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THE QUASI-STEADY-STATE ASSUMPTION:
A CASE STUDY IN PERTURBATION *

LEE A. SEGEL and MARSHALL SLEMROD:

Abstract. The quasi-steady-state assumption (QSSA) of biochemistry is studied as an

approximation that is important in itself and also that exetnplifies an approach to ODE systems
with an initial fast transient. Sinple estimates of the two relevant time scales of the underlying
problem are made. These estimates lead to a dimensionless formulation containing a different small
parameter from that which is customary. Earlier results on the QSSA are surveyed in the context
of the new nondimensionalization. It is shown that more comprehensive and simpler error estimates
can now be made. Some general methodological hints are drawn from this example.

Key words, quasi-steady-state assumption, singular perturbations, scaling, fast transients,
Michaelis--Menten approxitnation
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O. Introduction. An important approximation method, in the study of
biochemical kinetics for example but also in many other fields, is an approach variously
called the quasi-steady-state assumption (QSSA see [1]) or the pseudo-steady-state
hypothesis (PSSH see [14]). In its simplest form, the QSSA, as we shall call
it here, deals with kinetics described by systems of ordinary differential equations
wherein, after an initial fast transient, one (or more) of the dependent variables can
be regarded as in steady state with respect to the instantaneous values of the other
dependent variables.

Here we examine the QSSA as a case study in approximation. We devote
particular attention to the art of choosing suitable dimensionless variables. This allows
us to develop several improvements on (the very many) earlier results concerning the
QSSA. In particular we are able to determine the "correct" small parameter of the
problem, we can extend the QSSA to instances where the classical small parameter is
not in fact small, and we can prove a theorem that pays due attention to uniformity
of convergence with respect to "nonsmall" parameters. We believe that the spirit of
our results will be found of some general utility.

0.1. The enzyme-substrate reaction. Perhaps the most studied example of
the QSSA concerns a biochemical reaction wherein an enzyme (concentration E) reacts
reversibly with another chemical (concentration S, the substrate) to form an enzyme-
substrate complex (concentration C). With a certain probability per unit time k2, the
complex irreversibly breaks down into the original enzyme plus an altered substrate
molecule called the product (concentration P). Schematically,

kl
E+SC k--&E+P.
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QUASI-STEADY-STATE ASSUMPTION 447

The differential equations that are traditionally taken to govern this situation are

dE
(la) d--- -klES + k_C + k.C,

dS
(lb) -klES+k-IC,

dt

(lc)
dC

klES- k-lC- k2C,
dt
dP

(ld) k2C.
dt

We shall restrict ourselves for now to the (most important) initial conditions

E(0) Eo,
(2b) S(0) So,

c(0) =0,

(2d) P(0) 0.

Adding (la) and (lc), and employing (2), we find that

(2e) E(t) + C(t) Eo

with which E can be eliminated from (lb) and (lc), yielding the basic mathematical
problem

dS
(3a) d- -kl (Eo C)S + k_IC,

dC
(3b) d--- ]1 (Eo C)S (]-1 -- ]g2)C,

s(o) So,
(ad) c(o)-o.

0.2. The quasi-steady-state assumption. Under certain circumstances, the
QSSA can be used to simplify the system (3). This simplification and its consequences
are generally studied in elementary biochemistry courses. One excellent text [11]
proceeds as follows.

It is first pointed out that the experimental measurements to be made generally
arc performed after a relatively short pro-steady-state period but before the substrate
concentration decays appreciably. It is then stated that "if the reaction rate measured
is approximately constant over the time interval concerned" then the complex
concentration C is approximately constant. (By "reaction rate" is meant the rate
of product formation, so that the approximate constancy of C follows from (ld).) If
C is approximately constant then dC/dt O. With this we can solve (3b) for C in
terms of S, yielding

(4a) C

where

(4b) Km =-

EoS
(K,, +S)’

(k_ +
kl
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448 L.A. SEGEL AND M. SLEMROD

Under what circumstances can we assume that dC/dt 0? A typical assertion in
this regard, from another excellent biochemistry text [19], is that "if the concentration
of S is high enough, the free enzyme E will immediately combine with another molecule
of S. Under these conditions a steady state is achieved in which the enzyme is always
saturated with its substrate." This quotation correctly implies that the approximation
dC/dt 0 can be valid for a considerable period of time. When this is the case, upon
substituting (4)into the substrate equation (3a) we obtain

dS k2EoS() d -K. + s
Presumably the substrate concentration does not change appreciably during the brief
pre-steady-state period, so that to (5a) we may adjoin the initial condition

(6) s(0) s0.

Equations (5a) and (5b) are the essence of the quasi-steady-state assumption (QSSA),
so called because in a true steady state C would be constant while here C changes
but in such a way as instantaneously to be in steady state with the present value of
the substrate concentration.

0.3. The singular perturbation approach. Theoreticians have long been
aware of the fact that the QSSA can be obtained from the well-studied singular
perturbation theory for equations of the form

ds dc
(6) d-=f(c’s)’ e-=g(c,s), 0<e<<l.

Earlier a number of authors obtained such equations by changes of variables. Typical
is the approach in the classical paper of Heineken, Tsuchiya, and Aris [14] who write,
"let us make (our equations) dimensionless by taking

S
(7) u Koo’

C
(7b) z E---’
(7c) h kEot."

Upon substitution into (3a) and (3b) these variables give the "outer" equations

dy
(S) d---f - + ( + a)z,

dz
(8b) g - ( + )z.

Here

Eo Km(9) eh=--0’ #= So’
k2

With the standard change to a fast time variable H via

h
(10) H

eh
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QUASI-STEADY-STATE ASSUMPTION 449

we obtain the "inner equations"

dy dz
(11)

dH h[--Y + (Y + it- A)z], d-- -y (y + it)z.

What we shall term the standard dimensionless variables (7) have been introduced
without motivation by many auttors, not only by Heineken, Tsuchiya, and Aris [14]
but also for example in the reviews by Hahn [13] and Klonowski [16] and in the
biomathematical texts by Rubinow [28], Murray [22] and Britton [3]. In our view it is
unfortunate that the variable change (7) is unmotivated, for this change constitutes
the crucial step of the analysis. Moreover, the variables (7) lead to a small parameter
h =-- Eo/So, but it is a central result of this paper that the small parameter should
be taken to be Eo/(So + Kin).

For at least 25 years, the QSSA has been analyzed by theoretical chemists
and applied mathematicians (including one of the present authors). That applied
mathematicians can profit from a reexamination of this relatively simple problem
is attested to by the fact that only now have appropriately broad conditions been
discovered for the validity of the QSSA. Not surprisingly in view of the slow
progress, flmdamental issues of the applied mathematician’s trade are involved in
proper treatinent of the QSSA. Chief among these is the choice of appropriately
nondimensionalized variables, for this is the key to an efficient analysis.

1. Choosing time scales: a first analysis of the QSSA. Central to further
developments is the selection of appropriate timescales. These will be the basis for
deriving necessary conditions for the validity of the QSSA, and also for choosing
suitable dimensionless variables.

1.1. Scaling. Concepts of scaling [30], [20, 6.3] provide an essential background
to our discussion. These are the essential points.

(i) The scale of a dependent variable is a combination of parameters, with the
appropriate dimension, that provides an estimate of the variable’s maximum
order of magnitude.

(ii) The scale of an independent variable is a combination of parameters, with the
appropriate dimension, that estimates the range of the independent variable
over which there is a significant change in the dependent variables.

(iii) To obtain scaled dimensionless variables dimensional variables are divided by
their scales.

(iv) It follows from the definitions that scaled dimensionless variables are of unit
order of magnitude. Hence the relative magnitudes of the various terms in
scaled dimensionless equations are correctly provided by the dimensionless
parameters that appear. This is a decisive help in devising approximation
methods.

(v) It may be necessary to choose different scales in different domains of the
independent variable. If so, the appropriate approximation methods are of
singular perturbation type.

(vi) Different scalings are appropriate in different domains of parameter space.
(vii) Scaling requires prior knowledge of the solution. This can be provided by

experiments, "physical intuition," and/or numerical analyses of special cases.

1.2. Scaling and the QSSA. Employing a biophysical point of view, we derive
conditions that seem necessary for the validity of the QSSA. As will be seen, these
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450 L.A. SEGEL AND M. SLEMROD

conditions are essentially consistency checks. As a key step in our derivation we shall
estimate the duration tc of the pre-steady-state period (i.e., we estimate the fast
timescale). Assuming that the QSSA is valid after the pre-steady-state period, we
shall then estimate the slow timescale ts for the decay of substrate.

To estimate tc we make the approximation S , So in (3b) (compare (5b)). The
resulting equation is readily solved, yielding

(12a) C(t) =C[1-exp(-kt)]

where (compare (4a))

EoSo(12b) C
Km+ So’

(12c) k ]I(S0 + Kin).

As a consequence we take

(13) tc k-1.

TO estimate ts we employ one of the useful ways to characterize a timescale [31, p. 56]

(14) ts --(Smax- Smin)/
dS

m&x

To find tile maximum value of dS/dt for the period after the initial transient, we
substitute S So into (5a). It follows at once that

(15) ts Kin+So
k2Eo

An essential feature of the QSSA is that the duration of the pre-steady-state
period is much shorter than the characteristic time for substrate change. A necessary
condition is thus tc << ts, i.e.,

(la) r << (1 + )(1 + a) 2.

Here we have employed the dimensionless parameters

So E0 k-1(17) a
Kin’ rl Kin’ =- k2

Initial condition (5b) is appropriate to the QSSA only if there is a negligible
relative change IAS/Sol in the substrate concentration during the pre-steady state.
We estimate AS/So by

(18a)
AS 1 dS

max

Employing (3a) with C 0 to determine [dS/dtlmax (in contrast with the derivation
of (15)) we find the additional necessary condition

(18b)
AS go,, <<1.

Km+ SO
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QUASI-STEADY-STATE ASSUMPTION 451

In dimensionless terms this condition is

(19) r/<< 1 + a.

Note that our new condition (19) is stronger than (16), i.e., (19) implies (16). (See
Appendix 1 for fllrther remarks concerning (19).) Note also that a "nominee" for
the correct dinensionless parameter of the problem is now apparent, namely, e

Eo/(K + So) r/(1 + a).

2. The scaled dimensionless equations, singular perturbations and
estimates. Vital for the derivation of the necessary conditions (16) and (19) was
our estimation of the two timescales of our problem, the duration tc of the pre-
steady-state period, and the duration ts of the period during which the substrate S
is converted to product according to the QSSA. Knowledge of these scales is precisely
what is required to choose suitable dimensionless independent variables, a prerequisite
to further analysis of the QSSA.

2.1. The scaled equations. In the pre-steady state, it is now clear that time
should be scaled by re. The QSSA assumes that in this state S , So; this gives the
scale for S and also indicates that the complex concentration C will be well estimated
by its steady-state value C of (12b). We thus introduce the scaled dimensionless
variables

S
(20a) s So’

C
(20b) c C’

t
(20c) r = tc’

with which the governing equations (3) become

(21a)
ds
d--7 e

dc
(21b) d-- s-

(21c) s(0) 1,

(21d) c(0) =0.

a ( + I) -1s+ cs+ c
a+l +1

a 1
C8

a+l

Here, as suggested by (18b) and (19), the small parameter e is defined by

r/ Eo(22) e = _-
1 + a Km + So

After the pre-steady state, the QSSA is expected to hold. The scaling of the
dependent variables remains appropriate but ts is now the correct timescale. We thus
introduce a new dimensionless scaled time T by

t
(23)

ts

D
ow

nl
oa

de
d 

11
/1

9/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



452 L.A. SEGEL AND M. SLEMROD

Retaining s and c for substrate and complex concentrations as functions of T, we note
that the governing differential equations now become

(24a)

(24t))

d- ( + 1)(or + 1) -s + cs + c
a+l a+l

e- =(+l)(cr+l) s- cs c
a+l

Our problem is now in the fortn where for 0 < e << 1 approximate solutions can
be obtained by standard methods of singular perturbation theory. A solution of (21)
is sought of the form

(25) 8(T) 8(0)(7 + 8(1)(T)-t’-’’’, () (o)() + (,)() +....

In particular we find that

(26) s()(r) 1, c()(r) 1- e-r.

The solution of (24) is assumed to take the form

(27) 8(T) 8o(T) -1- 81(T) nu (T) o(T) + c(T) +....

Singular perturbation theory supplies matching conditions that fix otherwise
unspecified constants. Lin and Segel [20] work through the problem in detail; although
they employ different variables, their solution is valid here mutatis mutandis. In
particular, it is found at once from (24) that

(28a) co
(or + 1)so
aso+l

dso (a + 1) so
dT aso + 1

The first correction terms in the "outer" solution (27) are found to be

a(1 + a) 2so(9) (1 + 0)a (1 + )(1 + 0) 0 +
1 + (1 + (7)so

(1 + a)so [’1- In 1+ (so (1 + N)-I-Jr-0"80(30) s=
l+as0 a (l+a)s0 l+crso

These expressions are useful for performing formal estitnates of the errors in the QSSA.
Of particular utility are estimates of errors in the complex concentration. This is
because the theoretical results are most often compared with the rate of product
fornation dP/dt, which by (ld) is equal to kg.C.

2.2. Error estimates. Since C < E0 by (2e), we shall estimate the ratio of the
error in the actual product formation rate, divided by the largest possible product
formation rate, by

(31) i =_ (c-c)
k2E0

r6Cl

a+l
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QUASI-STEADY-STATE ASSUMPTION 453

(In (31), Css denotes the steady-state value (4a) for complex.) In addition, we
estimate the relative error:

(32) Cl,.
co

By far the most important situation biologically is when the normalized substrate
concentration has not decreased too far from its initial value of unity, for as we have
mentioned, it is under these circumstances that most measurements are made. Setting
so 1 in (29), we obtain

(33)
O-2

(1 + a)3
when so ,, 1.

l+a

In (aa) w hv omitted the factor 2(1 + t)-1(1 -+-0) -1- 1, since its modulus is less
than unity.

As t increases and so falls noticeably below unity, (29) can serve as the basis for
an "exact" error estimate, found by maximizing the right-hand sides of 5R or AC/C
as functions of so. We wish to obtain simpler estimates, admitting the cost of some
loss in accuracy. To this end, we consider (29) in three situations: (a) aso >> 1, (b)
crso 1, (c) aso << 1. In all cases we can write

error f(1 + or)- fEo
Km

TABLE

At later times estimated error in complex concentration is re(1 + a) where f is given below.

Approx. substrate
concentration so

"Absolute" error 5R Relative error

l_>so>>r- f<<l f<<l

[_l+ln 2a [_l+ln
so<<a-1 f-aso + (l+is0 f= + In (14-)o

Estimates of f are given in Table 1. There is negligible error when so is such that
case (a) obtains, so that this case need not be considered further. The relative error
could be large when crso << 1 and cr O(1) if Iln(o/I is comparable to e-1. But
this would occur only when so << 1, i.e., when the reaction has proceeded so far that
the results are no longer of interest. If cr is large then Iln(so)l need not be large to
produce inaccuracy but then the restriction so << a-1 applies to even less interesting
conditions. It also should be borne in mind that the P --+ S back reaction, omitted
in (1), becomes important when most substrate has been transformed into product.
This is a strong reason for ignoring results that formally apply when so is small.

When s or-l, errors can be large if a O(e-1). Once again, possible significant
errors enter only when so is very small (order e). Thus our estimates indicate that for
all practical purposes the QSSA is indeed valid when e << 1. The estimates (33) show
that the error is particularly snall when cr So/K,, >> 1.
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454 L.A. SEGEL AND M. SLEMROD

3. Mathematical scaling. Some of those who are exposed to the biophysical
arguments that lead to dimensionless scaled variables such as (20) and (23) object
that there must be a "more mathematical" way to arrive at such variables. In an
effort to examine this assertion let us introduce arbitrary scales a, , and / and in
as "mathematical" a way as possible let us examine what restrictions on these scales
will lead to an appropriate problem of singular perturbation type.

Upon adopting the change of variables

(34) S=as, C=c, T=/t,

we find that the governing equations (3a) and (3b) become

(35a)
a ds
dT

(35b)
dc

"/dT

-klgool8 + kl/OC8 + k-13E,

kEocs (klflas + k-l + k2/)c.

3.1. Conventional balancing. Perhaps the most usual way to proceed is via
the determination of pairwise balances. One might argue as follows.

(i) The heart of the QSSA is the assumption that the dc/dT term in (35b) is
negligible.

(ii) If (i) holds there must be a balance between the positive term and one of the
negative terms on the right side of (35b). If we select the first of the negative terms
for balance we obtain (if c O(1)) the condition

(36)

(iii) Since the reaction is irreversible, the substrate concentration must continually
decrease. Thus the left side of (35a) must be balanced by the negative term on the
right side. This gives

(37) klEoO.

(iv) The two conditions (36) and (37) yield

1
t Eo, /

klEo

In addition, clemcntary intuition indicates that c So is the proper scale for the
substrate. We thus recover the particular "outer" scaling (7) of [14].

(v) The "inner" timescale is obtained by dividing the outer scale 3’ by the small
parameter eh, in order that the dc/dT term be retained.

Two objections may be raised to the procedure (i)-(v). The scaling was partly
motivated by mathematical considerations, but physical reasoning, which we are trying
to avoid at present, also entered. In addition, although legitimate balances were
chosen, other possibilities remain, and indeed the "correct" scaling was not obtained.

3.2. Minimum simplification. Both the above objections are met if we adopt
the Principle of Minimum Simplification, as enunciated by Kruskal [17]. (It is
unfortunate that this principle, and much other wisdom concerning "asymptotology"
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QUASI-STEADY-STATE ASSUMPTION 455

was promulgated in a relatively inaccessible publication. But see [10] for considerable
further exposition of closely related ideas.) Kruskal states that

The basic way systems simplify is by the neglect of terms.., but no term should be
neglected without a good reason... [Thus] the most widely applicable and hence
most informative ordering is that which simplifies the least, maintaining a maximal
set of comparable terms. Quite often there is more than one possible maximal set
of terns... Each maximal set corresponds to different asymptotic behavior.
Let us apply the Principle of Minimal Simplification to the QSSA. As is usual

with valuable general principles, blind application might be unsuccessful, but the
situation is easily remedied by applying "the inalienable right to think while using
any technique" [5].

Although it is customary to regard the initial layer as an adjunct to the QSSA,
added for completeness, we should first scale the initial variables, because the initial
equations are supplemented by the initial conditions (3c) and (3d). (Nonzero initial
conditions give information about the magnitudes of the variables involved, at least
for a while.) Nothing can be learned about the scaling from (3d) but from (3c) it
follows at once that c So.

The scale for the complex can be chosen next, independently of 7, if we rewrite
(35b) slightly, using the finding that a So, as

(38) ,___dc kiEoSo
dT

--------s- (kSos + k_ + k)c.

In the spirit of the Principle of Minimal Simplification we attempt to ensure that all
the terms on the right side of (38) are of the same magnitude. In doing so we employ
the supposition that s and c, as putative scaled variables, are O(1). In fact, for scaling
purposes we set s c 1, obtaining

(39) kEoSo
kSo + k_ + k, i.e., fl

EoSo

This yields the "correct" scaling (20b). Now " is determined by requiring that the
left side of (38) is of same magnitude as the right side, i.e.,

Z +(40) /
kEoSo

showing that the timescale in the pre-steady state, or "inner" layer, is indeed precisely
tC.

We now proceed to the outer layer. We accept the normal assumption that only
the timescalc need be changed. In the outer layer the left side of (35a) must be
retained. We thus balance the left side with all the terms on the right side of (35a),
again setting c s 1. This gives

(41) -: -k:Eo + k: + k_:S:, i.e., 7 t.

We note that

tC(42) =
ts (1 + )(1 + a)"
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456 L.A. SEGEL AND M. SLEMROD

That is, the ratio of the inner timescale to the outer is of order e. Note that this
ratio is not simply equal to as is frequently assumed (for example, in positing the
"standard" fast time variable (10)).

In summary, we were able to accomplish an almost automatic scaling of our
problem (3) by applying the Principle of Minimal Simplification and setting the scaled
dependent variables equal to unity. The results that we obtained were identical to
those deduced from our original "physical" approach to scaling. This identity is
somewhat surprising; one would expect in general that different approaches would
give results that differed by inessential factors of order unity. Moreover there is no a
priori reason why application of Ininimal simplification should lead to scaled variables.
But perhaps this was to have been expected, since the procedure gave a unique result
when scaling (c s 1) was assumed.

4. Further developments. This section (i) presents numerical evidence that
supports our earlier reasoning, (ii) shows that the results remain valid for general
initial conditions, (iii) provides further insight into the necessary condition tc
and (iv) formulates an extended QSSA for instances wherein tc << ts but nonnegligible
amounts of substrate S are consumed during the fast transient.

(b)

,I
0.2 0.4 0.6 0.8 1.0

FIG. 1. Phase plane plots of the solutions to (24), (24b) with initial conditions s(O) 1,
c(O) O, a 1. For cases () and (b), (n 10, 0.01, and 0.1) the trajectory rapidly (in
T 0.1 or less see Table 2) reaches the QSSA nullcline c 2s/(s + 1) (heavy line). There is
little substrate diminution during this period. For case (c) (e 1, n 10) the substrate diminishes
appreciably during the fast transient, but (.since (16) holds, i.e., (1 + t)(1 + a)) the QSSA
nullcline eventually serves as an adequate approximation to the solution. The "eventual" QSSA
appvximation is excellent if is elevated to 100, as in (d).D
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QUASI-STEADY-STATE ASSUMPTION 457

4.1. Numerical simulations. Numerical simulations provide a check on our
reasoning. Figure 1 presents some s- c phase plane plots of solutions to equations
(24a), (24b) with initial conditions

s(0) 1, c(0) 0.

Recall that these dimensionless equations have a substrate scale So, a complex
scale C, and a timescale ts. Thus s will decrease from an initial value of unity while
c should rapidly attain a value of order unity and then decrease to zero.

Figure 1 indeed shows that for 0.01 ( 0.1) there are very small (fairly
small) decreases in substrate concentration during the fast transient period wherein c
rises to close to unity. As anticipated, since is small, the solution then traces out the
nullcline of the QSSA. When is unity, the QSSA fails, as expected, in that there is a
sizable decrease of substrate concentration during the fast transient. Nonetheless, the
solution ultimately follows the QSSA nullcline. We shall comment on this shortly.

TABLE 2

Calculated and predicted properties of the fast transient, obtained by integrating system (24)
with initial conditions s(O) 1, c(O) O, for a 1. The values of s and c at the end of the fast
transient, s (i) and c(m), are compared with the approximations of (51) and (52). The cases (a)-(d)
correspond to the curves in Fig. 1.

Time to c(m) c(m) calculated s(i) calculated Fraction c(m)

Cse e; tc/t (fraction of ts) (predicted) (predicted) reached in tc

(a) .01 10 0.00045 0.004 0.993 (0.995) 0.99 (0.99) 0.63
(b) .1 10 0.0045 0.03 0.94 (0.95) 0.88 (0.905) 0.65
(c) 10 0.045 0.13 0.56 (0.6) 0.39 (0.4) 0.82
(d) 100 0.0045 0.022 0.58 (0.6) 0.41 (0.4) 0.78

TABLE 3

Fraction of product formed as a function of time T t/t8 measured in units of the substrate
tinescale ts. a =_ So/Km 1. (Cases (a)-(d) correspond to Fig. 1.)

Case e a T 1 T- 2

(a) 0.01 10 0.72 0.95
(b) 0.1 10 0.69 0.93
(c) 1.0 10 0.47 0.71
(d) 1.0 100 0.46 0.71

If our scaling is correct, the overall decay of s and c should take a time of order
unity, while (42) implies that the fast build-up of c should be characterized by a
timescale of order /(1 + a)(1 + r). Tables 2 and 3 show that our expectations
are borne out. Note from Table 2 that although the timescale of the fast transient is
indeed verified to be tc, the time for c actually to attain its maximum value cm is
typically an order of magnitude longer since the change in complex concentration is
already taking place more slowly when c Cm. One of our major points has been the
clain that the QSSA should be valid even if the "traditional" small parameter Eo/So
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458 L.A. SEGEL AND M. SLEMROD

is of order unity, provided that =_ Eo/(So + Kin) << 1. Some numerical evidence that
supports this claim is presented in Fig. 2.

[.0’

0
0 0.2 0.4 0.6 0.8 .0

FIG. 2. Plots as in Fig. for eh Eo/So 1, a 10. Solid curve: 1/91, a 1/90,
Dashed curve: 1/10, a 1/9. The corresponding QSSA graphs are drawn as heavy lines. Note
that, as predicted, the QSSA is a good approximation when is small, even when Eo So. Figs. 1
and 2 were drawn by the BIOGRAPH program [25].

4.2. General initial conditions. We can easily generalize our considerations
to arbitrary initial conditions, wherein

(43a) C(O) Co,
(43b) P(0) P0.

Only (43a) effects our principal developments, for the product concentration can be
calculated separately. Tte conservation law (2e) and the governing equations (3a),
(3b) must be modified by the substitution

(44a) Eo -- ET,
(44b) ET =-- Eo - Co,

with corresponding modifications in succeeding formulae. In particular the timescale
tc remains as in (13), independent of Co, but (44a) modifies both ts and estimate
(18b) for IAS/Sol. The fundamental small parameter is thus generalized to e

ET/(Km + So).
4.3. Another view of the requirement tc << ts. Further insight into the

nature of the QSSA can be obtained by re-examining the condition (that led to (16))
that the complex timescale is small with respect to the substrate timescale.

D
ow

nl
oa

de
d 

11
/1

9/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



QUASI-STEADY-STATE ASSUMPTION 459

Consider any substr3te level S. Tile timescale tc, the intrinsic C timescale with
respect to S (to give tc a precise description) estimates the time it takes for C to
attain a steady state if S is held fixed. From (12c) and (13)

(45a) tc [kl(S + K,)] -1.

For the QSSA to bc consistent, tc must be sm311 compared to ts, the timescale for
changes in S, assuming the QSSA holds. Indeed, if in a timesc31e tc 3 process reaches
a steady state with a const3nt environment then th3t process should be in 3 quasi-
steady-state with a changing environment provided the environmental ch3nge occurs
on a timesc31e th3t is long comp3red to tc.

To estim3te ts we employ tile char3cteriz3tion, slightly different from (14),

(45b) t

(Equation (45b) m3kes the reason3ble assertion that the time for significant change
in 3 variable with tile current value S(t) can be determined by calculating how long
it would take to reduce S to zero 3t the present rate of decrease, dS(t)/dt.) After
the fast transient, the QSSA equation (53) for dS/dt permits the following deduction
from (45b):

(45c) ts Km+ S
k2Eo

Given (45a) and (45c) we can write

tc Eo 1 1
(463)

ts Km + S 1 + 1 + (S/Km)"

If the solution trajectory re3ches the QSSA mlllcline dC/dt O, i.e., if (3pproxim3tely)

EoS(46b) C
K

then thereafter the trajectory should closely follow this nullcline providing tc/ts << 1.
During some time the order of magnitude of S(t) is S0. For this most important range
of S(t), condition (46a) becomes the parameter relation

E0 1 1
(4 c) << 1, << (1 + +Km + So 1 + 1 + (So/K)

(Note that (45c) is equivalent to (15) when S S0, while (46c) is equivalent to (16).)
More generally the QSSA "nullcline following" is expected as long as S(t) is such that
tc/ts << 1, where tc/ts is given in (46a).

We stress that conditions such as (46c) are consistency conditions for the QSSA,
since the QSSA was employed in estimating ts. Inconsistent approximations are
generally invalid, while consistent approximations are generally valid unless the
problem is ill-conditioned [30], [20, 6.1].

4.4. The extended QSSA. As we have seen, a stricter condition than (46c),
e << 1, results from the requirement that there is negligible diminution of the substrate
concentration during the fast transient. Our reasoning implies that if

(47a) e 1
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460 L.A. SEGEL AND M. SLEMROD

but

(47b) (1 + )(1 + (7) >> 1,

then the QSSA

(48a) c,
(Ts+l

ds ((7 + 1)s
(48t.))

dT (Ts+l

would hold after the fast transient, as before. But in view of (47a) the initial condition
s(0) 1 would not be appropriate for (48b). This is exemplified by curves (c) and
(d) in the numerical example of Fig. 1.

Note from Figs. 1 and 2 that the rapid decrease of s and c seems to occur along
a straight line. This is a general phenomenon that allows us to formulate an extended
QSSA. The reason is that if (47b) holds, then the right sides of (21a) and (21b) are
nearly proportional to one another. Either >> 1, in which case both right-hand sides
are approximately proportional to

-s+ .cs+
(7+1

1

a+i c’

or (7 >> 1 and the proportionality factor is -s + cs. Thus during the fast transient

dc
(49) d- --giving the straight line

(50) c e-1(1 s).

The intersection of (50) and (48a) determines the appropriate "initial" value for (48b):

(51) s(O) s(i), s(i)
(7 1 e((7 + 1) + {[(7 1 e((7 + 1)] 2 + 4(7}/2

2(7

The corresponding value of c, obtained from (48a) or (50), will be denoted by c(m), for
it is an estimate of the maximum value of the dimensionless complex concentration:

(52) c(m) e- (1 s(i) ).

Table 2 shows simulation results that support the estimates (51) and (52) for
s(i) and c(m). Table 2 only illustrates situations wherein (47b) is attained for a >> 1,
(7 O(1). The alternative (7 >> 1, a O(1) results in a small value of s() and hence
a small and uninteresting domain of applicability of the extended QSSA.

Our main motivation here in presenting the extended QSSA is not to put forward
a new approximation that we feel will have important practical applications. Rather
we wish to stress the independence of the two requirements tc << ts(assuming that
the complex C can change fast enough to keep pace with the changes in substrate S)
and IAS/So] << 1 (assuring that a negligible amount of substrate is consumed during
the fast transient).
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QUASI-STEADY-STATE ASSUMPTION 461

4.5. The reverse QSSA. To further test our understanding of the principles
we have been enunciating, we can ask, are there parameter donains where instead of
C being in a quasi-steady state with respect to S there is a "reverse QSSA" in which
S is in a quasi-steady state with respect to C? Application of our scaling concepts
shows that the answer is affirmative. See Appendix 3 for details.

5. Literature review. What amounted to the derivation of the basic formulae
(4) and (5) was carried out by Henri [15] and Michaelis and Menten [21], nominally
for the case when the product formation rate k2 is sufficiently small, and by Briggs
and Haldane [2] when the initiM substrate concentration is sufficiently large compared
to the initial complex concentration. We note that in fact the relative smallness of k2
does not guarantee the validity of the QSSA, as was pointed out in [14].

Laidlcr [18] made an early attempt to determine conditions under which the
QSSA is valid, including approximate solutions for the transient phase. In particular,
he derived a bound

P 5.3k2.[ 1
(53) S-- < 2kS0 (1 Q)/2

1

for the amount of product produced during the transient phase, where

(54) Q k[(E0 + So + Km)2 -4EoS0].

Surprisingly Laidler [18] deduced that P/So is small, and hence the QSSA is valid,
not only when

(55a) S0>>E0 or Km>>E0

(in agreement with our results) but also when

(555) E0 >> So or Km >> So.

The incorrect conditions (55b) turn out to be consequences of Laidler’s conclusion
from (53) that Q << 1 is sufficient to yield P << So. Expansion of the square brackets
in (53) yields the additional condition

(56) 5.3k2Q << 4kSo.

Bowen, Acrivos, and Oppenheim [1] were the first to examine the QSSA with the
aid of singular perturbation theory. After reviewing previous efforts to estimate the
error in various quasi-steady-state assumptions, they analyzed four kinetic schemes,
not including the cnzyme-substrate-complex problem of (1). Dimensionless variables
were introduced without motivation.

Wong [36] derived an expression for the relative error in making the central QSSA
expression (4a), but in doing so he neglected terms of the same order as those retained.
In essence, Wong [36] wrote

(1 << 1(57a) C=
Km + S

He substituted this expression into (3b), obtaining for the two sides of the equation

(575)
dC EoKm dS EoS dA
d--[ (Km + S) 2 d---(1 +A)+Km+S dt

C)S- +
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462 L.A. SEGEL AND M. SLEMROD

Upon neglecting terms proportional to A and dA/dt in (57b), Wong obtained an
explicit approximate expression for the relative error A by equating (57b) and (57c),
and employing equation (5a) for dS/dt. But along with (57a) we must simultaneously
consider a correction to S, and this provides an additional small term on the right
side of (57c). The only consistent way to proceed is via series expansions, as in 2.

As we have implied, Heineken, Tsuchiya, and Aris [14] provided a careful
discussion of the singular perturbation treatment of (1), giving references to earlier
efforts in this direction. Seshadri and Fritzsch [33], unaware of [14], studied the more
general situation wherein the reversible nature of the formation of product was taken
into account. They employed dimensionless variables that differ from the standard
set (7) in that K, is taken as the scale for the enzyme concentration. This yielded
Eo/K, as the natural small parameter, which of course is a special case of our more
general parameter of (22). As the source of their choice of dimensionless variables
Seshadri and Fritzsch [33] cited Reich and Sel’kov [27], but the latter authors provided
no motivation for this choice.

Klonowski [16] reviewed some of the Russian literature concerning approximations
for chemical kinetics, describing theorems of Tikhinov and Korzuhin. There is a
general discussion of timescales, but once again a virtually unmotivated use of the
standard variables (7) is introduced in a treatment of the QSSA. Of great interest is
the statement that the QSSA is valid either when E0 is small compared to So or when
kl is small compared to k_ and k2. This is very close to our result that Eo/(K, + So)
is the appropriate small parameter of the problem. Unfortunately the present authors
have not been able to inspect the two Russian books cited by Klonowski [16] as sources
for his remarks concerning the validity of the QSSA.

Analog and digital computer simulations have been used by several researchers
to study the validity of the QSSA. For example, Stayton and Fromm [35], who cite
earlier work, sinmlated the reversible enzyme-substrate-complex equations and found
that the QSSA is generally a good approximation when Eo/So is less than 0.01,
while "normally" in experiments this ratio is two to four orders of magnitude smaller.
However, Stayton and Fromm [35] pointed out that Sols and Marco [34] provide a list
of instances illustrating the fact that in vivo E0/S0 is often of order unity. This testifies
to the biological importance of our extension of the classical results to situations where
Eo/(K, + So) is small. An additional example is found in the study of post-synaptic
behavior by Parnas, Flashner, and Spira [26] where a system entirely analogous to (3)
is studied.

Schauer and Heinrich [29] made a valuable study of errors in the QSSA. They
proposed three criteria. These are the smallness of the relative relaxation deficit 5s
AS/So, of the relative relaxation time @ tc/ts, and of the relative relaxation error, which we have defined in (31). Schauer and Heinrich [29] provided relatively
accurate but correspondingly complex estimates of s, @, and 6/. Gratifyingly, these
estimates correspon(t closely to our own much simpler formulae (Appendix 2).

The importance of scaling in numerical analysis, particularly in chemical kinetics,
was stressed by Dahlquist and his associates [8], [37], [7]. In particular, Dahlquist et al.
[8] pointed out that scaling "gives appropriate weights in the norm for the measuring
of the local error (and) makes it possible to write the system in the partitioned form"
(28), where s and c should be interpreted as vectors. Zu-fan [37] presented a systematic
approach to scaling of equations with numerical coefficients whose right-hand sides are
sums of products of powers of the variables. A small parameter is selected, and scales
for each variable are defined in terms of unknown powers of this parameter. To fix
the unknowns, in each equation a pairwise balance is sought (compare 3). Either
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QUASI-STEADY-STATE ASSUMPTION 463

the derivative term nearly balances one of the (algebraic) terms on the right side or
there is a near balance between two algebraic terms of opposite sign; unbalanced terms
will be relatively slnall. Determination of the unknown powers in order to make the
balance as close as possible is a linear programming problem. Zu-fan [37] remarked
that further information about the system must generally be added if this approach is
to succeed. By contrast, we have seen that tile Principle of Minimal Simplification is
superior to the approach of pairwise balancing: it would be interesting to apply this
Principle along tile lines of [37].

Nipp [23], [24] presented a heuristic analytic algorithm for systematically
obtaining approximate asymptotic solutions to a class of singular initial value
problems. He based his approach on the observation that a change of scale can give
meaningful limits as e + 0 for exponents (of e) that lie on a certain convex polyhydral
set that implies a similarity with the (later) approach of [37]. Nipp [24] eventually
arrives at an algorithm containing 37 steps.

5.1. Center manifold. Carr [4] used the QSSA as an example in his treatment
of center manifold theory. This theory produces useflll reformulations of various
problems in differential equations. The basic idea of the "global" theory is to cast
the problem into the form

dx
(58a) d-- Ax + f(x, y, ),

(58b)
dy By + eg(x, y, e)
dt
de

( Sc) d-7 0

where x E Rn, y Rm.
with zero and negative real parts, respectively.
differentiable with

Here A and /? are constant matrices having eigenvalues
If f and 9 are twice continuously

(59) f(0, 0, 0) 0, g(0, 0, 0) 0,

then the relatively rapid expected decay of y is manifested in the existence of an
invariant manifold y h(z, ) for Izl and I1 sufficiently small, h O(e). The flow on
the inanifold is given by

dt
(60) d--- Au + f[u, h(u, ), ]

where h can be explicitly approximated to arbitrary accuracy.
In his analysis of the QSSA via center manifold theory, Carr [4] started with

the dimensionless equations of [14]. It is instructive to apply Carr’s treatlnent to our
dimensionless equations (21). In these variables, the QSSA assumption dc/d- .. 0
yields

C
(61) s- (cs + 1) 0.

a+l

We thus introduce a variable v that measures the deviation from the quasi-steady
state:

C
(62) v s- (crs + l).

cr+l
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464 L.A. SEGEL AND M. SLEMROD

With this, (21b) yields dc/dT v so that

a + l dv (a+l)(av+l)ds(63)
as - 1 d- (as + 1) 2 d-

v.

Since ds/d- O(e) by (213), to obtain an equation for v having the desired form
(58b) we introduce a new time variable 0 by

d7 a+1
(64) d-- as + 1

This results in equations of the appropriate structure

(653)

(65b)

(65c)

dv
-v + e(a + 1)(1 + av) [( + 1)-1 av 1Is ( + 1)-1v

dO (as + 1)a
ds [( + 1) -1 av 1Is ( + 1)-v
d e(a + 1) (as + 1) 2

de
0,

dO

With the equations in the form (65), it is particularly transparent that v should rapidly
decrease, yielding a center manifold with structure

(663) v ef(s) + O(e2).

Upon substitution of (663) into (653) we obtain

(66b) v -e(a + 1)(t + 1)-s(1 + as) -3 + O(e2).

Flow on the center manifold is found by substituting (66b) into (65b). This gives to
lowest order

(673) d_s _e(a + 1)( + 1)-18
dO (as + 1)2

or

(67b)
ds s

d- l+as+l

If definitions (20c) and (23) for T and T are employed, it is at once seen from (42)
that (67b) is equivalent to the Michaelis-Menten equation (28b).

Starting from the form (66), Carr [4] proceeded to provide a proof that the QSSA
is valid. But this proof does not deal with the case of biological interest, for it treats
situations where the substrate concentration has substantially decayed from its initial
value. In the next section we provide a proof that does relate to the appropriate range
of substrate concentrations.

6. Convergence proof. In this section we prove a theorem that describes the
behavior of s and c on both the fast and slow timescales.
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QUASI-STEADY-STATE ASSUMPTION 465

THEOREM. Assume that a and n are restricted to the parameter ranges

(68a) 0 _< (7 < (70,

(68b) 0 _< t _<
(68c) 0 < qo _< (7 + t;,(n -+- 1) -1

for positive constants (7o, no, qo. Then the solutions of (21) satisfy

(69a)

(69b)

for all >_ O. Furthermore, solutions of (24) satisfy

(69(:)

(69d)

ds ((7 + 1)s ((1-+ < const, e + exp
(Ts + 1

-c--c--((7s+1)(7+1 -<cnst’[e+exp((1-6)(-T))1+(70
In addition, as O, on any interval 0 < To <_ T <_ TI < oc solutions of (24) converge
uniformly in (7, , T to a solution of the Michaelis-Menten equation (28b), so(T), and
to a function co(T), where co and so satisfy (28a), i.e.,

CO
((7 + 1)so
(Tso + 1

In the above "const." denotes some constant depending at most on (70, to, qo, while 60
is a constant satisfying 0

_
60 < 1.

Proof. Introduce the variables v, 0 as in (62), (64) with the normalization -(0)-
0. Then v, s satisfy (65a), (655) and v(0) 1, s(0) 1. Also from (655) we see that

(70a)
ds <
dO >

when

> (- 1)s(705) v < 6+(7s

Here we have adopted the abbreviation 6 n( + 1) -1
the form

dv ((7 + 1)(1 +
dO ((Ts + 1)

we see that if v > --0"-1 8 > --0"-1 then

Furthermore, since (65a) has

ds

(71a)

when

(71b) vO and > (6- 1)s
V < 6+as
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466 L.A. SEGEL AND M. SLEMROD

From (70), (71) we see that the evolution of (65a), (65b) may be illustrated by the
phase-plane portrait shown in Fig. 3.

B

/

FIG. 3. Sketch of phase plane for (65a), (65b). The dashed curve is the vertical nullcline on

which ds/dO O. The closed rectangle ABCD is positively invariant.

In particular (70), (71) show that the closed rectangle whose vertices are
denoted ABCD is positively invariant, i.e., any solution of (65a), (65b) with initial
data in at 0 0 will remain in for all 0 > 0. Also note that the ordering on the
axes shown in Fig. 3 is indeed correct, i.e.,

5 1
(72a)

cr 1
> --’a

-1 1
>(72b)

5 + a cr

This is because (72a) is equivalent to (1- )(1 + a) > 0, which is true because
0 _< _< n0 and a _> 0, and (72b) is equivalent to 5a > -.

From the positive invariance of we know that if s(0), v(0) are in then for
all 0 > 0

(73a) (1-)
_<v_<l,

6+or

_<s_< 1.(73t))
1 6 + cr

Since 0 _< t _< o < oc there is a positive constant 6o such that 0 <_ 6 _< 6o < I. Hence
(73) implies that for all 0 > 0

(74a)
1

_<v_<l,
q0
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QUASI-STEADY-STATE ASSUMPTION 467

0(74b)
1- 50

< s _< 1.

Furthermore note that (73b) implies

-a6 ( r+l I >1_5>1_5o(75) as+l> +1=(1-5)
1-5+a1-5+a

for all 0 > O.
If we again denote by "const." any constant depending on at most ao, no, qo, we

now see that (65a), (65b), (73), (74) and (75) imply that for 0 > O, v, s satisfy

dv
(76a) d- -v + eF(v, s),

ds
(765) d- eG(v, s),

where IF(v, s)l _< const., IG(v, s)l <_ const. From (76a) we see that

(77) Iv(O)- e-ol <_ e const.

Substitution of (77) into (65b) shows that

(78)
d8

(a + 1) [n(n + 1)-1 -’e- 1]s- n(n + 1)-1e-(as + 1)2
( (2 const.

But since

we know that

and hence

dO as+ 1
o(o) o,

dr a+l’

1 6o dO

ao + 1 dr

( )1.-5o _<O_<r, exp(-r) <exp(-O)<exp -r(79) r
l+ao l+ao

Equations (69a) and (69b) now follow, proving the first part of the theorem.
Next substitute T er/( + 1)((, + 1) so that (69a) and (69b) imply

(80 )

(8Oh)

d8 (a + 1)s ( ())+ < const, e +exp ( + 1)(er + 1)(1 50) _T
as+l (l+a0) e

c--------(, + 1)< const. [e + exp
( + 1)(r + 1)(1 5) (--)](a + 1) (1 + ao)

Since > 0, a > 0 the above inequalities imply (69c) and (69d), proving the second
part of the theorem.

Finally, on any interval 0 < To _< T _< T1 < oo let {se(T),c(T)} denote the
sequence of solutions of (24), parametrized by > 0. Inequality (69c) shows (after a
possible, trivial redefinition of e) that se(T) is an e-approximate solution, in the sense of
the polygonal method for construction of solutions, to the Michaelis-Menten equation
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468 L.A. SEGEL AND M. SLEMROD

(28b). (See [6], for example). Hence the standard argument of the proof of the Cauchy-
Peano existence theorem shows the sequence {s(T); > 0} has a subsequence that
converges uniformly in a, , T to a solution so(T) of (28b). Furthermore, the only way
the original sequence cannot itself converge to so(T) is if there is a second subsequence
of {s(T); 6 > 0} that converges to a second distinct solution of (28b). But inspection
of (28b) shows that all solutions starting at T, with data s(T,) must lie in the interval
0 _< s(T) _< s(T)+ 1. On this interval the right-hand side of (28b) is continuously
difl’erentiablc, hence Lipschitz continuous in s. So the standard uniqueness theorem of
ordinary differential equations tells us that (28b) possesses unique solutions, so that
{s(T)} converges to so(T) uniformly in a, n, T. This completes the proof of the
theorem.

7. Summary and discussion. We believe that our analysis has resulted in a
considerably clearer understanding of an important particular matter, the classical
quasi-steady state assumption (QSSA) of biochemical kinetics, and also that our
discussion points the way to a small improvement in a general technique in applied
mathematics.

As we have indicated, a number of authors have been concerned with numerical
error estimates for the QSSA. Quite accurate results have been obtained, but here
we present estimates that are both satisfactorily accurate and Mso very simple. Since
other error measures either are smaller or are appropriate only after the substrate
has markedly decreased, the decisive error measure turns out to be 5, the fractional
decrease in substratc during the pre-steady-state transient. It follows as a rule of
thumb that if a fractional error @ can be tolerated (e.g., for a 10 percent error

6s 0.1) then the QSSA can be employed if

E0(81)

This error bound is not rigorous, but we have presented evidence that it is generally
rather accurate. We remark that a numerical error estimate is particularly helpful to
experimentalists, nd it is rare that one can be obtained. C.f. the famous "dialogue"
in [9, p. 19].

We have presented a convergence theorem that is an improvement on earlier
results in two ways: a more "liberal" smM1 parameter is employed [Eo/(Km + So)
rather than Eo/So], and the results are uniform for a certain domain of the other two
dimensionless parmneters that characterize the problem.

Arc the uniformity results tim best that can be expected? One test is to check the
"worst cases." In the uniformity condition (68) both nonnegative parameters
must be bounded from above. The "worst" conditions a and occur if

(82) K,=0, i.e., k_+k2=0 ork2=0.

Both equations of (82) imply k 0. In this case the QSSA (5) reduces to
S So, certainly an inadequate approximation to the substrate-complex interchange.
Condition (68c) rules out the simultaneous vanishing of r and . But (7 0 if and
only if So 0, and the approximations are vacuous in this trivial case.

As the "worst cases" are indeed pathological, we conclude that no better
uniformity results are to be expected. This conclusion is partially reinforced by the
formal error analysis at the end of 2, which indicates that the absolute error can be
significant if cr O (e. ).
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QUASI-STEADY-STATE ASSUMPTION 469

Let us examine a little more closely the connection between the "standard"
approach of [14] and ours. The relations between the standard parameters h, #,
and A of (9) and the recommended parameters , , and cr of (22) and (17) are

(83a) h (1 + a-l),
(83b) it a-l,
(83c) A [r7(1 + tl;)] -1

and

(84a) e eh(1 +
(84b) a

(84c) (it/A)- 1.

The standard dependent variables y, z, and inner and outer time variables H and h
of (7) and (10) are related to their counterparts of (20) and (23) by

(85) y s, z a(cr + l)-c, H=a((7+l)-l"r, h=(cr+l)(tc+l)T.

The small parameters eh and e enter the above equations only in the mutual relations
(83a) and (84a). Thus there is no reordering of terms in the various power series
expansions upon passing back and forth between the standard and the recommended
variables. Thus we are not concerned here with a situation wherein a partial
summation of terms promotes better convergence. Rather, with correctly scaled
variables we can recognize the true expansion parameter whose smallness guarantees
convergence, since (by definition of "correctly scaled") the dependent variables will be
O(1).

We obtained our results via estimates of the scales of the variables, i.e., estimates
of the fast and slow timescales and of the scales of the dependent variables. With
these scales, suitable dimensionless variables could be defined. The scaling estimates
employed a certain grasp of the nature of the solution, but it cannot be said that
a profound understanding was required. It is thus remarkable that in essence
no motivation was advanced in any of the previous introductions of dimensionless
variables as part of arguments leading up to the QSSA.

There is an "exception that proves the rule" with respect to motivation in
introducing dimensionless variables. One of the authors attempted such a motivation
(see [20, pp. 306-307] but the results were partial and unconvincing. The "obvious"
choice of timescales became manifest later [31] and the level of understanding reported
here only arose after further thought.

It appears that there is a lesson to be drawn from the history of the QSSA.
Earlier authors apparently did not make a major effort to arrive at appropriately
scaled variables. Now an effort has been made, but it only succeeded after some
time. The moral seems to be that scaling is not as easy as it might appear, and thus
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470 L.A. SEGEL AND M. SLEMROD

the applied mathematical community should strive to improve understanding of this
partially intuitive technique. It would be helpful if all of us tried to make as explicit
as possible the reasoning that leads us to a choice of scaled dimensionless variables.

The present problem exemplifies the extremely common situation where a first
approach reveals the possibility of exploiting, in some sort of perturbation procedure,
the fact that one of the several dimensionless parameters of the problem is small. In
such cases we assert that the analyst should not rest, assuming that the problem is
important, until variables are selected in terms of which the perturbation procedure
seems valid (or has been proved to be valid), to the maximal extent, uniformly in the
other paraneters.

The methods employed here can be applied to a number of similar situations,
such as the enzyme-substrate-inhibitor system (see, [28, 2.3] and [32]). Frenzen and
Maini [12] have applied these methods to a two-step enzymatic reaction when E0 So
but << 1.

We conclude with two generalizations about scaling that can be gleaned from the
present study. These generalizations can be added to the essential points concerning
scaling that were listed at the end of the Introduction.

Supplement to point (ii). When there are several dependent variables with
different modes of variation, choose the scale of the independent variables with respect
to the fastest varying dependent variable. Then (as in (21)) the scaled equations will
automatically reflect the relative slowness of changes in the other dependent variables.

Additional point (viii). (This is to enable the goal, mentioned three paragraphs
earlier, of obtaining approximations that are uniformly valid in the "nonsmall"
parameters.) Suppose, to take the simplest example, that the parameter domain for
which the scalings are valid (see (v)) can be written 0 < e << 1. Then the estimates
mnbodied in the scales ideally should be accurate for small e up to a factor that is of
order unity uniformly in the other parameters of the problem.

Appendix 1. More accurate estimation of IAS/Sol. A more accurate
estimate than (18a) is

AS 1[So 2
dS

m&x

dS mini tc
where the max and min are taken over the pre-steady-state interval. Employing (5a)
with S So to estimate the minimum value of IdS/dtl in this interval we find

(AI.1)
AS k2Eo ] 11 Eo +- Km + So k(Km or- So)2 2 1 + a

1/

Thus (particularly since the factor 1/2 is immaterial in our order of magnitude estimates)
condition (19)indeed assures that I/kS/Sol << 1.

Appendix 2" Error estimates. We shall compare our estimates of
and 5 with those of Schauer and Heinrich [29]. For example, they found after some
calculation that

9KmS + 12K2m + 2S2(A2.1) ts St =- So- AS.
6k2Eo(S1 + 2Kin)

Since S So this estinate can be written as
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QUASI-STEADY-STATE ASSUMPTION 471

1
(A2.2) ts

k2Eo )1- + 5 + 2 + So/Km

We have sought simple order of magnitude estimates and have neglected O(1) factors.
Thus our estimate (15) is in line with (A2.1).

Let us pursue this matter a little further. The ratio R of the Schauer-Heinrich
estimate (A2.1) to our estimate (15) is

--11 6O’)R [20 + 5 + (1 + ga) /(6 +

This quantity is of order unity for all nonnegative a: in particular R 1 when cr 0
and R --, 5 as a --, oc. Had we used the Schauer-Heinrich estimate (A2.1) for
ts in (23) instead of our estimate (15), then the equations would have been more
complicated but (after obvious rearrangements) the right sides would have remained
of order unity as functions of cr for 0 _< a _< oc. At the end of 6 we pointed out that
the appropriate singular perturbation approximation to the solutions of (24) should
be valid (as e 0) uniformly in cr for 0 _< a _< al < oc. This expectation would
not be altered by adoption of a new "more accurate" timescale based on (A2.1). This
illustrates the point that in choosing scaled variables relevant to 0 < e << 1 for some
parameter e it is sufficient to strive for estimates that are accurate to within a factor
that is of order unity uniformly in the other parameters of the problem.

For the fast timescale, Schauer and Heinrich [29] derive the approximate formula

(A2.3) tc ,, 1 K’ (-b)n
klW In (b + 1) n2

where

(A2.4a) W [(Km + Eo + So) 2 -4Eoo]1/2,
W Km Eo So(A2.4b) b
W + Km + E0 + So

We expect that b will be stnall. (For small e, b decreases from less than 0.2 to zero as
increases from zero to oc.) Thus, an approximation to (A2.3) is

1/2

It follows that, paralleling the case of ts, our simple formula (13) is of the same
magnitude as Schauer and Heinrich’s much more complicated estimate (A2.3).

With (A2.1) and (A2.3) we can compute Schauer and Heinrich’s estimate for
ST. Computer iterations are required to compute their estimates for 5s and R. In
Fig. 4 we exhibit their numerical results for the particular parameter values that they
consider. (Note that if (log a, log r) falls below a given curve then the corresponding
error is less than one percent.) These graphs should be compared with our results
from (18b), (13) and (15), and (18):
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472 L.A. SEGEL AND M. SLEMROD

fsEo(A2.6a) 5s K, + So
fTk2Eo(A2.6b) 5T (g. + 0);

fnk2Eo(A2.6c) 5/ max
KmS (O.1Eo/Km)fR

(Kin + S)4 1 + (k-1/k2)

Here fs, fT, and fn represent O(1) factors that were olnitted in our estimates.

-I

-2

b.

0.25 O.01

0.01

-I

I

K :0.25

0 2 3

log (So/Km) - log a-

FIG. 4. Lines of constant percent errors for different values of k-l/k2 when Km lmM,
kl mM-1 sec-1 Solid lines taken from [29]. Log-log plots in the plane of Eo/Km and
a So/KIn. (a) Relative initial transient decrease in substrate: 58 =- AS/So 0.01. Dashed line:
the simple estimate (A2.9), which is equivalent to (lSb). (b) Ratio of transient duration to duration

of QSSA: 5T tc/ts 0.01. (c) Largest relative error in the reaction velocity dP/dt (normalized
to the maximum velocity k2Eo): 5R 0.01. Dashed lines: from our simple estimate (A2.6) with

f/ 1. (d) Graphs of 5R 5T 5S 0.01 for t 0.25. The QSSA is valid to within 1 percent
when parameters fall in the shaded region.

Comparison of Figs. 4(a) and 4(b) confirms our earlier conclusion that if 6s is
small then 6T is small, so that we shall not consider 6T further. As to our estimate of
6s, if we make the definitions

(A2.7) y- log(Em) (mm)X log
So

(where logs are base 10) then (A2.6) yields

y log(1 + 10z) + log 5s log fs.
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QUASI-STEADY-STATE ASSUMPTION 473

In Fig. 4(a), 5s 0.01, and y 0whenx 2. Thus we may take fs 1. Hence
(since y(-2)-- -2)

y log(1 + 10x) 2

well approximates the numerical results of Fig. 4(a). Thus since the numerical
calculations show that the correction factor fs can in fact be taken to be unity we now
expect that our basic estimate (18b) will provide rather good quantitative accuracy.
Our more accurate estimate (AI.1) well reflects the trend of Fig. 4(a) for 53 to decrease
with when So is small.

Comparison of our estimate (A2.6) with Fig. 4 shows once again that even if
the correction factor fR is taken to be unity there is very good agreement with the
numerical results. The comparison is made only for large So, since with fs fR 1,
(A2.6) implies that 5R (5 a constant) lies beneath s if

So(A2.10) Km- cr _> 9 + 10a.

Note the good agreement of this result with Fig. 4(d).

Appendix 3: Aspects of the reverse QSSA. We seek conditions for which
the substrate S is, after a transient, in a quasi-steady-state with the complex C.
From (3a) with C fixed, we note that the intrinsic S timescale with respect to C is

(employing a tilde to distinguish this example)

(A3.1) s kl(Eo -C)"

The reverse QSSA is based on the assumption dS/dt 0 in (3a), yielding

k-1 C
(A3.2) S

k: Eo-C

On substitution of this expression for S into (3b) we find

(A3.3)
dC

-k2C.
dt

Thus the timescalc for changes in C, assuming the QSSA holds, is

(A3.4) c k-:.
We expect that (A3.2) will be valid after a relatively fast transient, if

(A3.5a) is << {c,

that is if

k2(A3.5b) E0 C >> k--"
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474 L.A. SEGEL AND M. SLEMROD

Decrease in the complex concentration will ultimately yield condition (A3.5b) if

k2(A3.6) E0 >>

Note that if the reverse QSSA equation (A3.2) is solved for C, we obtain the familiar
saturating form

EoS(A3.7a) C
(K+S)’

(A3.7b) where K _-
kl

Equation (A3.7a) is indistinguishable from the corresponding QSSA equation (4a) if
k2 << k-1. Hence we restrict further consideration to cases wherein

(A3.8a) k-1 k2,

(A3.8t)) i.e., 1.

Combining (A3.8) and (A3.6), we thus conclude that "interesting"
QSSA occur whe

cases of the reverse

(A3.9) Eo >> Kin.

Figure 5 shows an example of a reverse QSSA. Note that both the fast transient and
the later slow decay t)rocecd along straight lines in the C- S phase plane. Since E0
is relatively large, we indeed expect the fast transient to be governed by

doe dC
-kEoS, kEoS.

dt dt

This gives

dC
(A3.10a)

dS
-1,

(A3.101)) C So- S.

The "knee" where rapid traverse of (A3.10) gives way to slow traverse of (A3.Ta) will
O(;Cllr whell

(A3.11) So- S- EoS
(K+S)"
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QUASI-STEADY-STATE ASSUMPTION 475

T :0.25
(fast time scale)

Tc 50
(slow time scale)

0o 0.01

0 0.2 0.4 0.6 0.8 1.0
S

FIG. 5. Illustration of a reverse QSSA. Solution of the dimensionless equations (24) with

50, a 1, 1. Inset shows detail of the "post-knee" reverse QSSA. In the variables of
(24), (13.13), (A3.10b), (13.12a), (13.12b) take the form C
st,: [e(1 -+- a)(1 + g-1)]-1, ck -1, with fast and slow timescales
’c e.. With present parameter values we have to first approximation the reverse QSSA c 48,
the transient c 0.02(1 s), the predicted "knee" coordinates sk 0.005 and ck 0.02, and the
timcscales s 0.25 and c 50.

For definiteness we consider the special case (as in Fig. 5) wherein So ,, Km so that,
in addition to (A3.9), E0 >> So. (Thus e Eo/(So + Kin) >> 1.) Then, on solving
(A3.11) we find that the coordinates of the "knee" are approximately

SoK(A3.12a) Sk Eo
(13.12b) Ck So.

Since Sk << So, the reverse QSSA equation (A3.7a) can be simplified to

E0(A3.13) C -S,
which indeed is a straight line. From (A3.a), (A3.12b) and the assumption E + 0 >>
S0 it follows from condition (A3.5b) that the reverse QSSA (13.13) should be valid
throughout the entire post-transient period. As shown in Fig. 5, the various qualitative
and quantitative predictions are borne out by the simulations.

It is now clear how to introduce scaled dimensionless variables (c and s (with
C 0) serving for timescales, So for both C and S scales in the fast transient, but
later N)K/Eo for the S scale), in terms of which a singular perturbation analysis
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can be made. But no further calculations are necessary to make the point that our
understanding of timescales enabled us to discover a new aspect of the QSSA.

Acknowledgments. Thanks to M.D. Kruskal for reminding us of the Principal
of Minimal Simplification, to A. Perelson and A. Goldbeter for improvements on earlier
drafts, and to Carol Weintraub for TEXnical brilliance.
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