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Introduction
= Packaging method
= |GBT Structure

IGBT Health Monitoring
= Bond wire fatiuge
= Solder fatigue

IGBT Lifetime Prediction
» Power loss and temperature calculation
= Lifetime calculation
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* The semiconductor and soldering failures in device modules
totals 34% of converter system failures, according to a survey
based on over 200 products from 80 companies.

= Figure also indicates that capacitors are fragile.
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Failure distribution and ranking [7].



Packaging method

Terminals

Heat sink Emitter ABT chip Collector
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Packaging method

Heat sink
Collector
Collector side . 4444‘4‘4‘47‘~_---~
" Pedestal IGBT chip
Emitter side
Mo Emitter
Heat sink
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Press-pack packaging
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Widely used in high-voltage applications

» Traction systems

= Large motor drives

= Power systems

» Pulsed power applications

Higher reliability due to better tolerance to thermal cycling
= High cost
= Limitations on the cooling methods



Packaging method Widely used in voltage source converters

Mismatch in CTE can lead to fatigue failure
= Bond wire fatigue

' Termmals Solder fatigue
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Bond Wire Fatigue
Al - wire \

Si chip = IGBT
Solder 1
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I Cu- ceramic - Cu ]
Solder 2 ———
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Bond Wire Fatigue
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Bond wire fatigue

The contact of resistance R of the bond wire
interface in a new module is almost zero,
which is increased by the development of
the aging process.
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Bond Wire Fatigue

Vce_on measurement (on state voltage)(increase by 5%)

Principle

=The equivalent resistance of IGBT increases with
bond wire lift-off, results in increases of Vce on and
VF.

=\ce_on (5%) and VF (20%) is considered wear out
failure.
Limitations
» Relatively small on-state voltage value

= Changes with the collector current and junction
temperature
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Bond Wire Fatigue

Short circuit(decrease by 4%)

Principle
*»The IGBT module will have a short cricuit current when
the driving voltage is lower.

» The short circuit decrease with aging.

Limitations
» Require measurement of gate voltage
» Changes with driving voltage and junction temperature.
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Bond Wire Fatigue

Other indicators
Gate voltage
Gate emitter threshold voltage
Gate current

Conclusion

Vce_on methods are mostly adopted.
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Crack
ol

Silicon chip

% N

Solder Fatigue

Ph-based solder

Silicon chip
e Failure form of Sn/Ag solder
Cracks (acoustic image of Sn/Ag
Sn/Ag solder solder interface)
Normal Solder layer fatigue

Solder crack

Fatigue includes fatigue between chip and DCB and
between DCB and base-plate.

Solder joint fatigue increases thermal impedance, therefore
increase junction temperature

Thermal resistance (20%), junction temperature, case
temperature can be used as monitoring indicators.
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Semiconductor chip

IGBT Health Monitoring

Monitoring-Direct measurement

Direct measurement (only used in Lab)
> Optical method

> Temperature sensors

i
Themmo couple T,
Thermocouple
=
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Monitoring-Junction temperature estimation

—» V
T e— th
Static Dvnamic rdm rdnﬁ
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Classification of temperature sensitive electrical parameters (TSEP)
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Monitoring-Junction temperature estimation

Vce_on at low current ' ' ' ey benduniees CIGBT)
. . — =1 wire cul-off (IGBT)
Principle 3§ %% ——— 2 wires cut-off (IGBT)
. . ~ — ut-off (IGBT)
= Inject a low current (0-100mA), obtain a low voltage. %“g sl ~ — = = heakhy bondwires (FWD)
=== | wire cut-off (FWD)
Limitations - o == =2 wires cut-off (FWD)
. . . . . e 045 == 3 wires cut-off (FWD)
= Accuracy in Lab, but not applicable in applications. E < L
= Interrupt the converter application, only in Lab. & E‘ 04t
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Monitoring-Junction temperature estimation

Vce_on at high current

Principle
= Give a load current, and observe the Vce

Limitations
=\/ce change along with the ageing.
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= The turn on delay, turn off delay and current
slope during turn on can be selected as TSEP.

After Aging
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IGBT Health Monitoring

Monitoring-Junction temperature estimation

Other indicators
> Threshold voltage

> Dynamic TESP
=dV ce/dt
=d/_c/dt
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Calibration

0.65

Low sense current calibration curves
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Calibration

Step 1: Before the calibration

= Keep the baseplate temperature homogeneously distributed as well as to maintain a steady
temperature on the surface of the module.

» The converter is kept at the same liquid temperature level. In this way, initially, it is assumed that
the baseplate temperature and the chip temperature will be at same level.

Step 2: Start the calibration

= [n one calibration process, constant temperature initialization, give a current from 0 to 890 Aiin a
short period of time (200us), record the Vce, and temperature as soon as the IGBT is turned off.

—

N -4
(-\ = Co-funded by
H E C A T E CLEAN AV'AT|ON the European Union 22

CENTER FOR RESEARCH ON MICROGRIDS



0,55

| wn
L ._4.,. < w ™ NN
(=] o o o N o o o
. v ! . :
Poob L vgd
' " : bove— |
: ; : : ; | E
: TR _
e B O -
[ ] ] ] ] 1] d
[ ] [ ] ] ] a
P ] 9 B
P (i it e E
: ] 7 : ! lo
[ ] [ ] ] i
: ! : !
; S | !
' > : :
i % i
' Q@ '
' @ :
] o " !
.............. foosnses m e Bt
w
[T

b -

-

]
]
]
"
]
]
]
]
]
]
]
]
]
i
]
]
]
]
]
]
]
]
L]
L]
[ ]
]
]
¥
.....ir.-:...l_ml..:. -
]
]
]
]
L]
L]
]
]
u
L]
]
]
]
f
]
L]
]
]
]
L]
]
]
L]
]
]
]
¥
]

B e

e e e e e

-

R i (ot ST

-

o e e o ———————

2500

Conclusion

>

£ 2400

w

>"’2300

2200

6000 8000 10000 12000

4000

2000

cycles

23

the European Union

>
o
o
O
o
5
“w
[}
0

A—

=
c R@ M CHECATE CLEAN AVIATION

CENTER FOR RESEARCH ON MICROGRIDS



LS
o

wer loss

<
£ ~ S
-HECATE CLEAN AVIATION PRI the European Union

B Co-funded by



Mission/Load profile
Principle
= The lifetime of IGBT depends on the temperature swing of junction.
= Calculate the junction temperature by Mission/Load profile

Step 1: power loss and temperature calcfulation T; #

i, [°C] IREF(t) N L. \;n . _::::_;;Z?-' Pcond " | 5 S
T N L [ Vblock P = ¥l J

Mission profile H-bridge Device power loss model Thermal model
(measured)

Step 2: life time calculdon n
0 £ | T, [°C T; [C]

s 3 g 312 WA

fatigue life |~ | £ o0 Vo LAY AL
& AT, [K] B t[s t1s]) 13

| Damage quantification Lifetime characteristic Rainflow cycle Junction

cerep with Palmgren-Miner fitted to Coffin-Manson counting temperature profile




Detailed table Thermal resistance, Coefticients obtained

from datasheet capacitance from datasheet by power cycling tests
1. P, Thermal profile iy Ny

) Loss profile calculation — calculation —) Lifetime calculation ——)

(Look up table) P
S

e i) ATj (e.g. Coffin-Manson)
Function Input Output Model can be used Required information Where to get these
information
Loss profile Device current = Conduction loss * Look up table = Conduction voltage drop * Device datasheet
calculation under different temperature

and device current

= Switching loss = Switching losses under
Z different temperature and
= device current
<=
.S Thermal profile Power losses = Junction temperature, = Causer structure model, = Thermal resistance, = Device datasheet,
'S calculation = Junction temperature ~ ® Foster structure * Thermal time constant or = Or experimental
= fluctuation model(preferred) thermal capacitance, power cycling tests.

for each layer

Lifetime = Junction temperature ® Remain useful = Coffin-Manson model, » The coefficients used in = Experimental
calculation = Junction temperature lifetime » Norris-Landzberg model, each model power cycling tests
fluctuation = Bayerer model
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Step 1: power loss and temperature calculation 10

Elm]
Power loss ;
6 Legend: 4
— 25':! 2
5 m— 1257 600
Viiock [V]
4
Ven [V] 3
2
E [m]]
1
07

bn [A]
Conduction loss
st Datasheet: Infineon-F4_50R12KS4-DS Turn on/off loss

P



Step 1: power loss and temperature calculation

Temperature calculation

1 C/Users/ak40mn/OneDrive - Aalborg Universitet/Skrivebord/AAU/Work/20. Projec.. X ¢
Edit View File
Manufacturer: |F4-SDR12I(S4| | Part: | | Type: |IGET v Rth TconstG
Turn-on loss Turn-off loss Conduction loss Thermal chain Constants Variab | | »
_ ' IGBT3/\ D3
Type: Foster - Mumber of elements: P
1 2 3 4 a:
| 1]
R 0.06832 K/W 0.23 K/W 0.01825 K/W 0.03346 K/ W
T 0.009 s 0.045 s 0.073s 0.229 s (i V dc
)
b
Convert to Cauer 52 D ’ |K IGBT2 % D2 54 D ’ |C IGBT"-I-% D4
Cancel Save Help
T T T
Wiy 1WA Y

- .
Junction to case thermal model Case to sink thermal model



Step 2: life time calculation

Coffin-Manson model N, = Ol(AT )—n
f h— .
Improved Coffin-Manson model — a(AT ) n Ea/(kTm)
- -n _Fa/(kT
Norris-Landzberg model Nf = Af " (ATJ) n pEal(kIm)
_8 —pB/ 274K)
Bayerer model Nf — A(AT].) B o P! Tjnax +274K) mfg [Py pPs
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Step 2: life time calculation

y o U

Oct. Nov. Dec. Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep.

s

Ii[°C]
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