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I can believe things that are true and things that aren’t true and I can believe things where nobody
knows if they’re true or not.

I believe that life is a game, that life is a cruel joke, and that life is what happens when you’re
alive and that you might as well lie back and enjoy it.

—Neil Gaiman, American Gods
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Abstract

Mass spectrometry is an advanced analytical technique that can be used to identify and quantify
the protein content of complex biological samples. Unfortunately mass spectrometry-based
proteomics experiments can be subject to a large variability, which forms an obstacle to obtaining
accurate and reproducible results. Therefore, to inspire confidence in the generated results a
comprehensive and systematic approach to quality control is an essential requirement.

In this dissertation we present several computational solutions for quality control of mass
spectrometry-based proteomics. In order to successfully employ comprehensive quality control
procedures to assess the validity of the experimental results three basic requirements need to be
fulfilled: (i) descriptive quality control metrics that characterize the experimental performance
should be defined,; (ii) the basic technical infrastructure to unambiguously store and communicate
quality control data has to be available; and (iii) advanced analysis techniques are needed to
derive actionable insights from the quality control data.

First, we show how secondary metrics that are not related to the spectral data, such as instrument
metrics and environment variables, provide a complementary view on the experimental quality.
We present the user-friendly Instrument MONitoring DataBase (iMonDB) toolset to manage and
visualize these secondary metrics. Second, we introduce the Human Proteome Organization
(HUPO) - Proteomics Standards Inititative (PSI) Quality Control working group, whose aim it
is to provide a unifying framework for quality control data. We show how the standard qcML
file format for mass spectrometry quality control data can be used as the focal point of a strong
community-driven ecosystem of quality control tools and methodologies. Third, we present
an unsupervised outlier detection workflow to automatically discriminate low-quality mass
spectrometry experiments from high-quality mass spectrometry experiments. We show how
this workflow can replicate expert knowledge in a data-driven fashion, enabling the substitution
of time-consuming manual analyses by automated decision-making. Finally, we show how
approximate nearest neighbors indexing can be used to speed up spectral library open modification
searching by several orders of magnitude, leading to a record number of spectrum identifications
in a minimal processing time.

We conclude with an overview of potential future steps that can be taken to further improve
computational quality control methods for mass spectrometry-based proteomics, as well as
discussing some of the opportunities to apply advanced machine learning techniques in this field
with related challenges.

1ii






Samenvatting

Massaspectrometrie is een geavanceerde analytische techniek die gebruikt kan worden om
eiwitten in complexe biologische stalen te identificeren en kwantificeren. De resultaten van
een massaspectrometrie-gebaseerde proteoomanalyse kunnen echter fel variéren, hetgeen een
belemmering vormt voor de nauwkeurigheid en de reproduceerbaarheid van de resultaten.
Opdat onderzoekers vertrouwen kunnen hebben in de gegenereerde resultaten is het daarom
noodzakelijk om op een grondige en systematische manier aan kwaliteitscontrole te doen.

In dit proefschrift rijken we enkele computationele oplossingen aan voor de kwaliteitscontrole
van massaspectrometrie-gebaseerde proteoomanalyses. Hierbij focussen we op drie fundamentele
eisen waaraan voldaan moet worden: (i) beschrijvende kwaliteitsmetingen die de experimentele
performantie kenmerken moeten gedefinieerd worden; (ii) de technische infrastructuur om op
een eenduidige wijze kwaliteitsgerelateerde informatie op te slaan en te communiceren moet
beschikbaar zijn; en (iii) geavanceerde analysetechnieken zijn nodig om handelbare inzichten af
te leiden uit de kwalitatieve data.

In eerste instantie tonen we aan hoe secundaire metingen die niet van de spectrale data afgeleid
zijn, zoals instrumentparameters en omgevingsvariabelen, een aanvullende blik op de experimen-
tele kwaliteit bieden. We presenteren de gebruiksvriendelijke Instrument MONitoring DataBase
(iMonDB) software voor het beheren en visualiseren van deze secundaire metingen. Vervol-
gens introduceren we de Quality Control werkgroep van het Human Proteome Organization
(HUPO) - Proteomics Standards Inititative (PSI), dewelke als doel heeft om een universeel kader
voor kwaliteitscontrole te ontwikkelen. We bespreken hoe het qcML standaard bestandsformaat
voor de opslag van kwaliteitsgerelateerde informatie voor massaspectrometrie experimenten
gebruikt kan worden als het centrale element van het ecosysteem van tools en methodieken
voor kwaliteitscontrole. Hierna presenteren we een outlier detectie workflow die automatisch
laagkwalitatieve experimenten van hoogkwalitatieve experimenten kan onderscheiden en we
laten zien hoe deze workflow manuele interventies kan vervangen. Tot slot bespreken we hoe
indexeringstechnieken gebruikt kunnen worden om het identificeren van ongekende spectra met
behulp van een spectrale bibliotheek te optimaliseren. Dit stelt ons in staat om een recordaantal
spectra te identificeren in een minimale verwerkingstijd.

We sluiten af met een overzicht van de potentiéle stappen die in de toekomst gezet kunnen
worden ter verdere verbetering van computationele methodes voor kwaliteitscontrole van
massaspectrometrie-gebaseerde proteoomanalyses. Verder bespreken we enkele uitdagingen om
geavanceerde machine learning technieken toe te passen op dit gebied.






Contents

Acknowledgments i
Abstract iii
Samenvatting \%
List of publications [
List of figures xi
List of tables xiii
List of abbreviations XV
1 Introduction 1
1.1 Outline of the dissertation . . . . .. .. .. ... ... . ... ... .. .. .. 1

2 Quality control in mass spectrometry-based proteomics 5
21 Introduction . .. . ... ... ... 5

2.2 Managing LC-MS variability through quality control . . . . .. ... ... ... 8
221 TypesofQCsamples . . . . . . ... ... 8

2.2.2  Incorporating QCsamples . . . . . . .. ... ... L. 9

2.23  Quality control throughout the experimental workflow . . . . . . . . .. 10

23 Conclusion . . . .. .. L 18

3 Computational quality control tools 19
3.1 Introduction . . ... ... .. 19
3.1.1  Quality control metrics . . . . .. .. ... L 20

3.2 Quality controltools . . . . ... ... 23
3.2.1 Tools evaluating individual experiments . . . . . ... ... ... .... 23

3.2.2  Tools comparing groups of experiments . . . .. ... .. ... ..... 25

3.23  Tools for longitudinal tracking . . . .. ... ... ... ... ... ... 27

324 Othertools . . ... ... . ... ... 29

3.3 Metricsevaluation . . . . . .. L L L 29

3.4 Using QC metrics for decision-making . . . ... .. ... ... .. ... ... 30

3.5 Conclusion . . . . ... 33

4 Monitoring secondary quality control metrics 35
4.1 Introduction . . . . . .. ... 36

4.2 Monitoring secondary QC metrics . . . . . . ... ... L. 37
421 Instrument monitoring database . . ... ... ... .. ... ... ... 37

4.2.2  Software implementations . . . . . ... ... .. L L L. 40

423 Casestudy . .. ... ... . 43

43 Conclusions . . . . ... ... 48

vii



Contents

5 Making quality control more accessible 49
51 Introduction . . ... .. ... ... 50

5.2 Quality control for biological mass spectrometry . . . . . ... ... ... .... 51

5.3 A community-driven standard file format for QCdata . . . . . . .. .. ... .. 52
5.3.1  The jqcML Java API for the qcML standard . . . . . . . ... ... ... 54

5.4 Broadening the applicability of quality control . . . . . . ... ... ... .... 57

55 Conclusions . . ... .. 58

6 Unsupervised quality assessment of experiments 59
6.1 Introduction . ... ... ... .. ... 60

6.2 Quality control metrics . . . . . . . ... 61
6.2.1 Experimentaldata . ... .. ... ... . ... ... ... ... 61

6.2.2  Metrics generation . . . . .. ... 62

6.23 Preprocessing . . . . . ... ... 62

6.24 Visualization . .. ... .. ... .. ... 66

6.3 Quality analysis . . . . ... .. ... 68
6.3.1 Outlierdetection . . . .. ... ... ... ... ... ... ... 70

6.3.2  Outlier interpretation . . . . . . ... ... ... ... . . . 76

6.4 Software availability . . . . . .. ... 89

6.5 Conclusions . . .. ... ... . ... e 89

7 Optimized open modification spectral library searching 91
7.1 Introduction . . .. ... . ... 91

7.2 Spectral library indexing . . . . . ... ... 93
7.2.1  Approximate nearest neighbor indexing . . . . .. ... ... ... ... 93

7.2.2  Spectral library searching . . . .. ... ... .. ... .. ... .. 94

7.3 Speeding up open modification searching . . . . . .. .. ... .. 0L 97
7.3.1 Experimentaldata . ... ... ... ... ... ... .. ... ... 97

732 Codeavailability . . ... ... ... ... ... .. 99

7.3.3  ANN spectral library searching . . . . . .. ... ... . ... ...... 99

74 Conclusions . . .. ... 101

8 Conclusion 103
8.1 Summary of contributions . . . ... ... L L L 103

82 TFuturework . . ... .. ... 104
Bibliography 109

viii



List of publications

Pieter Kelchtermans, Wout Bittremieux, Kurt De Grave, Sven Degroeve, et al. “Machine
Learning Applications in Proteomics Research: How the Past Can Boost the Future”. In:
PROTEOMICS 14 (4-5 Mar. 2014), pp. 353-366. DOI: 10.1002/pmic.201300289.

Wout Bittremieux, Pieter Kelchtermans, Dirk Valkenborg, Lennart Martens, et al. “jgcML: An
Open-Source Java API for Mass Spectrometry Quality Control Data in the qcML Format”. In:
Journal of Proteome Research 13.7 (July 3, 2014), pp. 3484-3487. pDO1: 10.1021/pr401274z.

Mathias Walzer, Lucia Espona Pernas, Sara Nasso, Wout Bittremieux, et al. “qcML: An Ex-
change Format for Quality Control Metrics from Mass Spectrometry Experiments”. In: Molecu-
lar & Cellular Proteomics 13.8 (Aug. 1, 2014), pp. 1905-1913. DOTI: 10.1074/mcp.M113.035907.

Trung Nghia Vu, Wout Bittremieux, Dirk Valkenborg, Bart Goethals, et al. “Efficient Reduction
of Candidate Matches in Peptide Spectrum Library Searching Using the Top k Most Intense
Peaks”. In: Journal of Proteome Research 13.9 (Sept. 5, 2014), pp. 4175-4183. por1: 10.1021/
pr401269z.

Stefan Naulaerts, Pieter Meysman, Wout Bittremieux, Trung Nghia Vu, et al. “A Primer to
Frequent Itemset Mining for Bioinformatics”. In: Briefings in Bioinformatics 16.2 (Mar. 2015),
pp- 216-231. DO1: 10.1093/bib/bbt074.

Wout Bittremieux, Hanny Willems, Pieter Kelchtermans, Lennart Martens, et al. “iMonDB:
Mass Spectrometry Quality Control through Instrument Monitoring”. In: Journal of Proteome
Research 14.5 (May 1, 2015), pp. 2360-2366. DOT: 10.1021/acs. jproteome.5b00127.

Pieter Meysman, Yvan Saeys, Ehsan Sabaghian, Wout Bittremieux, et al. “Discovery of Signifi-
cantly Enriched Subgraphs Associated with Selected Vertices in a Single Graph”. In: Proceedings
of the 14th International Workshop on Data Mining in Bioinformatics - BIOKDD ’15. Sydney,
Australia, Aug. 10, 2015, p. 8.

Wout Bittremieux, Pieter Meysman, Lennart Martens, Dirk Valkenborg, et al. “Unsupervised
Quality Assessment of Mass Spectrometry Proteomics Experiments by Multivariate Quality
Control Metrics”. In: Journal of Proteome Research 15.4 (Apr. 1, 2016), pp. 1300-1307. poO1:
10.1021/acs. jproteome.6b00028.

Evelyne Maes, Pieter Kelchtermans, Wout Bittremieux, Kurt De Grave, et al. “Designing
Biomedical Proteomics Experiments: State-of-the-Art and Future Perspectives”. In: Expert
Review of Proteomics 13.5 (Apr. 25, 2016), pp. 495-511. DO1: 10.1586/14789450.2016.1172967.

Pieter Meysman, Yvan Saeys, Ehsan Sabaghian, Wout Bittremieux, et al. “Mining the Enriched
Subgraphs for Specific Vertices in a Biological Graph”. In: IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics (June 7, 2016), p. 1. Do1: 10.1109/TCBB.2016. 2576440.

Wout Bittremieux, Dirk Valkenborg, Lennart Martens, and Kris Laukens. “Computational
Quality Control Tools for Mass Spectrometry Proteomics”. In: PROTEOMICS (Early view
Oct. 17, 2016). DOI: 10.1002/pmic.201600159.

ix


http://dx.doi.org/10.1002/pmic.201300289
http://dx.doi.org/10.1021/pr401274z
http://dx.doi.org/10.1074/mcp.M113.035907
http://dx.doi.org/10.1021/pr401269z
http://dx.doi.org/10.1021/pr401269z
http://dx.doi.org/10.1093/bib/bbt074
http://dx.doi.org/10.1021/acs.jproteome.5b00127
http://dx.doi.org/10.1021/acs.jproteome.6b00028
http://dx.doi.org/10.1586/14789450.2016.1172967
http://dx.doi.org/10.1109/TCBB.2016.2576440
http://dx.doi.org/10.1002/pmic.201600159




List of figures

2.1
2.2
2.3
2.4
2.5

31
3.2
3.3

4.1
4.2
4.3
44
4.5
4.6

5.1
5.2
53

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

7.1
7.2
7.3
7.4
7.5

The LC-MS experimental workflow . . . . .. ... ... ... .. .. ... ... 6
Sources of variability in an LC-MS experiment . . . . . ... ... ... ..... 7
Incorporating QC samples in the experimental workflow . . ... ... ... .. 10
The most frequently observed modifications in the PRIDE database. . . . . . . . 12
Evaluating the LC gradient and the MS dynamic range. . . . .. ... ... ... 16
Difference between intra-experiment and inter-experiment QC metrics . . . . . 21
QC metrics at different stages of an experiment . . . .. ... ... ... ... 22
Classification performance of various types of QC metrics . . .. ... ... .. 32
Overview of the QC monitoring functionality . . . ... ... ... ... .... 38
The iMonDB entity-relationship model . . . .. ... ... ... .. ... .... 38
Difference between tune method and status log values . . . .. ... ... ... 42
The iMonDB Viewer . . . .. ... . .. . ... . 43
Event information can be manually added . . . . ... .. ... ... ...... 44
Correlation between instrument parameters and ambient temperature . . . . . . 47
The qcML format functions as focal point for all QC applications. . . . ... .. 52
jgcML class diagram . . . . . . . . . ... 55
Schematic of the jqcML architecture . . . . . . ... ... ... ... ... .... 56
Metrics correlation matrices . . . . . ... .. Lo L Lo oL 65
Multidimensional metric visualizations . . . . .. ... ... ... .. .. .... 69
Outlier score histogram . . . . . . .. ... ... . L 71
Outlier detection ROC curves . . . . ... ... . ... 74
Outlier score densities . . . . . .. .. ... . L L 76
Outlier detection AUC versus size of local neighborhood . . . . . ... ... .. 78
Outlier score threshold versus sensitivity and specificity . . . ... ... .. .. 80
Outlying experiment interpretation . . . . . .. .. ... .. ... ........ 81
Outlying experiment interpretation . . . . .. ... ... ... ... ....... 83
Outlying experiment interpretation . . . . ... ... ... ... ......... 84
TCGA outlier score histogram . . . . . ... ... ... ... ... ... .. ... 85
Difference in the number of PSM for the outlying experiments . . . . . . . . .. 88
Spectral library size evolution . . . . ... ... ... ... .. .. ... 93
ANNssearching . . . ... ... ... ... 95
Dot product spectral matching . . . . . ... ... ... o oL 98
Open modification searching . . . . . ... .. ... ... ... ... ... ... 100
OMS timing requirements . . . . . . . ... ... 101

xi






List of tables

31

4.1

6.1
6.2
6.3
6.4
6.5

QCtoolsoverview . . . . . . . . .. 24
List of supported instruments . . . . . . ... ... Lo 40
Data characteristics . . . . . . . .. .. . 62
QuaMeter ID-free QC metrics . . . . . . . . . . . ... ... 63
TCGAPCAloadings. . . . . . oo it e 67
Frequent outlier subspaces . . . . . ... ... ... Lo 86
Outlier subspace identification p-values . . . . . .. ... ... ... ... ... 87

xiii






List of abbreviations

ABRF Association of Biomolecular Resource Facilities
AGC automatic gain control

ANN approximate nearest neighbors

Annoy Approximate Nearest Neighbors Oh Yeah
ANOVA analysis of variance

API application program interface

ASMS American Society for Mass Spectrometry
AUC area under the curve

BSA bovine serum albumin

ConvNet convolutional neural network

CPTAC Clinical Proteomic Tumor Analysis Consortium
cRAP common Repository of Adventitious Proteins
Cv controlled vocabulary

DDA data-dependent acquisition

DIA data-independent acquisition

DL deep learning

ELN electronic lab notebook

ESI electrospray ionization

FDR false discovery rate

FWHM full width at half maximum

GAN generative adversarial network

GIS geographic information system

GPM Global Proteome Machine

GPU graphics processing unit

GUI graphical user interface

HPP Human Proteome Project

HTML Hyper Text Markup Language

HUPO Human Proteome Organization

XV



List of abbreviations

IAA
IAM
ID
iMonDB
iPRG
IOR
iRT
iTRAQ
JAXB
JPA
JPQL
LC
LIMS
LoOP
MALDI
MBR
MIAPE
ML

MS
MS/MS
MSI
NCI
NIST
NN
NPC
OCR
OMS
PCA
PDF
PNNL
ppm
PRIDE
PRM
PSI

xvi

iodoacetic acid

iodoacetamide

identification

Instrument MONitoring DataBase

Proteome Informatics Research Group
interquartile range

indexed retention time

isobaric tags for relative and absolute quantitation
Java Architecture for XML Binding

Java Persistance API

Java Persistence Query Language

liquid chromatography

laboratory information management system
Local Outlier Probability

matrix-assisted laser desorption/ionization
match-between-runs

Minimum Information About a Proteomics Experiment
machine learning

mass spectrometry

tandem mass spectrometry

Metabolomics Standards Initiative

National Cancer Institute

National Institute of Standards and Technology
neural network

Netherlands Protemic Center

optical character recognition

open modification searching

principal component analysis

Portable Document Format

Pacific Northwest National Laboratory
parts per million

PRoteomics IDEntifications

parallel reaction monitoring

Proteomics Standards Inititative



PSM
PTM
PTXQC
QA

QC
RNN
ROC
RT
SILAC
SimpatiQCo
SProCoP
SQL
SRM
SSM
t-SNE
TCGA
TIC
T™T
TOF
wwPDB
XML

List of abbreviations

peptide-spectrum match

post-translational modification

Proteomics Quality Control

quality assurance

quality control

recurrent neural network

receiver operator characteristic

retention time

stable isotope labeling with amino acids in cell culture
SIMPle AuTomatlc Quality COntrol
Statistical Process Control in Proteomics
Structured Query Language

selected reaction monitoring
spectrum-spectrum match

t-Distributed Stochastic Neighbor Embedding
The Cancer Genome Atlas

total ion current

tandem mass tags

time-of-flight

Worldwide Protein Data Bank

eXtensible Markup Language

XVvil






Chapter 1

Introduction

Mass spectrometry (MS) is an advanced analytical technique that can be used to identify and
quantify the protein content of complex biological samples [3]. The output of an MS experiment
typically consists of a large collection of unknown mass spectra to which corresponding peptide
sequences need to be assigned [196]. When mass spectrometry was initially developed as
an analytical technique, more than two decades ago, the only way to identify the generated
spectra was through a time-consuming manual investigation that crucially depended upon
expert knowledge. As technological improvements vastly increased the size of the output of
an MS experiment, computational techniques to identify unknown mass spectra were soon
developed [75]. Nowadays there are multiple tools that allow to automatically and efficiently
identify mass spectra. Despite this computational progress, the results of an MS experiment are
often still subject to large variability [251], and only a third of all generated spectra can typically
be reliably identified. Therefore, suitable quality control (QC) techniques are of vital importance
to inspire confidence in the generated results. This dissertation presents various computational
solutions for QC of mass spectrometry-based proteomics experiments, from defining metrics
that characterize the quality of the experiments, to automatically discriminating low-quality
experiments from high-quality experiments using data mining techniques, to using optimized
algorithmic approaches to identify the generated spectral data.

1.1 Qutline of the dissertation

This dissertation is structured as follows:

Chapter 2: Quality control in mass spectrometry-based proteomics

We start by introducing the various stages that typically comprise an MS experiment and why it is
of crucial importance that the experimental results can be trusted unambiguously. Relevant issues
that impact the quality of an experiment are raised, along with suggestions on how to prevent
these issues from occurring. We discuss how to account for potential sources of variability that
can have an influence on the output results. Specialized QC samples can be used to systematically
assess the performance of an MS system. We present the different types of QC samples, their
specific properties, and how they can be incorporated into the analytical workflow.



Chapter 1 Introduction

Chapter 3: Computational quality control tools

After relevant QC considerations applicable to the wet-laboratory part of an MS experiment
were introduced in chapter 2, we move to the subsequent computational interpretation of the
generated data. We review the different software tools that exist to examine the quality of the
experimental data. We catalog these tools according to the data source they use to compute
their QC metrics and the granularity of experiments they can be applied to. The strengths and
weaknesses of each of the tools is reviewed along with recommendations on how they can be
used. Finally we discuss how QC metrics can be computed from varying data sources and provide
a general comparison of the efficacy of the different types of QC metrics.

Chapter 4: Monitoring secondary quality control metrics

In this chapter we present a specific tool, the Instrument MONitoring DataBase (iMonDB), in
full detail. The iMonDB is a unique QC tool in that it does not use the spectral data to provide a
quality assessment but instead monitors secondary measurements. First we show that instrument
parameters and settings are ideally suited to be used as QC metrics as they provide a low-level
view on the instrument performance and can be computed for any type of MS experiment
irrespective of its specific analytical procedure. Furthermore, we show how commodity hardware
can be used to automatically measure environmental variables, which can have a considerable
yet often neglected influence on the experimental results. The relevance of monitoring these
secondary metrics is illustrated through realistic use cases.

Chapter 5: Making quality control more accessible

We introduce efforts by the Human Proteome Organization (HUPO) — Proteomics Standards
Inititative (PSI) Quality Control working group. The aim of this working group is to provide
the basic technical necessities to support a robust community-driven QC ecosystem. To this
end its primary goal is to establish the qcML format as a standard file format for QC data, along
with accompanying software libraries supporting this format. Notably we provide a detailed
technical discussion of the jqcML open source Java application program interface (API) for data
in the qcML format and how it aids developers on including support for the qcML format in their
tools.

Chapter 6: Unsupervised quality assessment of experiments

In this chapter identification-free QC metrics are used to discriminate between low-quality and
high-quality MS experiments. We present an unsupervised method based on multivariate outlier
detection techniques to automatically detect low-quality experiments. Furthermore, a specialized
outlier interpretation scheme is used to extract explanatory QC metrics for each anomalous
observation. Using frequent itemset mining, the most relevant QC metrics characterizing a
diminished performance are identified, and based on these metrics the high-quality and low-
quality experiments are compared. We show that these techniques produce results that conform to
previously published independent expert knowledge despite requiring minimal manual input.



1.1 Outline of the dissertation

Chapter 7: Optimized open modification spectral library searching

In this chapter we present a novel paradigm for spectral library searching. Although an open
modification searching (OMS) strategy can be used to correctly identify unknown mass spectra
containing unexpected or unconsidered post-translational modifications (PTMs), leading to a
significant increase in identification performance, because of the search space explosion inherent
to OMS, this is a computationally very expensive task which consequently takes a long time.
We illustrate how approximate nearest neighbors (ANN) indexing techniques can be applied to
spectral library searching to efficiently prune the search space during OMS, achieving a speed-up
of several orders of magnitude.

Chapter 8: Conclusion

We end with a summarization of the contributions that have been presented in this dissertation
and a reflection on their impact. Finally, we mention some open bioinformatics problems for
mass spectrometry-based proteomics and highlight some interesting avenues for future work.






Chapter 2

Quality control in mass
spectrometry-based proteomics

Abstract

Mass spectrometry is a highly complex analytical technique, and mass spectrometry-based
proteomics experiments can be subject to a large variability, which forms an obstacle to obtaining
accurate and reproducible results. Therefore a comprehensive and systematic approach to quality
control is an essential requirement to inspire confidence in the generated results. A typical mass
spectrometry experiment consists of multiple different phases including the sample preparation,
liquid chromatography, mass spectrometry, and bioinformatics stages. We review potential
sources of variability that can impact the results of a mass spectrometry experiment occurring
in all of these steps, and we discuss how to monitor and remedy the negative influences on the
experimental results. Furthermore, we detail how specialized quality control samples of varying
sample complexity can be incorporated into the experimental workflow and how they can be
used to rigorously assess detailed aspects of the instrument performance.

Preface

This chapter is in preparation to be published as:

Wout Bittremieux et al. “Quality Control in Mass-Spectrometry-Based Proteomics”. In: Mass
Spectrometry Reviews (Manuscript submitted)

2.1 Introduction

Proteomics is a crucial domain in modern biological and biomedical research [3]. The current
method of choice to identify and quantify complex protein samples is often liquid chromatography
(LC) followed by mass spectrometry (MS). The importance of these techniques is exemplified by
their use in large-scale research initiatives, such as the two recent attempts at providing a draft
of the human proteome [138, 276] or the ongoing Human Proteome Project (HPP) by the Human
Proteome Organization (HUPO) [154, 160, 175, 199, 200], where LC-MS techniques are used to
identify, quantify, and characterize the human proteome.

As illustrated in figure 2.1, a bottom-up LC-MS experiment consists of multiple different stages.
First, various sample preparation measures ensure that the biological samples are optimally suited
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Figure 2.1: Generally considered an LC-MS experiment consists of a sample preparation, a liquid chro-
matography, a mass spectrometry, and a bioinformatics stage.

for MS analysis. Typical steps include denaturation, reduction, and alkylation of the proteins.
Because MS instruments (generally) cannot process intact proteins directly, the denatured proteins
are subsequently digested into a peptide mixture through proteolytic cleavage. Next, this peptide
mixture is processed through liquid chromatography, which separates the peptides based on
their hydrophobicity. After liquid chromatography the peptides get ionized to obtain a charge,
and the derived spectra are generated in the mass spectrometer. Whether this is done in a
data-dependent acquisition (DDA) or data-independent acquisition (DIA) manner, for a typical
discovery experiment in both approaches as many spectra as possible are identified through
tandem mass spectrometry (MS/MS), whereas for a targeted experiment specific peptides of
interest are exclusively monitored [216]. Finally, the generated spectral data is interpreted
through various bioinformatics means [196, 197]. Peptides can be identified from the mass
spectra through sequence database searching [76], spectral library searching [105, 233], or de
novo sequencing [185]; and the peptides can be mapped back to their originating proteins through
protein inference [120]. Additionally, protein quantification [13, 102] and other advanced analyses
may be performed.

As succinctly described above, performing a mass spectrometry experiment is an intricate process,
and each of these different steps has to be optimized to acquire accurate and reproducible
results. Unfortunately, despite the many recent technological and computational advances the
results of an experiment can still be subject to a large variability [2, 251]. As represented in
figure 2.2, this variability can originate from multiple sources [217]: the different stages of an
LC-MS experiment can each exhibit stochastic behavior and influence one another, contaminants
can inadvertently be present [136], and the optimal computational interpretation is often not
obvious [19]. Furthermore, instrument drift and sample degradation can introduce a longitudinal
variability [20, 46]. Most notably, instrument interventions, such as a preventive maintenance,
have a considerable influence upon the results [20]. Especially in regards to current large-scale
studies this is of major importance, as measurements obtained at different times can only be
correctly compared with each other if they were obtained under consistent and comparable
conditions.

Therefore it is of vital importance that appropriate quality assurance (QA) and quality control (QC)
measures are taken to monitor and control the existing variability [8, 172, 177, 249], something
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Figure 2.2: An Ishikawa diagram (non-exhaustively) highlighting some of the major sources of variability
in each of the stages of an LC-MS experiment. These and other sources of variability will have specific
impacts on the obtained results, as will be discussed further.

that is mandatory to inspire confidence in the obtained results. A systematic approach to quality
control makes it possible to objectively assess the quality of an MS experiment, and empirical
quantitative measures enable the intra-study, intra-laboratory, and inter-laboratory comparison
of the performance of mass spectrometry runs [123]. As mentioned previously, these quality
assessments are crucial to validate the results produced by long-term multi-site projects [46], such
as the HUPO’s Human Proteome Project [154, 160, 175, 199, 200] or the studies conducted by the
National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) [235,
252, 288]. Furthermore, with so many different factors that can impact the experimental results
it is important to carefully consider the various influences independently of each other. To this
end, for example, a Pareto chart is a helpful visualization technique, as it can be used to represent
the contribution of each individual factor to the total variability [23].

Here we will detail the origin of some common causes of variability that can influence the
results of a mass spectrometry experiment and which steps should be taken to avoid them.
Notably we will highlight how QC samples can be incorporated into the experimental workflow
to systematically assess the instrument performance. Mass spectrometry is an advanced and
versatile technique, and it can be used for a wide variety of applications. As a result, there
is no definitive consensus on which QC methodology to employ [176], nor is it possible to
establish a single uniform approach to quality control. Instead we will broadly review some of
the representative QC approaches, discuss general considerations, and show how these steps can
be used to monitor the various elements of an MS workflow.
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2.2 Managing LC-MS variability through quality control

First we will briefly introduce the different types of QC samples that can be employed to monitor
the performance of a mass spectrometry experiment and how these samples can be incorpo-
rated within the experimental workflow. Next we will highlight some of the problems that can
arise during the different stages of an LC-MS experiment, how they negatively influence the
experimental results, and how QC methodologies can be used to detect these problems.

2.2.1 Types of QC samples

QC samples can range from a simple peptide mixture to a single protein digest to a complex
whole-cell lysate, and each of these types of samples can be employed in a specific fashion to
analyze the system performance.

Relatively simple samples consist of a single protein [143], such as bovine serum albumin (BSA),
enolase, or cytochrome c; or a protein mixture containing a few proteins [23, 142]; for clarity
we will further denote this type of QC samples as ‘QC1’. Notably BSA is often used as such a
sample because of its historical application in a variety of experimental procedures and its low
cost. Furthermore, BSA is usually quite dissimilar from the protein content of the biological
samples under consideration, which helps to minimize negative influence on the experimental
results due to potential cross-contamination. QC1 samples are typically run on a very frequent
basis, i.e. daily or multiple times per day, to quickly evaluate the instrument performance, and
they are especially of use to efficiently and systematically assess the LC performance based on
observed peak widths and retention times (RTs). As running QC samples takes up valuable
instrument time, there is a trade-off between time spent running them and time (and precious
sample content) lost due to performing biological runs while the instrument was in a suboptimal
state, leading to inferior results. To minimize this trade-off, the QC1 samples are typically run
using a short gradient so they can be performed on a frequent basis without unduly occupying
an excessive amount of instrument time.

QC samples with a higher sample complexity, denoted ‘QC2’, consist of a whole-cell lysate, such
as a yeast lysate [18, 206], a HeLa cell lysate [143], or a Pyrococcus furiosus lysate [278]. QC2
samples are executed using settings equivalent to those for the biological runs to integrally
simulate their performance. As this requires more instrument time than the simple QC1 runs,
QC2 samples are carried out on a less frequent basis, typically once every week [215]. In contrast
to the QC1 single protein digests, complex QC2 samples are used to primarily evaluate the MS
performance. Given the sensitivity of current (Orbitrap) mass spectrometers, it is important to
inject small amounts of QC samples (e.g. nanogram amounts of peptides; approaching the limit of
detection) in order to sufficiently stress the machine and detect potential flaws [143, 215]. Using
such low quantities has the additional advantage that it also helps in preventing or reducing
cross-contamination of the biological samples by the QC samples. An important consideration to
take into account when running QC2 samples is that ideally their characteristics should reflect
those of the biological samples. For example, if phosphoproteomics experiments are conducted
on a regular basis, it is important to not only perform a general quality assessment, but also to
specifically evaluate the ability to detect phosphorylated peptides and proteins [143]. An example
of a recent large-scale project where specialized complex QC samples were used is the CPTAC
System Suitability (CompRef) Study [71], whose objective it was to validate mass spectrometry
protocols by the participants. The CompRef samples were compiled for use within the CPTAC
cancer studies and consisted of human-in-mouse xenograft tumor tissue to closely resemble
the biological samples. These CompRef samples were first used as a preliminary validation
of the workflow during the System Suitability Study, and subsequently acted as QC samples
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during successive CPTAC studies to characterize human colon and rectal cancer [235, 288] and to
evaluate the longitudinal stability of quantitative proteomics techniques [252]. Another example
of a complex sample used in a recent high-profile, multi-site study is the hybrid QC sample
used by Navarro et al. [194] to benchmark software tools for label-free proteome quantification.
This sample consisted of tryptic digests of human, yeast, and Escherichia coli proteins mixed
in defined proportions to enable the evaluation of both precision and accuracy of label-free
quantification, and it was used to assess and ultimately improve the performance of several
software tools [194].

Mixtures of synthetic peptides are a slightly different type of QC samples. Depending on the
complexity of their composition, these mixtures can be run and evaluated individually, similar to
the QC1 samples but with an even further simplified sample content, or they can be spiked into
other samples. By spiking a well-defined mixture into the biological samples quality control can
be performed in parallel with the biological analyses and a direct link between the qualitative
information and the experimental data can be established. Similarly, the synthetic peptides can be
spiked into one of the above QC samples, typically a complex QC2 whole cell lysate, to combine
the advantages of both types of samples into a single MS run. An important consideration when
spiking synthetic peptides into other samples is that these peptides should not overlap with the
original sample content. This can be avoided by using artificial, synthetically modified, peptides
that are dissimilar from any naturally occurring peptides [78], or by isotopically labeling the
synthetic peptides so that their mass is dissimilar from the mass of their naturally occurring
peptide variants [24, 208, 209]. These synthetic peptide mixtures are especially important to
evaluate the performance of targeted approaches, such as selected reaction monitoring (SRM). To
be able to consistently monitor the transitions of specific peptides and to optimally schedule SRM
experiments chromatographic stability is an essential prerequisite, which can be evaluated using
these well-characterized peptides as their transitions should exhibit minimal run-to-run variation.
Synthetic mixtures can be produced in-house or purchased from commercial vendors, and they
are often composed in such a fashion that they can be used to examine specific performance
characteristics, as we will discuss below.

2.2.2 Incorporating QC samples

As illustrated in figure 2.3, QC samples can be combined with the biological samples in several
ways [21]. This is tightly linked to the experimental design [169]: how many controls, replicates,
etc., are used cannot be considered independently from the use of QC samples.

Typically, simple QC1 samples are run at the start and end of each batch of experiments, or
at least once a day in case of larger batches, as shown in figure 2.3a. Another approach is to
systematically interleave the QC samples after each fixed number of biological samples, as shown
in figure 2.3b. This limits the amount of sample loss that can occur due to an intermediate
reduction in instrument performance. For example, Zhang et al. [288] report that during their
CPTAC study benchmark tumor xenograft samples were run after every five biological samples,
and BSA samples were run after every ten biological samples. As frequently running QC samples
decreases the throughput of the biological samples, QC1 samples are often run using a short
LC gradient to minimize their run time, as mentioned previously. On the other hand, QC2
samples require more instrument time as they closely simulate the biological runs to allow a
comprehensive performance evaluation. Therefore, they are typically run less frequently, on the
order of once a week. However, as instruments have been getting more powerful, the importance
of these complex QC2 samples has increased and they are run on a more frequent basis. Further,
as shown in figure 2.3c, a reference set detailing the expected performance might be required to
statistically interpret the subsequent QC runs [23, 215]. This reference set can often be derived
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(b) QC samples can be interleaved with the biological samples within a single batch to detect an intermediate
decrease in performance and avoid undue sample loss.
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(c) A reference set of high-quality QC measurements is used as the basis to characterize the performance.

Figure 2.3: The experimental workflow can incorporate the QC samples (blue) through various combinations
with the biological samples (black).

from historical high-quality data. In the absence of such measurements it might be necessary to
run multiple QC samples successively prior to the start of an experiment. For example, when
switching to a new QC standard sample or when employing a novel protocol the new data cannot
be compared to the historical measurements and a reference set might need to be compiled
explicitly. Likewise, if multiple LC columns are combined interchangeably with the same MS
instrument a separate reference set for each of the two columns has to be used, as performance
characteristics are column- and instrument-dependent.

2.2.3 Quality control throughout the experimental workflow

As mentioned previously, a typical LC-MS experiment consists of several different stages. Broadly
this process can be divided in the four following phases [143]: (i) sample preparation, including
proteolytic digestion of the proteins; (ii) separation through liquid chromatography; (iii) mass
spectrometry analysis; and (iv) computational data interpretation. All these steps can introduce
significant variability that needs to be controlled in order to obtain reproducible results, so the
ideal QC methodology should be able to assess the performance of each of these stages.

For each of these phases we will highlight potential sources of variability, and we will detail
how structured quality control methodologies can be implemented to detect and control this
variability.

Sample preparation

Sample preparation enables the analysis of complex biological samples by mass spectrometry
techniques, and entails steps from the initial sample collection up to the proteolytic digestion
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and sample storage prior to the actual LC-MS analysis. As the results of an experiment depend
on the initial sample quality this step is of vital importance to acquire trustworthy results [35].

Due to the wide variety in sample origin and experimental applications, each with their specific
peculiarities and points of attention, it is impractical to cover all existing sample preparation
techniques. However, appropriate sample preparation steps for a bottom-up LC-MS experiment
typically include denaturation with a chaotrope, reductant, and/or alkylating agent followed by
tryptic digestion of the proteins before the resulting peptides can be further processed [66, 210].
All these different steps will introduce a certain degree of variability in the output results, which
needs to be monitored and controlled.

Unexpected modifications During denaturation the secondary and tertiary structure of the
proteins are removed by interrupting their non-covalent bonds. Additionally, covalent disulfide
bridges are cleaved via reduction, after which the proteins are alkylated to prevent the reformation
of these disulfide bonds. A complete unfolding of the proteins is required to be able to achieve
a full enzymatic cleavage into peptides, but these steps can also introduce unexpected post-
translational modifications (PTMs) [133].

The chaotropic agent urea is often used for protein denaturation. An important consideration is
that urea can cause artificial carbamylation [241]. In aqueous solutions urea dissociates upon
heating and over time. One of its degradation products is isocyanate, which covalently reacts
with protein N-termini and e-amine groups of lysines (and arginines to an extremely limited
extent) to form carbamyl derivates [144]. Prolonged incubation of protein samples in urea buffers
can induce undesired carbamylation, which will occur at a higher rate if old urea or elevated
temperatures are employed. Artificially introduced carbamylation is obviously detrimental for
studies that investigate the effect of in vivo carbamylation, which has been related to protein
ageing. However, general issues are that carbamylation hampers proteolytic digestion with
trypsin, blocks amino groups from isotopic/isobaric labeling, and changes peptide charge states,
retention times, and masses [247]. Therefore it is important to avoid the formation of urea-induced
carbamylation during sample preparation. This can be done by minimizing the generation of
cyanates or by removing active cyanates from the solution. Since urea only degrades in aqueous
solution it should be prepared freshly [144]. Other strategies involve maintaining the sample
at a low temperature [108, 174], lowering the pH [240], or using a variety of buffers [144, 163,
247]. To verify that unexpected carbamylation is not present in an excessive amount appropriate
search settings during peptide identification should be used, i.e. a variable carbamylation PTM
should be considered.

Another source of unexpected modifications comes from the alkylation step. Alkylation ensures
that after disulfide bridges have been cleaved using a reductant the proteins remain unfolded by
preventing reformation of the disulfide linkages. For this step a commonly used alkylation agent
is iodoacetamide (IAM). Through reaction with IAM a carbamidomethyl group is attached to
cysteine residues to prevent these from reforming disulfide bridges, which results in a monoiso-
topic mass difference of 57.021464 Da. A potential issue is that overalkylation with IAM will
cause N-terminal carbamidomethyl modifications as well [37]. Alternatively, alkylation can be
done through carboxymethylation with iodoacetic acid (IAA), which adds a monoisotopic mass
of 58.005479 Da. Similar to IAM, overalkylation with IAA will result in N-terminal modifica-
tions [279]. Therefore care has to be taken that the sample solution should not be overexposed to
either JAM or IAA during alkylation, and appropriate search settings specifying the corresponding
N-terminal modifications should be employed to verify this.

A prevalent modification that can easily be misinterpreted is the nonenzymatic deamidation of
asparagines and glutamines to aspartates and glutamates respectively, whose rate can increase
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Figure 2.4: The most frequently observed modifications in the PRIDE database [267] based on the 789745
spectral clusters in the human spectral library generated by PRIDE Cluster (version 2015-04) [107]. Note
that a single spectrum can potentially contain multiple modifications, and these modifications can have
both a biological or an artificial origin.

—

> =
3 5
< >

Formyl
Pyro-glu

Dimethyl ]

Label:13C(6)15N(4) ]
4.008493 ]

Oxidation
TMT6plex

Phospho
31.989829
45.029395
Methylthio
56.026215 ]
32.056407 ]

<
O]
I}
b
©
a
©
-

iTRAQ4plex
iTRAQ8plex
144.105919
Deamidation
37.006603
Label:2H(4)

Carbamidomethyl
Label:13C(6)15N(2) .

dramatically during prolonged incubations in digestion buffers at a mildly alkaline pH [110, 148].
As deamidation adds a monoisotopic mass of 0.984016 Da, when not correctly considering this
modification the 3C peaks of amidated peptides can be misassigned as monoisotopic peaks
of the corresponding deamidated ones, although current high-resolution instruments are able
to unambiguously distinguish these peaks. As before it is important to carefully perform the
sample preparation and use the correct identification search settings to verify that unexpected
modifications have not been introduced.

Suitable search settings are essential to correctly interpret the generated data. Importantly,
any expected modifications as well as modifications that can be involuntarily introduced, as
discussed previously, should be specified correctly. A recent analysis indicates that unexpected or
unconsidered modifications account for missing identifications of a large proportion of unassigned
spectra [49]. Similarly, an analysis of 19 million spectral clusters based on previously unidentified
spectra deposited in the PRIDE database [267] illustrates the extent to which unidentified spectra
can be traced back to unexpected or unconsidered PTMs [107]. Figure 2.4 shows the most prevalent
modifications present in the human spectral library generated by PRIDE Cluster [107].
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Proteolytic digestion stability In a bottom-up LC-MS proteomics experiment proteins are
not analyzed directly, instead they are cleaved into peptides through proteolytic digestion. For this
task trypsin is currently the most frequently used protease [262]. Advantages of trypsin are its
low cost and its high cleavage specificity and activity. Furthermore, tryptic peptides have various
desirable characteristics: their mass is within the preferred mass range for mass spectrometry
analysis (based on an in silico digestion of all proteins in UniProtKB/Swiss-Prot [255] unique fully
tryptic peptides have a median length of 12 amino acids and an interquartile range between 8 and
20 amino acids) and they are ideally suited to carry at least two defined positive charges [243].

At its most basic level, trypsin cleaves exclusively and systematically C-terminal of arginine
and lysine, unless followed by a proline [134]. Nevertheless, the formation of semitryptic and
nonspecific peptides during protein digestion can still happen due to multiple reasons, although
these peptides show a decreased repeatability [251] and they are often not considered during the
subsequent bioinformatics analysis, resulting in missing or incorrect identifications [135, 166].
Moreover, most notably for targeted and other quantification experiments consistency of the
detectable peptides is of crucial importance.

There are many factors that can influence the digestion stability. One of these is the manner
in which the preceding sample preparation steps were performed, and Proc et al. [218] have
shown that the choice of chaotropic agents, surfactants, and solvents significantly influences
the digestion reproducibility. Other factors that have an influence are the temperature and the
pH at which the digestion is carried out, the enzyme-to-substrate ratio, and the duration of
the digestion. At a higher temperature the thermal denaturation of trypsin results in a loss
of tryptic activity and autolysis [84, 164], while a lower pH improves trypsin stability over
an extended digestion period [164]. Meanwhile, although enzyme-to-substrate ratios reported
in the literature range from 1 : 100 to as high as 1 : 2.5, Loziuk et al. [164] have shown
that at excessive enzyme-to-substrate ratios an “overdigestion” of peptides caused by increased
tryptic autolysis occurs, which may lead to the generation of nonspecific and very small peptides.
Similarly, Hildonen, Halvorsen, and Reubsaet [114] recommend a limited digestion time, to avoid
a complete digestion as this leads to an increased number of small peptides that are not LC-MS
detectable. Furthermore, not all trypsin is created equally, with the origin of the trypsin an
important source of variability. Comparisons have shown that the number of missed cleavages,
semitryptic peptides, and nontryptic peptides can vary significantly based on whether the trypsin
is of bovine or porcine origin [270] and between different commercial trypsins [42, 44, 214].

To assess the digestion performance it is important to monitor the extent of missed cleavages,
semitryptic peptides, and nontryptic peptides. Ideally fully tryptic peptides should be preferred
as their formation is more reproducible when the trypsin digestion is able to proceed to a state
of equilibrium [251]. In some cases semitryptic peptides might be desired as well to generate
more detectable peptides and increase the protein sequence coverage [114]. Furthermore it is
important to take into account that digestion efficiency is protein- and sample-dependent [81].
Therefore, there is no one-size-fits-all optimal digestion procedure; specialized protocols might
be required to for example optimally monitor specific transitions in a targeted experiment.

DIGESTIF is a commercially available compound QC sample that can be used to evaluate the
tryptic digestion efficiency [155]. The DIGESTIF standard is assembled from a protein scaffold
and artificial peptides, with the amino acids flanking the cleavage sites of these peptides selected
to either favor or hinder proteolytic cleavage. This allows to progressively monitor the digestion
performance by checking which peptides are effectively generated compared to their theoretical
cleavage specificity. Alternatively, to monitor the digestion performance Domon et al. [38, 91]
inserted QC samples at various different moments during the experimental process. Prior to any
sample preparation steps they start with a well-defined QC mixture of a few proteins, insert a
first set of isotopically labeled peptides representing a subset of tryptic peptides of these proteins
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prior to digestion, and a second set of isotopically labeled peptides (with the same amino acid
sequences but a different isotope pattern) prior to the LC-MS analysis. By comparing the relative
intensities of the unlabeled peptides, originating from the initial proteins, and the labeled peptides
from the first set of labeled peptides the digestion efficiency can be assessed. Further, through
comparison with the intensities of the labeled peptides from the second set the overall recovery
of the full sample preparation workflow can be evaluated.

Although trypsin is by far the most popular protease, employing another protease or performing a
multi-protease protein digestion can have specific advantages [96, 257]. A common alternative to
trypsin is the combination of Lys-C and trypsin, which generates similar peptides and significantly
reduces the number of missed cleavages [99]. Less frequently used proteases can be beneficial
as well, for example to generate longer peptides for “middle-down” proteomics, although these
proteases are usually not as thoroughly characterized as trypsin is, so care has to be taken [257]. In
these situations a consistent and systematic QC methodology assumes even greater importance.

Sample loss Differential recovery of peptides due to nonspecific adsorption is a potential
source of unexpected sample loss during sample preparation, leading to a reduced reproducibility.
This sample loss can occur in all steps of a proteomics workflow, and care should be taken that
suitable sample handling material is employed at all times. It should be taken into account
that adsorption is peptide-specific [101], so optimized protocols might be required for specific
situations. Furthermore, a systematic analysis of well-characterized QC samples can highlight
signal loss.

The type of sample tubes that are used for peptide storage can result in a large variation in
the results, with low-adsorption plastic tubes more suitable than regular plastic tubes or glass
tubes [14, 145]. In contrast, hydrophobic peptides exhibit an increase in recoverability for glass
tubes [261]. Furthermore, the addition of other compounds to the sample solution can be used to
reduce sample loss due to competition of adsorption with the peptides [101, 245].

Adsorption does not happen exclusively to sample tubes; for example some peptides, including
all sulfur-containing peptides, adsorb on the stainless steel injection needle as well [261]. As a
rule, the more sample handling steps are undertaken, the more loss due to surface adsorption
occurs [170]. Therefore, online and automated methods can help to reduce potential sample
loss.

Contaminants Another important source of variability is the presence of contaminants in
the sample [116, 136, 274]. Contaminants will compete with the spectra of interest during MS
measurements and can cause ion suppression of low abundant peptides. Contaminants can often
have seemingly innocuous origins, such as a lab member using a new perfume [213] or wearing
a wool sweater [136]. It is important to be aware of potential sources of contaminants during all
sample preparation steps to avoid undue contamination.

Some contaminants can be traced back to a prior sample preparation step. For example, trypsin
autolysis artifacts can be generated during protein digestion, or polymeric interferences can leak
from plastics employed in the laboratory. Other contaminants can be involuntarily introduced
into the sample. One of the most prevalent contaminants is keratin, which is omnipresent and
can originate from skin, hair, dust, etc.

Total elimination of all contaminants is virtually impossible, but suitable procedures can help
to minimize contamination. To prevent contaminants as much as possible it is important to
always work in a clean lab environment, wear suitable lab clothes, and use specialized equipment
for a single task exclusively. To be able to detect contaminants it is necessary to specify them
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in the identification search settings. A recent analysis of public data deposited in the PRIDE
repository [267] indicates that a majority of commonly incorrectly identified spectra corresponds
to contaminants such as albumin, trypsin, and keratin [107]. The MaxQuant software [56]
has functionality to automatically include a built-in database of contaminant sequences during
sequence database searching [57]. Otherwise, lists of commonly observed contaminants are
publicly available. The common Repository of Adventitious Proteins (cRAP) [53] provides a
resource of contaminant proteins, sourced from the Global Proteome Machine (GPM) [60]. Both a
fasta file for use in sequence database searching and a spectral library in the X! Hunter format [58]
are available. In addition, the PRIDE database [267] provides a spectral library of contaminants,
generated through PRIDE Cluster [107].

Liquid chromatography

Prior to MS analysis peptides are typically processed using liquid chromatography to separate
them based on their hydrophobicity. This adds a time dimension to the subsequently recorded
MS data, which enables the mass measurement of individual peptides by spreading out the dense
information content of a complex sample over the range of the LC gradient, and which provides
orthogonal information for the peptide identification [205].

The LC phase is typically subject to more variable influences than any other component of the
LC-MS system [15], and consequently it is the most common culprit of variability in the results
of an experiment [227]. A rigorous monitoring of the chromatographic performance is therefore
essential. Useful QC metrics include the peak shape (width and height), as sharper peaks generate
higher signal intensities and can reduce oversampling [227]. A disproportionate level of signal
intensity early or late in the gradient can indicate that the column should be serviced or replaced.
An early signal can be caused by sample bleed, and a late signal can arise from peak tailing
of either overloaded peptides or peptides with poor chromatographic behavior [227]. The RT
of known peptides and their elution order can be used to measure differences between early
(hydrophilic) and late (hydrophobic) peptides in the chromatographic gradient [1, 227].

Specialized QC samples can help to thoroughly monitor the performance of the LC system. By
composing QC samples so that they contain peptides with varying hydrophobicities the elution
profile of the LC gradient can be characterized and evaluated [43], as illustrated in figure 2.5.
Notable are so-called indexed retention time (iRT) peptide standards. These peptides have
standardized RTs spanning a wide gradient and can be used to normalize the RT of individual
experiments [78]. Although RTs can be predicted through computational modeling [189], these
predictions have a somewhat limited accuracy [221]. Instead, the reference RTs of the iRT
peptides can be used to correct for variations in the RT of the other peptides detected in a single
experiment or to align RTs across multiple experiments. Several QC standards containing iRT
peptides have been proposed [24, 43, 79, 117, 155]. These standards mostly vary slightly in the
range of the LC gradient they can cover, but some standards have further advanced properties.
For example, the previously mentioned DIGESTIF standard can additionally be used to evaluate
the tryptic digestion performance [155], while the RePLiCal standard consists of a synthetic
protein that exclusively contains lysine-terminating peptides, which ensures that proteolytic
digestion by both trypsin and Lys-C can be evaluated analogously [117].

It is of vital importance to avoid cross-contamination due to sample carryover. Carryover happens
when an analyte originating from a previously analyzed sample reappears during a subsequent
injection, which will result in interference with the active measurements. Carryover can occur
because of interactions between the sample and various materials it comes into contact with,
as mentioned previously, or when sample residues are trapped in dead volumes within system
flow paths [121]. To minimize or avoid carryover suitable column washing steps should be
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Figure 2.5: Depending on the composition of the QC samples the LC performance can be monitored using
peptides that elute over the entire gradient, and the dynamic range can be monitored if peptides are present
in varying concentrations.

employed [67, 187, 277]. The presence of carryover and the cleaning effectiveness can be tested
by using blank injections between runs of different samples.

Mass spectrometry

As peptides elute from the LC column their mass over charge is measured in the mass spectrome-
ter.

Prior to the mass measurement peptides are ionized through electrospray ionization (ESI). The
spray stability can be checked by monitoring for drops in the ion current, which can indicate
spray sputter [227]. Tryptic digests are expected to generate mainly peptides containing a
2+ charge, and a high rate of differently charged peptides can indicate ionization issues and
will likely impact identification rates [227]. Besides due to an unstable proteolytic digestion,
as mentioned previously, partially tryptic peptides can also originate from in-source peptide
fragmentation [137]. It is possible to differentiate partially tryptic peptides originating from
in-source fragmentation from other proteolytic-derived partially tryptic peptides as the former
will have the same LC elution time as their parent peptides [137]. To measure high-quality spectra
sufficient signal should be present. Various parameters can influence the internal instrument
behavior and these should be carefully optimized [10, 130, 131, 281]. Interrelated instrument
parameters influencing the signal-to-noise ratio are the maximum ion injection time and the
automatic gain control (AGC), and the effective ion injection time can be monitored to detect
problems with sample load [130]. By comparing the measured masses of known compounds,
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which can either be explicitly added reference standards or systematically observed contaminants,
the mass accuracy can be evaluated [227]. These known masses can further be used as lock mass
during mass calibration if excessive mass deviations are observed [201]. The dynamic range
can be monitored if peptides are present in varying concentrations, as illustrated in figure 2.5.
QC samples can contain distinct peptides in different concentrations [43] or isotopically labeled
variants of the same peptide at different ratios [24]. While the concentrations typically span
two to four orders of magnitude, the ability to detect even the smallest concentrations indicates
the capacity to detect low-abundant peptides over the observed extensive proteome dynamic
range [293]. Furthermore, the sensitivity of the MS instrument can be evaluated by employing
only small amounts of QC samples, as mentioned previously.

Bioinformatics data interpretation

Although the wet laboratory workflow is often considered to contribute the most variability to
the results of an MS experiment and multiple studies have aimed to improve and standardize
existing protocols, the bioinformatics data interpretation can likewise introduce major errors
that are a cause of irreproducibility [19]. Already for the most fundamental task, mapping
peptide sequences to spectra, there exist dozens of different search engines, each using a unique
methodology, (possibly silent) assumptions, and peculiarities. Furthermore, even when using the
same tool often different versions or parameter combinations can yield significantly dissimilar
results. Although a careful evaluation can indicate the optimal search settings for a single
tool [82, 263], the high volume of the data generated by MS techniques and the complexity of
the bioinformatics tools is a barrier for a mutual objective assessment [93, 284]. The “ground
truth” for evaluation is typically not known and the introductions of novel tools regularly lack a
sufficient comparison to the state-of-the-art methodology. Nevertheless, to inspire confidence in
the acquired results a robust computational and statistical interpretation according to community
best practices should always be performed before reporting novel biological findings [232].

In the previous sections we have already mentioned several evaluation criteria that should be
investigated to detect specific problems. A benchmark of overall performance that is often
monitored is the identification rate in terms of peptide-spectrum matches (PSMs), identified
peptides, and identified proteins. This gives a quick insight into the performance of the whole
experimental set-up and can indicate whether more detailed quality assessments are required.
Whereas for complex QC2 samples, such as a whole-cell lysate, the number of proteins is an
often reported metric, for simple QC1 samples, consisting of only a single to a few proteins,
the sequence coverage is usually more relevant. The appeal of these high-level QC metrics is
that they give a quality assessment of the whole system in a single, easily interpretable metric.
However, an MS experiment consists of multiple complex steps that are interrelated, and it might
not be possible to identify the source of a decrease in performance based on only a single metric.
Instead, sets of detailed QC metrics can be computed [227], highlighting individual performance
aspects of the chromatography, the charge state distribution, the spectrum acquisition, etc. A
disadvantage of these advanced QC metrics is that, unlike for the number of identifications
or the sequence coverage where a higher value is usually better, their interpretation is often
not straightforward and requires expert knowledge. Therefore, to establish value intervals of
acceptable performance a high-quality reference set might be used, as described in section 2.2.3 [23,
215]. Furthermore, analyzing multiple metrics simultaneously requires a multivariate approach.
Although this increases the complexity of the data analysis, recent research has shown some
promising approaches for informed and automatic decision-making based on multivariate sets of
advanced QC metrics [9, 30, 273]. Finally, it does not suffice to investigate QC metrics for a single
experiment in isolation. Instead, the longitudinal performance should be examined. Through
extensive monitoring of operation over time the technological passport of a mass spectrometer
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can be established, and based on these highly detailed and instrument-specific insights the
reliability of the experimental results can be diagnosed. Although not necessarily related to their
biological relevancy, this constitutes the bare essentials required to inspire solid confidence in
novel scientific findings.

2.3 Conclusion

Performing an LC-MS experiment is a highly complex activity and there exist a multitude
of potential sources of variability that can influence the results and impact repeatability and
reproducibility. We have tried to give an overview of some prevalent issues that can arise and
how to detect them, but nevertheless we have only managed to cover the tip of the iceberg.
Instituting a thorough QC methodology might initially seem like it requires a lot of effort and
it occupies valuable instrument time without any immediate gains, but a systematic quality
assessment pays off in the long run and is an indispensable prerequisite to inspire confidence in
the acquired results. Especially in order to advance mass spectrometry techniques and use them
as routine applications in a clinical setting a consistent analytical performance is a fundamental
requirement [177, 237, 280].

Developments on both the experimental and computational front are needed to improve current
QC methodologies, for which core facilities can act as an important driver [162]. As proteomics
technologies have matured core facilities have concentrated the cutting-edge technical expertise
necessary to obtain high-quality results, and they form an essential means of providing this
in an affordable manner [184]. Core facilities have an incentive to support and develop robust
quality assurance practices to demonstrate the quality of the generated data to their clients and
stakeholders, and through their expert knowledge on a broad aspect of MS-based applications
they are at the forefront of developing standardized QC workflows. Significant bioinformatics
work is needed as well. All too often laboratories still only monitor detailed QC metrics in an
empirical fashion when a malfunctioning is suspected, instead of on a systematic basis. This can
be partly attributed to the relative absence of user-friendly tools and software suites that facilitate
and encourage a methodical QC workflow. Although a few tools to compute advanced QC metrics
exist [21, 32], they remain underused in part due to their limited ease-of-use. Nevertheless, to
make further progress objective metrics rooted in a solid bioinformatics foundation are mandatory.
The end goal should not be to merely understand QC issues retrospectively, but also to prevent
them from happening by timely suggesting solutions. Eventually the QC tools should ideally
be tightly coupled to the MS instrumentation to make automated decisions on the fly, avoiding
subjective and time-consuming manual quality assessments to increase the throughput.

Finally, because of these obvious advantages we expect that the importance of quality control
will only increase in the (near) future. Currently QC information is often not included in
scientific publications, which might lead to uncertainty on the conducted methodology. Instead,
in the future reporting this information might become formalized, similar to existing guidelines
mandated by journals [253], and the QC metrics might become an integral part of a data submission
to public data repositories [73, 178], with current work ongoing to provide the necessary technical
basis for this goal [33]. Coupling comprehensive QC information to the experimental data
will enable assessing the reliability of an experiment at a glance based on the instrument’s
technological passport. Especially in light of some historical occasions where claims turned
out to be exaggerated [11, 80] and recent reports of the general reproducibility crisis in various
scientific fields [12], an innate approach to quality control is mandatory to inspire confidence in
and to advance the field of mass spectrometry-based proteomics.
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Computational quality control
tools

Abstract

As a growing emphasis has been placed on quality control for mass spectrometry-based proteomics
multiple computational quality control tools have been introduced. These tools generate a set of
metrics that can be used to assess the quality of a mass spectrometry experiment. Here we review
which different types of quality control metrics can be generated, and how they can be used to
monitor both intra- and inter-experiment performance. We discuss the principal computational
tools for quality control and list their main characteristics and applicability. As most of these
tools have specific use cases it is not straightforward to compare their performance. For this
survey we used different sets of quality control metrics derived from information at various
stages in a mass spectrometry process and evaluated their effectiveness at capturing qualitative
information about an experiment using a supervised learning approach. Furthermore, we discuss
currently available algorithmic solutions that enable the usage of these quality control metrics
for decision-making.

Preface

This chapter was previously published as:

Wout Bittremieux et al. “Computational Quality Control Tools for Mass Spectrometry Proteomics”.
In: PROTEOMICS (Early view Oct. 17, 2016). DOI: 10.1002/pmic.201600159

This chapter gives an overview of the available computational tools that can be used for quality
control in mass spectrometry-based proteomics. Although this chapter already includes a brief
introduction to the Instrument MONitoring DataBase (iMonDB) tool, it should be noted that
chronologically the iMonDB was published prior to this chapter, and it will be presented in
further detail in chapter 4.

3.1 Introduction

In the past decade mass spectrometry-based proteomics has evolved into an extremely powerful
analytical technique to identify and quantify proteins in complex biological samples. This high-
throughput approach can yield a considerable volume of complex data for each experiment. As it
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has matured, over the last few years a growing emphasis has been placed on quality assurance
(QA). This attention on quality assurance is of the utmost importance to safeguard confidence in
the acquired results: in cases where this has been lacking mass spectrometry (MS) proteomics
has sometimes suffered from exaggerated claims [11, 80]. To anticipate this evolution, a shift to
“quality by design” is now taking place [249]. This means that the “designing and developing
formulations and manufacturing processes ensure a predefined product quality” As such, quality
assurance consists of multiple aspects of which QA is an essential component, but other elements
such as a careful experimental design [45, 119, 169] are equally vital.

Whereas the experimental design has to be established prior to the initiation of an experiment,
quality control takes place while or after the experimental results are obtained. Nonetheless,
quality control and experimental design should not be discussed in isolation, as they are in-
terwoven. For example, a quality control (QC) sample can consist of a single peptide, a single
protein digest, or a complex lysate, and this decision influences the type of QC metric(s) that
can be investigated [21, 143, 206]. Furthermore, one has to decide how many QC runs to include
in the experiment and to what extent and in which order these QC runs are interleaved with
the biological samples under consideration. The goal of quality control is then to leverage the
experimental set-up to comprehend how well an instrument performs and how confident the
results from the experiments are.

Related to the experimental design and based on the type of performance we want to monitor
there are multiple approaches to quality control. A typical example consists of the use of QC
samples with a simple sample content interleaved between the biological samples. The interesting
aspect of such QC samples is that they have a controlled, limited, and known sample content.
They are typically measured on a frequent basis, which allows to extract periodic information on
the performance of the mass spectrometer. Of course, to understand this performance expressive
QC metrics that provide information indicative of the quality of the experimental results need to
be derived. Some straightforward and commonly used QC metrics include the number of identifi-
cations or the sequence coverage. Although these metrics give a global view of the performance,
they do not allow us to pinpoint specific elements of the workflow where a failure might have
arisen. Instead, more granular QC metrics providing information on the chromatography, the
ion signal, the spectrum acquisition, etc., might be used.

Over the years dozens of QC metrics have been proposed, generated by a range of bioinformatics
tools. In this chapter we will list the main QC tools and explain their use cases and capabilities.
Furthermore, we will provide an empirical assessment of which type of QC metrics is most
adequate in detecting low-quality experiments.

3.1.1 Quality control metrics

We can primarily distinguish QC metrics based on whether they represent information about a
single experiment, or about multiple experiments, as illustrated in figure 3.1.

Intra-experiment metrics give information about a single experiment and are computed at the
level of individual scans or identifications. These metrics show the evolution of a specific measure
over the experiment run time, such as, for example a chromatogram of the total ion current (TIC)
over the retention time (RT), or the mass accuracy of the identified spectra.

Inter-experiment metrics, on the other hand, assess a specific part of the quality of an experi-
ment using a single measurement for the whole experiment. These values can subsequently
be compared for multiple experiments, for example through a longitudinal analysis to eval-
uate the performance over time. Often an intra-experiment metric can be converted to an
inter-experiment metric through summarization. This is illustrated in figure 3.1, where a TIC
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Figure 3.1: Intra-experiment metrics evaluate the quality of a single experiment, whereas inter-experiment
metrics can be used to compare the quality of multiple experiments.

chromatogram enables the assessment of the chromatographic performance by visualizing the
intensity distribution over the RT. Using summary statistics this continuous information can be
converted to inter-experiment metrics detailing the fraction of the total RT that was required to
accumulate a certain amount of the TIC, which gives a high-level assessment at the experiment
level of the chromatographic stability.

To compare inter-experiment metrics multiple observations for different experiments are required.
Therefore, QC tools that analyze these metrics usually include a database back-end for the
persistent storage of historical data. On the other hand, intra-experiment metrics can be computed
from only a single experiment and there is no comparison with external data. As a result, QC tools
that exclusively generate intra-experiment metrics are generally easier to set up, as no external
data storage needs to be provided. Because the use cases and requirements differ between these
two types of tools, we will further make a distinction between tools that generate metrics for
individual experiments, tools that compare a limited group of experiments and do not necessarily
require a complex back-end for data storage, and tools for longitudinal tracking that store QC
data for a large number of experiments.

A second distinction between various metrics can be made based on from which stage in a mass
spectrometry workflow they represent the quality of the system. As shown in figure 3.2, we can
distinguish between instrument metrics, identification (ID)-free metrics, and ID-based metrics.

ID-free metrics and ID-based metrics are similar in the sense that they are both computed from
the spectral results. ID-free metrics are derived solely from the spectral results, i.e. from the
raw spectral data directly generated by the mass spectrometer. These metrics aim to capture
information over the whole mass spectrometry workflow and include for example the shape of
the peaks or the course of TIC detailing the chromatography, the number of MS and tandem
mass spectrometry (MS/MS) scans or the scan rate detailing the spectrum acquisition, or the
charge state distribution detailing the ionization. The advantage of ID-free metrics is that they
are generated directly from the raw spectral data, which makes it possible to instantly generate
these metrics as soon as a mass spectrometry run has been completed.

ID-based metrics are derived from the spectral results as well, but they combine these data with
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Figure 3.2: QC tools can capture qualitative information at different stages of a mass spectrometry experi-
ment. For each type of QC metrics the representative tools are listed.

subsequently obtained identification results. Examples include aforementioned metrics such
as the number of identifications in terms of peptide-spectrum matches (PSMs), peptides, or
proteins; or the sequence coverage for a known sample. Other detailed metrics can be computed
as well, for example by comparing the difference in RT for similar identifications to assess the
chromatographic stability, the number of spectra identified as the same peptide to measure the
dynamic sampling, or by linking information similar to the ID-free metrics with the identification
results. Compared to ID-free metrics, the computation of ID-based metrics is somewhat more
involved because it additionally requires the identifications results. Furthermore, the computation
of ID-based metrics can be negatively influenced by suboptimal identification settings. However,
in general the inclusion of identifications can provide a more detailed qualitative assessment of
the experimental results.

Finally, instrument metrics do not look at the spectral data but derive information directly from
instrument readouts. These are typically very sensitive, low-level metrics, such as the status of
the ion source, the vacuum, or a turbo pump, depending on the type of instrument. An advantage
of instrument metrics is that they directly indicate which part of the instrument is outside its
normal range of operation. This facilitates troubleshooting and can be a driver for maintenance
scheduling. On the other hand, these metrics cannot be directly related to the experimental
results, instead they provide a secondary source of QC information. Furthermore, instrument
metrics are instrument- and vendor-specific, and are typically not included in open file formats
such as the mzML format [179].

Each distinct type of metric can give a different view on the quality of the data. However, not
all metrics are always applicable; often metrics are especially relevant for a particular type
of sample. For example, monitoring the sequence coverage is mostly applicable when using
samples that contain a single protein digest, whereas the number of protein identifications is
applicable to samples that consist of a complex lysate. Additionally, the type of experiment
also plays an important role. For example, the number of identifications is very relevant for a
discovery experiment, but less so for a targeted experiment. In contrast, instrument metrics are
largely agnostic to the type of experiment and the sample content, but they can significantly
vary between different instrument models and vendors.
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3.2 Quality control tools

In recent years, quality control has become a key focus of attention in academic, industrial, and
governmental proteomics laboratories. This trend is exemplified (and possibly driven) by the
numerous QC tools that have been developed over the past few years. Initial work by Rudnick
et al. [227] described for the first time how computational QC metrics can be used to objectively
assess the quality of a mass spectrometry proteomics experiment. Whereas previously quality
control was mostly performed manually by monitoring a few key measurements, this work
showed how a comprehensive set of QC metrics can be used to thoroughly investigate the system
performance. A set of 46 mainly ID-based metrics was defined and implemented in a pipeline
of Perl programs by researchers at the National Institute of Standards and Technology (NIST),
called NIST MSQC. This set of metrics has since then been reimplemented in several lab-specific
data processing pipelines. Support for NIST MSQC itself has been discontinued in early 2016,
but several of the reimplementations remain under active development.

It has been demonstrated that computational QC metrics provide objective criteria that can
accurately capture the quality of a mass spectrometry experiment, and there has been a pro-
liferation of tools that can compute such metrics. Here, we will detail the primary tools, their
characteristics, and their usage. Table 3.1 provides an overview of the discussed tools.

3.2.1 Tools evaluating individual experiments
QuaMeter

QuaMeter was initially developed as a user-friendly and open-source alternative to NIST MSQC.
NIST MSQC consisted of a graphical user interface (GUI) wrapper around multiple individual tools
and scripts with various interdependencies, which resulted in a complex pipeline. Additionally,
some elements of this pipeline could only be modified to a limited extent. NIST MSQC could
exclusively compute metrics from Thermo Scientific raw files, and only supported three search
engines to provide identifications: the NIST MSPepSearch or the SpectraST [152] spectral library
search engines, or the OMSSA [94] sequence database search engine. These limitations restricted
the applicability of NIST MSQC. Instead, QuaMeter consists of a single multi-platform command-
line application that is able to compute QC metrics from raw files originating from instruments
produced by multiple vendors. Using the ProteoWizard [48] library it is able to read spectral
data stored in a wide variety of vendor-specific raw files (restricted to the Windows platform)
and open standard file formats, such as mzML [179]. Further, it can utilize identification results
produced by any search engine in the standard mzIdentML [126] or pepXML format through
external processing using IDPicker [166].

The initial QuaMeter version [167] computed a set of 42 ID-based QC metrics equivalent to
those defined by Rudnick et al. [227]. In a subsequent version QuaMeter improved upon this
by also including functionality to compute a set of 45 ID-free QC metrics [273]. Both sets
of metrics are inter-experiment summary metrics, although the output is exported to simple
tab-delimited text files, so the visualization and analysis thereof has to be done using external
software or code scripts. Without advanced visualization or analysis functionality QuaMeter
focuses solely on computing QC metrics. Especially the set of ID-free metrics, which requires
only the spectral data, can very easily be computed. For the set of ID-based metrics some prior
processing of the identification results by IDPicker is required, which can make this process
slightly more cumbersome. Only a limited configuration is required, and through the command-
line functionality the computation can easily be automated. This makes QuaMeter a powerful
tool that computes an extensive set of inter-experiment QC metrics.
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Tool Interface Operating Experiment type  Instru- ID- ID- Website
system ment free based
QuaMeter command- Windows, discovery DDA X v v http://proteowizard.
[167, 273] line Linux sourceforge.net/
OpenMS KNIME Cross- discovery DDA X v v http://www.openms.de/
[272] platform
proteoQC R Cross- discovery DDA X X v http://bioconductor.org/
[275] platform packages/proteoQC
PTXQC [28] R Windows, discovery & X X v https:
Cross- quantification //github.com/cbhielow/PTXQC
platform DDA
SProCoP [23]  Skyline Windows discovery, X v X http://proteome.gs.washington.
targeted SRM & edu/software/skyline/tools/
PRM sprocop.html
SimpatiQCo web Windows discovery DDA X v v http://ms.imp.ac.at/?goto=
[215] simpatiqgco
iMonDB [34] GUI Windows any v X X https://bitbucket.org/

proteinspector/imondb/

Table 3.1: An overview of the discussed QC tools and their main characteristics.
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OpenMS

OpenMS is a comprehensive open-source software library that offers a wide range of algorithms
and tools for mass spectrometry-based proteomics and metabolomics [246]. It consists of various
small processing tools that can be used to construct complex analysis workflows [7, 127]. These
workflows can be designed visually using the KNIME workflow engine [26], where each tool
functions as an individual node in the workflow.

The various OpenMS nodes can be used to build complex QC pipelines [272]. The provided
QC nodes can compute a set of intra-experiment metrics, consisting of both ID-free and ID-
based metrics. OpenMS supports a range of search engines to generate identifications for the
ID-based metrics, for which there exist specific nodes, including Mascot [212], MS-GF+ [140],
Myrimatch [250], OMSSA [94], and X!Tandem [59]. Example QC metrics include the number of
spectra (identified or otherwise), peptides, and proteins; mass accuracy statistics; and the mass
over charge and RT acquisition ranges. These metrics are complemented by various plots that
provide further details, such as a TIC chromatogram, a histogram of the mass accuracy of the
identified peptides, or a histogram of the charge distribution of the detected ion features. OpenMS
exports this information to an eXtensible Markup Language (XML)-based qcML file [272], which
can be visualized in a web browser through an embedded stylesheet, or to a Portable Document
Format (PDF) report.

Due to the wealth of algorithms and tools that are available in the OpenMS software library,
the provided QC workflows can potentially be easily extended to compute additional metrics.
Furthermore, there is no need to be restricted to algorithms natively provided by OpenMS, as
the available functionality can easily be extended through custom nodes, for example by using
the built-in support for the R statistical programming language [220]. This makes it possible to
build granular workflows and achieve a very fine-grained control, although expert knowledge of
the OpenMS ecosystem and the KNIME environment is recommended to do so. The constructed
workflows can subsequently be exported and shared. Both OpenMS and KNIME are cross-platform
tools, ensuring the universal applicability of these workflows.

3.2.2 Tools comparing groups of experiments
proteoQC

The proteoQC package [275] for the R programming language [92, 220] can be used to generate
a Hyper Text Markup Language (HTML) report detailing the experimental quality. Prior to
executing proteoQC the experimental design has to be specified by configuring each spectral data
file representing a sample as belonging to a specific fraction, technical replicate, and biological
replicate. The generated QC report contains intra-experiment metrics for each individual sample,
as well as aggregated information to compare samples at the level of their fractions, technical
replicates, and biological replicates.

To generate a set of intra-experiment ID-based metrics for each sample, proteoQC uses the
rTANDEM package [86] to interface the X!Tandem [59] sequence database search engine in
R to provide identification results. For each sample some individual metrics and QC plots are
generated, such as a breakdown of the precursor ion charge states, the mass accuracy, information
on the number of spectra and peptides that were used to identify distinct proteins during protein
inference, etc. Furthermore, when identifying the data proteoQC automatically adds the common
Repository of Adventitious Proteins (cRAP) [53] database to the user-provided protein database.
The cRAP database contains contaminants such as common laboratory proteins, like trypsin,
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or contaminants transfered through dust or contact, like keratin, and proteoQC reports which
of these contaminants were detected in the samples. Additionally, proteoQC reports on the
reproducibility of the results by comparing the number of identified spectra, peptides, and
proteins per fraction, technical replicate, and biological replicate, and their overlap between the
replicates.

By incorporating the experimental design proteoQC can make informed comparisons between
individual samples, which provides QC information on an additional level. Furthermore, proteoQC
is fully cross-platform within the popular R programming language. However, as the QC pipeline
has to be configured programmatically, some R experience is recommended to utilize proteoQC.

PTXQC

Proteomics Quality Control (PTXQC) [28] is an R-based QC pipeline for MaxQuant [56], a highly
popular software suite for quantitative proteomics. Like MaxQuant, PTXQC supports a wide range
of quantitative proteomics workflows, including stable isotope labeling with amino acids in cell
culture (SILAC), tandem mass tags (TMT), and label-free quantification. After initial processing
of the spectral data by MaxQuant, PTXQC uses the MaxQuant output results to compute various
QC metrics. PTXQC requires as input the custom text files generated by MaxQuant and the
MaxQuant configuration settings, and hence cannot be used to process any other type of data. As
PTXQC is written in the R programming language, it is fully cross-platform. Additionally, easy
drag-and-drop functionality to execute the QC analyses is provided for the Windows operating
system.

PTXQC produces an extensive report that contains a set of 24 intra- and inter-experiment metrics.
These metrics are divided into four categories corresponding to the specific MaxQuant output
source the metrics are derived from: “ProteinGroups”, “Evidence”, “Msms”, and “MsmsScans”.
The metrics cover a wide range of information, including the intensity of the detected features
and peptides, the potential presence of contaminants, the mass accuracy of the identified peptides
and fragments, the number of missed cleavages detailing the enzyme specificity, and the number
of identified peptides and proteins. Other metrics are specifically related to the MaxQuant match-
between-runs (MBR) [55] functionality. MBR aligns the RTs of multiple runs and transfers their
identifications across features that have the same accurate mass and a similar RT, providing more
data for the downstream quantification of proteins. PTXQC assesses the MBR performance by
evaluating the RT alignment and by checking whether the identification transfer seems correct. All
of these metrics are then visualized and compared between the different raw files that constitute
the considered MaxQuant project using detailed figures. Furthermore, each of the metrics is
converted to an individual score for each experiment using automated scoring functions. Most
of these scores are absolute scores generated by comparing the observation to a threshold, for
example such as whether the number of detected contaminants is too excessive, or generated by
evaluating a specific characteristic of the observation, for example such as the extent to which the
mass deviations are centered around zero. Other scores are computed for a single raw file using
the other raw files as a reference, for example by comparing the number of missed cleavages in
each individual raw file to the average number of missed cleavages. Finally, some other scores are
evaluated relative to settings extracted from MaxQuant, such as the mass accuracy compared to
the width of the precursor mass window. All these scoring functions generate inter-experiment
metrics that are used to compare the quality of the different experiments. Usefully, PTXQC
provides a heatmap overview of the inter-experiment metrics, which yields an assessment of the
quality at a glance and facilitates pinpointing the low-performing experiments.

Although PTXQC can exclusively be used to analyze MaxQuant results, through this tight
integration it is able to compute some highly relevant and specialized QC metrics. These metrics
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do not only assess the quality of the spectral data, but also provide information on the subsequent
bioinformatics processing by MaxQuant. Furthermore, the addition of a high-level heatmap at
the start of the report is very useful to get a quick overview of the quality, after which the more
detailed visualizations can be employed to further investigate potential problems.

SProCoP

Statistical Process Control in Proteomics (SProCoP) [23] is a QC script written in R [220] that
can be used as a plugin [41] for the popular Skyline [168] tool for targeted proteomics. SProCoP
applies well-established statistical process control techniques such as the Shewhart control chart
and the Pareto chart. The purpose of a Shewhart control chart is to track performance over time
and identify outliers that deviate excessively from the expected behavior. Further, the Pareto chart
is a combination of a bar and line graph, which displays the number of deviating measurements
for each metric along with its cumulative percentage, and provides feedback on which metrics
are more variable and may require attention.

Using these statistical process control techniques SProCoP monitors the performance of five
inter-experiment QC metrics based on targeted peptides present in QC samples with a known
sample content or spiked into real samples: signal intensity, mass measurement accuracy, RT
reproducibility, peak full width at half maximum (FWHM), and peak symmetry. Measurement
thresholds are defined empirically based on a reference set of samples with a known good quality,
after which the performance of other samples in the Skyline project can be investigated.

Through its integration with Skyline SProCoP is vendor-independent and can be used for a
wide range of targeted and discovery workflows. Additionally these statistical process control
techniques are available online [242] and have been implemented in the Panorama [234] repository
for targeted proteomics from Skyline. Panorama AutoQC is a utility application that monitors
for new data files and automatically invokes Skyline to process the data [22]. The QC metrics are
stored in Panorama and the statistical process control charts similar to SProCoP can be visualized
through the Panorama web application.

3.2.3 Tools for longitudinal tracking
SimpatiQCo

SIMPle AuTomatlc Quality COntrol (SimpatiQCo) [215] not only computes various QC metrics,
it also stores and visualizes these metrics for longitudinal monitoring of the system performance.
It uses a PostgreSQL database as back-end, and an Apache webserver to provide a web-based
front-end for configuration and visualization.

SimpatiQCo can compute QC metrics from a limited selection of Thermo Scientific and SCIEX
instruments. Raw files from these instruments can be uploaded to the web server manually, or
can be added automatically through a “hot folder” that is monitored continuously for new raw
files. These raw files are then submitted to a linked Mascot server for peptide identifications.
Next, SimpatiQCo calculates a range of ID-free and ID-based QC metrics such as the number of
MS and MS/MS scans, the number of identified PSMs and proteins, the TIC, and information on
lock masses (if applicable). Further, specific peptides and proteins can be investigated in detail
using metrics such as the peak area and width and the elution time of peptides of interest, and the
protein sequence coverage. For each QC metric the range of acceptable values is learned based on
the historical observations using robust statistical measures to take outlying values into account.
This information is then displayed in the metric plots using a color-coded background band to
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highlight deviating system performance. Further, external messages can be entered manually, for
example pertaining to instrument maintenance. These messages will be superimposed on the
metric plots to relate the external events to the evolution of the metrics.

SimpatiQCo consists of a number of different components, such as the database, the web server,
and various processing tools. These components need to be installed individually, and although a
step-by-step installation guide is available online, this complicated process is not recommended
for novice users. Furthermore, not all of the configuration can be done through the graphical
web-based client. For example, to process raw files these must be able to be linked to a specific
instrument. Unfortunately, an instrument definition can only be created by manually adding a
record in the corresponding table of the PostgreSQL database.

SimpatiQCo is a powerful tool to track system performance over time, albeit with some technical
limitations. Namely, SimpatiQCo is only able to process raw files generated on a limited num-
ber of instrument models and only supports the commercial Mascot search engine for peptide
identifications.

iMonDB

Unlike the previous tools the Instrument MONitoring DataBase (iMonDB) [34] does not compute
metrics from the spectral results, but extracts instrument metrics from the raw files. The iMonDB
uses a MySQL database to store its information. This database acts as a server, with two separate
standalone GUI applications that can connect to the database as clients, each with a specific
task: the iMonDB Collector processes raw files and stores the instrument metrics in the database,
whereas the iMonDB Viewer retrieves the information from the database and visualizes it.

The iMonDB supports a wide range of instruments manufactured by Thermo Scientific, although
it does not support other instrument vendors. Prior to extracting instrument metrics from a
raw file, a corresponding instrument definition has to be created. This can be done through
the iMonDB Collector, which allows the full configuration through its graphical user interface.
Further, extraction of the instrument metrics can be done manually through the GUI, or can be
done through command-line functionality provided by the iMonDB Collector. This command-line
functionality can be used to automatically run the iMonDB Collector using an external scheduling
tool, such as the native operating system scheduler.

The behavior over time of the metrics for each instrument can be viewed using the iMonDB Viewer.
Similar to functionality provided by SimpatiQCo it is possible to add additional information
pertaining to external events and show this on the metric plots to link this to the evolution of the
metrics. It is also possible to export a PDF file of the external events for reporting purposes.

A unique aspect of the iMonDB is that this is the only tool that is able to systematically analyze
instrument metrics. The advantage of these instrument metrics, which provide information at
the lowest level, is their high sensitivity, which makes it possible to detect emerging defects in
a timely fashion. However, because these metrics are instrument-dependent they are usually
not retained during conversion to open formats, such as mzML [179]. Due to this limitation
the iMonDB needs to work with vendor-specific raw files directly, which is currently limited
to Thermo Scientific raw files. Furthermore, there is a multitude of instrument metrics that
are extracted, which makes it hard to comprehend which metrics are most useful to monitor
systematically, even for expert users. Nevertheless, these instrument metrics can be very useful
to detect malfunctioning instrument elements before these have a deleterious effect on the
experimental results, preventing potential loss of valuable sample content.
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3.2.4 Other tools

As mentioned previously, NIST MSQC [227] was the first tool that generated computational QC
metrics, although it was recently retired in early 2016.

Metriculator [254] is a web-based tool for storing and visualizing QC metrics longitudinally.
However, Metriculator does not compute QC metrics directly but critically depends upon an
embedded version of NIST MSQC. Unfortunately, the installation process for Metriculator is not
very straightforward; it has many Ruby dependencies whose installation might fail, and which
are presently outdated or even no longer supported.

LogViewer [248] is a simple visualization tool that presents a set of 11 instrument metrics, such
as MS and MS/MS ions injection times, and ID-free metrics, such as the charge state and mass
distributions. As input it uses log files from Thermo instruments exported by RawXtract [182],
which has been deprecated presently.

A different approach is used by SprayQc [231]. Whereas the other discussed tools compute QC
metrics post-acquisition, SprayQc directly interfaces with peripheral equipment to continuously
monitor its performance. SprayQc is able to automatically track the stability of the electrospray
through computer vision, the status of the liquid chromatography (LC) pumps, the temperature of
the column oven, and the continuity of the data acquisition. In case a malfunctioning is detected
SprayQc can automatically take corrective actions and warn the instrument operator. This is a
valuable approach to minimize the loss of precious sample content and provide early notifications,
and it can complement the other QC tools that provide a post-acquisition quality assessment.

3.3 Metrics evaluation

We compared various sets of metrics to assess their effectiveness in expressing the quality of a
mass spectrometry proteomics experiment. Typically this is not a straightforward task because,
as we have reviewed in the previous sections, each QC tool has its own characteristics and
requirements, and use cases can vary as some tools are specific to certain experimental workflows
and sample types. Meanwhile most tools also represent some of their QC information through
visualizations. Although these quickly provide useful insights for human users, this data is not
suitable for an objective, automatic comparison.

To compare different types of metrics we used the set of instrument metrics computed by the
iMonDB [34], the set of ID-free metrics computed by QuaMeter [273], and the set of ID-based
metrics as identified by Rudnick et al. [227]. These sets of metrics are very comprehensive and
all of these inter-experiment metrics can readily be used to compare experiments to each other.
To be able to determine whether or not these metrics can capture qualitative information about
an experiment, we used a public dataset for which the quality of the experiments is known.
The dataset consists of a number of complex quality control LC-MS runs performed on several
different instruments at the Pacific Northwest National Laboratory (PNNL) [9]. Each sample
had an identical content (whole cell lysate of Shewanella oneidensis), and the quality of the
various runs has been manually annotated by expert instrument operators as being either “good”,
“ok”, or “poor”. We split up the various runs depending on the instrument type, being either
“Exactive”, “LTQ IonTrap”, “LTQ Orbitrap”, or “Velos Orbitrap”, with each of these instrument
groups consisting of multiple individual instruments. We refer to the original publication by
Amidan et al. [9] for further information on the experimental procedures and the dataset details.

This public dataset already contains the precomputed set of ID-free metrics by QuaMeter and
the set of ID-based metrics by SMAQC [236] (the PNNL in-house reimplementation of the
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NIST MSQC metrics defined by Rudnick et al. [227]). We further used the iMonDB to compute
the set of instrument metrics. To this end all experimental raw files, precomputed QC metrics,
and the expert quality annotations were retrieved from the PRoteomics IDEntifications (PRIDE)
database [267].

To quantify the expressiveness of these three sets of metrics, each capturing a different type of
QC information, we employed a binary classifier. As the quality of the experiments was manually
assessed by expert instrument operators, this labeling can be used as the ground truth to train
the classifier. We used the acceptable experiments, with their quality designated as either “good”
or “ok”, as the positive class, and the inferior experiments, with their quality designated as “poor”,
as the negative class. When given an experiment represented by its QC metrics, the classification
task consists of correctly predicting the experiment’s quality. Prior to training the classifier
we removed redundant features that have a very low variance and we rescaled the features
robust to outliers by centering by the median and scaling by the interquartile range. Next, for
each separate instrument type we trained a random forest classifier, for which we split the data
into 65%-35% training and testing subsets that are equally stratified according to their quality
labels. This classifier has been coded in Python and uses the random forest implementation from
scikit-learn [207], along with functionality provided by NumPy [260] and pandas [183]. The code
is available as open source at https://bitbucket.org/proteinspector/qc-evaluation.

As illustrated by the receiver operator characteristic (ROC) curve in figure 3.3 all three types of
QC metrics are adept at discriminating high-quality experiments from low-quality experiments.
This shows that all of the different tools can give us valuable insights into the quality of an
experiment, and that information captured at various different stages of the mass spectrometry
process should be investigated. ID-based metrics slightly outperform ID-free metrics, most likely
because the ID-based metrics can employ additional information provided by the identifications.
This difference is minimal however, which is perhaps not surprising as both types of metrics take
similar properties of the spectra into account. This reinforces previous research which showed
that ID-based metrics are not significantly influenced by slight differences in the identifications,
such as when using an alternative search engine [167]. This also shows the excellent efficacy
of ID-free metrics in objectively evaluating the quality based solely on spectral information.
Because ID-based metrics require additional computational steps to obtain the identifications,
whereas ID-free metrics can be directly computed from the spectral results, ID-free metrics might
be preferred if a speedy quality assessment is required. In contrast, instrument metrics perform a
little worse at correctly identifying low-quality experiments. This is likely because they are only
secondary results that are not always directly related to the data quality. Nevertheless, these
metrics still have merit as they do not depend on a specific type of experiment or sample content,
but are applicable on all occasions. Furthermore, by combining the individual classifiers for the
various types of metrics in an ensemble classifier a further performance gain can be achieved
because the different types of metrics each provide a complementary view on the quality.

3.4 Using QC metrics for decision-making

As tools for computational quality control have proliferated in recent years, the challenge in this
field is now shifting from the computation of QC metrics toward informed decision-making based
on these metrics. However, interpreting these metrics is not trivial. First, considerable domain
knowledge is required to understand what each metric signifies. Second, the metrics form a
high-dimensional data space, which complicates their analysis. Different elements in a mass
spectrometry workflow do not function in isolation but instead influence each other, which has
to be taken into account while analyzing metrics representing information about these elements.
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Figure 3.3: ROC curves showing the classification performance of various types of QC metrics.
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3.5 Conclusion

Therefore, univariate approaches are generally insufficient; instead multivariate approaches that
can deal with the high-dimensional data space should be preferred, while also taking the curse of
dimensionality into account [4].

To this end Wang et al. [273] have developed a robust multivariate statistical toolkit to interpret
QC metrics. They have used a principal component analysis (PCA) transformation to reduce
the data to a low-dimensional approximation, in which they were able to successfully detect
outlier low-quality experiments based on pairwise dissimilarities. Furthermore, they developed
an analysis of variance (ANOVA) model which enabled them to identify whether the observed
variability was attributable to lab-dependent factors, batch effects, or biological variability. Such
work driving the understanding of QC metrics is highly valuable, and these analyses have been
applied to great effect for multiple studies. For example, it was used to assess the quality of the
experimental results for various studies conducted by the National Cancer Institute (NCI) Clinical
Proteomic Tumor Analysis Consortium (CPTAC) [235, 252, 288].

Similar work was done by Bittremieux et al. [30], who applied unsupervised outlier detection to
identify low-quality experiments. Subsequently they used a specialized outlier interpretation
technique to determine which QC metrics mostly contributed to the decrease in quality. The
advantage of this approach is that all QC metrics are used to identify low-quality experiments,
unlike when using a dimensionality reduction, such as PCA, which discards some of the informa-
tion. Meanwhile, the advanced outlier interpretation pinpointing the most relevant QC metrics
can yield actionable information for domain experts to optimize their experimental set-up.

Whereas these previous analyses used unsupervised techniques, Amidan et al. [9] trained a
supervised classifier to discriminate low-quality experiments from high-quality experiments.
A supervised approach will generally perform better than an unsupervised approach but will
require initial training. Furthermore, a supervised classifier might have to be retrained to adapt
it to data generated by a different instrument or in a different laboratory. Amidan et al. [9] have
expended significant effort in manually annotating the quality of over a thousand experiments
to generate training data, which allowed them to build a highly performant logistic regression
classifier.

These analyses are extremely valuable, as they allow us to achieve a deeper understanding of
the mass spectrometry processes and the properties of what makes a high-quality experiment.
These algorithmic approaches provide a thorough quality assessment of the spectral data, which
enforces informed decision-making, and which has the potential to automatically drive the
spectral acquisition in the future.

3.5 Conclusion

We have given an overview of the available computational tools to generate QC metrics for mass
spectrometry-based proteomics. These tools enable assessing the performance of the experimental
set-up and detecting unreliable results. These are essential requirements to inspire confidence in
the experimental results, which will prove to be a crucial step in the maturation of proteomics
technologies, and which will allow us to for example routinely apply these technologies into a
clinical setting [177, 249]. Another potential application where an accurate assessment of the data
quality is paramount, is in the reuse of public data [73, 85, 141, 178]. As public data repositories
keep expanding and the potential for data reuse grows, we envision that data submissions to
public repositories will soon have to be accompanied by QC parameters at the time of submission,
or will have a standard set of QC metrics calculated automatically after submission [178].
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Finally, most current QC tools are limited to the typical use case of bottom-up data-dependent
acquisition (DDA) discovery experiments, and their QC metrics often cannot be directly translated
to other types of experiments. Less research has been done on QC for other types of workflows,
such as data-independent acquisition (DIA) [72] or top-down proteomics [256], or even related
mass spectrometry-based domains, such as metabolomics [68]. In the next few years we will
likely see the efforts on QC expanded to these types of workflows as well, which will further
bolster the diverse and powerful mass spectrometry ecosystem.
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Monitoring secondary quality
control metrics

Abstract

Quality control (QC) metrics are typically derived from the mass spectral data, with secondary
data often overlooked as a source of qualitative information. Nevertheless, instrument parameters,
which can be extracted from the raw data files, give a detailed account on the operation of the
mass instrument, and can be related to observations in the mass spectral data. The advantage
of instrument information at the lowest level is its high sensitivity to detect emerging defects
in a timely fashion. Furthermore, environmental variables have a profound impact upon the
quality of the experimental results as well. The ambient temperature is an especially important,
yet often overlooked, factor. Here we introduce the Instrument MONitoring DataBase (iMonDB)
to longitudinally track secondary QC metrics. We present software tools to automatically extract,
store, and manage instrument parameters from raw-data objects into the highly efficient iMonDB
database structure, which enables us to monitor instrument parameters over a considerable time
period. Furthermore, we show how commodity hardware can be used to systematically and
affordably monitor the ambient laboratory temperature. The proposed tools foster an additional
handle on quality control and are released as open source under the permissive Apache 2.0 license.
The tools can be downloaded from https://bitbucket.org/proteinspector/imondb.

Preface

Part of this chapter was previously published as:

Wout Bittremieux et al. “iMonDB: Mass Spectrometry Quality Control through Instrument
Monitoring”. In: Journal of Proteome Research 14.5 (May 1, 2015), pp. 2360-2366. DOo1: 10.1021/
acs. jproteome.5b00127

The initial version of the iMonDB software was demoed at the American Society for Mass
Spectrometry (ASMS) annual conference 2015 in St. Louis, MO, USA, during the “Methods and
tools for intra- and inter-experiment LC MS performance tracking” workshop, and was featured
again during the same workshop at the ASMS annual conference 2016 in San Antonio, TX,
USA.
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Chapter 4 Monitoring secondary quality control metrics

4.1 Introduction

As described in chapter 3, most quality control (QC) tools compute their metrics from the experi-
mental spectral-derived data, optionally including the corresponding identification results [32].
However, besides these metrics based on the spectral data, there is a separate part of qualitative
information available in the form of secondary QC metrics, consisting of mass spectrometer
instrument parameters and environmental variables.

Possible instrument parameters are for example the status of the ion source, the vacuum, or a turbo
pump, depending on the type of instrument. This information provides complementary insights
into the operational characteristics of a mass spectrometer compared to the aforementioned
QC metrics that originate from the mass spectral data. Metrics based on the experimental data
can capture a wide range of possible problems during a mass spectrometry (MS) experiment;
however, if these metrics are seen to deviate from normal or previously observed values, this
behavior still has to be related to the malfunctioning of a particular element in the experimental
workflow or defect in the MS setup. On the other hand, instrument parameters directly indicate
which part of the instrument is outside its normal range of operation, and this information can
subsequently be related to the interpretation of the experimental data. As such, metrics based on
the spectral data and the instrument parameters offer complementary information: both are able
to indicate shortcomings of the mass instrumentation, yet they operate on different layers of
information. An important advantage of monitoring instrument parameters is that emerging
problems can be spotted in time and remedial measures can be suggested, for example, to replace
the inert gas in the collision cell. When looking at statistics based on the mass spectral data
alone, an emerging problem could remain undetected while the system deteriorates further, since
most instruments are cleverly constructed to compensate for the malfunctioning of a component
in the MS process, for example, by increasing the ion target for fragmentation.

Furthermore, although instrument parameters provide important insights into the operation of
an MS instrument, both these metrics and QC metrics derived from the spectral data still only
deal with qualitative information that is internal to the operation of the instrument. Scheltema
and Mann [231] have addressed this in part with their SprayQc software, which can automatically
monitor the status of peripheral equipment, such as the electrospray conditions and the liquid
chromatography (LC) performance. However, besides influences from the peripheral equipment,
external processes that are completely unrelated to the MS instrumentation, such as environmental
variables, can have a profound impact on the experimental results as well. For example, Keller
et al. [136] report how a high number of sheep keratin contaminants were observed after a
lab member started wearing a different sweater in the sample preparation laboratory when
the weather changed. In a similar fashion, even the deodorant worn by lab members can be a
source of contamination [213]. Although consistently observed contaminants can potentially
be used as lock masses to recalibrate mass measurements [159], careful operational procedures
are advisable to avoid excessive contamination [31], as the contaminants will interfere with the
biological signal and crowd out the measurements of interest. An important, yet often overlooked,
environmental factor is the ambient temperature. Most MS instruments are able to compensate
for limited changes in ambient temperature, however, excessive temperature fluctuations can
negatively impact measurements due to various reasons. First, certain biological compounds,
such as enzymes or proteins, may not be stable at room temperature or higher temperatures,
which can introduce unexpected modifications due to unanticipated chemical reactions [31].
Furthermore, importantly, LC column performance is temperature-dependent [50, 51]. The
higher the temperature, the faster the exchange of the analytes between the mobile phase and the
stationary phase occurs, leading to decreased peak retention times (RTs) at higher temperatures.
Finally, temperature has an impact on mass accuracy as well. For example, mass measurements
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on various types of instrument models, such as time-of-flight (TOF), Orbitrap, and Q-Exactive
instruments, can be influenced by temperature shifts [90, 198, 201, 224].

To date, no extensive longitudinal monitoring of the mass spectrometer normal range of operation
or environmental conditions is undertaken due to a lack of access to sensory data. Instrument
parameters have largely been ignored for the analysis of mass spectral data and quality assess-
ment because they are recorded in a vendor-specific raw data format, from which they are not
retained after conversion to an open file format, such as the mzML format [179]. Although the
instrument parameters can be read from a raw file using vendor software, this functionality is
often cumbersome and rarely advertised prominently. Additionally, environmental conditions
are typically measured in a separate system, if at all, and this information is rarely systematically
related to the functional characteristics of the MS instruments. As a result, these important
sources of qualitative information remain largely unexploited.

Here we present user-friendly software to systematically monitor secondary QC metrics such
as instrument parameters and environmental conditions. First, we provide an automatic tool
to extract the instrument sensor information from raw data files, along with a highly efficient
database structure to store this information. Currently this functionality is limited to the ex-
traction of instrument parameters from Thermo Scientific raw files, but a considerable part of
the technical workflow is kept generalized, with the expansion toward other vendors in mind.
Second, although complex and expensive systems exist to monitor the laboratory environment,
temperature, a crucial variable impacting the experimental quality, can be straightforwardly
monitored using commodity hardware. We show how basic networked smart sensors can be
employed to systematically monitor the laboratory temperature, and how this information can
provide crucial insights into the performance of an MS instrument. Using specialized processing
and visualization tools, historical QC metrics can be monitored for a large number of experi-
ments over time in order to compile the technological passport of an instrument. This unique
information can be used to rapidly and reliably confirm and detect instrument failure and assess
the quality of the experimental data, fostering novel methods of quality control.

4.2 Monitoring secondary QC metrics

The monitoring functionality centers around the Instrument MONitoring DataBase (iMonDB), a
database optimized to store a vast amount of QC information. Figure 4.1 gives an overview of
the different steps required to set up the iMonDB and how the database interfaces with external
components. This central data storage enables the integration of several software tools that
interact with the database, such as the iMonDB Collector, a Java application to set up and populate
the database in an automated fashion, and the iMonDB Viewer, a user-friendly graphical user
interface (GUI) tool to visualize longitudinal QC information. Each step in this workflow will be
discussed in more detail next.

4.2.1 Instrument monitoring database

The central database, called iMonDB, is a relational database used to store historical mass
spectrometer instrument parameters. Care has been taken to provide a general database structure
that can accommodate a wide range of instrument types and different parameter settings. In
addition, the database is optimized to perform the most common queries in a computationally
efficient manner. The entity-relationship diagram of the iMonDB is shown in figure 4.2 and
contains four types of information pertaining to the monitoring and interpreting of instrument
parameters.
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Figure 4.1: Overview of the QC monitoring functionality. Instrument parameters are extracted from
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database, from which it is served for visualization or export to an interchange format.

] imon_cv
id BIGINT(20)
label VARCHAR(20)
name VARCHAR(200)
uri VARCHAR(200)
version VARCHAR(20)
>

a7}

:I imon_instrument_properties
? I_imon_instrument_id BIGINT(20)
¥ I_imon_property_id BIGINT(20)

T

bl——————

j imon_property
id BIGINT(20)
accession VARCHAR(255)
isnumeric BIT(1)
name VARCHAR(200)
type VARCHAR(20)
 |_imon_cv_id BIGINT(20)

"] imon_instrument ¥
id BIGINT(20)
name VARCHAR(100)
type VARCHAR(I) | :
& |_imon_cv_id BIGINT(20) | "] imon_event v
> : id BIGINT(20)
+ | attachment LONGBLOB
: | attachment_name VARCHAR(255)
| : eventdate DATETIME
! L
o e |G < extra TEXT
| problem TEXT
: solution TEXT
> | type VARCHAR(255)
| & I_imon_instrument_id BIGINT(20)
|
>
|
A
] imon_run v 5
] imon_metadata ¥
id BIGINT(20)
id BIGINT(20)
name VARCHAR(100)
name VARCHAR(100)
sampledate DATETIME H———— — - — — ] <

value VARCHAR(100)

storage_name VARCHAR(255)
& I_imon_run_id BIGINT(20)

@ |_imon_instrument_id BIGINT(20)

>
>
E3
I
|
1
A
"] imon_value v
id BIGINT(20)
firstvalue VARCHAR(200)
max DOUBLE

mean DOUBLE

median DOUBLE

min DOUBLE

nINT(11)

n_diffvalues INT(11)

q1 DOUBLE

3 DOUBLE

sd DOUBLE
& I_imon_property_id BIGINT(20)
& |_imon_run_id BIGINT(20)

Figure 4.2: Entity-relationship model for the iMonDB version 1.0.0.
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First, the main node of information is an individual instrument of a certain model. By making use
of a controlled vocabulary (CV), such as the Proteomics Standards Inititative (PSI)-MS controlled
vocabulary [181], an instrument can be unambiguously cataloged, while at the same time the
database structure supports all instrument models that have been formally defined.

Next, associated with a particular instrument are all the runs (or a specific subset thereof) that were
performed on it. A run corresponds with a sample that was analyzed on the mass spectrometer,
and is represented by a single output file containing the raw measurement values. Various
metadata can be associated with a run, detailing specific characteristics of the way a run was
carried out, such as, for example, the sample type and content, the column features, etc. This
metadata cannot be automatically retrieved, but should be provided manually by the user in
a key-value format, and it can originate, for example, from an electronic lab notebook (ELN).
Metadata can subsequently be used to retrieve data that adheres to a specific characteristic, for
example, to visualize instrument performance on only standardized QC runs.

Third, the raw file associated with a run contains the instrument parameters that were in effect
during the execution of the experiment. The parameters that are recorded over the course of the
experiment obviously depend on the model type of the instrument and are explicitly specified by
a property, which denominates a single parameter, and is defined in a CV. Most MS experiments
have a time dimension, for example, the RT when combined with liquid chromatography. There-
fore, a particular instrument parameter has multiple values that are associated with this time
dimension. In fact, every scan that records a mass spectrum can be associated with an instrument
parameter analogue. As the main application of the iMonDB is to monitor instrument behavior
over a long time interval (i.e. years) and not to monitor instrument stability over the period of a
single LC-MS run (i.e. hours), summary statistics are computed for the repeated time course ob-
servations instead of storing each observation individually in the database. The advantage of this
operation is that the data volume for quality control is significantly reduced, while the summary
statistics provide sufficient information about the operational characteristics of the instrument.
The parameter values of a single experiment are represented by their mean and median value,
the first/third quartile, the minimum/maximum value, and the standard deviation.

Finally, another type of information that is related to the operation of a mass spectrometer
are external events that may occur. For example, machine calibrations, periodic maintenance
events, or even unexpected incidents that an operator likes to report, such as, for example, if
an unusual sound is produced by a turbo pump. Unlike the instrument parameters, this type of
information cannot be automatically retrieved and instead it has to be manually provided by
the user. However, this information is vital when interpreting the evolution of the instrument
parameters over time.

The previous sources of information are stored in a database structure that is both general and
expressive. On the one hand it does not impose any restrictions on the mass spectrometer
instrument manufacturer or even the specific instrument model type, as it is conceived as a
flexible framework such that new instrument parameters can be added easily. On the other hand,
the iMonDB is a rigid framework as instrument parameters can be unambiguously defined by
making use of specialized CVs. By optionally combining the instrument parameters with a more
advanced laboratory information management system (LIMS), such as, for example, colims [52],
all information relevant to a mass spectrometry experiment can be structurally stored. Combined
with external events, this data integration would enable highly advanced interpretations of the
instrument parameters, for example, when contrasted to the protein coverage, identification
scores, etc.
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Instrument name PSI-MS CV accession number
LCQ Deca XP Plus MS:1000169
LTQ MS:1000447
LTQFT MS:1000448
LTQ Orbitrap MS:1000449
LTQ Orbitrap Discovery MS:1000555
LTQ Orbitrap XL MS:1000556
LTQ FT Ultra MS:1000557
LTQ Velos MS:1000855
TSQ Vantage MS:1001510
LTQ Orbitrap Velos MS:1001742
LTQ Orbitrap Elite MS:1001910
Q-Exactive MS:1001911
Orbitrap Fusion MS:1002416

Table 4.1: List of explicitly supported instruments, along with their accession number in the PSI-MS
controlled vocabulary [181].

4.2.2 Software implementations

In order to set up and populate the iMonDB several Java tools have been developed. First, there
is a Java application program interface (API) geared toward developers. Based on this API there
are processing and visualization tools available. All tools are released as open source and are
available from the project website (https://bitbucket.org/proteinspector/imondb).

API

The iMonDB Java API features a high-level API for use by bioinformaticians and developers.
The API provides all required functionality to extract instrument parameters from experimental
raw files, and to store and retrieve this extracted data from the iMonDB. This API allows other
developers to easily provide full iMonDB support in their own applications or to rapidly prototype
powerful new tools.

The extraction of the instrument parameters from experimental raw files is based on functionality
provided by the ProteoWizard library [48]. Making use of the abstraction layer ProteoWizard pro-
vides for experimental raw files, lightweight extraction tools have been implemented. Currently
this functionality is limited to the extraction of instrument parameters from Thermo Scientific
raw files. Table 4.1 lists all instrument models that are presently supported, however, other
Thermo Scientific instruments might be supported implicitly, and explicit support for additional
instruments is added regularly.

Specifically, two sources of instrument parameters are extracted from the raw files: the tune
method information and the status log information. The tune method contains several config-
urable values for numerous instrument parameters, such as, for example, the flow of the sheath
gas and the auxiliary gas for an electrospray ionization (ESI) probe, the voltage and temperature
of the ESI capillary, the voltage of the multipole and various different lenses, etc. Obviously,
the set values of these tune parameters depend on the application of the experiment. Further-
more, the status log contains information on all the sensors in the mass spectrometer, for which
the values are recorded at the same time intervals as the mass spectral data. The status log
includes the actual values of some parameters specified in the tune method, as well as additional
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instrument parameters. For example, figure 4.3 shows the temperature of the iMonDB capillary
in degrees Celsius, as configured in the tune method and as measured over the course of the
experiments in the status log. The measured temperature roughly equals the set value in the
tune method, however, it slightly deviates during the course of the experiments, as evidenced by
the quartile values and the extreme values, which are used to summarize the repeated sensor
readouts. Additional status log values include, for example, the pressure of the vacuum; the
speed, power, and temperature of several turbo pumps; the flow rate of the syringe pump; etc.

To interact with the iMonDB, either to store extracted instrument parameters or to retrieve
previously stored data, the iMonDB API makes use of the Java Persistance API (JPA) [125], and
specifically the Hibernate implementation [113], to convert between records in the database and
Java objects. This allows the user to work with high-level Java objects, instead of having to manage
the various tables in the database and other technicalities. Retrieving or storing of instrument
parameters in the iMonDB is implemented by executing the corresponding JPA persistence
methods, while more advanced queries can easily be performed using the Java Persistence Query
Language (JPQL) [77].

Data collection

The iMonDB Collector is a computer program that can be scheduled to keep the information
in the iMonDB up to date. Experimental raw files for which the instrument parameters are not
present in the iMonDB yet are gathered, after which these parameters are extracted from the raw
files and stored in the database. Additionally, linking and mapping of external sensor information
to the iMonDB can be done through the iMonDB Collector. The Collector can be run on a daily
or weekly basis, and is fully configurable. For example, based on a lab’s particular file naming
scheme, specific metadata can be extracted from the file names and directory structures by making
use of user-specified regular expressions. Extensive documentation for the full capabilities of the
data collector are available on the project website.

Data visualization

The iMonDB Viewer consists of a basic GUI application to visualize instrument parameters
retrieved from the iMonDB. Each instrument parameter can be visualized over time, as is shown
in figure 4.4. For each experiment the median value is shown in black, while the dark gray band
depicts the first quartile and the third quartile, and the light gray band depicts the minimum and
maximum values. This type of graph visualizes several elements of the summary statistics in an
intuitive manner. Additionally, it is possible to select only the experiments that are associated
with specific metadata to visualize only a subset of the experiments that are associated with a
particular instrument.

Next, the vertical lines in figure 4.4 illustrate the external events submitted by the operator. It
should be noticed that there are four different colors that represent predefined event categories.
A user is able to add comments on instrument calibration, maintenance and service, downtime
and errors, and an undefined category to store information on miscellaneous events, such as,
for example, operator intuition. The causal effects of these events can be visually related to
the trends in the instrument parameters. Obviously, these events cannot be extracted from the
experimental raw files, therefore the iMonDB Viewer offers a reporting tool to add these events
to the database and visualize them, as is shown in figure 4.5. Several event types can occur at a
specific date, and can be augmented with customizable information on the observed problem,
such as service reports or links to ELNs, and the actions that have been undertaken to solve
the problem. This simple tool allows for a structured recording of all the events that occurred
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(a) The set capillary temperature in the tune method.
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(b) The actual capillary temperature in the status log.
Figure 4.3: Values for the temperature of the ESI capillary for a range of experiments. The median value is

represented by the black line, the first and third quartile values are represented by the dark gray band, and
the minimum and maximum values are represented by the light gray band.
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Figure 4.4: The viewer can be used to visualize how instrument parameters retrieved from the iMonDB
progress over time.

on an instrument, which yields invaluable information for the downstream interpretation and
analysis of the instrument parameters. Furthermore, the events are stored in the centralized
iMonDB, which forms a single point of updated information, while users can easily retrieve this
information on their personal computer by connecting to the iMonDB.

4.2.3 Case study
Instrument failure detection

A case study is presented to illustrate how the instrument parameters can be employed to
detect/predict instrument failure. For this case study the application of the iMonDB was restricted
to incorporate only the LC-MS runs originating from standard QC samples, and more particularly
bovine serum albumin (BSA) samples. The advantage of such QC runs is that they are measured on
a daily basis and that they easily allow us to assess the operation of a mass spectrometer because of
their low sample complexity and controlled sample content [31]. It should be noted that in general
the computation of QC metrics is not restricted to a specific sample type, but a homogeneous
sample list may be required when interpreting some of the instrument characteristics. If LC-MS
runs vary over time due to a change in the organism or a change in the wet lab protocol then it
is difficult to link detected anomalies to a particular instrument artifact.

The graph displayed by the iMonDB Viewer in figure 4.4 shows the FT turbo pump 4 of a Thermo
Scientific Orbitrap Velos on standard BSA LC-MS runs. From the graph, it can be noticed that
the power consumption started to increase at the beginning of June 2012. The reason for this
abnormal incline is that the turbo pump was deteriorating. In this case, intelligent electronics
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Figure 4.5: Event information can be manually added and visualized through the iMonDB Viewer.

tried to increase the power consumption to remain fully functional. However, the increased
power consumption was insufficient to continuously achieve the required speed and overcome the
friction, after which the instrument finally broke down (down time: red line). After replacement
of the turbo pump, the power consumption returned to its original value, and correct operation
of the instrument could be resumed. Note that the instrument operator observed a high-pitched
noise before the turbo pump finally broke down and reported this in the lab notebook (undefined
event: yellow line).

While this is a clear-cut example of instrument malfunctioning, which eventually will lead to an
intervention, by consistently monitoring the instrument parameters, this malfunctioning could
have been predicted as the increase in power consumption serves as a proxy for turbo pump
retrogression. Hence, by closely monitoring the instrument parameters and defining a normal
range of operation, a suspected malfunctioning can be diagnosed early on and be reported. Next,
based on this diagnosis, a timely intervention can prevent a highly undesirable loss of precious
sample, analysis time, and effort.

Temperature monitoring

Basic smart sensors, purchased from Sen.se (https://sen.se/), were used to monitor the ambient
laboratory temperature. These sensors are small hardware components that can measure both
temperature and motion, and they can be unobtrusively attached to any laboratory equipment.
Temperature monitoring was set up alongside a Thermo Scientific Q-Exactive mass spectrometer.
Both temperature data and instrument parameters were collected over a period of several months
in the second half of 2016, as shown in figure 4.6. Besides the explicit monitoring of the ambient
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QcML gcml = new QcML();

qcml . setFileName(run.getName () + ".qcML");

QualityAssessment qualityAssessment = new QualityAssessment(run.getName());
qcml . addRunQuality (qualityAssessment);

int i = 0;
for(Iterator<Value> vallt = run.getValuelterator(); vallt.hasNext(); ) {
Value value = vallt.next();

Cv cv = convertAndAddCv (value.getDefiningProperty().getCv(), qcml);

QualityParameter param = new QualityParameter(
value.getDefiningProperty().getName(), cv, "value_" + (i++));
param.setAccession(value.getDefiningProperty().getAccession());
param.setValue(value.getFirstValue());
qualityAssessment.addQualityParameter (param);

}

QcMLWriter writer = new QcMLFileWriter ();
writer.writeQcML (gcml);

Listing 4.1: Exporting of instrument parameters to the qcML interchange format. The input run is a run
retrieved from the iMonDB or extracted from an experimental raw file.

temperature, specific instrument elements measure the temperature internal to the instrument as
well (figure 4.6a). Not surprisingly, the internal temperature is highly correlated to the ambient
temperature, the latter which can therefore potentially influence the functioning of temperature-
sensitive instrument elements. Furthermore, figure 4.6b shows an inverse correlation between
the ambient temperature and the temperature measured by a cooling element, indicating that
more cooling is performed at a higher ambient temperature. Correlations of other instrument
parameters with the ambient temperature can be seen as well. For example, in figure 4.6¢ the
pressure of the vacuum slightly changes according to the ambient temperature. Indeed, it is
known that turbo pumps generating the vacuum frequently malfunction, notably when exposed
to sustained and excessive heat. Additionally, in figure 4.6d an inverse correlation can be seen
between the ambient temperature and the electrospray voltage.

qcML export

Recently the qcML format [272] has been proposed as a standard data format for mass spectrom-
etry QC information. Even though the primary purpose of the iMonDB is to provide longitudinal
data storage, the qcML format can be used to easily interchange instrument parameters.

By making use of the iMonDB API and the equivalent jqcML API [29], it is straightforward to
export data from the iMonDB to the eXtensible Markup Language (XML)-based qcML format.
Listing 4.1 contains the full Java code that is required to store a specific run, extracted from the
iMonDB, in a qcML file. Optionally the iMonDB can be forgone as well, and the instrument
parameters can be extracted from an experimental raw file and directly stored in a qcML file by
making use of the appropriate API functions.
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Figure 4.6: Examples of instrument parameters that are affected by the ambient temperature. The strength
of the relationship between the instrument parameters and the ambient temperature is indicated by the
Pearson correlation.
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4.3 Conclusions

Although quality control has recently been rightly identified as a vital element of an MS experi-
ment, instrument parameters and environmental variables have so far been largely ignored. In
contrast, this data forms an invaluable source of QC information. Instrument parameters are often
directly related to the performance of the mass spectrometer and are able to identify possible
problems in an early stage. And although the ambient temperature is a highly important factor
influencing the experimental results, it is often overlooked and not systematically monitored
even though commodity hardware suffices to measure the ambient temperature in an affordable
fashion.

Here we have presented the iMonDB and associated tools to easily track and visualize instrument
parameters and temperature information. Furthermore, an open-source Java API is provided
to facilitate the handling of instrument parameters by other developers. Currently this API is
only able to extract instrument parameters from Thermo Scientific experimental raw files, other
vendors are not (yet) supported. Nevertheless, the iMonDB database structure is kept general but
expressive, and allows for integration with other mass spectrometer vendors as well.

The highlighted case studies have illustrated the importance and potential benefits that can be
gained by carefully monitoring secondary QC metrics. Tracking this information can help to
assure a consistent and high-level quality of the experimental results. Furthermore, instrument
downtime and sample loss can be avoided by scheduling a targeted maintenance when the metrics
indicate that specific parts of the instrument are outside their normal range of operation, but
have not completely broken down yet. Monitoring secondary QC metrics has a big potential to
contribute to the stability of MS experiments, which is of vital importance for the development of
robust proteome analysis workflows. Furthermore, for industry, the iMonDB can be supportive
to manage and automate data provenance.

The iMonDB, its accompanying Java API, and various tools are freely available and are released as
open source under the permissive Apache 2.0 license. The binaries, source code, and extensive doc-
umentation can be accessed at the project website at https://bitbucket.org/proteinspector/
imondb.
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Chapter 5

Making quality control more
accessible

Abstract

In order to be confident of the results acquired during biological mass spectrometry experiments,
a systematic approach to quality control is of vital importance. Nonetheless, until now only
scattered initiatives have been undertaken to this end, and these individual efforts have often
not been complementary. To address this issue, the Human Proteome Organization (HUPO) -
Proteomics Standards Inititative (PSI) has established a new working group on quality control
at its meeting in the spring of 2016. The goal of this working group is to provide a unifying
framework for quality control data. The initial focus will be on providing a community-driven
standardized file format for quality control. For this purpose the previously proposed qcML
format will be adapted to support a variety of use cases for both proteomics and metabolomics
applications, and it will be established as an official PSI format. An important consideration is to
avoid enforcing restrictive requirements on quality control, but instead provide the basic technical
necessities required to support extensive quality control for any type of mass spectrometry-based
workflow.

Preface

This chapter combines two previously published papers on providing the necessary technical
infrastructure to support quality control methods for biological mass spectrometry:

1. Wout Bittremieux et al. “jgcML: An Open-Source Java API for Mass Spectrometry Quality
Control Data in the qcML Format”. In: Journal of Proteome Research 13.7 (July 3, 2014),
pp. 3484-3487. DOI: 10.1021/pr401274z

2. Wout Bittremieux et al. “The HUPO-PSI Quality Control Working Group: Making Quality
Control More Accessible for Biological Mass Spectrometry”. In: Analytical Chemistry (In
revision)

Note that the jqcML application program interface (API) was first developed prior to the estab-
lishment of the HUPO-PSI Quality Control working group. The jqcML API comprises an essential
element of the ecosystem around the qcML file format and it has been updated to incorporate the
changes made to the standard based on feedback from the HUPO-PSI Quality Control working

group.
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5.1 Introduction

As mass spectrometry (MS) proteomics and metabolomics have matured over the past few years,
a growing emphasis has been placed on quality assurance (QA) and quality control (QC), which
are of crucial importance to endorse the generated experimental results. Mass spectrometry is a
highly complex technique, and because its results can be subject to significant variability [251],
suitable quality control is necessary to model the influence of this variability on experimental
results. Potential sources of variability can include the introduction of unexpected modifications
during sample preparation [133], limited stability of proteolytic digestion [262], the presence of
contaminants [136], variability in the chromatography [15] and mass measurements [227], etc.
A systematic approach to quality control makes it possible to quantify the technical variability
within experimental results, which can inform subsequent data analysis steps and can be fed
back to optimize the MS set-up. For example, Slebos et al. [235] have combined a meticulous
experimental design with advanced computational quality control procedures to detect deviating
measurements in a high-profile proteogenomic cancer study. This allowed them to trace the
variability in the experimental results to both batch effects from instrument drift and biological
variability, which would not have been possible by only examining high-level identification
performance. Quality control plays an increasingly important role in such large-scale multi-site
projects [46, 235, 252, 288] to enable an intra- and inter-laboratory comparison of experimental
results. Additionally, although suitable quality control procedures are beneficial for any biological
mass spectrometry application, a formal approach to quality control is of particular importance
in a clinical setting [177, 249].

As aresult, computationally derived QC metrics have been defined to objectively assess the quality
of MS experiments [227]. These QC metrics capture quantitative information that may be related
to the performance of the various processes in an MS experiment. The importance of quality
control is exemplified by the recent proliferation of tools that can compute such metrics [21, 32].
However, most of these tools require specialized and non-standard experimental and software
environments, which significantly hinders their evaluation and universal applicability. This
problem is further exacerbated by the fact that each tool extracts different types of metrics from
mass spectral data, and uses different frameworks to store, visualize, interpret, and communicate
these metrics. In other words, the interoperability and comparability of these tools is essentially
non-existent. These problems significantly hinder the systematic adoption of existing QC tools in
well-established informatic pipelines. Consequently these tools are not yet adopted as a standard
in the field, hindering biological mass spectrometry from reaching its full potential.

To address these issues a unifying framework for QC data is required, which would make it
possible to bring these scattered initiatives together in a concerted approach, enabling a long-
term strategy for quality control in proteomics. Moreover, we envision that in the future QC
data will accompany MS data and associated results in repositories such as those coordinated
by the ProteomeXchange Consortium [266] and MetaboLights [111]. This will, for instance,
enable scientists interested in the reuse of these data to easily assess the quality of heterogeneous
datasets in the increasingly extensive catalog of publicly available MS data. Therefore, the Human
Proteome Organization (HUPO) — Proteomics Standards Inititative (PSI) [64] and members of
the Metabolomics Standards Initiative (MSI) Data Standards task group [229] have established a
new working group on quality control at the HUPO-PSI meeting during April of 2016 in Ghent,
Belgium. This working group consists of a wide range of stakeholders from the proteomics and
metabolomics communities and is composed of academic, government, and industry researchers,
software developers, journal representatives, and instrument manufacturers. Its main goal is to
define a community standard format for QC data and associated controlled vocabulary (CV) terms,
in order to facilitate the use of QC metrics more broadly in the proteomics and metabolomics
communities and to enable the data exchange and archiving of mass spectrometry-derived
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QC metrics. It is important to emphasize that the working group does not seek to impose
restrictive requirements on how quality control should be performed and how QC metrics should
be interpreted. Instead, its aim is to provide the basic technical necessities to support extensive
quality control practices over the whole course of an MS experiment and to bolster a strong
community-driven ecosystem of quality control tools and methodologies.

This aim fits into the overall objective of the HUPO-PSI to define community standards for
proteomics data to facilitate data comparison, exchange, and verification [64]. At the same time
a strong emphasis is placed on full interoperability with metabolomics approaches. The new
working group will exclusively address applications related to quality control, with previously
established HUPO-PSI working groups focusing on mass spectrometry, proteomics informat-
ics, molecular interactions, and protein separations. These working groups have previously
established several standard data formats [54, 112, 219, 222, 282], CVs [180, 181], and minimum
information guidelines [188, 253], which have significantly contributed to the maturation and
unification of proteomics research.

5.2 Quality control for biological mass spectrometry

Myriad applications of mass spectrometry have been used in biology, each with specific prop-
erties and considerations. Therefore, no single strategy for performing quality control will be
appropriate in all scenarios. Both external factors, such as sample preparation and environmental
conditions, and instrumental factors, from autosampler to LC pump to column to MS method,
contribute to the overall performance and should be measured in an appropriate quality control
regime. For example, in shotgun proteomics, the total number of identified tandem mass spectra
is a high-level QC metric that is often used to assess the performance of an experiment. However,
this is mostly useful for discovery experiments, where the aim is to identify as many proteins as
possible. It would not be reasonable, however, to count identified spectra in a selected reaction
monitoring (SRM) experiment, since tandem mass spectra are only sometimes collected in this
process, and they are generally not used as an input to database search. This implies that different
types of QC metrics are needed to suit a wide variety of experiment types.

QC metrics can vary in the time scale of assessment, spanning the retention time (RT) of a
single mass spectrometry liquid chromatography (LC) gradient or comparing among multiple
experiments over the lifetime of an instrument. QC metrics may reveal information about
different aspects of the experimental apparatus [227]. The metrics can be identification-free
metrics that are computed from raw spectral data [273], which can be applied to some extent
to both proteomics and metabolomics use cases. Alternatively, the metrics may depend upon
application-specific results, such as identification performance, to draw inferences (for example,
the extent of oxidation or carbamylation observed in a sample). Additionally, metrics that are
closely tied to data from a particular class of instrument may retrieve information directly from
the control software, such as column temperature or back pressure [231].

Different types of QC samples of varying complexity can be used. In proteomics the QC samples
can range from a simple peptide mixture or a single protein digest, such as BSA, to a complex
whole-cell lysate, such as a yeast or HeLa cell lysate. Complementary information can be
provided by spiking synthetic mixtures into the experimental samples, which enables monitoring
specific peptides of interest to measure the dynamic range (as one example). In metabolomics
the QC samples can similarly exhibit different levels of complexity: they can be composed of
either pooled samples (combining a small aliquot of each biological sample), or of mixtures of
different compounds or chemical standards [100]. Pooled QC samples characterize the entire
collection of samples included in the study qualitatively and quantitatively by providing an
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Figure 5.1: The qcML format is intended as the focal point for all QC applications. QC metrics are
automatically generated as experiments are performed, whereupon the qcML data can be stored locally in a
laboratory information management system (LIMS) where it can be used to support project management
and data provenance. Additionally, the qcML data can be submitted to a public data repository, empowering
data reuse, and it can facilitate peer review by certifying the data quality upon publication. Advanced
analyses can aid informed decision-making to drive methodology refinements and automatically notify the
instrument operator when a malfunction is detected.

average metabolome representation. As an alternative to pooled QC samples, predefined mixtures
of certain biological fluids such as serum, plasma, or urine are commercially available (e.g. via
National Institute of Standards and Technology (NIST)). Additionally, synthetic QC samples
prepared under identical conditions and consisting of a mixture of compounds representing the
different classes of metabolites expected to be present in the study samples can be used.

These different types of QC samples are not mutually exclusive; instead how they are used
is closely linked to the experimental design [169], as they are each able to measure specific
performance characteristics, and they should be used in combination. One consideration is
how many QC samples of each type should be used; another is how to interleave them with
experimental samples [21]. Further, besides these dedicated QC samples, other commonly used
sample types to assess the quality of a run or an instrument in proteomics and/or metabolomics
include: blanks, used to monitor or control instrument contamination; calibration curve samples,
spanning a wide dynamic range and consisting of pure reference compounds; and internal
standards, usually consisting of synthetic peptides or of a single metabolic compound or a
mixture of compounds that is added to all samples to monitor the reproducibility of the analytical
methods. Another source of qualitative information comes from replicate measurements; based
on the experimental design these replicates provide identical inputs for each injection and are
typically used to compensate for variance across the analytical study [68].

5.3 A community-driven standard file format for QC data

As there is such a wide variety in the composition of mass spectrometry workflows and corre-
sponding quality control methodologies, it is impossible to define a single fixed QC directive.
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Instead, the HUPO-PSI Quality Control working group wants to facilitate quality control for
a wide variety of configurations by providing the basic technical foundation. To successfully
communicate and interpret advanced quality control information a unified frame of reference is
required. To this end a community-driven standardized format for the archival, transmission,
analysis, and visualization of QC metrics derived from mass spectrometry will function as the
focal point supporting various advanced tasks, as represented in figure 5.1. The definition of an
unambiguous and expressive standard file format supported by powerful application program
interfaces (APIs) and robust tools will allow bioinformaticians to focus on uncovering novel
biological knowledge instead of being encumbered by low-level implementation details. This
requisite technical infrastructure will be developed in the context of the HUPO-PSI Quality
Control working group. Crucially, the file format constituting the centerpiece of the QC ecosys-
tem will support metrics of an arbitrary type to accommodate QC information relevant for all
kinds of experimental configurations. For this we will adopt the previously proposed qcML file
format [272] as the starting point. Although this format is not an official PSI standard yet, it has
been developed according to the same philosophy, and it has received considerable feedback at
the 2016 HUPO-PSI meeting. Based on this feedback, an updated version of the qcML format will
be developed, which will subsequently be submitted to the PSI formal document process [268] to
establish it as a PSI standard format. A key part of this work will connect the qcML format and a
CV in accordance with the previously established PSI CV [181] to enable direct interpretability
of the collected metrics and addition of further metrics without the need to update the standard
format to a new version. When metrics are defined in CV terms, they are more comprehensible,
even as QC pipelines gain complexity and cover thousands of mass spectrometry acquisitions.
This will hopefully also elevate the ease of informed decision-making during analysis processes [9,
30, 273] and contribute to the prevalence of applied QC in biological mass spectrometry. An
important aspect that ties in with this semantic interpretability is the development of a Mini-
mum Information About a Proteomics Experiment (MIAPE)-like document for quality control,
as suggested earlier [73]. The information specified in the MIAPE-QC document will present
opportunities for extensive linking of the QC data to the experimental results. For metabolomics,
some earlier work on capturing the minimum information for reporting on quality control already
exists [83, 230], but this will need to be revisited in coordination with the Metabolomics Society
Data Quality and Data Standards task groups [17, 229].

To make the qcML format more attractive to the authors of quality metric generators, we will
create a software library that is able to import and export information in the qcML format, which
will enable developers to easily create new qcML files and extract information from existing qcML
files. This will mainly be mediated in the form of the jqcML Java API [29]. Although at present
the jqcML API only structurally validates qcML files against the schema definition, additional
functionality to semantically validate the qcML files based on the terms defined in the CVs and
the MIAPE-QC specification will be added [188]. Similar to APIs for other standard formats [54,
112, 219, 222, 282], the availability of the jqcML API will assist developers to support the qcML
format, fostering the interoperability of QC tools. For example, this will enable the construction
of a custom tool workflow where a first tool generates various QC metrics, a second tool applies
advanced algorithms to draw inferences from the data, and a third tool provides long-term storage
and visualization. Instead of a rigid, monolithic framework, the qcML format and the jqcML API
will support the construction of modular, highly customizable QC pipelines. Furthermore, besides
updates to existing support for the qcML format in OpenMS [226] and SimpatiQCo [215], native
support will be added to other tools developed by members of the working group as well, such
as QuaMeter [167] and iMonDB [34]. We will develop a user-friendly graphical user interface
(GUI) tool for visualization of quality control data in the qcML format, including established
outlier detection techniques to automatically identify low-quality experiments [30, 273]. This
tool will enable visual data exploration and easy downstream processing of QC data. These steps
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will foster broader interest in and adoption for the qcML format, both from developers and end
users.

5.3.1 The jqcML Java API for the qcML standard

The success of any standard file format rests in large part on the existence of software libraries in
popular programming languages that allow easy read and write access to this format. jqcML [29], a
fully operational, production-grade Java API, aims to fill this role for the qcML data standard [272].
Written in Java, the jqcML API is inherently platform independent. Built to be used in demanding
circumstances, jqcML provides a complete object model to interpret and manipulate qcML data
while retaining a minimal memory footprint and without sacrificing the overall speed of data
access. Furthermore, jqcML is able to interact in a uniform and transparent way with QC
data in eXtensible Markup Language (XML)-based qcML files as well as the qcDB relational
database [272]. This dual access enables the user to transparently work with qcML data from
both sources, without requiring any changes in the data processing code.

jqcML will prove to be useful for both producers and users of qcML data. Producers can use jqcML
to directly export their data in compliance with the qcML format, or convert between their existing
output results and the qcML format. Meanwhile, end users will have out-of-the-box access to
qcML data, without having to worry about implementation details. This universal applicability
is reinforced by the fact that, as a pure Java API, jqcML is completely platform-independent.

jqcML is freely available, and is released as open source under the permissive Apache 2.0 license.
The binaries, source code, and documentation can be downloaded from the project website at
https://bitbucket.org/proteinspector/jqcml.

Object model

The data defined by the qcML data format is represented by a complete object model consisting of
simple Java classes. It is of note that the qcML data format is less complex than related standard
formats, such as mzML [179]. The object model intends to reflect this relative simplicity, while at
the same time providing expressive access to the data. The information specified by the qcML
standard can be represented by the object model, and includes basic quality metrics, as well as
tabular attachments or more complex attachments (such as binary strings). Figure 5.2 highlights
the key components of the jqcML object model.

Data processing

As mentioned earlier, jqcML is capable of reading and writing XML-based qcML files, but also
fully supports reading from and writing to the qcDB relational database. The interaction with
both types of data sources is generalized through common interfaces, allowing the underlying
data access implementation to be abstracted from the user. This generalized object model thus
allows the user to handle the different data sources in a uniform manner, making it trivial to
switch between several different data sources. A simplified schema of the workflow is shown in
figure 5.3.

Similar to other XML-based proteomics standards, the XML-based qcML file structure is intended
to exchange QC data between multiple users or organizations, while the qcDB relational database
will most likely be used within a single organization in order to store large amounts of QC data
over time, and to perform data retrieval and analysis operations across extensive collections of

54


https://bitbucket.org/proteinspector/jqcml

5.3 A community-driven standard file format for QC data

inspector.jgcml.model ]
QcML runQualityList QualityAssessment
-fileName : String [ T-id : String
-version : String setQualityList -isSet : boolean
0..*
. parameterList
cvList -
AbstractParameter
#name : String
1.* . #description : String
v unitCvRef #value : String
P St 0”{ #unitAccession : String
-tutiiame - String #unitName : String
-version : String
-uri : String
-id : String
0.. CvParameter
#cvRef #accession : String
JAN
MetaDataParameter QualityParameter AttachmentParameter
-id : String -id : String qualityParameterRef |d : String i
-flag : Boolean -binary : String
0..*
thresholdList table
0..*
Threshold TableAttachment
-fileName : String

Figure 5.2: Class diagram highlighting the key components of the jqcML object model for qcML version 0.0.8.

qcML data. In order to ease the translation of QC data from one format to the other, jqcML also
supports the easy conversion of data between both representations. The key implementation
aspects of jqcML for the XML and relational database formats are discussed next.

XML-based file format To interact with the XML-based qcML files, the Java Architecture for
XML Binding (JAXB) [124] is used in the form of the EclipseLink MOXy implementation [70].
The interaction between the object model and the XML-based file format is handled through the
mapping of the formal XML schema definition of q¢cML to specific elements of the jqcML object
model. This mapping allows for an automatic translation between the object model and the XML
structure, which enables both reading of qcML files into jqcML Java objects, as well as exporting
jqcML objects to qcML files.

Because a qcML file can contain data from several different runs, it can in principle become
arbitrarily large. When working with such very large files, precautions should be taken to
guarantee that there is sufficient memory available to process the file. Therefore, jqcML is
designed to elegantly handle very large qcML files while controlling the memory requirements.
For this purpose, jqcML exploits an XML indexer component, xxIndex [188, 283], that allows
the qcML file to be accessed like an indexed random access file. This fragmented data access
prevents the reading of a complete qcML file into memory, allowing jqcML to read even very
large qcML files while retaining a minimal memory footprint. The XML indexer approach also
enables the user to retrieve only the data of a single experiment as an iterative procedure, such
that only a subset of the full qcML file is kept in main memory at once.

The XML-based file structure makes use of internal references to crosslink various elements, for
example to link an annotation parameter to the corresponding entry in a controlled vocabulary.
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Figure 5.3: Simplified representation of the jqcML architecture. Through the use of the common QcMLReader
and QcMLWriter interfaces, jqcML is able to work with qcML data from several sources in a uniform way.

qcML
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When only retrieving an individual element, as explained previously, these references may initially
not refer to existing Java objects, because only part of the qcML file is read into main memory at
once. However, the use of xxIndex enables jqcML to resolve these references automatically as
well. A complete object model is thus always accessible, even when reading only a section of a
qcML file.

Relational database structure In addition to the XML-based file format, the qcML specifica-
tion includes an entity-relationship model as a reference implementation of a qcDB relational
database to store qcML data. In order to interact with a qcDB, the Java Persistance API (JPA) [125]
is used, and in particular the EclipseLink JPA implementation [69]. In analogy to the way JAXB is
used for interacting with XML-based qcML files, JPA is used to interact with a relational database
by creating a mapping between the object model and the database model.

By using JPA, the need for low-level operations, such as Structured Query Language (SQL) queries,
can be avoided in the code. Instead of having to manage the various tables in the database and
other technicalities, operations can be defined on the level of the object model. An additional
advantage of defining operations on a higher level is that the user does not need to focus on
implementation details, such as adapting to the specific SQL syntax of the chosen relational
database engine.

Retrieving or storing of quality control data in a qcDB is implemented by executing the corre-
sponding JPA persistence methods, while more advanced queries can easily be performed using
the Java Persistence Query Language (JPQL) [77]. Equivalent to the JAXB access layer discussed
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above, the JPA implementation supports fragmented data retrieval of the QC information based
on an iterative procedure.

jqcML currently fully supports both the MySQL and SQLite database engines. However, other
relational database systems can easily be included as well. The only requirement is the availability
of a suitable Java driver for the specific type of database. When initializing a new system, it is
even possible to let jqcML automatically create the required tables in the database.

5.4 Broadening the applicability of quality control

Although shotgun LC tandem mass spectrometry (MS/MS) proteomics and metabolomics can
assuredly benefit from wider adoption and automation of quality control, other classes of data in
proteomics and metabolomics can also benefit from these tools. The working group particularly
emphasizes the use of quality control in quantitative proteomics methods, from isobaric tags
for relative and absolute quantitation (iTRAQ) to data-independent acquisition (DIA) datasets,
where details of the experimental procedures can be employed to compute further relevant and
focused QC metrics. For example, for iTRAQ experiments the isobaric tagging reagents can be a
source of variability, influenced by the protein abundances, and fold changes are biased towards
1 : 1 ratios [171]. The labeling efficiency can broadly be determined by verifying the fraction
of MS/MS spectra for which reporter ions are observed. Additionally, as iTRAQ reagents bond
to primary amines both at the N-terminus and on lysine residues the labeling efficiency can be
determined in full detail by evaluating the extent to which the labels are present on one or both
of these sites. Furthermore, the labeling stability can be evaluated based on the evolution of the
reporter ion intensity over the course of an experiment and their signal to noise ratios.

In contrast to during a data-dependent acquisition (DDA) experiment, during a DIA experiment
MS/MS scans are measured with wide isolation windows that do not target any particular peptide
precursor [98]. This way all analytes within the desired precursor mass range can be measured
in an unbiased fashion, potentially leading to an increase in reproducibility. To evaluate the
performance of a DIA experiment general QC metrics from the DDA setting can likewise be
applied. In both cases the consistency of the LC and MS performance can be evaluated using
well-characterized standard QC samples [78], which can for example be visualized using the
powerful Skyline software tool [72]. Furthermore, specialized QC metrics can be defined based on
the characteristics of a DIA experiment. For example, the isolation window size can be evaluated
based on the rate of ion interference [291]. This is sample-dependent, as complex samples will
lead to a lower precursor selectivity resulting in highly complex chimeric MS/MS spectra. Because
all analytes are reproducibly measured during a DIA experiment consecutive MS/MS scans can
be compared to each other to further evaluate the LC and MS performance. Measurements of
the same analyte over repeat scans can be used to assess the mass accuracy, while successive
scans covering the same isolation window (separated by the duty cycle) can provide information
on the chromatographic sample rate. An important step during DIA spectrum identification is
the correlation of a precursor ion with its corresponding product ions. Although a high rate
of cofragmentation complicates an accurate precursor—product correlation this is essential for
obtaining correct peptide identifications. Some QC metrics that can be used to evaluate whether
precursor and product ions are accurately correlated are for example the fraction of MS isotopic
packets that match product ions [95], the RT variability of associated ions [40], and whether or not
the elution profiles of corresponding precursor and product ions match a similar exponentially
modified Gaussian peak shape [128].

Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry is an increas-
ingly popular technique for molecular imaging, yet a standardized approach to quality control

57



Chapter 5 Making quality control more accessible

has not been established thus far. Currently, quality assessments are typically done manually
through visual inspection of the spectra. Additionally, simple plots can be employed to evaluate
the variation in peak intensities among different measurements [132]. This can, for example, be
complemented by an ion intensity histogram to highlight specific regions of poor signal. How-
ever, these QC methods for MALDI imaging usually disregard the spatial information present
in the data. Conversely, important qualitative measures can be defined by comparing nearby
measurements as, for example, spatial proximity has an influence on the intensity similarity. A
recent result has shown how image analysis measures based on sliding windows of increasing
sizes, which consider the spatial information implicitly, can be used to accurately replicate manual
expert quality assessments [204].

These are but a few examples of how quality control can be expanded to further mass spectrometry
technologies. To adequately cover all these different workflows the novel qcML standard will
have to be flexible enough to support MS data ranging from shotgun proteomics to SRM to
MALDI imaging data. This effort will require a broader perspective than has dominated QC
software to date. The HUPO-PSI QC working group has members from both the proteomics and
the metabolomics communities and welcomes any contributions, ensuring wide applicability of
the q¢cML open data standard in a variety of mass spectrometry-based settings.

5.5 Conclusions

Quality control will indubitably play a growing role in aiding the maturation of biological mass
spectrometry as a field. A systematic approach to quality control will aid researchers to assess
their workflows over time or to compare data among different laboratories. Furthermore, it can
stimulate public data reuse to harvest new knowledge [178]. We envision that the inclusion of QC
metrics will become an integral component when submitting datasets to public data repositories
or for peer-reviewed publication, similar to the situation for three-dimensional structures in the
Worldwide Protein Data Bank (wwPDB) [25].

The HUPO-PSI seeks to broaden the conversation surrounding quality control in our community.
This effort will provide a format definition along with examples and software infrastructure that
will enable new research in the interpretation of QC metrics. We emphasize that this is very much
a community effort, and any and all contributions are welcome. Our group charter is available on
the HUPO-PSI website (http://psidev.info/groups/quality-control), including a summary
of the milestones the working group wants to achieve. You can connect with us through our
GitHub repository (https://github.com/HUPO-PSI/qcML-development) and through our mail-
ing list (Psidev-qc-dev@lists.sourceforge.net). These online sources contain further detailed
instructions on how to get started and how to contribute.

58


http://psidev.info/groups/quality-control
https://github.com/HUPO-PSI/qcML-development
Psidev-qc-dev@lists.sourceforge.net

Chapter 6

Unsupervised quality assessment
of experiments

Abstract

Despite the availability of various sets of quality control metrics which can be used to understand
and evaluate how technical variability affects the results of an experiment, a systematic approach
to quality control is often still lacking because the metrics are not fully understood and hard to
interpret. Here we present a toolkit of powerful techniques to analyze and interpret multivariate
quality control metrics to assess the quality of mass spectrometry proteomics experiments. We
show how unsupervised techniques applied to these quality control metrics can provide an initial
discrimination between low-quality experiments and high-quality experiments prior to manual
investigation. Furthermore, we provide a technique to obtain detailed information on the quality
control metrics that are related to the decreased performance, which can be used as actionable
information to improve the experimental setup. Our toolkit is released as open source and can
be downloaded from https://bitbucket.org/proteinspector/qc_analysis/.

Preface

This chapter was previously published as:

Wout Bittremieux et al. “Unsupervised Quality Assessment of Mass Spectrometry Proteomics
Experiments by Multivariate Quality Control Metrics”. In: Journal of Proteome Research 15.4
(Apr. 1, 2016), pp. 1300-1307. DO1I: 10.1021/acs. jproteome.6b00028

This work was presented at the Benelux Bioinformatics Conference 2015 in Antwerp, Belgium,
where it won the “outstanding oral presentation” award.

After publication it garnered multiple mentions on social media and blogs, such as the well-known
News in Proteomics Research blog by Ben Orsburn [202]. This illustrates the vital importance of
such techniques and reinforces the conclusions which state that there is a significant and urgent
need for user-friendly bioinformatics tools to support a systematic approach to quality control.
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Chapter 6 Unsupervised quality assessment of experiments

6.1 Introduction

The variability exhibited by mass spectrometry experiments can originate from different sources,
such as steps in the experimental setup that are not (yet) fully understood, stochastic processes,
or the bioinformatics processing workflow, and it impedes achieving reproducible results across
multiple experiments [46, 251]. To understand and evaluate how technical variability affects the
results of an experiment, several quality control (QC) and performance metrics have been intro-
duced [32]. These metrics are computationally derived from the output of a mass spectrometry
experiment and aim to capture the important operational characteristics of a mass spectrometer
to provide an objective evaluation of the quality of the experiment.

However, despite the availability of QC metrics covering a wide range of qualitative information, a
systematic approach to quality control is still lacking. Instead, quality control practices frequently
involve only monitoring a few simplified performance measures in a spreadsheet, or sometimes
are even limited to only checking QC metrics retrospectively in an ad hoc fashion when a
malfunction is suspected.

One of the barriers impeding the adoption of a systematic quality control workflow is the lack
of knowledge about what specific QC metrics signify. It is often unclear which metrics can be
applied to detect which problems, and the acceptable variability within metrics is ill defined [21].
Most aforementioned tools illustrate their applicability by highlighting a few particular use cases
where they were able to detect inferior experiments, however, this often does not translate to a
more general setting. Specific metrics might only be relevant for highly exceptional situations,
or the metrics might be hard to interpret and link to actionable solutions even for a domain
expert.

Another issue that is generally overlooked when interpreting QC metrics is that interdependencies
have to be taken into account. During a mass spectrometry (MS) experiment the different steps
do not function in isolation, instead they influence each other. As most tools only look at a single
metric at the same time in a univariate fashion, these dependencies are ignored, which can lead
to erroneous results [21]. To accommodate for these dependencies a multivariate approach can
be employed, as has been done by Wang et al. [273], who analyzed the variability present in
samples originating from multiple National Cancer Institute (NCI) Clinical Proteomic Tumor
Analysis Consortium (CPTAC) studies using multivariate statistics, such as principal component
analysis (PCA). Whereas Wang et al. [273] mainly applied unsupervised techniques, a different
approach was employed by Amidan et al. [9]. Here, first the quality of a multitude of experiments
was manually reviewed by expert instrument operators, after which this labeling was used to
train a supervised classifier to distinguish good experiments from poor experiments. In general,
such multivariate approaches can protect against false positives in the event of a high number
of variables and can allow to detect patterns that are invisible when evaluating each metric
individually. An additional advantage is that certain multivariate techniques provide insight on
how some of the variables are related to each other, which can improve the understanding of the
QC metrics and their interpretation.

Here we will illustrate how computationally derived QC metrics can be used to provide an
initial discrimination between low-quality and high-quality experiments in an unsupervised
fashion prior to manual investigation. The presented techniques will take into account the
multidimensional feature space exhibited by the QC metrics, while also prioritizing the most
relevant QC metrics. A special emphasis will be laid on the interpretability of the obtained results,
as in order to integrate a systematic approach to quality assurance (QA) into existing mass
spectrometry proteomics workflows, the interpretability of the qualitative information, even to
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non-expert users, is paramount. Finally, we will unify these different steps to present an open-
source toolkit of powerful techniques for the analysis and interpretation of mass spectrometry
proteomics quality control metrics.

6.2 Quality control metrics

Our goal is to discriminate the low-quality experiments from the high-quality experiments when
considering multiple experiments. Suitable data for this kind of analysis are for example standard
quality control samples, such as the simple bovine serum albumin (BSA) samples that are used
by several labs. The advantage of such QC runs is that they are measured on a very frequent
basis and that their low sample complexity and controlled sample content allow to easily asses
the operation of a mass spectrometer. Although the computation of quality control metrics is not
restricted to such samples, a controlled and consistent sample content and operating procedure
facilitate interpreting the analysis results. If liquid chromatography (LC)-MS runs vary over time
due to biological or technical changes in the sample itself, such as a different wet lab protocol or
a different biological condition, this may complicate discerning the origin of potentially detected
anomalies.

6.2.1 Experimental data

We used two public datasets to investigate the experiment quality. The first dataset consists of a
number of standard QC LC-MS runs performed on several different instruments at the Pacific
Northwest National Laboratory (PNNL) [9]. Each sample had an identical content (whole cell
lysate of Shewanella oneidensis), and the quality of the various runs has been manually annotated
by expert instrument operators as being either “good”, “ok”, or “poor”. We split up the various
runs depending on the instrument type, with each instrument group consisting of multiple
individual instruments. Both the experimental raw files and the expert annotations have been
retrieved from the PRoteomics IDEntifications (PRIDE) database [267]. Please see the original
publication for further information on the experimental procedures [9].

The second dataset was generated as part of The Cancer Genome Atlas (TCGA) project where
the aim was to perform a proteogenomic characterization of human colon and rectal cancer [288].
For this study 95 samples from 90 patients were obtained, with each sample fractionated into
15 concatenated peptide fractions before being subjected to an LC-MS analysis. This resulted
in 1425 raw files, which were retrieved from the CPTAC data portal [71]. For a more detailed
exposition of the sample content and preparation, please refer to the original publications [235,
288].

Table 6.1 shows an overview of how the data from these two sources has been split into four
datasets. The PNNL datasets consist of a unique public data resource, as they not only contain
high-quality measurements, as is common, but explicitly also include low-quality measurements.
Furthermore, the expert annotations provide crucial information to validate the detection of low-
quality experiments. The TCGA dataset can be used to highlight how instrument performance
evolves over time when working with complex sample contents, because all raw files have been
obtained on a single Orbitrap Velos mass spectrometer using the same operating procedure over
an extended time period.
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Reference Denomination Instrument model (accession) Number Expert

of raw annota-
files tion?
Amidan et al. [9] PNNL LTQ-IonTrap Thermo LTQ MS (MS:1000447) 225 yes
Amidan et al. [9] PNNL LTQ-Orbitrap Thermo LTQ Orbitrap (MS:1000449), 379 yes
Thermo LTQ Orbitrap XL (MS:1000556)
Amidan et al. [9] PNNL Velos-Orbitrap ~ Thermo LTQ Orbitrap Velos (MS:1001742) 538 yes
Zhang et al. [288] TCGA Thermo LTQ Orbitrap Velos (MS:1001742) 1425 no

Table 6.1: Overview of the characteristics of the various datasets. The instrument accession numbers refer
to their identifiers in the PSI-MS controlled vocabulary [181].

6.2.2 Metrics generation

Over the past few years multiple sets of quality control metrics have been defined [32]. Here we
focus on so-called identification (ID)-free metrics, which have the advantage that they are directly
derived from the raw data and that they do not depend on identification results. This enables gen-
erating the metrics as soon as the experimental raw data is available, instead of having to analyze
that raw data in a potentially computation-heavy peptide and protein identification workflow.
Furthermore, the lack of dependency on the identification results eliminates possible sources of
computational variability and prevents suboptimal settings in the various bioinformatics steps
from influencing the quality control [19].

Specifically, we used the ID-free metrics computed by QuaMeter [273], which are listed in table 6.2.
These metrics are derived from the raw spectral data and provide information on various stages
of a mass spectrometry experiment: they include information on the chromatography, the MS
and tandem mass spectrometry (MS/MS) performance, and the charge distribution. For the
PNNL data, several different sets of QC metrics were already computed, and we restricted the
metrics under consideration to the QuaMeter metrics. For the TCGA data, we used QuaMeter
version 1.1.91 to produce the QC metrics.

6.2.3 Preprocessing

To prepare the QC metrics for analysis several preprocessing steps have to be performed. First
invariant metrics with a low information content are removed, as they have the same value for each
experiment and needlessly increase the dimensionality without adding additional information.
Furthermore, mutually dependent metrics can be derived from each other, so the duplicated
metrics can be omitted without any information loss. Removing the low-variance and correlated
metrics decreases the dimensionality while retaining all embedded information, and prevents
irrelevant metrics from deteriorating the subsequent analyses.

Although the occurrence of these extraneous metrics depends on the operational characteristics,
and varies depending on the experimental setup, for the 44 ID-free metrics computed by QuaMe-
ter [273] and listed in table 6.2, some specific metrics generally seem less expressive than others.
For example, some charge states only occur rarely, resulting in a very low variance for the metrics
denoting the uncommon charge states. Furthermore, some metrics are very often highly corre-
lated (Pearson correlation above 0.90). The chromatography metrics denoting the full width at half
maximum (FWHM) (XIC-FWHM-Q1, XIC-FWHM-Q2, XIC-FWHM-Q3) can generally be repre-
sented by only a single observation, as do the metrics denoting the MS and MS/MS spectral counts
(MS1-Density-Q1, MS1-Density-Q2, MS1-Density-Q3, and MS2-Density-Q1, MS2-Density-Q2,
MS2-Density-Q3). Figure 6.1 shows the correlation matrices for all four different datasets.
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Figure 6.1: Correlation matrices for all four datasets showing the dependencies between the different QC
metrics (after the removal of metrics with a low variance).
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Additionally, after removing the irrelevant features, the values for each of the metrics separately
were scaled by removing the median and scaling according to the interquartile range (IQR). A
common approach to scale data is by removing the mean instead of the median, and by scaling
to unit variance instead of according to the IQR. However, by using the median and the IQR,
the scaling is more robust towards outliers, which can have a large effect on the mean and the
standard deviation. Scaling is done to ensure that a limited number of features does not dominate
the subsequent analyses, which can be the case if the features have a different scale.

6.2.4 Visualization

Data visualization and visual data exploration is often a crucial first step as it provides an initial
approach to understand the data and acts as a driver for the subsequent data analysis [61].
Especially in a high-throughput analytical discipline, such as mass spectrometry proteomics,
suitable visualization techniques are paramount to facilitate the understanding and interpretation
of the data [203].

Visualizing using a reduced PCA dimensionality

Multiple approaches can be used to visualize quality control metrics. On the one hand each
metric can be visualized individually in for example a scatter plot to assess its behavior over
time, or for example using a box plot to evaluate the data distribution. However, as has been
mentioned before, evaluating each metric individually has certain drawbacks. On the other hand,
high-dimensional data cannot be directly visualized. A conventional approach is to first perform
a dimensionality reduction to convert the original data to a lower dimensionality, e.g. to two
or three dimensions, and then visualize the low-dimensional approximation. A commonly used
dimensionality reduction technique is PCA. Very briefly, PCA performs a linear transformation of
the original data into its principal components, which are a set of orthogonal variables accounting
for the largest possible variance. The data is then reduced by only retaining the first pair of
principal components, which can be visualized straightforwardly. A transformation of the QC
metrics for the TCGA dataset onto its first two principal components is shown in figure 6.2a, with
the first principal component explaining 22.2 % of the total variance and the second principal
component explaining 15.6 % of the total variance. Furthermore, the loadings of all metrics for the
first two principal components are available in table 6.3. Figure 6.2a indicates that experiments
that were performed within a short period of time of each other, as indicated by the color
coding, are generally nearby in the principal component space. However, the first two principal
components together amount only for about 38 % of the total variance, indicating that other
combinations of the metrics can explain different sources of variability, and by increasing the
total number of principal components under consideration additional information can be gleaned.
Likewise, using the first two principal components to visualize the metrics is bound to show only
a part of the underlying information.

Using t-SNE to optimally visualize high-dimensional data

PCA is a technique that is ubiquitously used to achieve a dimensionality reduction, and often
visualization efforts do not extend beyond this. However, alternative visualizations can highlight
different properties of the data.A powerful recent visualization technique is called t-Distributed
Stochastic Neighbor Embedding (t-SNE) [259]. Whereas PCA is a general-purpose dimensionality
reduction technique, t-SNE specifically focuses on providing a dimensionality reduction optimized
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Metric PC1(22.2%) PC2(15.6%)
XIC-WideFrac 0.02260 -0.29913
XIC-FWHM-Q1 -0.00131 -0.26797
XIC-Height-Q2 -0.09709 0.18803
XIC-Height-Q3 -0.02067 0.16791
XIC-Height-Q4 -0.02408 -0.17960
RT-Duration 0.00541 -0.05206
RT-TIC-Q1 0.10094 0.01544
RT-TIC-Q2 0.20395 0.04479
RT-TIC-Q3 0.12968
RT-MS-Q1 -0.13735 -0.02242
RT-MS-Q2 0.21124 -0.13638
RT-MS-Q3 -0.03770 0.15018
RT-MS-Q4 0.02087 0.03377
RT-MSMS-Q1 0.18828 0.02967
RT-MSMS-Q2 -0.15782 -0.18267
RT-MSMS-Q3 -0.18827 -0.20177
RT-MSMS-Q4 -0.01714 0.14618
MS1-TIC-Change-Q2 -0.23319 0.13199
MS1-TIC-Change-Q3 -0.23875 0.10587
MS1-TIC-Change-Q4 -0.03089 -0.13564
MS1-TIC-Q2 -0.09301 -0.05094
MS1-TIC-Q3 -0.23209 -0.04442
MS1-TIC-Q4 0.03271 -0.01462
MS1-Count 0.16658 —-0.24925
MS1-Freq-Max 0.14916

MS1-Density-Q1 -0.10492 0.08909
MS1-Density-Q2 -0.19927 -0.05020
MS1-Density-Q3 -0.21194 0.22557
MS2-Count -0.23238 -0.17535
MS2-Freq-Max -0.22226 -0.09512
MS2-Density-Q1 -0.07309 -0.29534
MS2-PrecZ-2 0.02298 -0.11661
MS2-PrecZ-4 -0.03345 0.10291

Table 6.3: The PCA loadings indicate which QC metrics for the TCGA dataset are most relevant for the
first two principal components, with the first principal component explaining 22.2 % of the variance and
the second principal component explaining 15.6 % of the variance. The loadings with the highest absolute

values are highlighted.
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for visualization purposes. Unlike PCA, which is a linear transformation, t-SNE achieves a non-
linear transformation to create a mapping from the high-dimensional data to a low-dimensional
representation that aims to reveal structure at many different scales. Intuitively, t-SNE creates a
low-dimensional representation that tries to model similar objects by nearby points and dissimilar
objects by distant points. This is done by converting both the high-dimensional distances and
low-dimensional mapped distances between objects to conditional probabilities that represent
similarities. Next, it finds the low-dimensional data representation that optimizes the agreement
between both probability distributions by minimizing the Kullback-Leibler divergences between
the two distributions. Figure 6.2b shows the t-SNE visualization of the QC metrics for the TCGA
dataset, which clearly exhibits different data groupings. Moreover, almost all data points clustered
together represent experiments that were performed in close succession (as indicated by the
color coding), which might indicate batch effects. t-SNE has been shown to be a very powerful
data visualization technique for a multitude of data sources [259], and here as well it is able to
show underlying similarities between different experiments.

The previous example clearly demonstrates that different visualization techniques can provide
complementary views, leading to a more profound understanding of the data characteristics. In
this manner, a suitable data visualization can act as a powerful tool to support the explorative
data analysis. Furthermore, when visualizing data, seemingly trivial choices can greatly aid
interpretability. For example, using a suitable color scheme to add a third dimension of information
to a two-dimensional plot can provide valuable additional insights in the data. In figure 6.2
a sequential color scheme was used to represent consecutive dates, which adds clear visual
information to discern which experiments were conducted in close succession.

6.3 Quality analysis

As most quality control tools are able to generate (at least) several dozens of metrics, any single
experiment can be characterized by multiple QC metrics. Therefore it is often not clear which
metrics are most interesting in general, or even which metrics are relevant in a specific situation.
The numerous metrics form a multidimensional data space, which results in several challenges
during the analysis. For example, the measurement for a single metric might slightly deviate
while all other metrics are firmly within the normal range of operation. In such cases, the
deviating measurement might simply be due to random fluctuations and not actually due to an
abnormal performance. When evaluating the metrics individually, a multiple test correction is
an often overlooked necessity to avoid spurious results. Furthermore, as the different stages of
a mass spectrometry experiment do not function in isolation, but instead influence each other,
likewise some metrics will be correlated. For example, a problem during ionization will lead to
different charge state proportions, might influence the number of MS/MS scans, and will have an
impact on the number of successfully identified spectra. Again, it is inadequate to only look at a
single metric, which might lead to incomplete or even false conclusions. These simple examples
illustrate that analyzing each metric individually is often insufficient, and instead multivariate
techniques that take into account all metrics simultaneously should be used.

On the other hand, not all multivariate techniques are always applicable. For example, when
a multivariate approach using a dimensionality reduction, such as PCA, is applied, part of the
data is lost, which can likewise lead to faulty or incomplete results. Furthermore, an additional
disadvantage of using PCA-based and related techniques is that the principal components are
formed by linear combinations of the original features, which complicates their interpretation.
Nevertheless, applying a dimensionality reduction can still be useful in specific situations, for
example when combining multiple sources of quality control metrics. Merging multiple sets of QC
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(a) Visualization of the QC metrics using the first two principal components.
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(b) Visualization of the QC metrics using t-SNE.

Figure 6.2: Various visualization techniques can present different views on the data (TCGA dataset).
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metrics will drastically increase the data dimensionality, which can have a profound effect on the
subsequent analysis. Namely, for high-dimensional data, various detrimental effects commonly
subsumed under the term “curse of dimensionality” pose challenges for algorithms that make use
of the full feature space [292]. Therefore, in some cases applying a prior dimensionality reduction,
or using algorithms that are optimized for a high-dimensional search space, might achieve a
superior performance. Because in our analysis we have limited the QC metrics to only the ID-free
metrics that are computed by QuaMeter, the dimensionality of the dataset is not overly large to
impede taking all features into account. Furthermore, using the full dimensionality has certain
advantages, such as the availability of more information compared to when a dimensionality
reduction technique would be applied.

We will next show how optimized techniques that take into account the multidimensional feature
space can be used to assess the quality of MS experiments and to discriminate low-quality from
high-quality experiments.

6.3.1 Outlier detection

Outlier detection can be used to detect deviating experiments with a low performance or a high
level of (unexplained) variability. These outlying experiments can subsequently be analyzed to
discover the source of the reduced performance to enhance the quality of future experiments.
Additionally, outlier detection can be a vital step to remove invalid measurements ahead of
further processing, such as, for example, sample identification, to ensure that these low-quality
experiments do not unduly influence the output results.

Local outlier detection

We have used the Local Outlier Probability (LoOP) [146] algorithm to detect outlying experiments,
as it has a few beneficial properties. Most importantly, LoOP identifies outliers based on their
local neighborhood [39]. This approach is more sensitive than global outlier detection methods,
as outliers are identified based on the density of the neighbors in their immediate vicinity,
as opposed to the global data distribution. For example, when analyzing a sizable number of
experiments performed over an extended time period, as we have done, it is conceivable that
there will occur small environmental changes over time, which will have an influence on the
experimental results. Because these effects might be more or less pronounced at certain times,
this prohibits the use of a single global outlier measure. Instead, when the outlier measure is
restricted to the local neighborhood, outliers will be identified based on (excessive) differences
with their closest matching experiments. Another advantage is that the LoOP outlier scores
are normalized and can be expressed as a probability, whereas most other outlier detection
algorithms report scores with an arbitrary scale, with scores often incomparable between different
datasets or different parameter values, even when using the same algorithm. LoOP, however,
consistently uses probabilities, which ensures that these outlier scores can readily be compared
and straightforwardly be interpreted [146].

Figure 6.3 shows a histogram of the outlier scores that have been assigned to all of the experiments
in the PNNL LTQ-IonTrap dataset. As can be seen, most experiments have a (relatively) low
outlier score, with the bulk of the experiments having a score close to 0 %. Other experiments have
a higher outlier score, with some of them being marked as clear outliers. As each experiment has
been assigned a numeric score, this enables ranking the various experiments by their gradation
of being an outlier. Furthermore, generally a score threshold is set to distinguish outliers from
non-outliers. Although setting such a score threshold can sometimes be quite subjective, there are
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Figure 6.3: Histogram of the LoOP outlier scores for the PNNL LTQ-IonTrap dataset. The score threshold
of 15 % is indicated by the dashed line.

a few considerations that can be taken into account. First, we expect that most of the experiments
are non-outliers with a score close to zero, while outliers have a higher score over a wider range.
Second, we aim to have a high sensitivity to detect most if not all of the low-quality experiments,
so the threshold should be set quite conservatively to ensure that all the low-quality experiments
are detected, at the expense of some false positives. As the outlier detection strategy is an
unsupervised method some number of false positives is unavoidable, which should be filtered
out in a subsequent manual evaluation step. Keeping in mind these considerations, for example
for the outlier histogram in figure 6.3 a good choice for the score threshold would be 15 %.

Qutlier validation

Because outlier detection is an unsupervised method it is not straightforward to validate the
results when using real-life datasets, as the ground truth is often unknown. However, for the
PNNL data the quality of the experiments was assessed by expert instrument operators, whose
labeling can be used as the ground truth for validating the detected outliers, as each experiment
was assessed as having either “good”, “ok”, or “poor” quality.

Using these quality assignments, the obtained outlier scores can be validated. Figure 6.4 shows
the receiver operator characteristic (ROC) curves for the PNNL datasets. The blue ROC curves
show the outlier detection performance when considering the “good” and “ok” experiments as
the positive class, i.e., the acceptable experiments, and the “poor” experiments as the negative
class, i.e., the unacceptable, low-quality experiments. Additionally, the green curves show the
performance when considering only the “good” experiments as the positive class, while the red
curves show the performance when considering only the “ok” experiments as the positive class.
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These ROC curves clearly indicate that the outlier detection technique successfully manages
to discriminate high-quality experiments from low-quality outlying experiments. Furthermore,
they show that there is an optimal distinction between the experiments with the highest quality
(labeled “good”) and the low-quality experiments (labeled “poor”). Meanwhile, experiments with
a slightly diminished but still sufficient quality (labeled “ok”) can still be discriminated quite
successfully from the low-quality experiments.

This is also indicated by figure 6.5, which shows the density of the outlier scores for the various
quality labels. It shows that the high-quality experiments indeed have a very low outlier score,
while the low-quality experiments have a higher outlier score. As illustrated by figure 6.5a,
for the case of the PNNL LTQ-IonTrap dataset our previous assumptions stated to determine a
score threshold when no validation information is available hold true, and the choice of 15 % as
threshold provides an adequate separation of high-quality and low-quality experiments.

Note that, although the previous results indicate that a very good performance detecting the
low-quality experiments is achieved, we are still outperformed by the original results by Amidan
et al. [9]. However, contrary to their approach, which entails a supervised classifier, our approach
is fully unsupervised. For a supervised approach training data is required, which in this case
means that the quality of a considerable number of experiments needs to be annotated manually
to provide the ground truth. On the other hand, our approach does not require a training
phase, but can be applied directly on a set of experiments of unknown quality. Therefore, the
time-consuming manual curation can be forgone, while still being able to successfully identify
low-quality experiments. Furthermore, a supervised classifier has to be retrained for different
instruments or even for different operating procedures on the same instrument, with each
situation again incurring the need for manual curation to provide training data. Contrary to this,
our outlier detection strategy can directly be applied to diverse datasets with widely varying
characteristics, as evidenced by the consistent performance across data generated on different
instrument types. However, because an unsupervised technique will inherently result in more
false positives than a supervised technique, our outlier detection strategy is mostly suited as a
filtering step to quickly provide an initial discrimination between high-quality and low-quality
experiments. By conservatively setting the outlier score threshold, the experiments marked
as outliers can subsequently be inspected manually in full detail to exclude any false positives.
Because our outlier detection strategy is already quite sensitive despite being an unsupervised
technique, the effort required for the manual evaluation will be significantly reduced. Furthermore,
by using the local neighborhood to determine whether an experiment is an outlier, optionally
dissimilar data sources can even be combined while still achieving a similar performance (data
not shown). Finally, our approach requires only a few simple and intuitive parameters, which
can easily be understood and set, as is detailed next.

Parameter configuration

A common problem when applying data mining techniques is that advanced algorithms often
depend on multiple parameters that have to be manually set and can be hard to understand. An
important advantage of the presented outlier detection strategy is that there are only a limited
number of parameters which can easily be understood intuitively. The outlier detection strategy
mainly depends on two different parameters: the size of the local neighborhood, and the outlier
score threshold. Based on the annotated PNNL data we can determine the optimal values for
these parameters.

We have previously presented the results obtained by the outlier detection technique using ROC
curves. The earlier presented PNNL curves are those with the highest area under the curve (AUC)
for varying values of the local neighborhood size. By considering more or fewer neighboring
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Figure 6.4: ROC curves show the performance of the outlier detection strategy for the PNNL datasets.

experiments to determine the outlier score for each experiment, we can find the optimal size of
the local neighborhood to achieve the best discrimination between low-quality and high-quality
experiments. As can be seen in figure 6.6, maximal AUCs are achieved when taking a considerable
number of nearest neighbors in account. This is because most good experiments do not differ
much from each other, so they all have a lot of similar experiments in their local neighborhood.
On the other hand, some outlying experiments might share a few close neighbors, but when
increasing the neighborhood size the outlying experiments will clearly start to differ from the
bulk of experiments. Figure 6.6 indicates that the AUC rises for increasing sizes of the local
neighborhood, and levels off after the optimal neighborhood size. In general, optimal AUCs are
achieved for local neighborhoods consisting of 50 to 60 experiments, more or less irrespective of
the total number of experiments. Therefore, it is recommended to consider larger rather than
smaller neighborhoods when performing outlier detection. This also hints at a limitation of
our technique: a sufficient number of observations needs to be available in order to establish
optimally discriminating local neighborhoods. Therefore, our approach is mostly suited when a
higher number of experiments is available, for example during a longitudinal analysis, as opposed
to within a single study.

The other significant parameter is the outlier score threshold, which is used as a cut-off value to
separate the experiments with an acceptable outlier score from those with an excessive outlier
score. The advantage of the LoOP outlier scores is that these scores are normalized between 0
and 1, and are comparable between different executions. To evaluate the outlier score threshold
we can make a trade-off between the sensitivity (true positive rate) and the specificity (true
negative rate, or 1 — false positive rate), which can be derived from the axes of the ROC curves
in figure 6.4. Because it is most important to successfully identify all the low-quality experiments,
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Figure 6.5: Outlier score densities for the various quality levels for the PNNL datasets.

at the expense of a few misclassified high-quality experiments that might have to be checked
manually, we prefer a high sensitivity. The ROC curves in figure 6.4 and figure 6.7, which shows
the sensitivity and specificity compared to the outlier score threshold, can provide a guideline to
determine a suitable, conservative, value for the outlier score threshold.

6.3.2 Outlier interpretation

Although we have shown that we can successfully differentiate low-quality from high-quality
experiments, it is insufficient to only know that a specific experiment is an outlier, it is also of
vital importance to know why the experiment is an outlier. For this purpose the outlier score is
only useful to a limited extent: it indicates how significantly an experiment is an outlier, but it
does not provide an explanation as to what causes the experiment to be an outlier. To provide an
explanation why an experiment is an outlier, the subspace in which the outlying experiment can
be differentiated from the other experiments can be used [186]. Here a subspace is formed by
one or more attributes, which correspond to the various QC metrics. Thus, this subspace can be
used to interpret the outlier by indicating which QC metrics best explain the outlying behavior.
The relevant subspaces for an outlier can be used by domain experts to increase interpretability
and investigate the performance of the experiment.

For multiple experiments, each with specific values for the various QC metrics, the experiments
can be considered as the observations and the QC metrics as the attributes for each observation.
To interpret an outlier, the subspace of attributes for which the outlier shows separability from
the inliers is identified based on a procedure detailed by Micenkova et al. [186]. The relevant
subspace for each outlier is determined by performing a classification between the outlier and
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Figure 6.6: ROC curve AUCs in function of the size of the local neighborhood during outlier detection. The
maximal obtained AUC value is highlighted by the diamond marker.

the inliers. Because a single outlying observation cannot be correctly classified, a balanced
classification problem is created by supersampling the outlier and subsampling the inliers. The
outlier is supersampled by generating multiple points from a multivariate normal distribution
centered around the outlier. The subsampling of the inliers consists of two elements: a specified
number of nearest neighbors to the outlier are selected, and additional points are randomly
selected from among the other inliers.

Next, a classification approach can be used to differentiate between the (equal-sized) sets of
simulated outliers and the selected inliers. After the classification, the relevant features for which
the set of outliers is most separable from the inliers can be extracted, which forms the subspace
explaining the outlier. We have employed a random forest classification approach to differentiate
the outlier from the inliers. The advantage of a random forest in terms of feature importance
is that it is very simple to determine the weight of each feature by considering the number of
times the feature in question was used during the classification. This results in a straightforward
numerical measure of importance for each feature which can be easily interpreted. To minimize
the random effects of supersampling the outlier, subsampling the inliers, and performing the
random forest classification, this procedure can be repeated multiple times, after which the
averages of the feature weights are used to determine the final feature importances.

After the feature importances have been computed, the relevant subspace is extracted based on a
few rules of thumb. Specifically, features are selected in descending feature importance order
until the cumulative feature importance explains at least 50 % of the total importance, or until
the importance of the additional feature to select is less than two-thirds of the largest feature
importance. These simple rules of thumb mostly result in the selection of intuitive subspaces
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Figure 6.7: Outlier score threshold values required to obtain a specific sensitivity and specificity for the
PNNL datasets.

consisting of the most important features while avoiding the inclusion of unnecessary features.

Although the data consists of dozens of features, using the above approach provides an explanation
for the outliers using only a few relevant features (for the TCGA dataset between 1 and 7 features
are used per outlier, with an average of 2.3 features). This limited subspace dimensionality hugely
facilitates outlier interpretability compared to the full high-dimensional feature set, and pinpoints
a few highly relevant features for closer examination by domain experts.

Figure 6.8 shows an example of interpreting a specific outlying experiment from the TCGA
dataset. As detailed previously, to retrieve the relevant subspace for an outlier, first the feature
importances for the various QC metrics are computed, as is shown in figure 6.8a. Next, the
subspace formed by the relevant QC metrics is extracted, as is shown in figure 6.8b. The feature
subspace explaining the outlier can be interpreted by domain experts, and can provide insights
in relationships between various QC metrics. For example, figure 6.8b shows that this particular
outlier exhibited an exceptionally high variance in peak heights, which may indicate problems
with the chromatography.

This example also shows the advantage of using a multivariate approach, instead of only looking
at single QC metrics individually. In figure 6.8 this advantage is somewhat less pronounced, as the
values in the outlier’s subspace are individually both already significant outliers. However, the
interplay of various metrics can be crucial to detect outliers, as is shown in figure 6.9. Here, the
values in the outlier’s subspace are well within 1.5 times the interquartile range, as denoted by the
whiskers of the box plot, so this outlier cannot be detected using univariate techniques. However,
by comparing against the local neighborhood and by analyzing all metrics simultaneously the
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(a) The feature importances for the various QC metrics to discriminate the experiment from the non-outlying
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(b) The subspace formed by the most relevant QC metrics. The outlier’s values in the subspace are highlighted
in red.

Figure 6.8: Feature importances and subspace for experiment ‘TCGA-AA-A020-01A-
23 W_VU_20130206_A0218_10A_R_FR07’, which has an outlier score of 98.06 %.
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aberrant proportion of the metrics still results in a high outlier score. Meanwhile, prominent
outliers for a single metric will still be detected as well, with explanatory subspaces consisting of
only this single metric, as is shown in figure 6.10.

Furthermore, it is worth highlighting that taking the full set of metrics into account while detecting
outliers has advantages over multivariate approaches where a dimensionality reduction technique
is used as well because all metrics are taken into account, instead of only a lower-dimensional
approximation. For example, when applying PCA, only the most significant principal components
are retained to achieve a dimensionality reduction. In this case, only the metrics with the highest
variance contribute significantly to the first few principal components. Therefore, using such
an approach, a prominent outlier such as shown in figure 6.8 cannot be detected successfully
because the metrics describing the peak heights only have a limited contribution to the first two
principal components, as can be verified in table 6.3.

Frequent outlier subspaces

Next, by combining the explanatory subspaces for all individual outliers, it is possible to get
a general view on which QC metrics are most relevant when detecting deviating experiments.
Most outliers can be interpreted by a limited number of QC metrics: for the TCGA dataset, when
setting the outlier score threshold at a conservative 25 % which results in 508 outliers (figure 6.11),
on average each subspace consists of about 2.3 QC metrics, with a minimum of one metric and a
maximum of seven metrics. By considering each outlying experiment as a transaction and the
QC metrics that form the subspace of the experiment as items in the transaction, frequent itemset
mining [193] can be applied to detect QC metrics that often co-occur in the outliers’ subspaces.
Table 6.4 shows the QC metrics that form frequent itemsets with a minimum support of 5 %, i.e., the
QC metrics are present in the subspace of at least 5 % of all outliers. Here, the higher the support,
the more often QC metrics co-occur as important explanatory variables in the outliers’ subspaces.
Table 6.4 indicates that some QC metrics are more useful than others to detect outliers, as they
are present more often. Furthermore, some sets of multiple metrics occur often as well, such as
in the case of the itemset consisting of MS1-TIC-Q4 and MS1-TIC-Change-Q4, which has a total
support of 6 %. Indeed, it seems logical that these two metrics are related, as excessive changes in
the total ion current (TIC) between the third and the fourth quartile (MS1-TIC-Change-Q4) will
influence the total amount of TIC near the end of the experiment (MS1-TIC-Q4). Other pairs of
co-occurring metrics were observed as well, such as the combination of metrics XIC-Height-Q2
and XIC-Height-Q3, concerning the chromatographic peak height, and metrics MS2-PrecZ-2 and
MS2-PrecZ-4, concerning the precursor charge states, although these and other combinations
have a slightly lower support value and are not included in table 6.4.

Spectral identification performance

We were able to show the accuracy of the outlier detection method using manually curated
datasets. However, in general such an approach is not possible because it takes too much effort to
manually assess the quality of a large collection of experiments. Therefore, the number of peptide-
spectrum matches (PSMs) is often used as a stand-in quality measure, as one would expect that
the low-quality experiments result in a lower number of identified spectra due to a diminished
performance. When comparing the number of valid PSMs between the outlying experiments and
the non-outlying experiments for the TCGA dataset, the latter result in a slightly higher number
of PSMs, as is shown in figure 6.12a, although the difference is not very pronounced. The outliers
seem to contain both experiments that have a lower number of PSMs, and experiments that have
an average or even an above-average number of PSMs. This observation confirms prior findings
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(a) The feature importances for the various QC metrics to discriminate the experiment from the non-outlying
experiments.
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(b) The subspace formed by the most relevant QC metrics. The outlier’s values in the subspace are highlighted
in red.

Figure 6.9: Feature importances and subspace for experiment ‘TCGA-AA-A01X-01A-
23 W_VU_20120807_A0218_1H_R_FR03’, which has an outlier score of 75.68 %.
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(a) The feature importances for the various QC metrics to discriminate the experiment from the non-outlying
experiments.
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(b) The subspace formed by the most relevant QC metrics. The outlier’s value in the subspace is highlighted
in red.

Figure 6.10: Feature importances and subspace for experiment ‘TCGA-AG-A016-01A-
23 W_VU_20120731_A0218_1D_R_FR12’, which has an outlier score of 92.37 %.
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Figure 6.11: Histogram of the LoOP outlier scores for the TCGA dataset. The score threshold of 25 % is
indicated by the dashed line.
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Outlier subspace QC metric(s) Support (%)
MS1-TIC-Change-Q4 16
XIC-Height-Q4 15
RT-Duration 14
RT-TIC-Q3 14
XIC-Height-Q2 12
XIC-Height-Q3 11
XIC-WideFrac 11
MS1-TIC-Q4 10
MS1-TIC-Change-Q2 9
RT-TIC-Q2 8
MS2-PrecZ-4 8
MS1-TIC-Q2 8
RT-TIC-Q4 7
MS2-PrecZ-2 7
RT-MSMS-Q4 7
MS1-TIC-Q4, MS1-TIC-Change-Q4 6
MS1-Freq-Max 6
RT-MS-Q3 6
RT-MSMS-Q3 6
RT-MSMS-Q1 5
MS1-Density-Q3 5

Table 6.4: Overview of the QC metrics that frequently occur in the outliers’ explanatory subspaces for the
TCGA dataset. Exact support values can differ slightly between separate executions due to some variable
effects while computing the explanatory subspaces.
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Metric(s) Support (%)  p-value
MS1-TIC-Change-Q4 16 0.01851
XIC-Height-Q4 15 0.00002
RT-Duration 14 0.08282
RT-TIC-Q3 14 0.00001
XIC-Height-Q2 12 0.02115
XIC-Height-Q3 11 0.00048
XIC-WideFrac 11 0.00000
MS1-TIC-Q4 10 0.91656
MS1-TIC-Change-Q2 9 0.00582
RT-TIC-Q2 8 0.00008
MS2-PrecZ-4 8 0.00144
MS1-TIC-Q2 8 0.04482
RT-TIC-Q4 7 0.00000
MS2-PrecZ-2 7 0.00000
RT-MSMS-Q4 7 0.65808
MS1-TIC-Change-Q4, MS1-TIC-Q4 6 0.17899
MS1-Freq-Max 6 0.07700
RT-MS-Q3 6 0.27253
RT-MSMS-Q3 6 0.59691
RT-MSMS-Q1 5 0.02163
MS1-Density-Q3 5 0.02578

Table 6.5: Evaluation of the identification performance for the most frequent QC metrics in the outlier
subspaces for the TCGA dataset. The p-value is computed by a two-tailed t-test and indicates whether the
number of PSM’s for the outlying experiments for each metric is dissimilar from the number of PSMs for
the non-outlying experiments, with p-values lower than 0.05 highlighted.

that outliers for this dataset do not necessarily arise due to sources impeding successful spectrum
identifications, but can possibly be attributed to a significant biological diversity between the
various samples [235].

However, when the explanatory subspaces for the outliers are taken into account, a distinction
between several of the outliers can be made. As can be seen in figure 6.12b, for some specific
QC metrics the number of PSMs for the outliers is notably lower than for the non-outlying
experiments. Conversely, for a few other QC metrics the number of PSMs for the outliers is
very similar to those of the non-outlying experiments. Table 6.5 confirms the difference in terms
of PSMs between the non-outlying experiments and the outlying experiments for each of the
frequently occurring QC metrics by computing a t-test with null hypothesis that they have
identical expected values. The reported p-values show that this null hypothesis can be safely
rejected in some instances, with significantly lower numbers of PSMs for some sets of outliers,
which have also been highlighted in figure 6.12b. We can hypothesize that the QC metrics for
which the number of PSMs is comparable to that of the non-outlying experiments mainly capture
sources of variability that do not necessarily impede spectral identifications, such as, for example,
biological differences. Meanwhile, the QC metrics that show a clear discrepancy in terms of valid
PSMs compared to the non-outlying experiments warrant a closer look, as they might indicate
potential problems during the experiment resulting in a diminished performance.

As monitoring a large number of QC metrics on a regular basis is often unpractical, it might be
more convenient to limit the general analysis to a small number of user-friendly, well-understood,
and discriminating metrics [46]. From table 6.4 and figure 6.12b it can be deduced that, for
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Figure 6.12: Comparison of the number of PSMs between the non-outlying and the outlying experiments
for the TCGA dataset.
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example, metrics detailing the chromatographic performance, the TIC accumulation, and the
precursor ionization are suitable candidates. Because these metrics occur frequently in the
explanatory subspaces, they can be used to detect a wide range of outliers. Furthermore, they
seem to indicate a significant decrease in identification performance, highlighting the outliers
that are most likely to have a negative influence on the eventual output results. The efficacy
of these QC metrics has independently been noted before as well, with the chromatographic
peak width and the electrospray ionization selected to monitor the experimental quality during a
previous multicenter performance study [46].

6.4 Software availability

To aid users in the quality exploration of their own experiments, we have bundled the presented
analysis techniques into a software toolkit tuned for mass spectrometry quality control. This
software, which has been fully coded in Python, making use of scientific and machine learning
libraries such as NumPy [260], pandas [183], and scikit-learn [207], allows users to run the
presented workflow to detect and interpret outlying experiments. The software can be used as a
command-line application and exports the outlier analysis as a qcML file [272], which can be
viewed in any web browser.

All code is released as open source and is available at https://bitbucket.org/proteinspector/
gc_analysis.

6.5 Conclusions

A recent informal poll conducted by the Netherlands Protemic Center (NPC) highlighted that
proteomics researchers regard quality control as a crucial component during data analysis, but
it also revealed that the majority of researchers do not incorporate systematic quality control
approaches in their day-to-day workflows because applying currently existing quality control
tools is perceived to be too hard. This clearly shows that there is still significant room for improve-
ment to make quality control an ubiquitous step during MS proteomics experiments, something
that is vital for mass spectrometry-based methods to mature into analytical, transparent, and
reproducible disciplines [177].

In this paper, we have presented a powerful technique to perform an initial filtering of low-
quality mass spectrometry experiments based on computationally derived quality control metrics,
with a strong focus on providing easily interpretable results. After all, when identifying low-
performance experiments, it is insufficient to just know that an experiment has failed, it is also
crucial to understand why the experiment in question exhibits a decreased performance to be
able to remedy the problems that caused the failure. Furthermore, we have shown that our
approach can be successfully applied across different instruments and instrument types, and for
sample contents with varying complexity. As such, the methodology we have presented can
play an important role in investigating the performance of experiments, as it is able to detect
outlying experiments, as well as provide an explanation about the outlying behavior, which
can be interpreted by domain experts. A potential disadvantage, however, is that to able to
successfully detect low-quality experiments, it must be possible to establish a positive baseline,
which requires that there are a sufficient number of experiments available and that the number
of low-quality experiments does not exceed the number of high-quality experiments. As in
normal conditions only a few low-quality experiments are present, and because our approach
does not require manual setting of this positive baseline, but instead is able to automatically infer

89


https://bitbucket.org/proteinspector/qc_analysis
https://bitbucket.org/proteinspector/qc_analysis

Chapter 6 Unsupervised quality assessment of experiments

it, we believe that this is not a limiting factor. Additionally, because we employ an unsupervised
technique, some false positives are unavoidable. However, to determine which experiments
exhibit a decreased performance the presented technique can be used as an initial filtering step
prior to a detailed manual inspection, which will drastically decrease the number of experiments
that need to be checked manually, resulting in significant time savings.

However, the quality control analyses presented here should not stand on their own, instead
they need to be integrated with the experimental results and they should be closely linked to all
operational information and relevant events pertaining to the mass spectrometry instruments.
For example, environmental conditions, instrument maintenance schedules, etc., all can have
a significant influence on the experimental results [20, 34]. This information should ideally be
structurally recorded in a sort of electronic lab notebook (ELN), and should then be related to the
experimental results and the quality analysis.

Furthermore, novel analyses or algorithmic approaches are insufficient on their own. Ideally there
should be a consolidation of the developed quality control methods to date, and these methods
should be made available to a wide audience in intuitive and user-friendly tools, something that
is still severely lacking in the community at large.

Finally, although here we explicitly focused on quality control for proteomics, our approach
has potential applications in other mass spectrometry-based domains, such as metabolomics, as
well. Current quality control practices in metabolomics mainly involve the direct comparison of
features measured in specialized QC samples to subject samples [68, 97, 100], whereas the QC
metrics that were considered here form an additional level of abstraction as they are derived from
the experimental results. However, because we employed identification-free metrics, which do
not directly depend on domain-specific identification procedures, but instead capture the general
properties of a mass spectrometry experiment, most of these metrics can be straightforwardly
applied outside of the proteomics setting as well. Therefore, to conclude, extending such compu-
tational QC approaches to related fields such as metabolomics can be a very interesting avenue
of future research.
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Chapter 7

Optimized open modification
spectral library searching

Abstract

Open modification searching is a search strategy that enables the identification of modified
peptides without having to explicitly specify the modifications under consideration, leading
to record numbers of identified spectra. However, open modification searching suffers from a
high computational burden because the search space is considerably expanded by opening up
the precursor mass window to the order of several hundreds of Dalton. We here present how
approximate nearest neighbors indexing techniques can be applied to spectral library searching
to speed up open modification searching. Approximate nearest neighbors indexing allows to
retrieve only the most relevant candidates from a spectral library to avoid expensive and undue
similarity computations. We show how approximate nearest neighbors indexing achieves a
speed-up of several orders of magnitude during open modification searching, rendering this a
viable identification strategy.

Preface

This work was selected for an oral presentation at the renowned American Society for Mass
Spectrometry (ASMS) annual conference 2016 in San Antonio, TX, USA, where it received highly
positive feedback.

7.1 Introduction

Although mass spectrometry (MS) is a very powerful technique to characterize proteins in
complex biological samples, a significant portion of spectra often still remains unidentified. One
of the reasons for this is that some of the unidentified spectra represent peptides containing
post-translational modifications (PTMs) [49]. PTMs arise from covalent changes to the proteins
after their synthesis in the ribosome, and they play a key role in many cellular processes [271].
As such, the identification of PTMs can give us crucial insights into various protein activities.
However, although MS techniques have become quite mature, a comprehensive identification of
modified proteins in complex samples remains challenging [139, 173].

An unknown tandem mass spectrum is typically identified by calculating a score between the
spectrum and all its potential matches, after which the highest scoring match is selected as the
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identification. However, it has been observed that numerous spectra remain unidentified [49] or
are misidentified [36] because they correspond to peptides containing one or more unexpected
PTMs. To correctly identify these spectra all occurring modifications have to be explicitly
specified in the search settings. However, because for each peptide that contains a potential
modification both the modified and unmodified variant(s) have to be considered this leads to
a significant increase in search space, resulting in a higher computational load and a loss in
sensitivity. Consequently, generally only a limited selection of the most prevalent modifications
are considered. Whereas typically only candidates that fall within a limited mass window
around the query spectrum’s precursor mass are considered, with the width of the mass window
depending on the instrument’s mass accuracy, an alternative strategy to identify modified spectra,
called open modification searching (OMS), consists of opening up the precursor mass window [5,
192]. By allowing a wide precursor mass window modified query spectra can be compared to
their standard, unmodified, variant. This implicitly considers all possible PTMs, after which the
presence and type of the modifications can be derived from the mass difference between the
observed precursor mass and the mass of the unmodified peptide.

Although it is possible to identify a wide range of spectra containing diverse PTMs through OMS,
resulting in an unparalleled number of identifications, this approach suffers from a drastically
increased search space because a very wide precursor mass window has to be used. A popular
approach to keep OMS computationally feasible is to use spectral libraries [6, 118, 165, 285].
Because spectral libraries only contain previously observed peptides the search space is severely
restricted compared to sequence database searching strategies where all theoretically possible
peptides are considered [105]. An additional advantage of spectral libraries is that they contain
‘real’ spectra, i.e. spectra that have been confidently identified in previous experiments (mostly
processed to form consensus spectra [153]), as opposed to in silico generated, theoretical, spectra
in the case of sequence database searching. This enables the calculation of a more sensitive
score [290], which is especially beneficial in the case of OMS because identifications of modified
query spectra are derived from partial matches between these modified spectra and the unmodified,
commonly confidently identified, library spectra.

However, despite the reduced search space exhibited by spectral libraries compared to sequence
databases, due to the increased availability of high-quality datasets in public data repositories [211]
the size of spectral libraries has significantly risen over the past few years, as indicated in
figure 7.1. Spurred by the significant increase in computational requirements caused by the
continuous expansion of spectral libraries a few approaches have been proposed to speed up
spectral library searching ranging from parallelizing spectral matching using graphics processing
units (GPUs) [16], to utilizing the Apache Spark big data processing engine to search spectral
libraries [118], to using a filtering approach based on a shared peak count to reduce the number
of candidates for which a spectrum-spectrum match (SSM) with a query spectrum has to be
computed [269].

In the case of OMS though the computational burden is increased further by orders of magni-
tude due to the expansion of the search space. To counter this we propose a general indexing
technique to reduce the number of candidates matches that have to be evaluated for each query
spectrum. By making use of an (approximate) nearest neighbor indexing technique it is possible
to quickly retrieve the most similar library spectra to a query spectrum without depending
on the precursor mass, therefore inherently supporting open modification searching. Because
traditional multidimensional indexing techniques break down in high dimensions because of the
curse of dimensionality [27], considering the very high-dimensional nature of spectra we make
use of approximate nearest neighbors (ANN) techniques instead. These indexing methods are
able to cope with higher dimensionalities by loosening the guarantee that an exact solution is
provided at all times; instead sometimes only an approximate solution is achieved [122]. Here we
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Figure 7.1: Spectral library sizes increase as more high-quality public datasets become available. Represen-
tative human spectral libraries from the National Institute of Standards and Technology (NIST) and the
PRoteomics IDEntifications (PRIDE) repository [267] were used. The NIST spectral libraries are curated by
NIST, whereas the PRIDE Cluster spectral library is generated by clustering spectra deposited to PRIDE [106,
107].

will show how ANN techniques can be used to index spectral libraries. Notably, because of its
independence on the precursor mass to filter the candidates in the spectral library, we show that
this approach is ideally suited for OMS. Using these techniques we achieve significant speed-ups
while being able to identify spectra containing unexpected modifications, making OMS a viable
identification strategy.

7.2 Spectral library indexing

7.2.1 Approximate nearest neighbor indexing

Thanks to advances in terms of recording and storing data, the amount of available data has
tremendously increased in recent years. This wealth of data has prompted the need for so-called
‘big data’ approaches, with advanced algorithmic techniques necessary to uncover new insights. A
common task is nearest neighbor searching, which aim is to find the most similar known items in
a database compared to an unknown query item. Applications of nearest neighbor searching are
for example finding similar products to generate recommendations for (e-)commerce applications,
performing image recognition by identifying similar pictures, recognizing text by comparing
similar characters when performing optical character recognition (OCR), etc. A naive approach
to find the nearest neighbors in a database for a query item is to loop through the entire database
and compute the similarity between the query item and all database items. However, because of
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the massive sizes of the available data such an exhaustive, brute-force, similarity search is often
computationally unfeasible and would take an excessive amount of time. Instead, specialized
indexing structures can be used to quickly find the most similar items. These indexing structures
function in such a way that instead of having to exhaustively look at all items in the database,
the most similar neighbors for a query item can be found in sublinear time in function of the
database size. For dealing with multidimensional items, several multidimensional indexing
techniques have been used in a variety of domains, for example such as to deal with spatial
data in a geographic information system (GIS). However, traditional multidimensional indexing
techniques break down when faced with a medium to high number of dimensions due to the curse
of dimensionality [27]. Instead, for such high-dimensional data, often ANN indexing techniques
are used [122]. These techniques relax the requirement to provide the exact nearest neighbors in
all cases, and sometimes provide only an approximate solution, in favor of significant performance
gains.

Although multiple algorithms for ANN indexing exist, a common property of most of these
algorithms is that they repeatedly partition the data space into smaller subspaces that are locality
sensitive. This means that these subspaces are more likely to hold items that are close to each
other than items that are far away. We have employed the Approximate Nearest Neighbors
Oh Yeah (Annoy) library for ANN indexing, which is based on random projections to divide
the data space. The random projections form split hyperplanes to recursively subdivide the
data space into two subspaces. In this fashion a binary search tree can be constructed, as is
shown in figures 7.2a and 7.2c. This search tree can be used to efficiently find the data subspace
containing the nearest neighbors to a query item in sublinear time, as is shown in figures 7.2b
and 7.2c. However, because indexing in high-dimensional spaces is a hard problem and due
to the randomization employed no single search tree will likely be optimal. In contrast, by
exploiting the random behavior complementary index trees can be constructed if alternative
split hyperplanes are used. The index trees can be combined in an ensemble, or ‘forest’ of index
trees, with additional trees providing complementary views on the data, which serves to offset
the random effects and the curse of dimensionality. By using multiple trees the correct set of
nearest neighbors for a query item can be approximated more accurately. For example, if a query
item falls very close to the border of a data subspace, its nearest neighbors might be present in
an adjacent subspace. However, by merging the candidate nearest neighbors from all index trees
in the forest to construct a compound data subspace, as is shown in figure 7.2d, the occurrence
of suboptimal results can be minimized at the expense of additional processing time as multiple
index trees need to be examined. Therefore the number of index trees in the forest can be used
to configure a trade-off between processing speed and the accuracy of the results.

7.2.2 Spectral library searching

During spectral library searching an experimental, unknown, query spectrum is compared to the
known spectra in the spectral library. For each candidate spectrum in the spectral library (with
the candidates typically determined by a filter on the precursor charge and the precursor mass
window) a match score is computed to indicate its similarity to the query spectrum, forming an
SSM. Next, to identify the query spectrum, the SSM with the highest score is selected and the
query spectrum is assigned the same peptide sequence as the corresponding library spectrum [149,
150].

In terms of the terminology introduced in the previous section, to identify an unknown spectrum,

i.e. the query, its nearest neighbor is retrieved from the database, i.e. the spectral library (which
should not be confused with the ‘database’ during sequence database searching).
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(a) The data is partitioned in subspaces based on (b) The data subspace to which a query item (high-
random split hyperplanes. lighted in red) belongs is retrieved to find its nearest
neighbors.

(c) The required data subspace can be found in sub- (d) A better approximation can be obtained by com-
linear time using the binary search tree. bining the candidate nearest neighbors from multiple
randomly constructed index trees.

Figure 7.2: Representation of ANN searching.
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Spectrum preprocessing

First, prior to spectral library searching the spectra are subjected to some preprocessing [223].
Specifically, low-quality spectra are discarded, while the remaining spectra are processed to
remove noise peaks and only retain the 50 most intense peaks [152]. Next, the peak intensities
are rank transformed [165] or scaled by their square root [152] to de-emphasize overly dominant
peaks.

Second, because multidimensional indexing techniques work in vector spaces, the spectra are
converted to vectors by dividing a fixed mass range into equispaced mass bins, after which these
are normalized to unit length. When choosing the bin width a trade-off between expressivity of
the vectors and performance of the ANN index has to be considered. As current high-resolution
instruments are able to very accurately measure masses small mass bins can be used to faithfully
represent the spectra. In contrast, the ANN index degenerates to a linear search for excessive
dimensionalities. Empirically a bin width of 1 Da was determined optimal, which corresponds to
previous approaches [75, 152].

Candidate selection

The identification of an unknown query spectrum by spectral library searching (or equivalently
by sequence database searching) can be divided into two separate phases: (i) candidate selection,
and (ii) candidate scoring. Typically, in the first phase all spectra in the spectral library that
have the same precursor charge as the query spectrum and whose precursor mass lies within a
specified window around the query’s precursor mass are selected as the admissible candidates.
In the next phase, for all these candidates a detailed matching score is computed, and the SSM
with the highest score is selected as the identification for the query spectrum.

For traditional, ‘closed’, searches during the candidate selection phase a limited precursor mass
window is used, typically at the parts per million (ppm) level or at most a few Dalton. This
significantly restricts the number of candidates that have to be scored during the second phase,
ensuring that the scoring phase remains computationally feasible. Conversely, during OMS the
precursor mass window is considerably opened up and is typically in the order of several hundreds
of Dalton [6, 49, 118, 165, 191, 258, 285], which leads to a huge increase in the number of selected
candidates that have to be scored. Although the vast majority of the selected candidates will be
quite dissimilar from the query spectrum, a matching score will still have to be computed for these
candidates, imposing a considerable, yet avoidable, strain on the computational resources.

By using an ANN index the candidate selection phase can be optimized. Instead of filtering the
candidates based on the precursor mass window, potentially including very dissimilar spectra
as candidates, performing a nearest neighbor query using the ANN index allows to select only
the the most similar library spectra as candidates. Subsequently these candidates can still
be additionally filtered using a precursor mass window to exclude those candidates whose
precursor mass differs excessively. This optimized candidate selection strategy severely reduces
the number of candidates for which a computationally expensive matching score has to be
computed, significantly shortening the required computational time by orders of magnitude.

Spectral matching
The dot product is commonly used as similarity measure during spectral library searching [58,

88, 89, 152] as it is ideally suited to measure spectral similarity [244]. Using an ANN index
spectral matching occurs in two phases. In the first step vectors are matched in the ANN index
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to retrieve the candidates. Because multidimensional indexing techniques depend on the triangle
inequality to prune the search space they mandate the use of a distance metric as similarity
measure. Therefore, instead of the dot product, which in its basic form does not adhere to
the triangle inequality, the angular distance defined as the Euclidean distance between two
normalized vectors is used as a proxy for the dot product. This angular distance is equivalent
to the dot product when comparing unit vectors, without loss of generality for dealing with
non-normalized vectors.

Candidates retrieved from the ANN index are ranked based on the angular distance to the query
vector, after which in a second step the similarity between the query and each candidate is
refined by making use of the full-resolution spectra instead of their low-dimensional vector
representations. We have provided two related similarity measures to score SSMs: the dot
product and a variant thereof which takes mass shifts into account to determine peak agreements
between two spectra. Whereas the basic dot product is mostly useful to assess whether two spectra
represent identical peptides, during OMS unmodified spectra can be compared to their modified
variants. Although OMS is fundamentally based on the observation that spectra representing
modified and unmodified variants of the same peptide are similar to some extent, knowledge on
PTM characteristics can be taken into account to sensitively assess spectral similarity. When
comparing two spectra the shifted dot product checks for directly corresponding peaks, equivalent
to the basic dot product, while additionally allowing peaks to be shifted according to the precursor
mass difference between the two spectra that are being compared. For a non-zero precursor mass
difference annotated peaks in the library spectrum are allowed to be shifted by the precursor
mass difference at a charge of one up to the charge of the peak, while unannotated peaks are
allowed to be shifted at a charge of one up to the precursor charge. All peak agreements including
shifted and unshifted peaks are scored based on the corresponding peak intensities, after which
the optimal agreements are extracted using a priority queue while only allowing each peak to be
matched at most once. As illustrated in figure 7.3 this allows peptides differing by a single PTM
to be matched accurately and sensitively.

7.3 Speeding up open modification searching

7.3.1 Experimental data

We used publicly available data generated for the purpose of the 2012 study by the Proteome
Informatics Research Group (iPRG) of the Association of Biomolecular Resource Facilities (ABRF).
The goal of this study was to assess the community’s ability to identify modified peptides [47].
To this aim, various participating researchers were asked to identify an unknown dataset, after
which their proficiency in handling modified peptides was evaluated. The provided dataset
consisted of a mixture of synthetic peptides with biologically occurring modifications combined
with a yeast whole cell lysate as background, and the spectra were measured on a TripleTOF
instrument. For full details on the sample preparation see the original publication by Chalkley
et al. [47]. This is a high-quality dataset which comes recommended as a reference dataset for
the evaluation of identification algorithms [93]. All data was downloaded from the MassIVE data
repository (MassIVE accession MSV000078492).

To identify the iPRG_2012 dataset the human ion trap (version 2012/05/30) and yeast ion trap
(version 2012/04/06) spectral libraries compiled by NIST and obtained from the PeptideAtlas [63]
website were used. First, both spectral libraries were concatenated using SpectraST [152], after
which additional decoy spectra were added in a 1 : 1 ratio [151], resulting in a single large
spectral library file containing 799574 spectra.
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GLFIIDDKGILR, Score: 0.246
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(a) The default dot product only matches the fragments that do not include the acetylation.
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(b) The shifted dot product correctly matches both unmodified and modified fragments.

Figure 7.3: The dot product is used to score the similarity between two spectra. In both figures the top
spectrum is the unknown query spectrum and the bottom spectrum is the library spectrum, with matching
peaks colored according to the peak annotation. As can be derived from the precursor mass difference the
peptide GLFIIDDKGILR has undergone acetylation (mass 42.010565 Da) on the lysine at position 8. The
default dot product only takes directly matching peaks into account, while the shifted dot product allows
for shifted peaks according to the precursor mass difference, correctly assigning a high score to this match.
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7.3.2 Code availability

The ANN spectral library software is fully coded in Python, making use of scientific libraries such
as NumPy [260] and pandas [183]. The ANN indexing is based upon the popular open-source
Annoy library [239]. Annoy is a high-performance software library written in C++ with Python
bindings originally developed at Spotify to support music recommendations. All code is released
as open source and is available at https://bitbucket.org/proteinspector/ann-solo.

7.3.3 ANN spectral library searching

The big advantage of OMS is that modified peptides can be identified without having to explicitly
specify all modifications under consideration. This is done by opening up the precursor mass
window in order to match modified spectra to their unmodified variant despite the large mass
difference produced by the modification. This makes it possible to successfully identify a consid-
erably higher proportion of spectra compared to the traditional approach. Figure 7.4a shows that
for the iPRG_2012 dataset a direct increase in identified spectra of up to 40 % can be achieved by
opening up the precursor mass window from 20 ppm to 300 Da to take potential modifications
into account. Furthermore, as the shifted dot product is an optimized similarity measure to sensi-
tively match modified spectra, it succeeds in discriminating true SSMs from false SSMs, achieving
a further increase in identification rate. This increase is especially pronounced at a low false
discovery rate (FDR), indicating that the shifted dot product correctly accounts for systematic
peak shifts resulting from modifications. Next, although OMS does not directly indicate or localize
PTMs, the type of modifications present can be derived from the difference in precursor mass
between the query spectra (modified or not) and the library spectra. As shown in figure 7.4b, the
majority of SSMs does not exhibit a precursor mass difference between the query spectrum and
the library spectrum, corresponding to unmodified peptides that can be directly matched. Other
mass differences indicate the presence of some common modifications, such as phosphorylation
(+79.966331 Da), acetylation (+42.010565 Da), or loss of ammonia (-17.026549 Da). Further mass
differences correspond to amino acid substitutions between the query spectra and library spectra
or a surplus of amino acids at one end of the peptide sequence, confirming that the spectral
library does not contain all relevant peptide sequences.

Despite this proven proficiency in identifying modified spectra the OMS strategy remains under-
used, in large part because of the considerable computational requirements imposed by opening
up the precursor mass window. Whereas if the precursor mass window ranges a few ppm only a
handful or at most a few dozen candidates need to be considered for each query, by opening up
the precursor mass window to the order of hundreds of Dalton a large majority of spectra in the
spectral library will need to be considered as candidates for each single query. Consequently,
whereas a traditional search can typically be done in a few minutes, OMS can easily require
several hours of computation time, vastly surpassing the analytical time required to generate
the data. In contrast, by exploiting ANN indexing to reduce the number of candidates that need
to be considered OMS can be sped up by several orders of magnitude, as shown in figure 7.5.
When making use of ANN indexing to speed up spectral library searching there is a configurable
trade-off between precision and speed. By varying how many trees are constructed to index
the spectral library and how deep the trees are traversed during the candidate retrieval more
accurate results can be obtained at the expense of an increase in computation time. As indicated
by figure 7.5 this is subject to diminishing returns: obtaining fully accurate results incurs a
disproportionate increase in computation time, even though a speed-up of orders of magnitude
is still achieved. These parameters can be varied in function of the use case. For example, a
preliminary screening of the modifications that are present in the dataset can be achieved in a
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(a) OMS results in a significant increase in the number of identified spectra compared to the traditional
search using a limited precursor mass window.
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Figure 7.4: OMS identification results for the iPRG_2012 dataset.
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Figure 7.5: Elapsed time for searches with different sizes of precursor mass window. ANN indexing can
reduce the time required for OMS by several orders of magnitude.

minimal amount of time, which can be followed by a targeting investigation of modifications of

interest.

7.4 Conclusions

We have shown how ANN indexing can be applied to spectral library searching. By filtering the
candidate matches for which an SSM needs to be scored during OMS the search procedure can be
sped up by several orders of magnitude. Whereas previously OMS has sporadically been lauded
for its ability to identify a large number of modified spectra, its adoption remained limited due
to its excessive computational requirements. In contrast, by making use of an ANN index the
processing time can be kept under control, rendering OMS a viable identification strategy.

This is especially beneficial in light of the ever-increasing size of publicly available high-quality
spectral libraries. Current large spectral libraries originate for example from spectral clustering
approaches to generate repository-wide spectral libraries [106, 107] or from spectral archives
which contain both identified and unidentified spectra [87]. Another interesting approach that
aims to address the limited coverage of spectral libraries is to use computational tools to simulate
spectral libraries covering a full proteome [286, 287]. As traditional spectral library searching
scales linearly in terms of the library size, searching such large spectral libraries would result in
a considerable computation time. In contrast, because ANN indexing scales logarithmically in
terms of the library size using a larger spectral library would result in only a modest increase in
computation time.

101



Chapter 7 Optimized open modification spectral library searching

Furthermore, besides OMS there are other use cases that have to deal with expensive computations
due to a very large search space as well, such as when identifying proteogenomics [195] or
metaproteomics [190] datasets. Although ANN indexing is inherently ideally suited to OMS
because the candidate retrieval does not depend on the precursor mass, equivalently in these
use cases ANN indexing could be used to restrict the search space and significantly reduce the
computational requirements.

102



Chapter 8

Conclusion

To conclude this dissertation we will briefly summarize our work and highlight the major contri-
butions we have presented, and discuss some open problems and interesting avenues of future
work.

8.1 Summary of contributions

Mass spectrometry (MS) is a very powerful analytical technique that can be used to identify and
quantify the protein content of complex biological samples. However, because MS techniques
are necessarily highly sensitive, the results of an MS experiment can be subject to a significant
level of variability. Therefore, to inspire confidence in the acquired experimental results it is
essential to correctly assess and control this variability, for which a systematic approach to quality
control (QC) is needed. In this dissertation we have presented several valuable contributions to
computational QC approaches for mass spectrometry-based proteomics. Our work mainly deals
with various aspects that are needed to establish a fundamental QC approach supporting the
application of mass spectrometry in a biomedical setting.

First, we have shown how secondary QC metrics, such as instrument settings and environmental
variables, can provide valuable information that can be related to the quality of an MS experiment.
Whereas traditional QC metrics are derived from the spectral data, possibly in combination
with the identification results, and are highly dependent on the type of experiment that was
performed, instrument settings can be universally monitored irrespective of the experimental
set-up. Furthermore, because instrument settings provide very low-level information on the
operation of an MS instrument they enable detecting emerging problems as soon as they arise.
Because mass spectrometry is so sensitive environmental variables, such as a slight shift in
the ambient laboratory temperature for example, can already have a significant impact on the
experimental results. This data can therefore provide important information on the performance
of an MS instrument. We have shown that commodity hardware can suffice to monitor specific
environmental variables and provide novel insights into the quality of the generated data. Sys-
tematically monitoring this information, ideally in combination with traditional spectral-derived
QC metrics, allows to establish a technological passport specific to an individual MS instrument,
which serves to obtain an in-depth understanding of its performance and aids to minimize and
understand the observed variability in the experimental results.

Second, we have taken part in the community effort to define the qcML standard file format for
QC data. The qcML format provides straightforward yet formal storage of QC information, and
by functioning as a common interface it enables interoperability between different QC tools. To
provide the necessary technical infrastructure for interacting with qcML data we have developed
the jqcML open-source Java application program interface (API), which can be used by other
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developers to effortlessly support the qcML format. The development of the qcML format is still
ongoing, with the recently established Quality Control working group of the Human Proteome
Organization (HUPO) - Proteomics Standards Inititative (PSI) spearheading efforts to improve the
format definition, add qcML support to several existing QC tools, and opening up QC procedures
to any mass spectrometry-based experimental workflow besides the typical discovery setting.

Third, we have developed an automated approach to discriminate high-quality from low-quality
MS experiments based on unsupervised outlier detection applied to a high-dimensional set of
QC metrics. Even though multiple tools exist that can compute QC metrics, their output is often
highly complex and expert knowledge is required to interpret it. In contrast, our approach is
able to accurately assess the quality of an MS experiment without requiring manual intervention.
Furthermore, we have implemented an outlier interpretation scheme to highlight the most relevant
QC metrics giving rise to the decrease in performance for the detected low-quality experiments.
This gives instrument operators actionable knowledge to optimize their experimental set-up,
as these interpretations have been shown to correspond to independently published expert
knowledge. First of all, by detecting and interpreting low-quality experiments MS practitioners
are served with practical information they can use to optimize their experimental set-up. Second,
as our approach does not require manual user input it introduces the possibility of automated
decision-making. For example, spectral acquisition could be automatically halted if a decrease in
quality is detected to avoid undue loss of precious sample content.

The above research contributes to three essential aspects needed to establish a comprehensive
QC procedure: being able to record meaningful performance metrics, the ability to store and
communicate QC data, and using this information for advanced decision-making. It is only by
combining these separate aspects into a unified system that biological mass spectrometry can
reach its full potential.

A final contribution relates to analyzing the acquired spectral data after suitable QC procedures
have ascertained its validity. In a typical MS experiment only a quarter to half of all spectra
can be correctly identified. Recent research has shown that a significant number of spectra
remain unidentified because they represent modified peptides whose specific modifications were
not considered in the search settings [49]. Instead, open modification searching (OMS) can be
used to identify spectra without explicitly having to specify any potential post-translational
modifications (PTMs), resulting in a significant increase in the number of identified spectra.
OMS remains an underused strategy though, mainly because it suffers from an explosion of
the search space, rendering it prohibitively computationally expensive. To solve this issue we
have used approximate nearest neighbors (ANN) indexing techniques to limit the search space
when performing OMS, resulting in a speed-up of several orders of magnitude. This renders
OMS practically feasible, making it possible to identify a considerably higher number of spectra
compared to a standard search without having to spend an excessive amount of computational
resources.

8.2 Future work

As scientists have rightly realized that suitable quality control procedures are required to advance
the field of mass spectrometry-based proteomics, in recent years there has been a proliferation of
computational QC tools. However, despite the availability of multiple advanced QC tools their day-
to-day usage remains extremely limited, in large part because they lack usability. First, the tools
frequently mandate expert knowledge. A common problem is the need for complex user-specified
parameters to correctly process the spectral data. Additionally, it is often not straightforward
to interpret the generated results, even for expert users. We have tried to address this issue in
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part when developing our approach to discriminate low-quality experiments from high-quality
experiments [30]. The outlier detection requires only a single user-specified parameter, the size
of the local neighborhood to determine whether a specific observation is an outlier or not. This
parameter is conceptually easy to understand, and the outlier detection technique is fairly robust
to this parameter as shown by the validation results in chapter 6. As such, this method can be
automated to some extent. Furthermore, we have implemented an outlier interpretation scheme
that limits the data to only the most relevant QC metrics to provide detailed insights into the
source of the deterioration in experimental quality.

A second problem contributing to the lack in user-friendliness of the QC tools is that besides
expert analytical knowledge to interpret the results, they also often require advanced technical
knowledge to configure and troubleshoot. For example, as we have reviewed in chapter 3,
installing the SIMPle AuTomatlc Quality COntrol (SimpatiQCo) tool [215] involves a non-trivial
procedure consisting of multiple steps. Furthermore, SimpatiQCo requires users to manually
insert a new record in its underlying database to set up a new instrument for monitoring. Our
contributions are not flawless in this respect either. The Instrument MONitoring DataBase
(iMonDB) tool [34] indiscriminately extracts all instrument parameters whose values are present
in the experimental output files without using any smart filtering. Depending on the instrument
type this can include several dozens to a few hundreds of instrument parameters, of which the
majority do not convey any useful information. As the iMonDB tool currently does not include
functionality to intelligently serve only the relevant QC metrics users are forced to browse
through all parameters to verify if any changes occurred. This obviously severely limits the
usefulness of the iMonDB tool, as multiple (inter)national users have communicated.

Unfortunately though a lack of usability is a common issue exhibited by academic software [161].
Although there exist a few computational proteomics groups that have built a reputation of
consistently delivering great software tools and which are doing sterling work, in general,
research groups often do not have the necessary technical expertise in-house to develop and,
importantly, maintain user-friendly software. First, there is a significant gap in level of difficulty
between coding a command-line script to perform a specific analysis and developing a robust and
full-fledged end-user application or managing a legacy code-base. For the former some ‘hacking’
skills might suffice, whereas the latter requires profound software engineering skills. A large
portion of interdisciplinary bioinformatics researchers lack these skills though, as they have
never enjoyed a formal computer science education. This should not detract anything from their
accomplishments, as their efforts to learn how to program and to publish their code to the benefit
of the community should be applauded, but expectations should be set accordingly. Second, even
for research groups that possess the necessary technical skills the current academic climate often
does not encourage expending time to develop and support elaborate software tools. Similar
to the Pareto principle, during software development (roughly) 80 % of the functionality stems
from 20 % of the efforts. With current metrics for measuring academic value putting emphasis on
publishing as many papers as possible, it is often deemed not worthwhile to spend the additional
development time needed to extend one-off analysis scripts to user-friendly (graphical) tools.

A further issue is that QC tools often require researchers to explicitly expend substantial effort and
they function in isolation of both the experimental workflow and the subsequent data analysis,
which does not encourage their adoption. In contrast, the tools should be automated and form
an integral part of any MS experiment. A tool that is fully integrated within the experimental
workflow is able to assist researchers in every step of their experiments. Through comprehensive
monitoring of the performance the ideal QC tool would be able to for example optimize wet-
laboratory experimental protocols and suggest informed settings for the bioinformatics data
analysis. This is not a trivial matter though. As mass spectrometry is such a powerful and
versatile technique its use cases are legion. Consequently, it is impossible to define an exclusive
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QC directive or develop a single tool that covers all possible applications.

To this end contributions by the HUPO-PSI Quality Control working group [33], as introduced
in chapter 5, could turn out to have a high value. Although the qcML format has already been
published a few years ago [272], its adoption so far has remained limited. Establishing the qcML
format as the definitive HUPO-PSI standard for QC data will encourage third-party developers
to support it, which will stimulate the growth of an ecosystem of QC tools around this format.
Similar to previous success stories, such as the mzML format [179], this will allow different tools
to seamlessly interact with each other. As MS use cases are too diverse to define a single QC
directive, modular tools will be able to focus on specific applications. Next, these tools can be
combined into a powerful pipeline to offer a rich QC system providing the requisite functionality.
With members from the proteomics as well as the metabolomics communities, and involvement
from academic, industry, and journal representatives, the HUPO-PSI Quality Control working
group is uniquely placed to tackle this important task.

Taking a step back from only quality control for mass spectrometry-based proteomics to machine
learning (ML) applied to proteomics data in general, there are multiple opportunities as well.
We are convinced that a more data-driven approach can result in significant improvements
of the current computational methods. At the moment bioinformatics applications are mostly
model-driven, i.e. they function based on explicitly encoded expert knowledge. For example, se-
quence database search engines identify unknown mass spectra by comparing the experimentally
observed spectra to in silico simulated spectra generated based on expert rules describing the
fragmentation of peptides within a mass spectrometer under certain conditions. In contrast, as
famously posited a few years ago under the slogan “the unreasonable effectiveness of data” [109],
advanced algorithms can succeed in deriving high-quality models from large datasets instead
of having to hand-code complex rules. The field of mass spectrometry-based proteomics seems
ready for such an overhaul from rule-driven to data-driven models as well. Data sharing has
long been mandated by journals upon publication [225], and public data repositories have seen a
steady increase in deposited datasets [65, 266]. Some notable efforts to reanalyze these publicly
available datasets to generate novel knowledge have been undertaken in the past few years [264,
265], but the full power of this data remains underused. We surmise that by harnessing this wealth
of available public data a deeper understanding of the many processes underlying the generation
of MS data can be obtained, which will enable the discovery of novel biological findings.

A concrete application hereof, tying in with the work on measuring instrument parameters
presented in chapter 4, is to use ML to optimize spectral acquisition. Currently instrument QC
metrics are stored as summary statistics for each run in the iMonDB [34]. Instead measurements
pertaining to each individual scan can be collected. These granular metrics would then have to
be related to the quality of individual scans, which information can be used to learn patterns
corresponding to optimal spectrum acquisition. A comparable approach has been undertaken by
Google, who have described how they use supervised learning on multivariate sensor values to
minimize the energy consumption of their data centers [62, 104]. Initially this approach could be
used to provide insights into the functioning of complex MS machinery to manually optimize the
acquisition settings. Ideally though the ML model should directly interface with the instrument
to change these settings on the fly.

Unfortunately, in general, an issue hindering the development of algorithms based on MS data is
the lack of a ground truth. MS data is subject to a variety of influences, and different analysis
methods can yield varying results [31]. In contrast, to validate novel bioinformatics algorithms
quantifiable measurements are required instead of the current subjective comparisons [238].
Whereas in general for supervised learning a manually labeled ground truth set is used, determin-
ing a conclusive ground truth for MS data is not possible. Advanced expert knowledge is required
to manually identify unknown mass spectra, which is time-consuming and cannot be done at
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scale. Furthermore, even expert users do not succeed in interpreting a considerable portion of
mass spectra. Recent suggestions include using simulated data and curating publicly available
gold standard datasets [93], but this is an important problem that will need to be addressed
further. Quality control can play an important role here, as the availability of comprehensive QC
information describing publicly available datasets can help to determine the data’s applicability
to be used for training and validating novel computational approaches.

The latest trend in machine learning is without a doubt deep learning (DL) [157]. Based on
increases in computational performance and the accumulation of ever larger datasets, deep neural
networks (NNs) have revolutionized a variety of ML tasks. So far DL has been most successfully
applied to image processing tasks, but there are opportunities to apply this fascinating research
to proteomics problems. One of the early breakthroughs at the forefront of the current interest in
deep NNs was when a convolutional neural network (ConvNet) achieved a considerable increase
in accuracy on the ImageNet challenge [147]. For this challenge participants are required to
correctly assign labels to unknown images [228], a task on which the data-driven ConvNet
significantly outperformed its traditional rule-driven competitors. One might initially assume
that a similar approach can be employed to identify mass spectra, which consist of structured
information comparable to images. However, the ImageNet challenge requires users to only
predict 1000 different labels [228]. Taking such a sizable number of classes into account is
significantly harder than a simple binary classification, however, the number of possible peptides
is even several orders of magnitude higher. Furthermore, very different spectra can originate from
the same peptide due to PTMs, fragmentation and mass measurement characteristics, etc. Clearly,
even current deep NNs are incapable to directly predict such a complex output value. Instead, the
systematic structure of a peptide might be exploited using recurrent neural networks (RNNs) [115].
RNNs are used to process sequences of inputs, resulting in state-of-the-art performance on a
variety of pattern recognition tasks, such as speech recognition or natural language processing.
We hypothesize that these NN architectures can learn how different peaks in a spectrum are
related to identify a spectrum at the granularity of individual amino acids, which would result in
a sort of implicit, data-driven, de novo spectrum identification.

Generative adversarial networks (GANs) are another interesting new DL development. Only
recently introduced by Goodfellow et al. [103] in 2014, experts have called it “the most interesting
idea in machine learning in the last 10 years” [156] A GAN consists of two separate networks: a
generator and a discriminator. The generator produces simulated data, while the discriminator
differentiates between true instances and simulated instances produced by the generator. As
the two networks compete with each other the generator learns to produce seemingly real
data, while the discriminator simultaneously learns to accurately classify data as being real or
simulated. State-of-the-art applications of GANs include enhancing pictures by upscaling their
resolution [158] or generating photorealistic images based on only a textual description [289].
Applied to mass spectrometry-based proteomics GANs could be trained to discriminate between
true and false spectrum identifications. In this case the generator would be trained to simulate
false peptide-spectrum matches (PSMs), while the discriminator would be tasked to differentiate
these simulated PSMs from high-confidence target PSMs. A straightforward application of such a
GAN would be to generate decoy spectral libraries. Current decoy generation procedures typically
permute the order of amino acids in target peptide sequences and shuffle the corresponding peaks
of the spectra accordingly [151]. However, this approach has some limitations. As the spectrum
fragmentation process is not fully understood the peaks are shuffled based on some heuristics.
Furthermore, only annotated peaks are deterministically shuffled, whereas unannotated peaks are
dealt with in a random fashion. Instead, a GAN could be used to generate highly realistic decoy
spectra that are virtually indiscernible from real spectra. Similarly, this approach could be used
to generate proteome-wide simulated spectral libraries to increase the libraries’ coverage [286,
287]. Even further, instead of making use of trivial fragmentation rules a GAN could be used to
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generate in silico spectra during sequence database searching. By making use of highly realistic
simulated spectra the sequence database searching paradigm and the spectral library searching
paradigm would effectively be equalized. In the above cases mainly the GAN’s generator is used.
However, the discriminator can also be used to great effect, as it has learned to differentiate true
positive PSMs from false positive PSMs. Currently true positive identifications are distinguished
from false positive identifications based on the target-decoy strategy [74]. However, because
the scores of the target identifications overlap with the scores of the decoy identifications to
some extent [135] a loss of correct identifications is unavoidable. It has already been shown
that ML techniques can be used to provide a better distinction between true positive and false
positive identifications based on PSM metadata [129], but a GAN would be able to distinguish true
positive from false positive PSMs even more accurately by taking the raw spectral information
into account. This would at least result in a higher number of identified spectra, and could possibly
obviate the need for the target-decoy strategy by introducing a novel approach to validate spectral
identifications.

With current DL research progressing at a breakneck speed highly advanced NNs have made
it possible to perform end-to-end learning. This means that the model is able to automatically
learn complex internal representations instead of having to explicitly break up a compound task
into multiple simpler subtasks. These new approaches can usher in a shift from the current
model-driven paradigm in proteomics bioinformatics to a data-driven one. Therefore, we want to
conclude by expressing our confidence that by combining state-of-the-art machine learning and
computational proteomics knowledge tremendous progress can be achieved in the near future,
impacting any application of biological mass spectrometry.
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