
IEEE Communications Magazine • November 20232

ISSN: 0163-6804

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

AbstrAct
The main purpose of ETSI multi-access edge

computing (MEC) is to improve latency and
bandwidth consumption by keeping local traf-
fic local while providing computing resources
near the end-user. Despite its clear benefits, the
next-generation of hyper-distributed applications
(e.g., edge robotics, augmented environments,
or smart agriculture) will exacerbate latency and
bandwidth requirements, posing significant chal-
lenges to today’s MEC deployments. In this work,
we leverage the current study item ETSI GR MEC
036, introducing a lightweight constrained ver-
sion of a MEC platform that can be deployed in
a mobile end terminal or in its closed locality.
This work presents design options for cMEC, and
explains how it can untangle the aforementioned
problems while being architecturally compatible
with a full-fledged MEC framework. Finally, key
use cases and still open challenges are discussed,
including recommendations to extend the current
MEC standard toward constrained environments.

IntroductIon
In the field of edge computing, whose unques-
tionable benefits have boosted the emergence of
new network services and applications, multi-ac-
cess edge computing (MEC) is the prevailing stan-
dardized framework. Under development of the
European Telecommunications Standards Insti-
tute (ETSI), MEC is regarded as a key technology
for the fulfillment of the core Key Performance
Indicators (KPIs) of 5G [1] and beyond. Similar-
ly to other edge computing paradigms (namely
fog computing [2] and cloudlet computing [3]),
MEC aims to decrease latency and traffic work-
load directed to a cloud infrastructure, consis-
tently breaking down communications’ latency
and bandwidth utilization. In doing so, it provides
clear benefits to massive Machine-Type Commu-
nication (mMTC), enhanced Mobile BroadBand
(eMBB) and the Ultra-Reliable Low-Latency Com-
munication (URLLC) use cases’ families targeted
by 5G technologies [1].

Forthcoming applications, namely the
next-generation of hyper-distributed applications
(e.g., edge robotics, augmented environments,
or smart agriculture), are even stricter in their

requirements, thus solely deploying MEC servers
at the telco network edge might be insufficient. In
fact, there are already scenarios in which the MEC
framework prove to be limiting.

Loss of Connectivity: While on-the-move, devic-
es might temporally lose their connectivity. Conse-
quently, applications supported by a MEC server
cannot guarantee service continuity. Although appli-
cation relocation mechanisms exist, they either
assume that the MEC infrastructure is deployed
everywhere or that there are deployments in aggre-
gation points of the infrastructure, making delays so
large that the edge benefits are minimized.

Near-Zero Latency Applications: Computation
offloading to an edge server might also be inad-
equate whenever applications require extremely
low latency (i.e., sub-1ms robotics control loop).
In addition, fluctuations on the communication
would likely introduce undesirable jitter.

Privacy and Security: MEC is part of a multi-do-
main ecosystem composed by several stakehold-
ers (e.g., infrastructure owners, service providers,
system integrators and application developers)
[4], thus placing generated data outside of the
owner’s domain. Although data privacy and secu-
rity can be enforced by its owner, offloading func-
tions to a MEC server increases the risk of a data
leak or unauthorized access by a third-party [5].

The aforementioned challenges can be miti-
gated by exploiting dynamic computational off-
loading techniques. Complementary, integrating
MEC platforms toward end-devices or constrained
devices in the close vicinity of end-users is cur-
rently the subject of study in ETSI GR MEC 036
[6], also devised by other standards development
organizations (SDOs), such as IETF [7]. A stan-
dardized method for integrating computation at
constrained devices and traditional MEC servers,
where the former preserves only subset of MEC
capabilities, enables a holistic computational off-
loading while allowing resource orchestration at a
finer granularity and exploitation of MEC services.

This article aims to contribute to such a vision
by proposing the constrained MEC (cMEC) archi-
tecture, as a lightweight design of the MEC frame-
work. By constrained device we refer to mobile
end-devices or computational constrained mobile
devices in the close locality of end-users. cMEC

Elisa Rojas is with Universidad de Alcalá, Spain; Carlos Guimarães is with ZettaScale Technology, France;
Antonio de la Oliva and Carlos J. Bernardos are with Universidad Carlos III de Madrid, Spain; Robert Gazda is with InterDigital, Inc., USA.Digital Object Identifier: 10.1109/MCOM.017.2300056

ACCEPTED FROM OPEN CALL

The authors present design
options for constrained multi-ac-
cess edge computing, and explain
how it can untangle inherent
problems while being architectur-
ally compatible with a full-fledged
MEC framework.

Elisa Rojas, Carlos Guimarães, Antonio de la Oliva, Carlos J. Bernardos, and Robert Gazda

Beyond Multi-Access Edge
Computing: Essentials to Realize a Mobile,

Constrained Edge

IEEE Communications Magazine • November 2023 3This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

considers that constrained devices can on-board
and support a subset of MEC functional elements
to expand the computational reach of current MEC
framework. MEC applications can then run locally
and/or in a remote telco MEC system. In doing so,
cMEC can take over on the applications execution
whenever the connectivity to the network cannot
be sustained, whether due to outage, mobility, or
to incomplete coverage, and when the latency
toward the edge MEC system is unreliable.

The remainder of the article is structured as fol-
lows. In the next section, we briefly describe the
traditional MEC architecture for background refer-
ence. We then present a set of possible cMEC use
cases. Then we illustrate the novel cMEC architec-
ture with its general characteristic and innovations,
proposing some workflows to integrate cMEC in
the current MEC framework. The advantages and
future challenges of this integration are discussed,
and the final section concludes the article.

MEc In A nutshEll
The MEC framework [8] was originally designed
to be deployed at the edge with the goal of
exempting end-devices from performing tasks
locally, shifting the computation toward a virtual-
ized platform of distributed elements with orches-
trating and service capabilities.

Prevailing deployment option for MEC leverag-
es network function virtualization (NFV), which is
an earlier (and thus more mature) network virtual-
ization technology complementary to MEC. NFV
provides a standardized framework for virtualizing
network services, and its structure harmonizes with
MEC. Additionally, as NFV represents the founda-
tion of current 5G deployments and vendors are
already exploiting NFV production-ready solutions,
it is reasonable to think that even MEC, once suffi-
ciently developed, would be integrated in this vari-
ant within real deployments, with MEC applications
being treated as virtual network functions (VNFs).

Figure 1 depicts a simplified architectural
scheme of MEC and that of MEC in NFV, with the
main functional components and reference points
indicated. First, let us focus on the MEC architec-
ture; a MEC system consists of a virtualized edge
platform where MEC applications are executed
and expose some API services. The general archi-
tecture can be divided into two levels: system level
and host level. Hosts can be multiple, and their

resources are handled by the system level compo-
nents. At the system level, typically an operational
support systems (OSS) tool manages the instantia-
tion and termination of MEC applications request-
ed by a user application lifecycle management
(LCM) proxy (UALCMP), receiving instructions
from either an end user or a custom portal; the
presence of a MEC orchestrator (MEO) provides a
general view on the whole MEC system, performs
package on-boarding and selects the most suitable
host where to deploy the application. At the host
level, the MEC platform manager (MEPM) oper-
ates directly on the lifecycle of applications, while
configuring traffic, security and DNS rules based
on the application requirements; while the MEP is
the environment that offers the MEC services to
the MEC applications, and it also implements the
DNS and traffic control rules for the applications.
The computational, network, and memory resourc-
es of the platform are, eventually, managed by the
virtual infrastructure manager (VIM).

As for the NFVs integration, the assumption
is that both MEPs and MECs applications are
deployed as VNFs, which in the NFVs context are
the virtual bricks of software constructing a specif-
ic network service (NS). Afterwards, the specific
MEC management entities overlapping those of
the NFV management and orchestration modules
(NFV MANO) are cut out from the MEC blocks
and delegated to the corresponding NFV func-
tional elements. In practice, the MEPM becomes
MEC Platform Manager — NFV (MEPM-V) and
the part concerning the LCM of applications is
delegated to a virtual network function manager
(VNFM). Similarly, the MEO changes its name to
mobile edge application orchestrator (MEAO),
orchestrating a particular set of VNFs (e.g., MEC
apps composing a NS) and delegating the orches-
tration of resources to the NFV Orchestrator
(NFVO). The virtual infrastructure becomes that
of the NFV framework (NFVI).

The cMEC proposed architecture assumes the
orchestration is held by the telco MEC deploy-
ment located in the telco infrastructure. The cMEC
framework deployed in the constrained devices
will leverage virtualization technology, running
VMs or containerized applications, orchestrated
by the integrated NFV/MEC functionality at the
MEC. Hereinafter, to distinguish between both
architectures, the constrained version will be ref-

FIGURE 1. Simplified MEC reference architecture.

The cMEC proposed archi-
tecture assumes the orches-

tration is held by the telco
MEC deployment located in

the telco infrastructure.

IEEE Communications Magazine • November 20234 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

erenced as cMEC, while the network infrastruc-
ture version as telco MEC (tMEC), to clarify they
are both MEC frameworks following two distinct
and complementary architectural approaches.

ovErvIEw of usE cAsEs EnAblEd by cMEc
Diverse use cases have fostered the need for
cMEC. This section gathers four of the most dis-
tinctive.

rEMotE EhEAlth MonItorIng
Remote monitoring in eHealth (e.g., on-board
of ambulances in emergency situations) requires
increased service reliability and availability while
operating in very dynamic environments [9]. Dif-
ferent tasks might require distinct computing and/
or data capabilities:
• Non-sensitive information can be offloaded

into any shared computing resource.
• Sensitive information cannot leave the vehi-

cle and, therefore, it should not be pro-
cessed remotely.

• Real-time information will need to be pro-
cessed locally in the vehicle, or in a nearby
infrastructure and devices to meet the laten-
cy requirements or lack of connectivity.

While the former can be handled by standard telco
MEC mechanisms, the later two require proper
management and orchestration of local resources
in constraint devices located at the ambulance or
medical devices within it. Such requirements hin-
der a full end-to-end service provisioning by the
standard MEC framework, requiring tMEC to take
into consideration the capabilities of constraint
devices in the ambulance. This consideration is cur-
rently out of the capabilities of ETSI MEC.

ZEro-lAtEncy AugMEntEd And/or
vIrtuAl rEAlIty (Ar/vr) ApplIcAtIons

AR/VR applications are increasingly being adopted
by both enterprise and end-customer domains to
bring complete immersive experiences in numerous
use cases (e.g., metaverse, 360 videos, or gaming).
Since these applications are sensitive to human per-
ception, they impose strict requirements in terms of
latency in order to achieve accurate movements.
Moreover, high computation power is also required
to smoothly render virtual scenes. Although MEC
appears as a suitable candidate to fulfil both require-
ments, it needs continuous connectivity between the

user device and the MEC application in the telco
edge, where any slight disruption will shatter the AR/
VR user experience. In addition, any unexpected load
in the link connecting the AR/VR application and the
edge deployment may impact seriously on the user
experience. A combination of both local and remote
processing can be seen as a fallback solution: the
tMEC resources are leveraged for high-resolution
tasks, while on-device resources (mobile terminals,
VR headsets, etc.) are responsible for lower-res-
olution tasks, triggered only if the offloaded com-
putation arrives too late, or to intercede in case of
connectivity failures. In addition, local devices can
directly exchange information with nearby entities
to enhance or enable new types of services (e.g.,
improve spatial coordinate-based scenes).

sMArt AgrIculturE In rurAl ArEAs
Smart agriculture presents a challenging use case
to be supported by MEC, especially when it takes
place in remote rural areas where connectivity is
scarce and limited to specific points. In addition,
isolated areas without permanent population (e.g.,
highly dense forests or Arctic areas) pose significant
challenges for building a physical network infra-
structure [10]. Therefore, the lack of a reliable con-
nection toward a tMEC system hinders its utilization
for applications that require a continuous synchroni-
zation and control. Resource-constrained platforms
(e.g., Unmanned Aerial Vehicles (UAVs), harvest-
ers, tractors, etc.) operating in remote areas could
be transformed into functional mobile compute
nodes, offering computing, storage and network
resources under the control of MEC system to sup-
port the execution of applications, or interact with
small servers deployed across the fields using radio
access technologies [11]. Notwithstanding, support-
ing a MEC system (with all its complexity) on such
battery-powered and resource-constrained devic-
es exceeds the required functionalities and, conse-
quently, reduces their lifespan between charges.

AdvAncEd collAborAtIvE survEIllAncE
Smart surveillance systems in cities are already
envisioned for traditional MEC systems [12],
where applications send their streams to a cen-
tralized server to be processed. However, a cen-
tralized solution is not only inefficient for such
application, but also results in huge data traffic
overhead. Several solutions implement on-board
pre-processing as a way to reduce the traffic cross-
ing the network. Such approaches hinder more
dynamic scenarios where the location of camer-
as is changing, the application requires periodic
updates, or where the surveillance resources are
shared among different tenants (e.g., different
departments of the city hall), each with different
levels of access. Since cameras are not part of the
MEC system, such actions must be performed via
traditional (and manual) redeployment and recon-
figuration procedures across the entire surveillance
system. Integration of such devices into the MEC
would ease updates while enabling its automation.

All previous use cases share a common
requirement: constrained devices should support
MEC functional elements on board to enable end-
to-end management and orchestration of services.
Notwithstanding, such requirement does not
prevent task offloading to a tMEC system when
local devices are not capable of efficiently run-

FIGURE 2. The 4-layer architecture: User-cMEC-tMEC-Cloud.

IEEE Communications Magazine • November 2023 5This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

ning the task or when the requirements are more
relaxed. With a consistent and flexible architec-
ture to enable the integration of all the available
resources in the entire cloud-to-things continuum,
resource harvesting could be pooled together to
enable a full and dynamic service provisioning
between multiple and heterogeneous devices.
Consequently, the proposed cMEC architecture
aims to build the necessary adaptation to support
MEC functional elements in constrained devices
and provide a set of interfaces to interconnect
both cMEC and ETSI standard tMEC.

thE proposEd cMEc ArchItEcturE
The pervasiveness of resources available in the
end-user domain provide diverse computing and
data capabilities. Consequently, they appear as
a promising complement to traditional MEC sys-
tems in order to support novel latency and/or
data sensitive applications. Still, such resources
mostly comprise constrained devices with limited
computational power, battery-powered and/or
mobile, therefore hindering a straightforward sup-
port of full-fledged MEC solutions.

The cMEC architecture defines a lightweight
design of MEC capabilities by extending the cloud-
edge-user-layer architectural model with a new
layer representing the user-domain devices (Fig.
2). The inclusion of this additional layer should be
transparent to developers and users, handling its
complexity the MEC system and its APIs.

froM A 3-lAyEr to A 4-lAyEr ArchItEcturAl ModEl
The cMEC departs from ETSI MEC framework and
presents characteristics tailored and specific to
constrained devices:

Lightweight Functionalities: The cMEC can
be deployed as a full-fledged MEC system (i.e.,
including all its functional elements), but the
limited resources available in the devices might
impose the support of only a subset of the MEC
functionalities. As an example, the MEO compris-
es resource-demanding functions as it is responsi-
ble for deciding in which host applications will be
deployed. This might exceed the capabilities of
the end-user devices, not being considered a pri-
mary function particularly in environments where
cMEC and tMEC collaborate (as tMEC might pro-
vide that orchestration instead). Thus, it will be
opt-out in most constrained situations, unless a
lightweight operation can be provided.

A Layered Approach: As tMEC relies on the
cloud for computational offloading, content fetch-
ing, user authentication, and context, cMEC relies
on the tMEC for the same purposes. Such a lay-
ered approach should depend on an intercon-
nection relation between the cMEC and tMEC,
disregarding the implementation of federation
concepts that imply explicit business agreements
and rely on orchestrators. In fact, according to the
study on inter-MEC system connection and feder-
ation [13], MEO is considered the key enabling
element for many workflows, but cMEC may not
support it. Notwithstanding, a given cMEC can
decide on sharing different resources with distinct
tMECs, using its orchestrating capabilities, or even
peer cMECs.

Dependency from a tMEC System: Whenever
the cMEC does not implement a specific MEC
function, it needs to rely on the upper-layer tMEC

system to offer the missing functionalities. Novel
workflows, MEC application development guide-
lines, and specific interconnection mechanisms
must then be implemented to compensate for the
absence of functions.

End-User Device Co-location and Awareness:
The cMEC system can be co-located in the same
end-user device as the MEC application or it can
run in a constraint device in its close proximity.
The end-user device can take part of the cMEC
integration as follows:
• cMEC-Aware: end-user device and cMEC

are in the same local network or their iden-
tity is known to each other (e.g., the cMEC
runs on that end-user device). The end-user
device can inspect the cMEC systems avail-
able and request the instantiation of a MEC
application, which in turn triggers the inter-
connection of the cMEC to a tMEC.

• cMEC-Unaware: end-user device is not aware
of a nearby cMEC and therefore requests the
instantiation of a MEC application toward the
tMEC. The tMEC, knowing there is a cMEC
deployment near the user, decides to instantiate
the application on an interconnected cMEC.
OSS: The OSS is a service provider tool oper-

ated at the MEC level and shall not necessarily be
linked to a subordinate local cMEC for application
on-boarding and instantiation. These actions, tradi-
tionally performed by a network manager operating
on the MEC through the OSS, may need to be ini-
tiated by the end user (e.g., requesting a particular
application for their house or car), and handled by
the cloud and the tMEC remote OSS and MEO,
employing alternative workflows supporting a new
set of cross-system MEC interfaces. That means inter-
faces Mx2 and Mm8 in Fig. 1 should be enhanced
to allow users to trigger new instantiations.

ArchItEcturAl schEME for cMEc And tMEc IntErconnEctIon
Given the aforementioned points, Fig. 3 details the
architectural scheme to interconnect the cMEC
with the tMEC, without the MEO being present
in the cMEC system. The cross-system reference
points inter-Mm2 and inter-Mm3 are mainly intro-
duced for the cMEC-tMEC interconnection setup.
Mx2 reference point is extended to allow users
to trigger the lifecycle management (e.g., instan-
tiation, deletion, or update) of MEC applications
in a cMEC or even a tMEC. Thus, the inter-Mx2
interface, which connects the cMEC app proxy
to that of the tMEC, can guarantee a certain level
of concurrence between the cross-systems appli-
cations (i.e., those applications distributed across
several layers), and allow any request to be prop-
agated from cMEC up to the tMEC. Finally, Mp1
reference point, which connects the MEC applica-
tions and services and their platform within each
other, should be extended as a inter-Mp1 refer-
ence point for service consumption and app-to-
app communications between different systems.

hIgh-lEvEl cMEc workflows
The integration of cMEC with a tMEC requires
additional workflows. In the following, three key
operations are described: discovery and intercon-
nection; application on-boarding and instantiation;
and service availability and consumption.

Discovery and Interconnection: The cMEC dis-
covery by the tMEC or by other cMEC systems is

The pervasiveness of
resources available in the
end-user domain provide

diverse computing and data
capabilities. Consequently,
they appear as a promising
complement to traditional
MEC systems in order to

support novel latency and/
or data sensitive appli-

cations

IEEE Communications Magazine • November 20236 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

a necessary step to their interconnection. It con-
sists of either making a tMEC system aware of a the
cMEC; or discovering peer cMECs. Moreover, the
cMEC does not support orchestration (i.e., it does
not comprise a MEO element). At the same time,
cMEC can be co-located in an end-user device. The
challenge for an end-user device to discover a near-
by standalone cMEC is left outside of the scope
of this work, since multiple protocols (not directly
related to ETSI MEC) can serve this purpose.

The message workflow for a cMEC to adver-
tise itself to a tMEC is presented within the box
titled Discovery and Interconnection of Fig. 4. The
cMEC reaches out to the UALCMP of the tMEC
it wants to integrate with, by issuing a Request
for Integration message (step 1), through which
the cMEC advertises the interfaces and the com-
putational capabilities (i.e., computing, storage
and network resources, MEC services, etc.) to be
shared (step 2). The OSS can then update the
catalogue of interconnections with this new infor-
mation (step 3), as cMECs rely on tMEC MEO for
coordination. Afterwards, the cMEC can proceed
to send the agreed interface addresses (step 4).

After signalling between the cross-system inter-
faces (OSS contacting cMEPM through inter-Mm2
and MEO contacting cMEP through inter-Mm3) to
check interconnectivity (step 5), the process is final-
ized when the interconnection is activated in the
OSS (step 6). An activation step is necessary as the
cMEC can move away from the tMEC during the
procedure. Finally, the MEO module adds the cMEC
to its host list (step 7), so that, if granted permissions,
the cMEC host can be selected by the orchestrator
for application on-boarding and instantiation.

Application On-Boarding and Instantiation:
In standard ETSI MEC, the package on-boarding
request for an application is initiated by the oper-

ator interacting with the OSS. Then, the actual
application instantiation is subject to the MEO’s
decision, which normally evaluates the application
requirements and performs host selection accord-
ingly. As previously mentioned, a cMEC host con-
nected to a tMEC, becomes a host of the tMEC
system, so that it can be automatically selected
by the MEO for application deployments when
needed. As illustrated in the box titled Application
On-boarding and Instantiation of Fig. 4, the cMEC
Device App contacts the tMEC UALCMP, which
solicits the OSS to grant the on-boarding permis-
sions. The same on-boarding request would then
reach the MEO (step 1). At this point, the MEO
would have, according to the current standard, to
perform host selection. The current specification
does not define how host selection is realized in
practise. In such case, the cMEC could request
the MEO to select the desired cMEC, and not an
arbitrary host of the tMEC system selected by the
MEO’s algorithm. The actual package on-board-
ing and app instantiation processes are later trig-
gered by the MEO in the cMEPM through the
inter-Mm3 reference point (step 2).

Service Availability and Consumption: A MEC
application, whether deployed in a cMEC or a
tMEC, might also request a MEC service not locally
available. As the Service Availability and Consump-
tion box of Fig. 4 represents, this can be tackled
by issuing a service request to the OSS (step 1),
followed by a lookup in the catalogue of intercon-
nections (step 2). The lookup goal is to identify if a
service is available in a cMEC or tMEC, which would
then communicate the availability details (step 3) to
the MEC application. If the requesting MEC (cMEC
or tMEC) is not interconnected to the target MEC,
the interconnection is invoked by the MEO or the
OSS. The service consumption between the MEC
application and the remote service can then occur
via the inter-Mp1 interface (step 4). Alternatively, a
dedicated service management proxy can be intro-
duced in every cMEC to manage service availabili-
ty. However, it prevents the cMEC to benefit from
remote services belonging to cMEC systems not
directly interconnected: proxies must be known to
the cMECs in advance. A last option can rely on
sending queries about service availability directly
toward the MEO, which then queries each of the
cMEPMs and provides an answer based on the
information stored in their cMEP’s service registries.

cMEc AdvAntAgEs
cMEC paves the way to novel opportunities of
deploying tailored and optimized applications
across the cloud-to-thing continuum, but it also
imposes new challenges to be tackled.

why ExtEnd MEc to contrAInEd End-dEvIcEs?
Virtualization and Orchestrating Capabilities:
Microservice-containerized architectures are
becoming predominant for embedded and con-
strained device applications. Having a MEC-com-
pliant system on board of such devices can
support the management of many different con-
current and distributed applications.

Services: Developers can design more efficient
and flexible applications. cMEC applications can
be deployed as services with great flexibility.

Application Lifecycle Management: The life-
cycle management of applications in mobile/con-

FIGURE 3. Architectural scheme of cMEC together with tMEC.

IEEE Communications Magazine • November 2023 7This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

strained devices becomes automated and flexible
thanks to the functional elements encompassed in
the MEC framework.

whIch AddEd vAluE wIll cMEc AdoptIon brIng?
Lower Latency: The edge computing paradigm is
built on the assumption that execution of heavy
computational tasks should be offloaded. Howev-
er, cMEC is founded on the fact that more gain
would be achieved if the computational capacity
were further spread among end-user devices, even
if less powerful than the edge. This can benefit
applications with stringent latency requirements
and reduction in back-haul bandwidth utilization.

Better Bandwidth Utilization: tMECs will be
overloaded when massive offloading of compu-
tational tasks to the edge occur, as envisioned by
future applications. cMEC enables the pervasive-
ness of available resources in the end-user domain
to seamlessly share their resources with the edge,
not only distributing the computation load but also
the bandwidth utilization across network segments.

Enhanced Reliability and Resilience: Partition-
ing the intelligence of the network and locating
parts of it on cMEC devices close to its consumer,
drastically reduces losses or application disrup-
tion since local functions can be run even without
connection to network infrastructure.

Increased Security and Privacy: For appli-
cations handling sensitive information (e.g.,
eHealth), security and privacy is of paramount
importance. cMEC tackles this requirement at
its root by enabling MEC applications to run on
end-user devices where sensitive information is
generated. However, if devices are owned by dif-
ferent stakeholders, additional mechanisms should
be implemented to grant enhanced security.

whIch chAllEngEs ArE stIll AhEAd?
Dynamic and Distributed Infrastructure: Since
cMEC can handle mobile and/or battery-powered
end-devices, devices are likely to join or leave the
computing infrastructure or migrate to a different
location. Such occurrence will continuously change

FIGURE 4. High-level cMEC workflows.

tMECs will be overloaded
when massive offloading of
computational tasks to the
edge occur, as envisioned

by future applications.

IEEE Communications Magazine • November 20238 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

the topology of the infrastructure and its computa-
tional capabilities in a given area. In doing so, the
operation of applications running therein, or even
the entire E2E application, will get disrupted. The
integration of cMEC and tMEC must envision mit-
igation mechanisms, either by requiring a new set
of connectivity requirements to be defined, or by
enforcing migration or fallback mechanisms.

Heterogeneity of Devices: cMEC requires han-
dling heterogeneity of end-devices with distinct
computing, storage, and networking capabilities,
not only making it more complex to manage the
infrastructure but also to orchestrate E2E appli-
cations. In order to reduce such complexity, the
cMEC should apply an abstraction layer when
interacting with tMEC.

Distributed Orchestration: The architectural
design of cMEC facilitates flat-hierarchy deploy-
ments. As the cMEC does not include an orches-
trator, further studies should be performed on, for
instance, auction-based federation solutions [15],
in which no business agreements are required
between peers, which could serve as a dynamic
solution for cMEC to join a larger tMEC domain.

Ownership of End-Devices: End-devices man-
aged by cMEC and attached to existing tMEC sys-
tems are considered third-party nodes that do not
belong to the MEC provider. Therefore, the MEC
provider is limited in terms of management and
control procedures that can be used, making the
fulfilment of the applications’ requirements more
complex. The request for a cMEC to be part of a
tMEC system might require dynamic agreements
(e.g., by means of resources federation mecha-
nisms) so that the entire system can become more
flexible and react faster to changes. Still, such agree-
ments must also enforce monitoring and auditing
capabilities so that a break in any E2E application
SLAs can be identified and accountable.

Security and Trust: cMEC requires applications
to run on end-devices which trustfulness cannot
be guaranteed. Thus, the runtime environment
for cMEC must provide a certain level of isolation
and encapsulation in order to reduce the surface
attack. Moreover, security requirements must be
considered by the MEO whenever deciding on
the orchestration of E2E applications. If end-de-
vices are self-managed by users, they can be con-
sidered safe to their own applications or services.

conclusIon
In this article, we presented a novel MEC vari-
ant for mobile and constrained devices named
cMEC, envisioned as a holistic solution to enable
MEC capabilities down to end-devices. Although
many works already exist in the literature about
distributed edge computing , most focus on spe-
cific scenarios (e.g., optimizing task offloading in
MEC and cloud) and none provides an integrated
solution aligned with industry requirements. This
work presents an architectural solution devoted
to accomplish them, along with an analysis of its
main benefits and challenges ahead. As future
work, a proof-of-concept of cMEC will be imple-
mented and evaluated for a quantitative evalua-
tion and the verification of its added value.

AcknowlEdgMEnt
This work received support from the EU’s Horizon
2020 research and innovation programme under

grant agreement ID no. 101070177 (ICOS), and
European Union’s Horizon Europe research and
innovation programme under grant agreement
No 101095759 (Hexa-X-II). It was also funded
by grants from Comunidad de Madrid through
project MistLETOE-CM (CM/JIN/2021-006), by
project ONENESS (PID2020-116361RA-I00) of
the Spanish Ministry of Science and Innovation,
by the “Ayudas para la Recualificación del Siste-
ma Universitario Español 2021-2023” program of
Universidad de Alcala, and by the Spanish Min-
istry of Economic Affairs and Digital Transforma-
tion and the European Union-NextGenerationEU
through the UNICO 5G I+D 6G-EDGEDT.

rEfErEncEs
[1] S. Kekki et al., “MEC in 5G Networks,” ETSI white paper, vol.

28, 2018, pp. 1–28.
[2] M. Iorga et al., “Fog Computing Conceptual Model,” 2018.
[3] M. Babar et al., “Cloudlet Computing: Recent Advances,

Taxonomy, and Challenges,” IEEE Access, vol. 9, 2021, pp.
29,609–22.

[4] D. Sabella et al., “MEC Security: Status of Standard Supports
and Future Evolutions,” ETSI white paper, vol. 46, 2021, pp.
1–26.

[5] J. Zhang et al., “Data Security and Privacy-Preserving in
Edge Computing Paradigm: Survey and Open Issues,” IEEE
Access, vol. 6, 2018, pp. 18,209–37.

[6] DGR/MEC-0036ConstrainedDevice, ETSI Std. v3.0.4 Draft,
2021.

[7] IoT Edge Challenges and Functions, IETF Std. draft-irtf-t2trg-
iot-edge-08, 2023.

[8] GS MEC 003: Multi-Access Edge Computing (MEC); Frame-
work and Reference Architecture, ETSI Std. v2.2.1, 2020.

[9] J. Islam et al., “Resource-Aware Dynamic Service Deploy-
ment for Local IoT Edge Computing: Healthcare Use Case,”
IEEE Access, vol. 9, 2021, pp. 115,868–84.

[10] A. M. Cavalcante et al., “5G for Remote Areas: Challeng-
es, Opportunities and Business Modeling for Brazil,” IEEE
Access, vol. 9, 2021, pp. 10,829–43.

[11] V. Sanchez-Aguero et al., “Deploying an NFV-Based Experi-
mentation Scenario for 5G Solutions in Underserved Areas,”
Sensors, vol. 21, no. 5, 2021, p. 1897.

[12] GS MEC 002: Multi-Access Edge Computing (MEC); Phase
2: Use Cases and Requirements, ETSI Std. v2.1.1, 2018.

[13] GR MEC 035: Multi-Access Edge Computing (MEC); Study
on Inter-MEC systems and MEC-Cloud Systems Coordina-
tion, ETSI Std. v3.1.1, 2021.

[14] K. Antevski and C. J. Bernardos, “Federation of 5G Services
Using Distributed Ledger Technologies,” Internet Technolo-
gy Letters, vol. 3, no. 6, 2020, p. e193.

bIogrAphIEs
Elisa Rojas (M.Sc.’09, Ph.D.’13) (elisa.rojas@uah.es) is an Assis-
tant Professor at Universidad de Alcalá (UAH). She is an ambas-
sador of the ONF and her current research areas include SDN,
NFV, 5G networks, routing algorithms, IoT, data center networks.

CaRlos GuimaRãEs (M.Sc.’11, Ph.D.’19) is a Senior Technologist
at ZettaScale Technology (France) where he develops data-cen-
tric networking solutions. His current research interests are com-
puter networks and telecommunications.

antonio dE la oliva (M.Sc.’04, Ph.D.’08) is an Associate Pro-
fessor at Universidad Carlos III Madrid (UC3M). He is an active
contributor to IEEE 802 where he has served as Vice-Chair of
IEEE 802.21b and Technical Editor of IEEE 802.21d. He has
published more than 30 papers on different networking areas.

CaRlos j. BERnaRdos (M.Sc.’03, Ph.D.’06) is an Associate Pro-
fessor at Universidad Carlos III Madrid (UC3M). His current
research interests are network virtualization and wireless net-
works. He is an active contributor to the IETF.

RoBERt Gazda is a Senior Director in InterDigital’s Wireless Net-
working Lab. Bob is an accomplished engineering professional
and technologist with over 20 years of industry experience in
wireless telecommunications, networking, and embedded sys-
tems. At InterDigital, Bob leads research and innovation focused
on 5G/6G Distributed and Converged Computing and Commu-
nications Architectures.

cMEC requires applications
to run on end-devices which
trustfulness cannot be guar-

anteed. Thus, the runtime
environment for cMEC must

provide a certain level of
isolation and encapsulation
in order to reduce the sur-

face attack.

