: In the realm of patient data, consent takes

centre stage. The architectural philosophy stipulates that every transaction related to

identifiable patient data, particularly in the creation and evolution of the PHKG, hinges on

the explicit consent of the patient. This empowers patients with control over their data,

fostering a relationship of trust and transparency.

5. Patient-Specific Source Knowledge Graph (SKG) Transformation: Each data source finds its

transformation through the creation of a Patient-Specific Source Knowledge Graph (SKG).

These individualised constructs serve as foundational elements, linking and integrating

seamlessly into the overarching PHKG. This approach addresses data source-level and

integration-level intricacies, ensuring a harmonised and cohesive repository.

6. Centralised Repository for Dynamic Curation: The architectural framework envisions the

availability of a centralised repository during the curation process. As new data sources

(SKGs) are integrated, this central repository serves as a hub to address integration

challenges. By doing so, the system streamlines the incorporation of new data sources,

minimising disruption and optimising efficiency.

7. Data Usage with Patient Consent: The architectural landscape emphasises the importance of

patient consent in all aspects of data use. Whether it involves data access or transfers to

third parties, the guiding principle mandates that such actions are executed solely with the

explicit and informed consent of the patient. This principle reinforces ethical data practices

and engenders patient trust.

In essence, these architectural principles epitomise a harmonious fusion of patient-centricity,

technological innovation, and regulatory compliance. By weaving these principles into the fabric of the

system's design, the architecture not only embraces the complexity of health data management but

also positions itself as a beacon of excellence in a landscape marked by evolving data regulations and

patient expectations.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

9

2 System Overview

AIDAVA is an innovative project that advances application development with its modern architecture,
driving meaningful progress in the field. At its core, AIDAVA adopts microservices as the foundational
building blocks, unleashing a host of benefits that traditional monolithic systems cannot match. By
breaking the application down into smaller, independent microservices, AIDAVA ensures modularity,
scalability, and maintainability.

Microservices architecture is the heart of AIDAVA's design philosophy. Instead of a single monolithic
application, AIDAVA comprises numerous microservices, each catering to a specific business function
or capability. This approach allows development teams to work on individual services independently,
enabling rapid iteration, continuous deployment, and easy updates without affecting the entire
system. The microservices architecture fosters a culture of collaboration, as cross-functional teams can
focus solely on their respective microservices.

AIDAVA follows the choreography pattern for communication between its microservices. In this
pattern, services interact directly with one another using lightweight messaging mechanisms, without
relying on a centralised component like an orchestrator. This decentralised communication model
brings numerous advantages, including enhanced fault tolerance, adaptability, and the ability to scale
independently. The choreography pattern empowers AIDAVA's microservices to respond rapidly to
changes in the system and external events, ensuring a highly flexible and dynamic architecture that
can gracefully evolve with business requirements.

One of the fundamental principles that AIDAVA adheres to is the single responsibility principle for its
microservices. Each microservice is designed to have a specific and well-defined responsibility,
encapsulating a particular business capability or logic. By adhering to this principle, AIDAVA ensures
that each service remains focused, maintainable, and easy to understand.
AIDAVA takes the container-first approach. Every microservice and its dependencies are packaged into
lightweight, isolated containers using Docker technology. This approach ensures easy deployment of
containers, allowing for consistent and reproducible deployment across different environments sites,
including development, testing, and production. Containerization eliminates the dreaded "works on
my machine" problem and streamlines the deployment process, enhancing collaboration and reducing
the risk of configuration-related issues.

In addition to its microservices architecture and containerization, AIDAVA incorporates powerful
workflow orchestration capabilities which enables the seamless execution of different curation tools.

With AIDAVA's workflow orchestration, the system can intelligently route data to specific curation
tools based on predefined workflows described in Deliverable 2.2 - Details on data curation &
publishing process. The workflow orchestration system ensures that each tool is invoked at the
appropriate stage of the data pipeline, allowing for a comprehensive and structured data curation
process.

The integration of workflow orchestration with microservices allows AIDAVA to adapt to changing
requirements seamlessly. New curation tools can be added, modified, or removed without disrupting
the overall system. The choreography pattern ensures that each microservice is aware of the changes
and can interact with the updated workflow orchestration accordingly.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

10

2.1 Main components and their roles (Core)

Figure 1. System Overview

2.1.1 Client apps

The Client Apps component encompasses two distinct applications that seamlessly interact with the

microservices architecture via the API Gateways (Ocelot). These applications provide engaging user

interfaces tailored for various platforms, enhancing accessibility and user experience.

The Web Application serves as a browser-based interface, intended to be used by administrators of

the system, to change configurations and settings.

The Progressive Web App (PWA) for Mobile Phones, patients can start the curation of their data,

answer questions raised by the system and curators can review, modify or even answer questions

which are not applicable for the patients.

Both the Web Application and the Progressive Web App (PWA) share a common interaction pattern

with the API Gateway. They initiate API requests through user actions, such as button clicks or form

submissions. Ocelot then intelligently routes these requests to the appropriate microservices,

facilitating seamless data flow between the client apps and the underlying services.

Furthermore, both applications can potentially leverage the Event Bus component to deliver real-time

updates or notifications, contributing to dynamic and interactive user experiences.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

11

2.1.2 API Gateways

The API Gateway serves as the entry point for the previously mentioned client apps and external

requests into the microservices ecosystem, providing a centralised endpoint for routing and managing

incoming traffic. In the AIDAVA architecture, Ocelot is the chosen solution for implementing the API

Gateway.

Ocelot simplifies the routing of client requests to specific microservices based on predefined rules. It

acts as a traffic cop, directing incoming requests to the appropriate endpoints while abstracting the

complexity of the underlying microservices architecture. This simplifies API management and enhances

overall system performance.

Ocelot offers key features and responsibilities that enhance the overall system. It enables dynamic

routing, allowing developers to configure routes and route templates, which empowers efficient

distribution of incoming requests to the relevant microservices. Additionally, Ocelot supports load

balancing across instances of microservices, enhancing scalability and fault tolerance.

Authentication and authorization policies can be enforced by Ocelot, ensuring secure access to

microservices. Furthermore, it is capable of caching responses, thereby reducing redundant requests

to backend services and improving overall performance.

In terms of interactions with other components in the AIDAVA architecture, Ocelot communicates with

the underlying microservices through HTTP requests, forwarding incoming API calls to the appropriate

service endpoints.

2.1.3 Microservices

Microservices are a fundamental architectural pattern in the AIDAVA project, emphasising the

decomposition of the application into small, independent, and loosely coupled services. Each

microservice encapsulates a specific business capability or functionality, allowing for independent

development, deployment, and scalability.

Communication between microservices is facilitated through the Event Bus, a central component that

enables seamless data exchange and real-time notifications.

Microservices interact with both relational and non-relational databases to store and retrieve data.

The relational databases, such as Postgres, offer structured data storage for critical and well-defined

schemas. Non-relational databases, including MongoDB , provide flexible data storage options,

suitable for scenarios requiring scalability and diverse data structures.

In the AIDAVA architecture, microservices act as the building blocks of the system, working collectively

to provide a comprehensive and scalable solution. Their communication through the Event Bus and

utilisation of both relational and non-relational databases contribute to the adaptability and

responsiveness of the entire microservices ecosystem.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

12

2.1.4 Service communication

Communication between microservices in the AIDAVA architecture happens through the Event Bus, a

crucial component that enables efficient and decoupled data exchange. The Event Bus serves as the

central hub for transmitting events, notifications, and messages across the microservices ecosystem.

Microservices leverage the Event Bus to achieve seamless interaction and real-time communication.

Microservices publish events to the Event Bus, indicating significant actions, state changes, or updates.

These events encapsulate data and relevant context, enabling other services to stay informed without

direct coupling.

Other microservices can subscribe to specific events of interest, expressing their intention to be

notified whenever a particular type of event occurs. This subscription mechanism allows microservices

to respond dynamically to changes in the system.

The Event Bus decouples the sender and receiver of events, eliminating direct dependencies between

microservices. This decoupling enhances modularity, flexibility, and overall system resilience.

The Event Bus further interacts with other components in the AIDAVA architecture. It collaborates

closely with the API Gateway, allowing microservices to communicate with external client applications.

Events generated by client actions can be propagated to microservices through the Event Bus.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

13

3 Architecture overview: Formal representation in C4 model

The C4 model offers a structured method for modelling software architecture, employing a series of

diagrams to represent a system's context, containers, and components. Its intent is to offer a

straightforward, adaptable, and scalable framework, facilitating the clear communication and

comprehension of a system's architecture among diverse stakeholders. Frequently adopted in agile

and DevOps settings, it supports rapid and effective interaction and teamwork among developers,

architects, and interested parties.

Figure 2. Levels of C4 description

3.1 Context and Container level

The C4 model's Context and Container levels provide a strategic view of software architecture. The

Context level focuses on the system's external actors and their interactions, offering a high-level

perspective. On the other hand, the Container level delves into the major software components and

their interactions, providing a more detailed understanding of the system's architecture.

For an in-depth explanation of the C4 model's Context and Container levels, you can refer to the

document titled "D2.3 Solution Design." This document offers comprehensive insights into these levels

and how they contribute to effective software architecture visualisation.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

14

Figure 3. AIDAVA – C4 Container level

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

15

3.2 Components level

Figure 4. AIDAVA – C4 Components level

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

16

At this level, we first consider the distinct client applications that form part of the architecture. These

client applications represent the user interfaces and interfaces through which users interact with the

system. Understanding their roles and responsibilities is vital for comprehending the overall system

behaviour.

The next part is the API gateways. These gateways serve as essential intermediaries, enabling

controlled access to every user of the AIDAVA system. It is not allowed to communicate directly with

the microservices only through the api gateways. They play a role in managing communication

between clients and the backend services, ensuring security, load distribution, and sometimes even

protocol translation.

Zooming further in, we explore the different microservices that constitute the backbone of the system.

Each microservice encapsulates specific functionality, promoting modularity and maintainability.

These microservices are interconnected by major components that facilitate communication and data

flow, forming the intricate web of the application's logic.

Within this ecosystem, various types of databases come into play. SQL databases, NoSQL databases,

and Graph databases interconnect to store and manage data efficiently. SQL databases handle

structured data, NoSQL databases manage unstructured or semi-structured data, while Graph

databases excel at managing highly interconnected data models.

Taking a step back, we observe the strategic grouping of microservices into distinct categories.

Maintenance services handle tasks related to system health, updates, and monitoring. Curation flow

services manage the flow of data and processes, ensuring that the system operates seamlessly.

Curation tools, as microservices, provide specialised functionalities for refining and enhancing data

quality.

Incorporating the C4 model's component level perspective enables a comprehensive understanding of

how these diverse elements interact and contribute to the architecture's overall behaviour. This

abstraction layer enhances communication among architects, developers, and stakeholders, fostering

efficient collaboration and informed decision-making throughout the software development lifecycle.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

17

4 Satellite applications

Within the AIDAVA project, Satellite Applications play a pivotal role in bolstering and enhancing the
overall microservices architecture. These applications act as supporting elements, working in tandem
with the core components to ensure seamless operation, efficiency, and comprehensive monitoring.

Satellite Applications are designed to contribute to the robustness and reliability of our architecture.
They encompass a diverse range of functionalities, including monitoring, state management, and
logging, which are vital for maintaining the health and performance of the entire system.

One of the core aspects of Satellite Applications is monitoring. Given the extensive number of Docker
images and microservices involved, it is crucial to have a comprehensive monitoring system in place.
This enables real-time tracking of the system's behaviour, resource utilisation, and overall
performance. Monitoring provides insights into potential issues, bottlenecks, and anomalies,
facilitating proactive measures to ensure optimal operation and responsiveness.

Another significant role of Satellite Applications is in managing the state of various components. State
management encompasses maintaining consistent configurations, settings, and data across different
instances and environments. By centralising and controlling the state, Satellite Applications contribute
to the stability and uniformity of the architecture, reducing potential inconsistencies and operational
challenges.

Additionally, Satellite Applications excel in logging, a critical element for diagnosing issues, tracking
activities, and ensuring accountability. Proper logging mechanisms ensure that important events,
errors, and activities are captured, enabling effective troubleshooting and analysis.

4.1 Portainer

Figure 5. AIDAVA – Portainer

Portainer is an open-source, lightweight, and user-friendly management tool designed to simplify the

deployment and management of Docker containers and container-based applications. As containers

and containerization have become increasingly popular for application deployment, tools like

Portainer have emerged to provide a graphical interface that makes managing containers more

accessible to users of all skill levels. At its core, Portainer serves as a container management platform,

offering a web-based interface that allows users to interact with Docker and Kubernetes clusters

effortlessly.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

18

Portainer is shipped as an integral part of the AIDAVA, playing a key role in the seamless operation of

the prototype. This is ensured by providing system operators real-time monitoring and management

capabilities of running containers, oversight of inter-container communication and effective

management of data volumes.

4.2 Gitlab

Figure 6. AIDAVA – Gitlab

GitLab is a comprehensive web-based platform for version control and collaboration that enables

software development teams to manage their source code, track changes, collaborate on projects, and

streamline the software development process. It provides a complete DevOps lifecycle, integrating

various tools and functionalities into a single unified environment. GitLab is often referred to as a

"single application for the entire DevOps lifecycle" because of its extensive set of features.

At the core of GitLab is its version control system, based on Git. Git is a distributed version control

system that allows developers to keep track of changes in their codebase over time. It enables multiple

developers to work on the same project simultaneously and manage code versions efficiently. GitLab

leverages Git's capabilities and adds a layer of collaboration features on top, making it easier for

developers to collaborate effectively on codebases. GitLab's feature set includes various components

that cater to different stages of the software development lifecycle, such as Code Review and

Collaboration features, Continuous Integration and Continuous Deployment and Container Registry for

Docker images.

As GitLab's features have a significant role in the operation of the AIDAVA prototype, it won't be

shipped during the deployment process. GitLab's on-premise version is hosted in GND's internal

infrastructure and it is used as a version control, collaboration and CI/CD tool during the development

cycle.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

19

As a distributed version control system, it enables working on features of the AIDAVA prototype

simultaneously, keeping a history of code changes over the development cycle.

As a collaboration tool, GitLab allows developers to conduct code reviews on each other's codes,

thereby enhancing code quality and ensuring code maintainability in the long run.

GitLab also comes with feature rich, intuitive CI/CD capabilities, thus allowing developers to combine

the version control capabilities with a series of CI/CD stages. During development, every commit (Git

term, explanation needed?) triggers a well established sequence of CI/CD stages, such as linting (static

code analysis), unit testing, end-to-end testing, SonarQube analysis (4.3). Upon finishing a feature, the

sequence is extended by a build stage, responsible for creating Docker images, and a deployment

stage.

4.3 SonarQube

Figure 7. AIDAVA – SonarQube

SonarQube is a robust and versatile platform designed to enhance code quality and maintainability

across software development projects. Operating as a comprehensive code analysis and inspection

tool, SonarQube aids development teams in identifying and rectifying issues within their codebase.

By conducting automated evaluations, SonarQube assesses source code for a range of factors including

coding standards adherence, potential vulnerabilities, overall code complexity, and more. This process

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

20

yields actionable insights that empower developers to proactively address issues, resulting in the

production of more reliable, secure, and maintainable software. Moreover, SonarQube incorporates a

quality gate mechanism, which allows projects to define specific criteria for code quality. If the

codebase meets these pre-defined criteria, it's deemed suitable for further development stages;

otherwise, it prompts developers to make necessary improvements before proceeding.

4.4 Consul

Consul by HashiCorp is a versatile tool designed to streamline the management of environments,

particularly in the context of microservices and cloud-native architectures. It offers a range of features

that simplify the complexities of handling large-scale distributed systems.

At its core, Consul provides a set of concepts that enable efficient communication and coordination

between services. One of its key functionalities is service discovery, which allows services to

automatically register themselves and locate other services within a network. This eliminates the need

for manual intervention when services are added, removed, or scaled, ensuring seamless interactions

between various components of an application.

In addition to service discovery, Consul offers health checking capabilities. Services can regularly report

their health status, which Consul monitors. If a service becomes unhealthy, Consul can dynamically

remove it from the pool of available services, preventing faulty instances from receiving traffic. This

proactive health monitoring enhances the reliability and performance of applications.

Consul also features a distributed key-value store, which serves as a dynamic configuration

management tool. This means that applications can store and retrieve configuration data in real time,

without requiring application restarts. This flexibility supports agile development practices and allows

for on-the-fly configuration updates, enhance agility and reduce downtime.

Consul offers features such as encrypted communication (TLS) and access control lists (ACLs). This

safeguards communication between services and restricts access to sensitive data and resources.

Additionally, Consul enables service segmentation, allowing us to control which services can

communicate with each other, enhancing overall security posture.

4.5 Elastic Search

Elasticsearch is an open-source, distributed search and analytics engine designed to handle and

process vast volumes of data with remarkable speed and efficiency. Functioning as a robust and

scalable full-text search platform, Elasticsearch is primarily utilised to index, store, and search through

diverse types of data, ranging from structured to unstructured information.

At its core, Elasticsearch employs the concept of a distributed, schema-less JSON-based document

store. It accommodates the seamless storage of a multitude of documents, each of which can vary in

structure while conforming to the underlying data model. This flexibility makes it particularly well-

suited for scenarios where data formats may evolve over time or where heterogeneity in data structure

is prevalent.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

21

One of Elasticsearch's key strengths lies in its capacity to provide near real-time search capabilities. By

using a distributed architecture that divides data into shards and distributes them across a cluster of

nodes, Elasticsearch ensures high availability and fault tolerance. Its inherent horizontal scalability

allows it to handle large datasets with ease, while the built-in replication mechanisms contribute to

data redundancy and reliability.

In the AIDAVA project, we set up the microservices to send their log data to Elasticsearch and establish

index patterns for effective data organisation and storage. Defining mappings becomes crucial as it

specifies the data formats for various log fields, enabling Elasticsearch to accurately comprehend and

handle the information.

4.6 Kibana

Figure 8. AIDAVA – Kibana

Kibana is an open-source data visualisation and exploration platform developed to work seamlessly

with the Elasticsearch search and analytics engine. Positioned as a critical component within the Elastic

Stack, Kibana enables users to transform complex datasets into insightful visualisations, dashboards,

and reports.

At its core, Kibana simplifies the process of interacting with data stored in Elasticsearch by providing

an intuitive web-based interface. This interface allows users to construct and customise a wide range

of visual elements, including line charts, bar graphs, pie charts, maps, and more, using the data indexed

in Elasticsearch. These visualisations facilitate the exploration and understanding of data trends,

patterns, and anomalies.

Utilising Kibana in the project, we have the capability to execute searches, aggregations, and apply

filters to our log data. By integrating diverse visualisations, we can create a comprehensive perspective

of both the performance of our microservices and the associated log information.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

22

4.7 RabbitMQ

Figure 9. AIDAVA – RabbitMQ

RabbitMQ is an open-source message broker software that facilitates the transfer of data between

different systems, applications, and services. This intermediary plays a pivotal role in ensuring that

messages are efficiently routed, managed, and delivered, thereby contributing to enhanced scalability,

reliability, and flexibility in diverse software environments.

RabbitMQ offers a myriad of benefits that elevate it to a central position in the realm of messaging and

communication infrastructure. One of its key strengths lies in reliable message delivery, which is

facilitated through various messaging patterns, including publish-subscribe, request-response, and

point-to-point. This reliability ensures that messages reach their intended recipients without fail,

contributing to data consistency and real-time responsiveness in applications.

Central to RabbitMQ's functionality are message queues. These queues serve as temporary storage for

messages until they are ready to be processed. This decoupling of producers and consumers ensures

smoother traffic management and enhanced fault tolerance, a critical aspect in maintaining system

reliability.

Message persistence is another crucial feature of RabbitMQ. It can persist messages to disk,

safeguarding valuable data in case of system failures and ensuring the durability of messages. This

resilience contributes to the overall robustness of the communication infrastructure.

In microservices architecture, RabbitMQ's significance remains pronounced. Microservices, with their

emphasis on independent, deployable services, demand effective communication and integration

mechanisms. RabbitMQ excels in this domain by providing service decoupling, enabling microservices

to interact without tightly integrated dependencies. This enhances maintainability and scalability

within the microservices ecosystem.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

23

Moreover, RabbitMQ's support for event-driven architecture aligns seamlessly with the requirements

of microservices. Services can publish events and subscribe to others' events, facilitating real-time

updates and responses to changes in the system. This event-driven approach is pivotal in achieving the

desired flexibility and agility of microservices.

In the context of varying workloads that microservices can experience, RabbitMQ's load balancing

capabilities prove invaluable. The message broker distributes tasks evenly, preventing service

bottlenecks and bolstering system stability. Furthermore, RabbitMQ's fault tolerance features,

including message persistence and replication, ensure that critical messages are not lost in the event

of service failures. This attribute enhances the overall reliability and redundancy of microservices.

One of RabbitMQ's distinct advantages within microservices architecture is its ability to accommodate

both synchronous and asynchronous communication needs. This adaptability gives the opportunity of

optimising performance and responsiveness as per the specific requirements of each microservice.

In AIDAVA, the communication between its diverse microservices is orchestrated seamlessly through

the utilisation of RabbitMQ as an event bus. Acting as an intermediary, RabbitMQ elegantly handles

the transmission of messages from the service producers, who emit events, to the service consumers,

who are vested in particular events.

In this ecosystem, events serve as the conduits of information, embodying the essence of noteworthy

events in the system. These events are published by microservices to designated queues within

RabbitMQ. Fellow microservices, keenly interested in specific events, subscribe to these queues to gain

insight into the system's developments.

The elegance of this approach lies in its decoupling prowess. Microservices operate independently of

one another, blissfully ignorant of their peers' existence. This cultivates an environment of scalability,

agility, and easy maintenance, as each microservice functions autonomously without direct

dependencies.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

24

5 Data architecture

Data architecture is the design of data for use in defining the target state and the subsequent planning
needed to achieve the target state. It is the planning of data and how it will be stored, consumed,
integrated and managed by different data entities and IT systems, as well as any applications using or
processing that data in some way. The different components have been introduced in Deliverable 2.3.
Solution Design; this section focuses on the development aspect.

5.1 SQL database

A SQL (Structured Query Language) database is a structured and organised repository for storing and
managing digital information. It employs a relational model, where data is organised into tables with
rows and columns, each representing specific entities and their attributes. SQL databases enable
efficient data storage, retrieval, and manipulation through a standardised language, SQL, which
facilitates various operations like querying, inserting, updating, and deleting data. This powerful
system ensures data integrity, consistency, and reliability by enforcing constraints and relationships
between tables. SQL databases are widely used in applications ranging from business systems to web
applications, offering a dependable and scalable solution for managing structured data.

5.1.1 UserDirectory

A user directory, also known as a directory service or identity management system, is a centralised
database used to store and manage user-related information within a networked environment. This
database contains user accounts along with their associated attributes, roles, and permissions. User
directories play a critical role in security of AIDAVA by facilitating authentication and authorization
processes, ensuring that users can securely access resources based on their designated privileges. They
are commonly used in enterprises, educational institutions, and other organisations to maintain a
structured and secure user management system.

In the case of AIDAVA the user directory will be storing authentication information for accessing the
system, authorization information regarding roles and access levels and also profile information which
may help describe the patient.

5.1.2 MasterData

Master data refers to the core and essential data elements that are critical for a business's operations
and represent the foundational information about entities, objects, or subjects within an organisation.
This data remains relatively stable over time and is typically shared across different departments and
systems. Master data includes key reference information that serves as a common point of reference
for various business processes and transactions.

In the context of AIDAVA, master data will keep information about things that will not need to change
regularly. For example this information could be information about hospitals such as their unique
identifiers in the system, name, location etc.

5.1.3 Library of Curation Tools

The Library of Curation Tools in the AIDAVA system is a comprehensive resource that streamlines data
curation. It features a curated list of tools, complete with version and repository information. These
tools are stored in a dual-container registry – one for basic curation and another with an added
communication interface. This interface equips tools with predefined commands that seamlessly
integrate with the AIDAVA system, enhancing data transformation, validation, and enrichment
processes. This library optimises curation by ensuring compatibility, accessibility, and efficient
interaction between tools and the system.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

25

5.2 NoSQL

NoSQL databases, or "not only SQL" databases, are a category of database systems designed to handle
and manage large volumes of unstructured or semi-structured data. Unlike traditional relational
databases that rely on fixed schemas and SQL for querying, NoSQL databases offer more flexible data
models tailored to specific use cases, including document-oriented, key-value, column-family, and
graph databases. They prioritise high scalability, allowing data to be distributed across multiple servers
for efficient horizontal scaling. NoSQL databases are well-suited for tasks demanding rapid growth,
real-time processing, and diverse data formats, such as big data analytics, IoT, and content
management systems.

5.2.1 Datalakes RAW, Staging, Curated, Published

"Datalakes RAW, Staging, Curated, Published" refers to a data processing and storage framework
commonly used in data management pipelines. This framework organises data at various stages of
processing, from its raw form to curated and published versions.

In the RAW stage, data is ingested into the data lake without significant processing or transformation.
This is the initial state of the data, often directly sourced from various systems, applications, or external
sources. The data might be in its original format, which could be structured, semi-structured, or
unstructured.

In the Staging stage, the raw data is cleansed, standardised, and transformed. This might involve data
validation, filtering, and structuring to prepare it for further processing. Staging helps ensure data
quality and consistency before it moves on to more advanced processing stages. The data output from
this stage is consistent with RDF (Resource Description Framework). RDF provides a variety of syntax
notations and data serialisation formats including JSON-LD (JSON for Linked Data).

After the data has been staged, it enters the Curated stage. Here, data is refined and organised in a
way that is suitable for analysis, reporting, and other business operations. In AIDAVA’s use case, during
this stage data is ready to be converted to Knowledge Graph.

In the Published stage, the curated data is made available for consumption by end-users, applications,
or analytical tools. The format and structure of this data is dictated by each use case, specifically the
requirements of the platform or destination in which it will be published

5.2.2 EventStore

Event sourcing is a software architectural pattern that revolves around capturing and storing the state
changes of an application as a sequence of immutable events. Instead of solely recording the current
state of an application's data, event sourcing focuses on preserving the history of how that state was
arrived at through a series of events.

In event sourcing, every action or state change within the application is represented as an event object.
These events are then stored in a chronological order within an event store or log. The current state
of the application can be reconstructed by replaying these events sequentially.

5.3 GraphDB

Graph DB is a robust and high-performance semantic graph database tool designed to efficiently store,
manage, and query complex interconnected data. It enables users to model and represent their data
as a graph, where entities are nodes and relationships between entities are edges, allowing for flexible
and intuitive data representations. For many downstream tasks, this representation of data provides
strong usability due to rich semantic and reasoning power. GraphDB excels in handling large-scale
semantic data by providing powerful graph-based querying, reasoning and inference capabilities,
making it a valuable asset for applications ranging from knowledge management and linked data
representation to data integration and exploration.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

26

6 Curation tools

The heterogeneous nature of health data sources, formats and structures, coupled with the potential

for such data to be incomplete, missing key information or missing context, presents a clear challenge

for the AIDAVA system when integrating patient data into a PHKG.

In the context of AIDAVA, specifically for G1, curation tools refer to a pre-defined collection of various

open source software and applications, integrated into each site’s AIDAVA deployment. Given the

microservices architecture approach, each tool will run as its own service, with a predefined interface

specifying the data interchange and protocols.

The specific curation tools have been tested and identified to support the curator (e.g. a patient) to

find, verify and transform their data in a coherent and meaningful manner with as little human

intervention required as possible.

The functionalities and capabilities of each curation tool act as solutions to specific interoperability

issues as documented in AIDAVA deliverable 2.1 “Details on data curation & publishing process”. A

given tool will only be utilised when a patient’s data meets certain pre-defined criteria, and acts as a

bridge to transformation into the PHKG. Given the wide range of potential issues in the structure,

content and context of the data AIDAVA will receive, it is possible that during the process of curating

any one data source for one patient, multiple curation tools are ‘triggered’.

6.1 Onboarding workflow

As detailed in deliverable 2.1; the "Data source onboarding" process involves gathering information on

a specific data source prior to the curation process. The more contextual information we can capture

during this process, the higher the potential for automation, reducing the burden for both the patient

and the curator.

The onboarding workflow itself defines the set of inputs required and individual steps the site

administrator will follow to collect the necessary information to support curation of data from a

specific source in future. During the onboarding process, the AIDAVA Site Administrator, with the

support of the Data Expert curator, will check the validity of the underlying schema, identify tools that

can support the curation workflow, and define the mapping with the AIDAVA Reference Ontology.

The output from the onboarding workflow for a given source are entries in the data catalogue and

other metadata at the core of the AIDAVA system.

6.1.1 Onboarding tools

There are a number of software and tools available, both open-source and licenced which can provide

one or more of the functionalities required for the onboarding process. These have been identified

during the literature review in Task 2.1, and introduced in Deliverable 2.2

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

27

In this section, we provide a brief overview of some of these software and tools. Each will be

investigated and tested for suitability in the G1 implementation of AIDAVA.

Tesseract:

Tesseract is an open-source OCR (Optical Character Recognition) engine that converts images of

printed text into machine-readable text. In the context of AIDAVA, its application would be to extract

text from images or scanned documents.

PDF Validator:

PDF Validator is a service or tool designed to verify the integrity and compliance of PDF documents

with the PDF specification. It may perform checks to ensure that the PDF files adhere to the standards

and guidelines for valid PDF documents.

Talend Open Studio:

Talend Open Studio is an open-source data integration software. It acts as an ETL (Extract, Transform,

Load) tool which in the context of AIDAVA would be used to build data pipelines including

transformations (e.g. mappings) and preprocessing steps (e.g. unit and measurement splitting) and

support standardisation of DTS (Data Transfer Specifications) of heterogeneous structure and format

into required output standards.

Onto Refine:

Onto Refine, also known as OpenRefine, is an open-source tool for cleaning and transforming data. It

assists in cleaning, restructuring, and enriching datasets, enhancing data quality and usability.

6.2 Curation workflow

The chosen tool for our curation workflow is ELSA version 3. To enhance its efficiency, we have divided

the workflow logic into two distinct sections for better management and execution.

The first section is the Workflow Server. Within this section, we've developed a web application that

provides a user-friendly interface for editing various workflows. Users can conveniently manipulate

the workflow components through the graphical user interface. Additionally, the Workflow Server

enables the importing and exporting of workflows using JSON files, promoting seamless sharing and

collaboration.

In this section, each step within a workflow is associated with a designated activity task. This ensures

that each element of the workflow is executed according to its intended function. When a workflow is

initiated, it triggers the creation of a workflow instance. This instance serves as a guide for the

execution process, orchestrating the steps in the workflow.

The Workflow Executor Service forms the second section of our curation workflow architecture. This

service assumes the responsibility of managing the execution of individual workflow steps through

webhooks. The advantage of this containerized solution is the ability to concurrently run multiple

instances of the Workflow Executor Service, thereby enhancing the overall speed and efficiency of the

curation process.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

28

One of the key functions of the Workflow Executor Service is to interact with the containerized curation

tools. This interaction is established through well-defined connections, allowing the curation tools to

be systematically called and utilised. This systematic approach ensures that the curation tools are

optimally employed in alignment with the workflow steps.

In summary, the curation workflow, powered by ELSA version 3, is designed with a clear division

between the Workflow Server and Workflow Executor Service. This separation enhances the

organisation, execution, and parallelization of the curation process, ultimately leading to a more

streamlined and efficient workflow for our curation needs.

6.2.1 Curation tools

There are a number of software and tools available, both open-source and licenced which can provide

one or more of the functionalities required for the curation process. These have been identified during

the literature review in Task 2.1, and introduced in Deliverable 2.2

In this section we provide a brief overview of some of these software and tools. Each will be

investigated and tested for suitability in the G1 implementation of AIDAVA.

Graph DB:

Graph DB refers to a graph database, a type of database designed to store and manage data as

interconnected nodes and edges, allowing for efficient graphical representation and querying of

complex relationships between data points.

Tabula:

Tabula is an open-source tool designed to extract tabular data from PDF documents. It extracts data

from tables in a PDF document and enables exporting into a structured data format (e.g. comma

separated values (.csv) or Microsoft Excel (.xslx)).

PDFMiner:

PDFMiner is a text extraction tool for PDF documents. It enables programmatically extracting textual

information from PDF files for further processing or analysis.

Translator (NodeNormalization):

Translator with NodeNormalization is a component that assists in standardising or normalising data in

a consistent format. This tool can support interoperability.

UCUM Web Services:

UCUM Web Services likely refers to a set of web services that provide functionality related to the

Unified Code for Units of Measure (UCUM). UCUM is a standardised code system for representing units

of measurement in healthcare and other domains.

UCUM-LHC Converter:

There are a number of open-source implementations including the UCUM-LHC Converter which

facilitate conversion and standardisation of measurement units, for example in pathology reports.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

29

7 Integration

AIDAVA curation tool in the ingestion part primarily focuses on streamlining the data management
process. In this part, it aims to establish a seamless method for gathering various types of information.
An integral aspect of this endeavour involves the integration of data from medical partners and Health
Data Intermediary (HDI). This collaborative effort ensures that vital medical insights and information
are efficiently incorporated into the system's data store.

One of the functionalities of AIDAVA is the capability to both receive and transmit files and data. This
two-way communication is crucial for maintaining a dynamic flow of information between different
stakeholders. Whether it's obtaining crucial medical records or dispatching essential findings, this
bidirectional data exchange plays a pivotal role in the project's success.

Once the data is collected, AIDAVA orchestrates a systematic process of storing this information in the
RAW Data Store. This repository serves as the foundation, housing the diverse array of data that the
project handles. The Data Transfer Specification (DTS) is then employed to organise and structure this
data, making it more accessible and actionable for further analysis and interpretation.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

30

Figure 10. AIDAVA - Medical partners - Connections - Technical

7.1 Integration with Medical partners

7.1.1 MUG, UMUC, Maastro

At Med Uni Graz (MUG), Maastricht University Medical Centre (MUMC) and Maastro clinic the data

management process involves several interconnected steps. The data is exported and channelled into

designated file shares. These file shares are located within a secure Virtual Private Network (VPN)

environment, ensuring the confidentiality and integrity of the information.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

31

Upon reaching the file shares, the data undergoes the phase of ingestion. This pivotal step is

orchestrated by the AIDAVA backend, which acts as the catalyst for transferring the files into the RAW

Data Store. The RAW Data Store serves as a repository, housing the unprocessed and unaltered data

in its pristine form, ready for subsequent analysis and curation.

7.1.2 NEMC

The North Estonia Medical Centre (NEMC) hosts a database on a local server and provides access via

secure VPN, channelling data for the project. Extracted into files, this process is managed by the

AIDAVA backend, which transfers them to the RAW Data Store. This streamlined journey ensures data

security and optimised medical insights for operational excellence.

7.2 Integration with HDI

7.2.1 MIDATA

The integration of AIDAVA with MIDATA is a multi-step process designed to enhance healthcare

services. AIDAVA uses the MIDATA API to connect with the platform. Users register on both AIDAVA

and MIDATA. AIDAVA stores the unique MIDATA user ID after registration. A pre-registered service

account allows AIDAVA to securely download patient data. AIDAVA then analyses the data, generating

insights. It compiles an International Patient Summary (IPS). This IPS is uploaded to the user's MIDATA

profile through the MIDATA API, enriching their healthcare record.

7.2.2 Digi.Me

The integration between AIDAVA and DIGIME involves the establishment of a dedicated microservice

within AIDAVA for DIGIME's functionalities. This microservice utilises DIGIME's SDK solution to

seamlessly connect the two systems. Users are required to register in the DIGIME app, after which

AIDAVA stores their registered IDs. AIDAVA also possesses a pre-registered service account within

DIGIME. This service account facilitates secure data downloads for patients, enabling accurate

information transfer. At the culmination of data curation, the International Patient Summary (IPS) is

generated and seamlessly uploaded back to DIGIME using its SDK.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

32

8 Hardware Specifications

In planning the deployment of the Prototype, it's essential to start with a clear set of assumptions and
infrastructure requirements. These assumptions and infrastructure needs will serve as the foundation
for a seamless transition from G1 to G2 without significant changes. Let's break down these key
elements.

8.1 Assumptions

The Prototype's architecture will remain consistent and unchanged from Generation 1 (G1) to
Generation 2 (G2). This stability is crucial for ensuring a smooth transition and minimal disruptions
during the upgrade.

8.2 Infrastructure Requirements

8.2.1 Docker Containerization

All essential components of the prototype, including services, databases, workflows, and the
knowledge graph, will be packaged and deployed within Docker containers. This containerization will
be efficiently managed using our designated docker-compose file. It is imperative that Docker is
installed on the hosting servers to facilitate this deployment strategy.

8.2.2 Access Protocols

Secure Shell (SSH) and Remote Desktop Protocol (RDP) access will be needed for administration and
maintenance tasks on the hosting servers. These access methods are essential for ensuring the
Prototype's operational integrity.

8.2.3 Https Access

To enable external access to the User Interfaces or API endpoint from locations outside the hospital
environment, HTTPS access is required. This secure access mechanism will be crucial for running
federated queries securely and efficiently.
The Prototype will incorporate the necessary hospital certificate(s) into its configuration. This
integration is vital for establishing trust and ensuring that the Prototype operates within the hospital's
security and compliance framework.

8.2.4 Mail Server Access

Access to a dedicated mail server will be required to facilitate the sending of notifications to users. This
functionality is essential for keeping users informed and engaged with the Prototype.

8.2.5 Hardware Specification

Hardware specification are only estimations

Resources Minimum Recommended Comments

CPUs / vCPUs 4 core 8 core Depending on the degree of parallel processing

RAM 24 GB 32 GB Depending on the degree of parallel processing

Storage 1 TB 2 TB Storage requirements depend on how many

documents are imported.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

33

9 Deployment & Testing

The "Deployment & Testing" phase in the AIDAVA project is a crucial step towards ensuring the

reliability and quality of our codebase. This phase is powered by a robust CI/CD deployment process,

enabling efficient and automated deployment of our software changes.

Our CI/CD deployment process automates the build and testing stages, streamlining the validation of

code changes. During the CI phase, builds are generated, and tests, including unit and integration tests

for the backend, and unit, integration, and end-to-end (e2e) tests for the frontend, are executed. This

step guarantees that code modifications adhere to quality standards and prevent regressions.

The CD phase allows us to deploy our modifications with a single click, delivering changes to production

or test environments seamlessly. Notably, modifications to volumes are excluded from deployment to

safeguard data integrity.

Our comprehensive testing strategies ensure the integrity of both frontend and backend components.

The backend undergoes rigorous unit and integration testing, covering individual units and component

interactions. On the frontend, we conduct unit, integration, and end-to-end tests, guaranteeing

robustness across all layers of our application.

Maintaining a high level of test coverage is a paramount goal in the AIDAVA project. We require test

coverage to be consistently above 80% for both frontend and backend components. This stringent

criterion ensures that our tests comprehensively exercise code paths, minimising the risk of

undetected issues and enhancing the overall stability of our microservices architecture.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

34

9.1 Backend - Unit, Integration tests

Figure 11. AIDAVA - Backend - Unit, Integration tests

The "Backend - Unit, Integration Tests" segment is a pivotal aspect of the AIDAVA project, aimed at

ensuring the robustness, reliability, and quality of the backend services developed using .NET 6 Core.

This testing framework encompasses both unit tests and integration tests, collectively serving as

essential safeguards against defects and regressions.

Unit tests are meticulously crafted to scrutinise individual units or components of the backend services

in isolation. These tests evaluate the behaviour and functionality of specific methods, classes, or

modules, verifying that they produce expected outcomes under various conditions. Unit tests are

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

35

designed to be concise, focused, and self-contained, enabling developers to identify and rectify issues

with precision.

Integration tests, on the other hand, assess the interoperability and collaboration between various

backend components. These tests verify that different units, services, or modules work cohesively

when integrated, simulating real-world scenarios and interactions. Integration tests identify potential

bottlenecks, inconsistencies, or unexpected behaviours arising from the integration of multiple

components.

A key aspect of integration tests in the AIDAVA project is the replication of actual runtime conditions,

ensuring that the interactions between backend services are validated under realistic circumstances.

Both unit tests and integration tests contribute to the continuous improvement of the AIDAVA

backend, fortifying the overall codebase and enhancing system stability. By embracing a

comprehensive testing approach, the AIDAVA project reinforces its commitment to delivering high-

quality backend services, ultimately translating into a more reliable and effective microservices

architecture.

9.1.1 Testing tools - CI/CD - Focus on CI

Figure 12. AIDAVA - Backend - Continuous Integration (CI)

In the AIDAVA project, our Continuous Integration (CI) process stands as a crucial pillar in upholding

code quality and ensuring the reliability of our microservices architecture.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

36

The CI process comprises two core steps: build and tests. During the build phase, our CI pipeline adapts

to the specific needs of each component. For the backend, it compiles and packages code changes into

deployable artifacts. Meanwhile, the frontend code undergoes TypeScript compilation and resource

bundling to prepare for testing and deployment.

This standardised process guarantees that every code modification is properly prepared for rigorous

testing and potential deployment.

The tests step is where code is subjected to a comprehensive battery of tests, including unit,

integration, and end-to-end tests. These tests meticulously evaluate the functionality and interactions

of our code, preventing regressions and verifying seamless integration with existing components.

A standout aspect of our CI process is the SonarQube code quality check. Triggered upon merging a

branch into the main branch, SonarQube conducts comprehensive static code analysis. It detects code

smells, vulnerabilities, and adherence to coding standards, enhancing the overall robustness, security,

and maintainability of our codebase.

By effectively combining the build, tests, and SonarQube steps, our CI process serves as a gatekeeper

for the quality of code changes. It ensures that only reliable, well-tested, and secure code reaches our

main codebase, contributing to the overall stability and excellence of our codebase.

9.2 Frontend -Unit tests, E2E tests

Figure 13. AIDAVA – Frontend - Unit, E2E tests

After thorough analysis, Angular was selected as the frontend framework for developing the UI

applications for the AIDAVA prototype. Some decisive aspects were the modular architecture,

propagation of modern software development practices and out of the box automated testing support.

Angular comes with built-in Jasmine and Karma integration for Unit testing, and low effort Cypress

integration for end-to-end (E2E) testing.

Angular's built-in unit testing libraries (Karma, Jasmine) support the stability, functionality, and

maintainability of applications built with the framework. By writing and executing automated unit

tests, developers can examine individual components, services, and directives in isolation. This practice

aids in detecting bugs early in the development process, thus allowing developers to confidently make

changes to code without fearing unintended side effects, as the tests act as a safety net that quickly

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

37

highlights regressions. Moreover, these tests serve as documentation, describing how various parts of

the application are intended to function.

On the other hand, end-to-end (E2E) testing methodology involves simulating real user interactions

and scenarios to validate the entire application workflow. By utilizing tools like the Cypress testing

framework, developers can automate browser actions such as mouse clicks, form submissions, and

navigation, mimicking how actual users would interact with the application. This process helps uncover

issues related to user interface responsiveness, data flow, and integration between different

components. E2E testing aids detecting bugs that might not be evident through unit testing and

ensures that the application meets the user's expectations in terms of navigation, usability, and overall

performance.

9.2.1 Testing tools - SorryCypress

Figure 14. AIDAVA – SorryCypress

Although the Cypress testing framework can run end-to-end tests in a standalone manner, optimizing

E2E test execution times in CI/CD pipelines without Cypress's Cloud service cannot be effectively

achieved.

Cypress Cloud offers great parallelization, test debugging and analytics capabilities, however, it lacks a

self-hosted version, raising data privacy concerns.

SorryCypress is an open-source, highly regarded alternative to Cypress Cloud, offering advanced

capabilities for efficient and scalable end-to-end testing of web applications. It enables developers to

execute Cypress tests across multiple machines in a distributed manner, thereby significantly reducing

test execution times. Unlike Cypress Cloud, SorryCypress can be self-hosted, granting users greater

control over their testing infrastructure and data privacy. This powerful tool also provides detailed test

logs, and the ability to analyze test runs comprehensively. SorryCypress offers insightful dashboards

for analysing E2E test runs by screenshots and video recordings, automatically captured by the Cypress

framework during every test execution.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

38

9.3 Container deployment

The "Container Deployment" phase within the AIDAVA project represents a pivotal step in our

seamless and efficient software delivery process. This phase, facilitated by GitLab's robust Continuous

Deployment (CD) capabilities, revolves around generating Docker images and storing them in GitLab's

dedicated container registry.

During this phase, we encapsulate the functionality of each microservice into Docker images, creating

a self-contained and consistent environment for deployment. Each microservice results in two distinct

Docker images: one associated with the specific commit hash and another with the 'latest' tag. This

approach empowers us to maintain flexibility in deployment by having a snapshot of each microservice

at its corresponding commit, while also having the latest version readily accessible.

GitLab's container registry acts as a centralised repository for these Docker images, enabling versioned

storage and controlled access. This repository hosts a collection of immutable images, each

representing a specific iteration of our microservices architecture.

By leveraging GitLab's CD capabilities, we seamlessly bridge the gap between code readiness and

operational deployment. The Container Deployment phase, with its Docker image generation and

registry utilisation, streamlines the process of packaging, distributing, and deploying our microservices

with precision and ease.

This strategic approach ensures that our microservices are encapsulated, versioned, and accessible,

promoting efficient management and enabling agile deployment strategies. The Container

Deployment phase underscores our commitment to delivering a robust and agile microservices

architecture within the AIDAVA project.

9.3.1 CI/CD - Focus on CD

Figure 15. AIDAVA – Backend deployment

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

39

Figure 16. AIDAVA – Frontend Deployment

The Continuous Deployment (CD) process within the AIDAVA project represents the culmination of our

streamlined software delivery lifecycle. This phase, facilitated by GitLab's powerful capabilities,

encompasses a sequence of strategic steps, each contributing to the efficient and controlled

deployment of our microservices architecture.

At the heart of the CD process lies the generation of Docker images, capturing the essence of each

microservice within a self-contained environment. These images are meticulously crafted to

encapsulate both the frontend and backend components, ensuring consistent and reliable

deployment.

Upon image generation, we utilise GitLab's container registry to securely store these Docker images.

This centralised repository ensures versioned and controlled access to our microservice images,

forming a crucial repository for operational deployment.

The CD process unfolds through a manual "Deploy" stage, where user interaction plays a key role. This

stage is designed to provide flexibility and control, allowing users to manage deployments according

to specific requirements. Within the "Deploy" stage, two elements stand out: the deployment of

frontend images and the deployment of backend images. This dual approach permits separate

deployment of frontend and backend components, catering to distinct needs and enhancing

operational agility.

While user interaction is required, the "Deploy" stage empowers users to orchestrate the deployment

process with precision and confidence. Whether deploying frontend, backend, or both, this manual

step ensures that deployments are aligned with project objectives and business needs.

The CD process, with its Docker image generation, container registry utilisation, and manual "Deploy"

stage, embodies our commitment to controlled, efficient, and strategic deployment. It seamlessly

bridges development and operations, resulting in a robust and adaptable architecture within the

AIDAVA project.

AIDAVA (101057062) D3.1 – Define AIDAVA technical architecture

40

10 Conclusion

In conclusion, the proposed technical architecture represents a robust and scalable solution that is

well-equipped to meet the demands of our project. Through the utilisation of microservices,

integration of satellite applications, and the implementation of efficient curation tools, we have laid a

strong foundation for automating our workflows. The architecture's seamless connection with diverse

medical partners, whether through file shares, databases, or health data intermediaries, ensures our

ability to collect and process data effectively.

As we move forward with the implementation of this technical architecture, we anticipate increased

efficiency, flexibility, and reliability in our systems. It not only aligns with current industry best practices

but also positions us to adapt and scale as our project evolves. By adhering to these architectural

principles, we are well-prepared to achieve our goals and deliver exceptional results in our technology

endeavours.

11 Next steps

The next steps are clear and achievable. The established architecture outlined above will be developed

in Deliverables 3.3, 3.4 and 3.5.

Updates to the document will be made as necessary to reflect significant architectural changes. The

primary goal remains centred on providing a robust solution for the AIDAVA project, ensuring it aligns

with current standards.

Our focus is steadfast, with a commitment to delivering a dependable solution that meets project

needs effectively.

