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Figure S1 The literature screening process visualized as a preferred reporting items for systematic reviews and 

meta-analyses (PRISMA) flow diagram describing the number of screened studies (n) and exclusion rules in this 

meta-analysis.  
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28 Luo et al., 2010 10.1111/j.1365-2486.2009.02026.x China Infrared heater 2 8 

29 Luo et al., 2023 10.1098/rspb.2023.0613  China Open-top chamber 8 160 
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32 Morrison et al., 2019 10.1016/j.soilbio.2019.02.005  USA Heating cable 1 10 

33 Prieto et al., 2019 10.1111/1365-2745.13168 Spain Open-top chamber 2 20 

34 Remy et al., 2018 10.1007/s10021-017-0182-4 Netherlands Open-top chamber 24 48 

35 Ren et al., 2018 10.15302/J-FASE-2017194 China Infrared heater 5 30 

36 Robinson et al., 1995 10.2307/3545996 

Sweden; 
Norway:Svalbard 
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37 Robinson et al., 1997 10.1046/j.1365-2486.1997.d01-133.x 

Sweden; 
Norway:Svalbard 

Open-topped polythene tents 11 72 

38 Romero-Olivares et al., 2017 10.1371/journal.pone.0179674  USA:Alaska Open-top chamber 4 20 
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49 Yin et al., 2022 10.1007/s00374-022-01639-8 China Heating cable 4 32 
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51 Zaller et al., 2009 10.1111/j.1365-2486.2009.01970.x 

Argentina:Tierra 
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UVB filter film 8 40 
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Locations of open-top chamber warming experiments measuring standardised plant 

litter (tea) decomposition 

Table S2 Study sites in which standardised litter decomposition was measured in open-top chamber experiments. 

Observations per study are treatment replications in space and resulted in one effect size per site. 

Nr Site_ID Site name Country Observations 

1 ATA_1 Anchorage Island Greenland 5 

2 AUS_1 Australia Australia 4 

3 CAN_1 Common garden Canada 12 

4 CAN_2 Drained peatland Canada 6 

5 CAN_3 Kluane Elevation Transect 1 Canada 4 

6 CAN_4 Kluane Elevation Transect 10 Canada 4 

7 CAN_5 Kluane Elevation Transect 4 Canada 4 

8 CAN_6 Kluane Elevation Transect 7 Canada 3 

9 CAN_7 Plot B_dry Canada 4 

10 CAN_9 Pristine peatland Canada 6 

11 CHN_1 China meadow China 18 

12 CHN_2 China mountain China 19 

13 CHN_3 China swamp China 18 

14 CHN_4 
National Field Observation and Research Station of 
Agro-ecosystems 

China 9 

15 ESP_1 Santa Olla Spain 6 

16 GRL_1 High_altitude - mesic mixed shrub tundra Greenland 6 

17 GRL_2 Low_altitude - mesic mixed shrub tundra Greenland 6 

18 ISL_1 Audkuluheidi Iceland 20 

19 ISL_2 Thingvellir Iceland 19 

20 ITA_1 Moss-snowbed Italy 5 

21 ITA_2 Shrub-snowbed Italy 5 

22 ITA_3 Po Valley Italy 5 

23 ITA_4 Northern Apennine Italy 5 

24 JPN_1 NKM2601 Japan:Honshu 10 

25 JPN_2 Sapporo Japan:Hokkaido 8 

26 JPN_3 SGDG Japan:Honshu 8 

27 NOR_1 ITEX site Finse Norway 17 

28 NOR_2 Gudmedalen - low elevation Norway 7 

29 NOR_3 Kongsvoll Lower dry tundra Norway 5 

30 NOR_4 Kongsvoll Lower mesic tundra Norway 4 

31 NOR_5 Kongsvoll Upper mesic tundra Norway 5 

32 RUS_1 OTC experimental site, Eriophorum-Sphagnum bog Russia 8 

33 RUS_2 OTC experimental site, Sphagnum bog Russia 8 

34 SAU_1 Saudi Arabia Saudi Arabia 10 

35 SJM_1 Endalen - Cassiope heath Norway:Svalbard 19 

36 SJM_2 Endalen - Dryas heath Norway:Svalbard 18 

37 SJM_3 Endalen - Moss tundra Norway:Svalbard 19 

38 SJM_4 Endalen - Snowbed community Norway:Svalbard 10 

39 SJM_5 Svalbard_mesic Norway:Svalbard 12 
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40 SJM_6 Svalbard_moist Norway:Svalbard 14 

41 SJM_7 Svalbard_wet Norway:Svalbard 14 

42 SWE_1 Abisko Sweden 5 

43 SWE_2 Latnajaure – Mesic meadow Sweden 9 

44 SWE_3 Latnajaure – Dry heath Sweden 3 

45 SWE_4 Latnajaure – Dry meadow Sweden 5 

46 SWE_5 Latnajaure – Wet meadow Sweden 4 

47 SWE_6 Latnajaure – Tussock tundra Sweden 5 

48 SWE_7 Latnajaure – Wet meadow Sweden 5 

49 USA_1 Atqasuk ITEX Dry Site USA:Alaska 6 

50 USA_2 Atqasuk ITEX Wet Site USA:Alaska 6 

51 USA_3 Barrow ITEX Dry Site USA:Alaska 6 

52 USA_4 Barrow ITEX Wet Site USA:Alaska 6 

53 ZAF_1 Cathedral Peak - grassland052rburn South Africa 4 

54 ZAF_2 Cathedral Peak - grassland0annual South Africa 4 

55 ZAF_3 Cathedral Peak - grassland0biennual South Africa 4 

56 ZAF_4 Cathedral Peak - grassland0noburn South Africa 3 

57 ZAF_5 Cathedral Peak - grassland0slope South Africa 4 
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Detailed Methodological Information 

M1 - Calculation of Hedges' g 

Hedges' g was calculated as calculated by dividing the difference between the mean mass 

loss in the warming treatment (�̅�1) and ambient (�̅�2) by the pooled standard deviation: 

Hedges'g = 
(�̅�1 − �̅�2)

√((𝑛1 − 1) ∗ 𝑠1
2  +  (𝑛2 − 1) ∗ 𝑠2

2) / (𝑛1 + 𝑛2 − 2)
 

Eq. 3 

where n1 and n2 are sample size, and s12 and s22 are the sample variance of the warming 

treatment and ambient conditions, respectively.  

M2 - Handling of Macro-Environmental Factors 

To test the impact of macro-environment on the warming effect on decomposition, we first used 

multivariate linear mixed effects models (n=48) to explore whether the macro-environmental 

factors individually had a significant effect on the decomposition SMD (Table S6). However, 

as most environmental factors were confounded, we combined the macro-environmental 

factors to the underlying gradients using a Principal Component Analysis (PCA) on the scaled 

environmental variables using the R package FACTOMINER (v.2.4). We then used the four 

‘macro-environmental classes’ created based on the origin of the PC1 and PC2 variables as a 

separation line, as moderator in the following multivariate linear mixed effects models to test 

whether the four environmental classes differed in their warming effect on decomposition. We 

used this factor ‘class’ as interacting moderator in the model to test for interactions in the 

macro-environment and the natural and standardised plant litter dataset.  

M3 - Warming Methods and Micro-Environmental Effects 

To test differences in the warming effect between the different warming methods used in the 

different studies and experiments (Table S1, 2), we used ‘warming method’ as moderator in 

another multivariate linear mixed effects model. In this model, the macro-environmental class 

was not integrated because the warming methods were not evenly distributed across the four 

macro-environmental classes (e.g., more OTC studies in higher latitudes). To test for 

differences in the warming methods in their effect on micro-environment, we used linear mixed-

effects models (R package LMERTEST, v. 3.1-3) to test the overall effect of the categorical 

independent variable ‘warming method’ on the continuous dependent variables ‘degree of 

warming’ and ‘warming-induced changes in soil moisture’, respectively. We used Tukey HSD 

post-hoc tests (R packages MULTCOMP, v. 1.4-19 and EMMEANS, v. 1.7.5) to check for 
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significant differences between the warming methods in degree of warming and warming-

induced changes in soil moisture, respectively. We further tested with a linear regression for 

correlations between warming-induced changes in soil moisture and the degree of warming.  

In addition, we tested the site-specific drivers related to environmental conditions (absolute 

latitude and, altitude), experimental setup (duration of warming before the experiment, mesh 

size) as individual moderators fitting separate multivariate linear mixed-effects models 

(Table S5).  
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Macro-environmental factors 

Table S3 Correlation off the map-based macro-environmental climatic factors to the Principal component axes (PC1, PC2) together with the units and sources, including 

WorldClim2 = database of high spatial resolution global weather and climate data, SoilGrids = system for global digital soil mapping, CGIAR=Consortium of International 
Agricultural Research Centers, EarthEnv = Global, remote-sensing supported environmental layers for assessing status and trends in biodiversity, ecosystems, and climate, 

MODIS=Moderate Resolution Imaging Spectroradiometer. 

Variables 

Correlation 

coefficients Unit 
Global  

climate layer 
Source 

PCA1 PCA2 

Temperature           

Annual Mean Temperature 0.89 0.25 °C WorldClim2   

Max Temperature of Warmest Month 0.86 0.09 °C WorldClim2   

Air temperature isothermality 0.64 -0.19 unitless WorldClim2   

Mean Diurnal Range 0.56 -0.35 °C WorldClim2   

Mean Temperature of Coldest Quarter 0.81 0.28 °C WorldClim2   

Mean Temperature of Driest Quarter 0.56 0.12 °C WorldClim2   

Mean Temperature of Warmest Quarter 0.81 0.21 °C WorldClim2   

Mean Temperature of Wettest Quarter 0.57 0.15 °C WorldClim2   

Min Temperature of Coldest Month 0.68 0.33 °C WorldClim2   

Annual Temperature Range 0.08 -0.26 °C WorldClim2   

Temperature Seasonality -0.19 -0.15 °C WorldClim2   

Mean Temperature During Incubation Period 0.61 0.27 °C WorldClim2   

Precipitation           

Annual Precipitation 0.46 0.77 mm WorldClim2   

Precipitation of Coldest Quarter 0.20 0.82 mm WorldClim2   

Precipitation of Driest Month 0.19 0.87 mm WorldClim2   

Precipitation of Driest Quarter 0.24 0.88 mm WorldClim2   

Precipitation of Warmest Quarter 0.40 0.39 mm WorldClim2   

Precipitation of Wettest Month 0.51 0.41 mm WorldClim2   
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Precipitation of Wettest Quarter 0.51 0.46 mm WorldClim2   

Precipitation Seasonality 0.13 -0.63 unitless WorldClim2   

Sum Precipitation During Incubation Period -0.01 0.32 mm WorldClim2   

Soil           

Bulk density at 5 cm depth 0.73 -0.21 cg cm-3 SoilGrids https://www.soilgrids.org 

SOC Content at 5 cm depth -0.78 0.29 dg kg-1 SoilGrids https://www.soilgrids.org 

SOC Density at 5 cm depth -0.73 0.33 dg kg-1 SoilGrids https://www.soilgrids.org 

SOC Stock 0-5 cm depth -0.49 0.57 kg m² SoilGrids https://www.soilgrids.org 

Sum of Total Nitrogen at 5 cm depth -0.53 0.62 cg kg-1 SoilGrids 2.0 https://www.soilgrids.org 

Sum of Total Nitrogen at 15 cm depth -0.76 0.21 cg kg-1 SoilGrids 2.0 https://www.soilgrids.org 

Sum of Total Nitrogen at 30 cm depth -0.76 0.08 cg kg-1 SoilGrids 2.0 https://www.soilgrids.org 

Other           

Annal Mean Solar Radiation 0.77 -0.35 kJ/(m² day) WorldClim2   

Aridity Index -0.23 0.77 AI Value CGIAR http://www.cgiar-csi.org/data/global-aridity-and-pet-database 

Aspect Cosine 0.06 -0.15 degree TopoMed https://www.earthenv.org/topography 

Aspect Sine -0.07 0.34 degree TopoMed https://www.earthenv.org/topography 

Cover Barren -0.53 -0.19 % (0-100) Concensus https://www.earthenv.org/landcover 

Cover Cultivated 0.48 -0.31 % (0-100) Concensus https://www.earthenv.org/landcover 

Cover Deciduous Broadleaf Trees 0.09 0.56 % (0-100) Concensus https://www.earthenv.org/landcover 

Cover Evergreen Broadleaf Trees 0.14 0.22 % (0-100) Concensus https://www.earthenv.org/landcover 

Cover Evergreen Needleleaf Trees -0.02 0.16 % (0-100) Concensus https://www.earthenv.org/landcover 

Cover Herbaceous 0.01 -0.54 % (0-100) Concensus https://www.earthenv.org/landcover 

Cover Regularly Flooded -0.17 0.03 % (0-100) Concensus https://www.earthenv.org/landcover 

Cover Shrubs -0.20 -0.06 % (0-100) Concensus https://www.earthenv.org/landcover 

Eastness -0.09 0.11 index (-1 to 1) TopoMed https://www.earthenv.org/topography 

Elevation 0.15 -0.56 meters TopoMed https://www.earthenv.org/topography 

Fraction Photosynthetically Active Radiation 

(fPAR) 0.54 0.65 Fpar fraction MODIS https://explorer.earthengine.google.com/#detail/MODIS%2F006%2FMCD15A3H  

Soil water capacity at 5 cm depth -0.56 0.05 % SoilGrids https://www.soilgrids.org 

https://explorer.earthengine.google.com/#detail/MODIS%2F006%2FMCD15A3H
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Northness 0.28 -0.14 index (-1 to 1) TopoMed https://www.earthenv.org/topography 

Potential Evapotranspiration (PET) 0.88 -0.29 

PET Value 

(mm) CGIAR http://www.cgiar-csi.org/data/global-aridity-and-pet-database 

Saturated Water Content 5 cm depth -0.74 0.16 % SoilGrids https://www.soilgrids.org 

Soil pH (water) at 5 cm depth 0.34 -0.78 pH x 10 SoilGrids https://www.soilgrids.org 

            

 

Figure S2 (A) Global distribution of study sites coloured according to the four main macro-environmental classes derived from the principal component analysis. (B) Study sites 

plotted in a Whittaker Biome Diagram with dots for study sites coloured according to the four main macro-environmental classes.
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Table S4 Means and standard error (SE) of the map-based macro-environmental factors per macro-environmental class that are defined by the scores on the PCA axis and the 

correlation of these axis to climatic variables of temperature (temp), precipitation (prec),Table S4 Means and standard error (SE) of the map-based macro-environmental factors 

per macro-environmental class that are defined by the scores on the PCA axis and the correlation of these axis to climatic variables of temperature (temp), precipitation (prec), 

and soil organic carbon (SOC) that are either high (upward arrow) or low (downward arrow). 

Variables Unit 

▲ temp 
▲ prec 
▼ SOC 

▲ temp 
▼ prec 
▼ SOC 

▼ temp 
▲ prec 
▲ SOC 

▼ temp 
▼ prec 
▲ SOC 

mean   SE mean   SE mean   SE mean   SE 

Temperature                           

Annual Mean Temperature °C 9.3 ± 0.3 5.6 ± 0.5 0.3 ± 0.2 -2.2 ± 0.4 

Max Temperature of Warmest Month °C 24.6 ± 0.3 22.8 ± 0.5 15.5 ± 0.2 14.7 ± 0.5 

Isothermality unitless 31.1 ± 0.3 37.8 ± 0.4 25.4 ± 0.3 23.7 ± 0.5 

Mean Diurnal Range °C 9.8 ± 0.1 12.9 ± 0.1 7.4 ± 0.1 8.0 ± 0.2 

Mean Temperature of Coldest Quarter °C -0.9 ± 0.5 -4.4 ± 0.6 -9.1 ± 0.3 -13.5 ± 0.4 

Mean Temperature of Driest Quarter °C 3.0 ± 0.7 1.0 ± 0.8 -3.9 ± 0.4 -4.4 ± 1.0 

Mean Temperature of Warmest Quarter °C 19.2 ± 0.3 15.2 ± 0.5 10.8 ± 0.2 9.5 ± 0.5 

Mean Temperature of Wettest Quarter °C 13.2 ± 0.5 12.5 ± 0.4 8.0 ± 0.4 3.7 ± 0.6 

Min Temperature of Coldest Month °C -7.5 ± 0.6 -12.2 ± 0.6 -14.2 ± 0.3 -19.1 ± 0.4 

Annual Temperature Range °C 32.1 ± 0.5 35.0 ± 0.5 29.7 ± 0.5 33.8 ± 0.6 

Temperature Seasonality °C 819.1 ± 15.0 799.5 ± 17.5 807.1 ± 15.0 945.5 ± 19.8 
Mean Temperature during Incubation 
Period °C 11.1 ± 0.5 6.7 ± 0.6 1.4 ± 0.4 2.4 ± 0.5 

Precipitation                           

Annual Precipitation mm 1172.4 ± 24.4 554.2 ± 15.3 642.1 ± 13.7 357.5 ± 13.1 

Precipitation of Coldest Quarter mm 241.6 ± 7.1 67.1 ± 4.2 141.6 ± 5.5 58.5 ± 2.7 

Precipitation of Driest Month mm 61.0 ± 1.3 13.4 ± 1.0 31.5 ± 0.7 11.0 ± 0.7 

Precipitation of Driest Quarter mm 204.4 ± 3.7 49.9 ± 3.2 103.4 ± 2.2 42.6 ± 2.2 

Precipitation of Warmest Quarter mm 337.4 ± 12.4 224.4 ± 8.6 208.9 ± 2.6 140.9 ± 7.2 
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Precipitation of Wettest Month mm 142.5 ± 5.8 95.7 ± 2.9 85.1 ± 1.4 57.0 ± 2.6 

Precipitation of Wettest Quarter mm 399.8 ± 15.7 250.3 ± 7.4 228.1 ± 3.9 148.1 ± 6.9 

Precipitation Seasonality unitless 23.9 ± 1.7 63.5 ± 2.7 32.9 ± 0.6 47.4 ± 2.2 
Sum Precipitation during Incubation 
Period mm 820069.8 ± 56210.0 490908.5 ± 34505.2 912969.4 ± 47987.0 367516.6 ± 35516.5 

Soil                           

Bulk density at 5 cm depth cg cm-3 905.0 ± 17.6 1070.4 ± 20.9 504.9 ± 12.4 736.7 ± 11.1 

SOC Content at 5 cm depth dg kg-1 78.9 ± 3.8 48.1 ± 2.1 142.8 ± 4.3 132.3 ± 3.8 

SOC Density at 5 cm depth dg kg-1 620.9 ± 19.3 447.4 ± 15.4 783.2 ± 8.8 748.9 ± 10.3 

SOC Stock 0-5 cm depth kg m² 41.2 ± 1.3 25.2 ± 0.8 38.1 ± 0.5 42.7 ± 0.7 

Sum of Total Nitrogen at 5 cm depth cg kg-1 8776.1 ± 321.6 4561.7 ± 175.2 9632.6 ± 103.5 7817.3 ± 200.2 

Sum of Total Nitrogen at 15 cm depth cg kg-1 3023.5 ± 78.2 2220.4 ± 61.1 5676.7 ± 163.6 5483.2 ± 191.8 

Sum of Total Nitrogen at 30 cm depth cg kg-1 2007.3 ± 44.4 1639.6 ± 39.6 3506.9 ± 112.3 4508.9 ± 165.8 

Other                           

Annual Mean Solar Radiation kJ/(m² day) 12532.0 ± 124.6 15999.4 ± 107.2 8170.1 ± 44.4 10200.2 ± 272.5 

Aridity Index AI Value 12066.2 ± 305.5 4484.7 ± 137.5 12164.9 ± 285.0 6978.2 ± 310.7 

Aspect Cosine degree 0.1 ± 0.0 0.0 ± 0.1 0.0 ± 0.1 0.3 ± 0.1 

Aspect Sine degree 0.2 ± 0.0 -0.2 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.0 

Cover Barren % (0-100) 1.8 ± 0.4 5.3 ± 1.0 12.7 ± 1.3 26.2 ± 1.9 

Cover Cultivated % (0-100) 12.1 ± 1.5 26.1 ± 2.1 0.2 ± 0.1 3.7 ± 0.9 

Cover Deciduous Broadleaf Trees % (0-100) 23.8 ± 2.1 1.5 ± 0.2 5.9 ± 0.9 1.4 ± 0.3 

Cover Evergreen Broadleaf Trees % (0-100) 2.3 ± 0.5 0.0 ± 0.0 1.9 ± 0.7 0.0 ± 0.0 

Cover Evergreen Needleleaf Trees % (0-100) 6.5 ± 1.0 12.0 ± 1.8 17.2 ± 2.0 2.0 ± 0.3 

Cover Herbaceous % (0-100) 4.0 ± 1.4 40.8 ± 2.0 8.3 ± 0.9 24.1 ± 2.3 

Cover Regularly Flooded % (0-100) 0.0 ± 0.0 0.0 ± 0.0 4.1 ± 1.3 0.5 ± 0.2 

Cover Shrubs % (0-100) 0.1 ± 0.1 6.1 ± 1.1 19.7 ± 1.1 5.2 ± 1.2 

Eastness 
index (-1 to 

1) 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 

Elevation meters 348.8 ± 31.2 2585.0 ± 111.3 436.8 ± 30.9 1034.8 ± 114.5 
Fraction Photosynthetically Active 
Radiation (fPAR) 

Fpar 
fraction 49.2 ± 0.8 28.4 ± 0.6 26.0 ± 0.5 17.6 ± 0.6 
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Soil water capacity at 5 cm depth % 22.6 ± 0.4 22.9 ± 0.3 27.0 ± 0.5 28.2 ± 0.2 

Northness 
index (-1 to 

1) 0.1 ± 0.0 0.3 ± 0.0 0.0 ± 0.0 -0.1 ± 0.0 

Potential Evapotranspiration (PET) 
PET value 

(mm) 
987.5 ± 14.0 1305.1 ± 22.5 534.4 ± 5.7 655.6 ± 27.5 

Saturated Water Content 5 cm depth % 57.2 ± 0.5 53.0 ± 0.6 69.2 ± 0.4 63.1 ± 0.3 

Soil pH (water) at 5 cm depth pH x 10 52.9 ± 0.5 68.3 ± 0.7 49.7 ± 0.3 61.0 ± 0.6 
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Table S5 Results of single effects multivariate linear mixed-effects models for reported and measured site-specific 

environmental factors with the standardised mean difference of decomposition (SMD) as dependent and reported 

or measured site-specific environmental factors as predictor. Values in bold indicate significant effect of the predictor 

on decomposition SMD (p ≤ 0.05). The number of effect sizes (k) used in the models, lower and upper bounds of 

the 95% confidence intervals, and heterogeneity explained by the model structure (QM) are reported. 

Predictor k slope  95%CI 
Test of Moderators  

(Qm, p-value) 

Absolute Latitude 637 -0.002 -0.01, 0.01 0.25, p = 0.620 

Duration of warming before experiment 637 0.06 -0.01, 0.12 3.23, p = 0.072 

Mesh size 637 -0.045 -0.09, -0.003 4.41, p = 0.036 

Carbon to Nitrogen ratio 428 0.001 -0.00, 0.00 0.94, p = 0.33 

Ambient decomposability (mass loss % d-1) 613 -0.243 -0.45, -0.04 5.60, p = 0.018 

Table S6 Map-based macro-environmental results of single multivariate linear mixed-effects models with the 

standardised mean difference of decomposition (SMD) as dependent variable and the map-derived macro-

environmental factors as predictor. Values in bold indicate significant effect of the predictor on decomposition SMD 

(p ≤ 0.05). The number of effect sizes (k) used in the models, lower and upper bounds of the 95% confidence 

intervals, and heterogeneity explained by the model structure (QM) are reported. 

Predictor 
k slope  95%CI 

Test of 
Moderators  

(Qm, p-value) 

Temperature         

Annual Mean Temperature 635 0.010 -0.00, 0.02 2.07, p = 0.150 

Max Temperature of Warmest Month 635 0.008 -0.01, 0.02 1.21, p = 0.270 

Air temperature isothermality 635 0.001 -0.01, 0.01 0.02, p = 0.894 

Mean Diurnal Range 635 -0.016 -0.05, 0.02 0.89, p = 0.375 

Mean Temperature of Coldest Quarter 635 0.007 -0.00, 0.02 1.42, p = 0.233 

Mean Temperature of Driest Quarter 635 0.003 -0.00, 0.01 0.68, p = 0.411 

Mean Temperature of Warmest Quarter 635 0.012 -0.00, 0.03 2.37, p = 0.124 

Mean Temperature of Wettest Quarter 635 0.006 - 0.01, 0.02 0.83, p = 0.361 

Min Temperature of Coldest Month 635 0.008 -0.00, 0.02 1.88, p = 0.171 

Annual Temperature Range 635 -0.003 -0.02, 0.01 0.22, p = 0.639 

Temperature Seasonality 635 -0.000 -0.00, 0.00 0.00, p = 0.981 

Mean Temperature during Incubation Period 625 -0.007 -0.02, -0.00 2.08, p = 0.149 

Precipitation 
    

Annual Precipitation 635 0.000 -0.00, 0.00 0.00, p = 0.974 

Precipitation of Coldest Quarter 635 0.000 -0.00, 0.00 1.13, p = 0.288 

Precipitation of Driest Month 635 0.004 0.00, 0.01 3.97, p = 0.046 

Precipitation of Driest Quarter 635 0.001 -0.00, 0.00 3.33, p = 0.068 

Precipitation of Warmest Quarter 635 -0.000 -0.00, 0.00 0.36, p = 0.550 
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Precipitation of Wettest Month 635 0.000 -0.00, 0.00 0.00, p = 0.973 

Precipitation of Wettest Quarter 635 -0.000 -0.00, 0.00 0.01, p = 0.906 

Precipitation Seasonality 635 0.001 -0.00, 0.00 0.39, p = 0.535 

Sum Precipitation during Incubation Period 625 0.000 -0.00, 0.00 1.27, p = 0.259 

Soil 
    

Bulk density at 5 cm depth 635 0.000 -0.00, 0.00 0.04, p = 0.844 

SOC Content at 5 cm depth 635 0.000 -0.02, 0.01 0.03, p = 0.855 

SOC Density at 5 cm depth 635 0.000 -0.00, 0.00 0.20, p = 0.656 

SOC Stock 0-5 cm depth 635 0.000 -0.01, 0.01 0.01, p = 0.904 

Sum of Total Nitrogen at 5 cm depth 604 0.000 -0.00, 0.00 0.01, p = 0.904 

Sum of Total Nitrogen at 15 cm depth 604 0.000 -0.00, 0.00 0.00, p = 0.997 

Sum of Total Nitrogen at 30 cm depth 604 0.000 -0.00, 0.00 0.03, p = 0.861 

Other 
    

Annal Mean Solar Radiation 635 0.000 -0.00, 0.00 0.36, p = 0.547 

Aridity Index 635 0.000 -0.00, 0.00 0.30, p = 0.583 

Aspect Cosine 635 -0.031 -0.13, 0.07 0.39, p = 0.532 

Aspect Sine 635 -0.103 -0.25, 0.05 1.81, p = 0.179 

Cover Barren 635 0.003 -0.01, 0.003 0.90, p = 0.342 

Cover Cultivated 635 -0.002 -0.01, 0.003 0.49, p = 0.483 

Cover Deciduous Broadleaf Trees 635 0.004 0.002, 0.01 1.49, p = 0.222 

Cover Evergreen Broadleaf Trees 635 -0.009 -0.01, 0.03 0.78, p = 0.372 

Cover Evergreen Needleleaf Trees 635 -0.002 -0.01, 0.00 0.23, p = 0.634 

Cover Herbaceous 635 0.002 -0.00, 0.00 0.01, p = 0.912 

Cover Regularly Flooded 635 0.004 -0.00, 0.01 1.14, p = 0.285 

Cover Shrubs 635 0.000 -0.01, -0.01 0.02, p = 0.884 

Eastness 635 -0.006 -0.35, 0.34 0.00, p = 0.974 

Elevation 635 -0.000 -0.00, 0.00 1.96, p = 0.162 

Fraction Photosynthetically Active Radiation 
(fPAR) 

635 0.000 -0.01, 0.01 0.01, p = 0.911 

Soil water capacity at 5 cm depth 635 -0.001 -0.02, 0.02 0.01, p = 0.923 

Northness 635 -0.240 -0.44, -0.04 5.44, p = 0.020 

Potential Evapotranspiration (PET) 635 0.000 -0.00, 0.00 1.97, p = 0.161 

Saturated Water Content 5 cm depth 635 -0.002 -0.01, 0.01 0.12, p = 0.732 

Soil pH (water) at 5 cm depth 635 -0.003 -0.01, 0.01 0.24, p = 0.625 
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Figure S3 Effects of experimental warming on plant litter decomposition. The pooled average decomposition 

standardised mean difference (SMD, Hedges' g; outlined circles) and 95% confidence intervals (black error bars) 

resulting from warming for the macro-environmental classes cold and dry (outlined circles), cold and wet (outlined 

squares), warm and dry (outlined diamonds), and warm and wet (outlined triangles) for the natural litter (blue, 

number of effect sizes k=523) and the standardised plant litter, separated into rooibos (red, k=57) and green tea 

(green, k=57). Each coloured dot is an individual effect size (non-outlined circles) with dot size representing its 

precision (the inverse of the standard error, larger points having greater influence on the model). Asterisks indicate 

that the overall pooled average SMD is significantly different from zero (**p < 0.01). 

Table S7 The impact of the four macro-environmental classes four macro-environmental classes distinguished by 

different combinations of high (▲) or low (▼) of temperature (temp), precipitation (prec) and soil organic carbon 
(SOC) and the natural and the standardised plant litter (i.e., green and rooibos tea) on the effect of warming on 
decomposition (SMD). Bold values indicate a significant effect of the macro-environmental class and litter type on 
SMD (p ≤ 0.05 or CI ≠ 0). Number of effect sizes (k), p-values, and 95%-confidence interval are shown.  

Macro-environment litter type 
SMD 

estimate 
k p-value 95%CI 

▲ temp ▲ prec ▼ SOC Natural litter -0.07 155 0.703 [-0.45; 0.30] 

  Rooibos -0.15 5 0.666 [-0.82; 0.52] 

  Green 0.01 5 0.981 [-0.67; 0.68] 

▲ temp ▼ prec ▼ SOC Natural litter -0.61 150 <0.001 [-0.94; -0.28] 

  Rooibos 0.21 10 0.382 [-0.26; 0.68] 

  Green 0.31 10 0.180 [-0.15; 0.77] 

▼ temp ▲ prec ▲ SOC Natural litter 0.35 126 0.167 [-0.15; 0.85] 

  Rooibos 0.12 15 0.607 [-0.33; 0.56] 

  Green 0.24 15 0.285 [-0.20; 0.69] 

▼ temp ▼ prec ▲ SOC Natural litter 0.18 101 0.290 [-0.15; 0.50] 

  Rooibos 0.07 27 0.659 [-0.25; 0.40] 

  Green 0.09 15 0.575 [-0.23; 0.42] 

** 
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Figure S4 Impacts of experimentally induced changes in micro-environment on decomposition. Effect of (A) degree 

of warming (i.e., absolute temperature difference between warmed and control plots, k=315); (B) warming-induced 

changes in soil moisture with warming (i.e., difference between warmed and control plots in soil moisture, k=315) 

on decomposition SMD; and (C) mesh size of the litter bags in mm with 1 mm as the minimal threshold for 

macrofauna exclusion (Sagi and Hawlena 2024). Each grey outlined circle is an individual effect size with circle size 

representing its precision (the inverse of the standard error, larger points having greater influence on the model). 

Asterisks indicate that the overall pooled average SMD is significantly different from zero. Solid lines indicate 

regression lines with shaded areas representing the 95%CI (***p < 0.001, **p < 0.01). Dashed lines indicate no 

significant relationship (n.s. = not significant).  

 

 

Figure S5 Impact of warming methods on decomposition SMD. The pooled average decomposition standardised 

mean difference (SMD, Hedges' g; outlined circles) and 95% confidence intervals (black error bars) resulting from 

warming for the different experimental warming methods (see Table S1). Each coloured dot is an individual effect 

size (non-outlined circles) with dot size representing its precision (the inverse of the standard error, larger points 

having greater influence on the model). Letters indicate significant differences between the pooled average SMD 

of warming methods. Asterisks indicate a significant deviation of decomposition SMD from zero (*p ≤ 0.05). 
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Plant functional types and plant organ types interacting with the position of incubation 

(on soil surface, buried in the soil) 

 

Figure S6 Differences in C:N ratio and warming effect on decomposition across plant functional types. (A) Plant 

functional types ranked based on carbon to nitrogen ratios (C:N ratios). Large, coloured points represent mean C:N 

ratios and small transparent dots individual plant species. (B) The pooled average decomposition standardized 

mean difference (SMD, Hedges' g, black outlined circles) and 95% confidence intervals (95%CI, black error bars) 

per plant functional type of natural litter and standardised plant litter combining data from above and below ground 

incubations. Different letters indicate differences in (A) mean C:N ratio and (B) decomposition SMD between the 

different plant functional litter types, as well as the standard material green and rooibos tea. Asterisks indicate that 

the overall pooled average SMD is significantly different from zero (*p < 0.05, **p < 0.01, ***p < 0.001). 
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Table S8 The pooled average decomposition standardised mean difference (SMD) of different plant functional 

types of the natural litter and natural and the standardised plant litter (i.e., green and rooibos tea) with respect to 

the position of incubation (i.e., on soil surface, buried in the soil) as well as the number of effect sizes (k) for each 

category, the p-value and 95%-confidence interval describing whether the pooled average SMD significantly differs 

from zero (in bold, p ≤ 0.05). For forbs and nonvascular plants no reports of buried or root litter were available. 

Plant functional type Position  
incubated 

k 
SMD 

estimate 
p-value 95%CI 

Forb surface 36 -0.19 0.114 [-0.42; 0.05] 

Graminoid root buried 49 0.55 <0.001 [0.27; 0.84] 

Graminoid shoot/leaf surface 151 -0.25 0.010 [-0.43; -0.06] 

Green tea buried 57 0.13 0.133 [-0.04; 0.30] 

Nonvascular surface 27 0.10 0.589 [-0.26; 0.45] 

Rooibos tea buried 57 0.06 0.469 [-0.11; 0.23] 

Woody broadleaf buried 48 -0.05 0.799 [-0.44; 0.34] 

Woody broadleaf surface 192 -0.02 0.874 [-0.21; 0.18] 

Woody needle surface 21 -0.44 0.021 [-0.82; -0.07] 

Woody root buried 5 0.35 0.337 [-0.37; 1.08] 

 

Figure S7 Differences in ambient decomposability, measured as ambient mass loss rate per day (% d-1), for the 

plant functional types and plant organs of natural plant litter and the standardised tea material (i.e., rooibos and 

green tea) for each of the four macro-environmental classes. Colours indicate the four macro-environmental classes 

of temperature (temp), precipitation (prec) and soil organic carbon (SOC) that are either high (▲) or low (▼), 

consistent with Figure 3 in the main text. Different letters indicate significant differences in decomposition SMD 

between plant functional types. 


