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LLMs can Design Sustainable Concrete – a Systematic Benchmark 

Christoph Völker*a, Tehseen Rugb , Kevin Maik Jablonkac and Sabine Kruschwitza,d 

In the context of a circular building material economy, the complexity of resource flows and the variability of material 

composition pose significant challenges. This study demonstrates how Large Language Models (LLMs) can advance material 

design by adopting a Knowledge-Driven Design (KDD) approach that outperforms traditional Data-Driven Design (DDD) 

methods. Our focus is on designing alkali-activated concrete (AAC) mix designs, an environmentally friendly alternative to 

conventional Portland cement-based concrete. GPT-3.5 Turbo and GPT-4 Turbo enable using fuzzy design knowledge as 

previously untapped input data modality. A key aspect of our research is to improve the performance of the LLMs in post-

training. We use strategies such as refining prompt context, extending test time, and including a verifier.The study's 

systematic benchmarks are based on 240 AAC formulations extracted from the literature. The target was on achieving 

maximum compressive strength through an adaptive design approach over multiple development cycles. We compare these 

results to the traditional DDD baseline methods. KDD outperforms conventional methods by providing robust initial 

predictions and demonstrating effective adaptability informed by laboratory validation data, culminating in the 

development of high-quality AAC formulations. These results provide valuable insight into the capabilities of chat-based 

LLMs in managing complex material formulations, which are particularly beneficial in situations where traditional DDD is 

impractical due to data collection issues. With natural language as the basis the KDD is intuitively accessible to domain 

experts.  The methodology and results of this study have significant implications for the field of materials science, particularly 

in the context of a circular economy, and pave the way for innovative applications of LLMs in various scientific fields. 

 

1. Introduction 

The environmental impact of traditional concrete production 

has become a pressing issue, highlighting the need for increased 

circularity and significant CO2 reduction [1]. The development 

of new cementitious binders low in calcium offers a promising 

solution, potentially reducing carbon dioxide emissions by 40-

80 percent while retaining structural properties comparable to 

conventional cement [2]. However, the development of 

alternative materials such as alkali-activated concretes (AAC) or 

geopolymers, presents unique challenges. 

AACs stand out due to their ability to be synthesized from a wide 

array of aluminosilicate feedstocks and various compositions of 

activator solutions, offering various opportunities for 

customization of properties to meet specific needs. The use of 

diverse, often heterogeneous waste streams and secondary raw 

materials as feedstocks for AAC leads to a wide range of possible 

compositions [3, 4, 5]. Yet this diversity in composition 

introduces significant uncertainties, complicating the process of 

prescriptive material design. This complexity necessitates 

innovative solutions to standardize AAC production, ensuring 

both environmental benefits and structural reliability.  

Traditional development methods for cementitious materials, 

such as AAC, are often inefficient and limited due to their 

empirical and prescriptive nature, struggling to effectively 

handle the material's extensive range of compositional 

variations [6]. The introduction of Data-Driven Design (DDD) 

methods, such as Sequential Learning (SL) and Bayesian 

Optimization (BO) marked a significant improvement [7, 8, 9, 

10, 11], yet they are dependent on initial data collection: The 

high variability of the precursor materials, where each batch can 

have different properties, means that it is simply not practical 

to use pre-existing data. Consequently, this approach often 

necessitates a preliminary phase of re-establishing fundamental 

relationships through experimental data, delaying the onset of 

novel formulation development. 

Foundational Large Language Models (LLMs) are emerging as an 

alternative solution. While traditional data-driven approaches 

often struggle with the dynamic and complex nature of AACs, 

LLMs, with their extensive knowledge base, offer a way to 

overcome these limitations by adaptively tailoring predictions 

to evolving contexts [12]. A key enabler in this process is In-

Context Learning (ICL) within LLMs [13]. This capability allows 

LLMs to effectively interpret and apply fuzzy rules and 

instructions. Crucially, this enables navigation of inherently 

ambiguous material designs by using domain knowledge, 

expressed in natural language, to guide design predictions. This 

approach introduces a novel modality of input data that is sharp 

in contrast to traditional methods that rely on explicitly 

measured data. Unlike the fixed and explicit nature of 

traditional data, which directly describes the materials tested, 

knowledge in the context of LLMs can be implicit. This implicit 

nature allows for a more flexible adaptation to new and diverse 

material compositions, through known but uncertain 

relationships between volatile resources. 

Furthermore, the ability of LLMs to make zero-shot predictions 

is transformative. It eliminates the need to collect extensive 

initial training data—a significant bottleneck in traditional 
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methods. In practice, this could significantly optimize the use of 

resources in laboratories and streamline the process of 

developing new materials. By integrating these advanced 

capabilities, LLMs not only provide a solution to the current 

challenges in materials science but also open the door to 

innovative design possibilities that were previously 

unattainable. 

As the construction industry moves towards sustainable 

alternatives to traditional cement, effectively managing the 

complexities of materials such as AAC will be critical for their 

wider adoption. Shortening development cycles is key to 

making AACs more attractive to the market. However, it is 

equally important to ensure its safety and reliability in 

engineering applications is equally paramount. Our study 

addresses this dual need by proposing the use of systematic 

benchmarks to evaluate the effectiveness of AAC design. This 

methodology facilitates rigorous statistical evaluation, ensuring 

that technological advances in AAC are consistent with the 

stringent safety and reliability standards required in materials 

design. The findings and methodologies presented in this study, 

centred on AAC, have considerable potential for application to 

different classes of materials facing similar challenges. 

 

1.1 Novelty and Scope 

This study presents KDD, a novel approach to material design 

using LLMs. KDD is characterised by its virtual independence 

from traditional training data, which represents a breakthrough 

in material development with variable and volatile starting 

materials. The study focuses on the design of AAC, 

demonstrating not only a practical use case of KDD, but also 

providing a comprehensive development framework for 

researchers wishing to adopt this methodology for other 

material types. 

A key innovation of our KDD approach is its use of fuzzy domain 

knowledge and lab feedback expressed in natural language, a 

largely untapped data modality in AI-driven material design. 

This utilisation of natural language simplifies complex AI 

processes, making KDD more accessible to a diverse range of 

researchers and practitioners. 

Moreover, through our systematic benchmarking framework, 

we identify key factors that influence the performance of LLMs 

in material design, offering insights into how these models’ 

performance can be improved in post-training. This process 

showcases the adaptability and efficiency of LLMs, not only in 

generating initial design predictions but also in refining these 

predictions based on empirical lab feedback. 

The scope of our research extends to a wide audience, targeting 

stakeholders in construction chemistry as well as researchers 

exploring solutions for volatile precursor materials in a circular 

economy. Our findings offer a novel perspective in utilizing AI 

for sustainable material development, contributing to the 

broader goal of environmental sustainability while ensuring 

safety and reliability in engineering applications. 

In summary, our research highlights the potential of AI, 

particularly LLMs, in transforming material design processes. By 

integrating fuzzy domain knowledge and practical lab feedback 

into our KDD approach, we pave the way for a more intuitive 

and accessible application of AI in material science, setting a 

benchmark for future research and implementation in this 

dynamic field. 

2. Points of departure 

This chapter provides an overview of the existing literature and 

previous research, outlines the research gap, and aims, 

hypotheses and research questions explored in this 

contribution. 

 

2.1 Literature Research and Knowledge Gap 

LLMs such as GPT-3.5 and GPT-4, based on the Transformer 

architecture, have shown remarkable ability to perform various 

'downstream tasks' without the need for specialized training 

[12]. These models efficiently manage diverse tasks by 

exploiting their extensive pre-training on diverse datasets, 

which provides them with a comprehensive understanding of 

language and context.  

Boyko et al. [16] have gathered insights from different scientific 

disciplines in their interdisciplinary view of LLMs in scientific 

research. Their review covers a range of applications, including 

creative brainstorming, information evaluation, programming, 

data analysis, and writing. They conclude that LLMs are driving 

a new era in research by enabling the efficient processing of 

large and heterogenous information sources.  

Similarly, Microsoft Research [17] investigated the capabilities 

of GPT-4 in five scientific domains, including materials design 

and computational chemistry. The study is based on a wide 

range of domain-specific tasks that were evaluated by the 

authors. Specifically, complex scientific knowledge is queried, 

and GPT-4's responses are evaluated by subject matter experts. 

The authors conclude that GPT-4 could be a promising tool for 

materials science, although there is still room for improvement, 

for example through more domain-specific training data. 

Further research confirms these capabilities. A study by 

Jablonka et al. [18] demonstrates that LLMs can outperform 

traditional machine learning models in predicting molecular 

material properties, and chemical reactions, especially in 

scenarios with limited data. The authors tested a wide range of 

hyperparameters giving a thorough insight into the effects of 

finding the right LLM setting. Another study by Ramos et al. [19] 

shows the success of LLMs in predicting the solubility of drug-

like molecules and reaction yields, including uncertainty 

estimates, using ICL, which performed on par with conventional 

models. 

Jablonka et al. [20] use 14 examples to show potential 

applications in materials research - going well beyond a prompt-

answer scheme. These examples, created during a one-day 

hackathon, demonstrate the rapid innovation and novel 

solutions that also result from integrating LLMs into software 

solutions in areas such as predictive modelling, workflow 

automation, knowledge extraction and education. Projects such 

as configuring the Materials Project API (MAPI-LLM), developing 

a Bayesian optimization (BOLLAMA) experimental setup, and 
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constructing scientific knowledge graphs (InsightGraph) 

illustrate this. Additionally, LLMs have demonstrated their 

ability to make quantitative predictions, such as forecasting the 

compressive strength of AAC (Text2Concrete). Here, the 

authors show an improvement in performance through the 

incorporation of fuzzy design rules (e.g. higher water content 

reduces strength), outperforming even a state-of-the-art 

prediction model, the M5-Random Forest [21].  

Research by Boiko et al. [22]and Bran et al. [23] suggests that 

LLMs could potentially perform research autonomously by 

integrating multiple tools and incorporating long-term planning 

and task execution. These systems can utilize a range of expert-

designed tools, from web and literature searches to specific 

molecular and reaction utilities, and even operate laboratory 

hardware, improving performance in chemistry-related tasks. 

Their impact on materials research represents a significant shift, 

as LLMs are poised to transform much of the scientific 

workflow. 

This research has demonstrated that LLMs can not only make 

accurate predictions in the field of materials science but can be 

used to build knowledge-generating systems that mirror an AI-

driven scientist. The excitement surrounding the current 

paradigm shift in scientific research is rooted in the newfound 

ability to automate tasks that traditionally required deep 

domain expertise. This expertise, previously hidden behind 

institutional and educational barriers, is now not only more 

readily available, but also much less expensive - with the added 

benefit of being seamlessly embedded in software. Importantly, 

these examples go beyond technical skills, such as mastering 

API syntax, and include the ability to reason about a given topic, 

and on the basis of new information.  

As the capabilities of LLMs in scientific contexts become more 

apparent, it has also become clear that further development 

does not depend solely on scaling LLMs during training (as in 

[24, 25, 26]). Jones' research [27] indicates that investing in Test 

Time (TT) computation – allowing a fully trained model to 

generate a wider range of solutions – has proved remarkably 

effective: in the board game "Go" equal performance was 

achieved either by training a deep learning model for longer or 

by generating more solutions during TT. Cobe et al. [28] applied 

this approach to LLMs for solving mathematical text problems, 

showing that a smaller model using a TT strategy outperformed 

a 30 times larger model fine-tuned on task-specific data. 

Subsequently, Lightman et al. [29] highlighted the potential 

gains from more effective verifiers (the models that evaluate 

the TT-generated solutions). They found significant 

performance gains when TT was combined with an appropriate 

verifier strategy. Davidson et al. [30] review methods for post-

training performance improvement and show that in some 

cases a factor of 20 in performance improvement is possible at 

a fraction of the cost. The authors noted that in addition to 

improving specific LLM skills, e.g. through tool integration or 

fine-tuning, more general approaches are also highly effective. 

These include improving prompts (e.g. by using few-shot 

examples) and generating and voting on multiple solutions.  

This leads to the key knowledge gap that this study aims to 

address: 

 

Is the effectiveness of current chat models, such as GPT-3.5 and 

GPT-4, sufficient to position them as viable alternatives to 

established tools in the field of Alkali-Activated Concrete (AAC) 

formulation? Furthermore, what key factors drive their 

performance, particularly in post-training applications? 

 

This study seeks to explore this gap by implementing and 

evaluating different computational strategies and 

configurations in LLMs, with the aim of achieving a new level of 

efficiency and effectiveness in AAC design. Addressing this gap 

is crucial for advancing the application of LLMs in materials 

science and potentially transforming the way scientific research 

is conducted in this domain.  

 

2.2 Hypothesis and Research Questions 

This study hypothesizes that the strategic application of LLMs in 

designing eco-friendly building materials, exemplified by AAC, 

can optimize formulations by utilizing existing knowledge, 

thereby minimizing the need for extensive training data. This 

optimization approach is expected to save resources in initial 

data collection and improve the discovery of novel material 

properties and relationships. To investigate this hypothesis, the 

study is structured around several key research questions and 

methodologies: 

 

1) Performance Evaluation: How does KDD compare in 

efficiency and effectiveness against traditional DDD 

baseline methods in AAC design? 

2) Contextual Quality: How does the level of specificity 

and detail in the context provided to LLMs affect the 

effectiveness of the AAC design process? 

3) Standard Feedback Design Loop (SFDL) vs. Testing 

and Verification Design Loop (TVDL): How do 

outcomes of a standard implementation compare 

against an extended TT strategy? 

4) Model Comparison: What are the differential impacts 

of different LLM versions (GPT 3.5-Turbo vs. GPT 4-

Turbo [15]) on AAC design outcomes?  

 

The first research question investigates the capabilities of KDD 

as an alternative to traditional DDD methods in the design of 

AACs. This exploration is highly consequential in that KDD's 

effective use of natural language (as opposed to vector 

representations in DDD) could significantly simplify the 

integration of inductive biases. This opens the possibility of 

seamlessly incorporating fuzzy concepts such as intentions or 

fuzzy design rules into material design, providing researchers 

and practitioners with an entirely new, versatile set of tools. 

This has the potential to unlock numerous innovative 

applications with far-reaching impacts. 

The following questions look in more detail at the specific 

requirements for applying KDD. We examine how the quality 

and level of detail of the context provided to LLMs affects the 

effectiveness of the design process. Furthermore, we compare 

different implementations of design loops - SFDL and TVDL - to 
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evaluate how extended TT strategies perform in comparison to 

standard methods. Finally, we contrast the performance of 

different LLM generations (GPT 3.5-Turbo vs. GPT 4-Turbo) in 

AAC design to contrast the insights gained on the suitability of 

higher efficiency through model scaling.  

Essentially, these research questions collectively aim to provide 

a comprehensive understanding of the potential of KDD in 

fundamentally reshaping material design. We provide insight to 

the questions: can KDD set a new benchmark in this field and 

what future advances in AI-driven materials science are 

conceivable? 

 

3. Methodology 
 

This chapter delineates the methodology employed in our 

study, structured around the following three key components. 

First, we introduce a chat-based interface for material design, 

using ICL to tailor LLM responses to specific AAC design 

scenarios. Second, we provide a brief overview of established 

DDD methodologies, setting the stage for a comparative 

analysis. We detail our approach for assessing LLM performance 

in comparison to conventional DDD approaches, with a 

particular emphasis on the evaluation criteria and benchmarks 

used. Thirdly, we present the AAC formulation design task and 

the dataset used to validate the results, outlining the criteria for 

selecting the dataset and the parameters for measuring 

success. 

 

3.1 Implementing the Materials Design with a Chat Model 

The chat-based approach of this study aims to optimize Alkali-

Activated Concrete (AAC) formulations for maximum 28-day 

compressive strength through an iterative design loop. In this 

process, the chat model generates formulation predictions 

through ICL and refines them based on user feedback. The 

following sections will first explore the basic workflows and 

roles of prompting, and then delve into the specific prompt 

design strategies employed in this work. 

 
Workflows and Roles 

In this study, two different reasoning strategies of the chat-

based material design are implemented to optimize AAC 

formulation. 

The SFDL is the most basic implementation, consisting of a 

feedback loop between a user and a Design Assistant (DA) chat 

model, as shown in Figure 1. In this approach, the DA is tasked 

with generating material designs that meet specified 

requirements, a method known as inverse design. This process 

involves suggesting designs to achieve predetermined 

properties, rather than deriving properties from an existing 

design [31].  The DA recommendations are then validated 

through laboratory experiments. The results of these 

validations are fed back to the DA to refine and improve its 

future material design proposals based on empirical evidence.  

Figure 1: Standard Feedback Design (SFDL) workflow: Feedback loop between the 

user’s lab validation data and the Design Assistant’s suggested design. 

The second variant shown in Figure 2, the TVDL, uses a TT-

verifier workflow as proposed by Cobe et al. [28] and Lightman 

et al. [29]. This workflow extends the SFDL by generating 

additional test designs and a VM that scores each proposal in a 

second forward prediction loop.  

The fundamental difference between the DA and the VM lies in 

the direction of their predictions. The DA generates multiple 

design parameters, such as weight proportions and processing 

steps, inversely, i.e. assuming that they will collectively meet 

the specified design requirements. In contrast, the VM makes a 

forward prediction of the expected compressive strength for 

the proposed designs. This estimate forms the basis for ranking 

the different formulations according to how well their 

estimated strengths match with the target strength. The most 

promising formulation, determined by the highest predicted 

strength, is then selected for further empirical validation by the 

user. 

This score-based system is a significant departure from other 

frameworks such as Reflexion [32], Resolving Agents [33], or 

Chain of Thought [34] methods, which our preliminary studies 

found to be less effective. In these frameworks, chat models 

generate arguments for and against initial designs, often 

leading to random and selective “improvements”. In contrast, 

scalar scoring by the VM in the TVDL provides a more definitive 

and effective method for identifying the most promising 

designs. 

A key difference between this work and the implementations by 

Cobe et al. and Lightman et al. is the non-fine-tuned nature of 

the VM. GPT-3.5-Turbo was found to be sufficiently effective for 

this application even without specific fine-tuning. The 

straightforward structure of both the SFDL and TVDL, together 

with their generic components, makes these approaches easily 

adaptable to other domains, demonstrating their versatility and 

potential for broader applications.  

In summary, the SFDL implementation is based on a simple 

prompt-answer format, whereas the TVDL implementation uses 
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a multi-stage process with additional test designs and a verifier 

model. Depending on the variant there are two or three main 

roles, respectively, which are illustrated in Figure 3 and 

described below. 
 

 

Figure 2: Test and Verification Design Loop (TVDL): Inverse design loop and forward prediction loop. Implementation with test time equal to three. Task instructions 
and design knowledge are provided to the DA and the VM respectively via the system message. 

 

 Figure 3: Overview of roles in chat-based design and implementation details.

The DA (see Figure 3, top) is tasked with formulating concrete 

mix designs. It uses the system message and few-shot data from 

user feedback to guide its recommendations. The system 

message contains detailed instructions, feasible material 

combinations, and design knowledge that is critical for the DA 

to effectively use its knowledge base effectively. This 

knowledge, generated at different levels of quality using GPT-4, 

provides the DA with the context needed to optimize its design 

proposals (see section 3.1.2). The system message also explicitly 

states the objective of achieving maximum compressive 

strength and the requirements for the output format. 

The user (see Figure 3, center) provides laboratory validation 

feedback to the Assistant's recommendations. To streamline 

this process for systematic benchmarking, a table look-up has 
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been employed in this work using established test results from 

the literature. These validation outcomes are provided to the 

Assistant as laboratory validation in the form of few-shot 

examples, i.e. a list of previously suggested designs and 

validation result pairs. 

The VM, (see Figure 3, bottom) in the extended TVDL 

implementation, is tasked with analyzing and predicting the 

expected compressive strength of each AAC formulation 

proposed by the DA. The VM also has access to design 

knowledge provided by the system message, to make informed 

predictions. In addition, the VM uses few-shot data from the 

user to ground its predictions in the real-world performance of 

past formulations. The VM`s predictions allow formulations to 

be ranked and selected based on how closely their estimated 

strength matches the target strength, which in this study is the 

formulation with the highest estimated strength. This is 

selected by the user for further validation. 

This study extends previous efforts in the use of Large Language 

Models (LLMs) for materials design. Ramos et al. [19] 

implemented an approach where a set of predefined 

formulations were evaluated using forward predictions by 

LLMs, essentially replacing the predictive model in traditional 

DDD with an LLM. Our work extends this method by introducing 

the DA for generative formulation prediction. This addition 

effectively reduces the huge formulation space to the test 

designs generated by the DA, leading to a significant reduction 

in both operational costs and computational time. 

Although Jablonka et al. [18] have used LLMs for generative 

material design similar to the SFDL, a key difference between 

their approach and this study lies in how design knowledge is 

integrated into the predictive processes of both the DA and the 

VM. The way in which this contextual framework is created is 

discussed in the following section. 

 
Prompt Design 

The prompt design approach followed established guidelines 

for clarity and specificity in task definition, response formats, 

and parameter guidelines [12]. This included iterative 

refinement and consideration of error modes commonly 

encountered in LLM interactions [35]. For example, word 

sensitivity, where small differences in wording lead to large 

variations in model response was mitigated by creating three 

synonymous but structurally distinct versions of each prompt. 

This strategy effectively reduces the risk of divergent results due 

to subtle language variations. The model instructions and 

feedback were designed to be straightforward, outlining the 

task objectives and reporting the actual material properties 

achieved in the laboratory. The design knowledge, however, is 

at the heart of the KDD approach. It provides the DA and the 

VM with the necessary context to formulate or evaluate designs 

in terms of the compressive strength.  

In order to investigate different granularities of the knowledge 

used, AAC design rules were created using GPT-4 in two 

different ways. The main difference between the two is in the 

approach to creating the context, which affects the depth and 

usefulness of the information obtained: 

In seeking general design knowledge, GPT-4's inquiry was 

focused on broader design guidance. Although it referenced the 

parameter grid, the question was formulated without specific 

directives (see Figure 4, top). 

For specific design knowledge, GPT-4 was consulted on each 

design parameter individually, including specific initial 

estimates and concrete instructions on how to change 

parameters for optimal results (see Figure 4, bottom). 

The generation of generic design knowledge is straightforward 

and can be easily automated in software applications. The 

method provides a broad overview of the design parameters, 

suitable for gaining a general understanding of how each 

parameter might influence the compressive strength of AAC. 

However, the method does not delve into specific relationships 

between parameters or provide detailed guidance on how to 

optimize formulations. For example, in the case of powder 

blending ratio and the water/cement (W/C) ratio, the general 

advice identified the directional influence of these parameters 

on strength but refrained from specifying optimal value. 

In contrast, the specific design knowledge required a more 

complex and iterative approach. Each parameter was evaluated 

individually by GPT-4, and the model was also asked to elucidate 

the relationships between different parameters. This method 

aimed to provide optimal results by providing detailed insights 

and specific "sweet spot" estimates for each parameter. For 

example, it could specify an ideal powder content for different 

curing conditions, taking into account how this parameter 

interacts with others such as the FA/GGBFS ratio or the W/C 

ratio. The specific design knowledge thus goes beyond the 

generic advice and provides the concrete instructions and 

nuanced understanding needed to fine-tune AAC formulations 

to achieve optimum compressive strength. While the specific 

approach is more time consuming and complex, potentially 

requiring manual intervention for each parameter, it provides 

precise design knowledge. 

The interview prompts required some iterative refinement to 

ensure that GPT-4 understood the request correctly. The 

responses were slightly curated by removing redundant 

statements that often appeared in the final summaries. 
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Figure 4: Extending design knowledge with GPT-4. Top: Generic design knowledge querying GPT-4 for relationships for a given design parameter grid [36]. 
Bottom: Specific design knowledge, where GPT-4 is asked about the relationships of each design parameter individually [37].

3.2 Sample Population  

The data used was derived from an AAC design study by Rao et 

al. [14]. The study included 240 AAC formulations using a blend 

of fly ash (FA) and ground granulated blast-furnace slag (GGBFS) 

as binders. Each formulation in the dataset was extracted from 

the publication and includes component descriptions and 

corresponding 28-day compressive strengths. The dataset 

includes design variations as detailed in Table 1. The key 

parameters in each formulation are the amount of binder 

powder used, the water to cement (W/C) ratio, the blending 

ratios of FA and GGBFS and the curing method used. 

Table 1: Material formulation grid. 

Constituent/Process Considered Parameter Range 

Powder Content in kg 360, 370, 380, 390, 400, 410, 

420, 430, 440, 450 

W/C Ratio 0.45, 0.5, 0.55, 0.6 

Powder Blend (FA/GGBFS Ratio) 70/30, 60/40, 50/50 

Curing Method Ambient curing/Heat curing 

 

Figure 5 illustrates our dataset with the distribution of 

compressive strength represented by a color gradient. The 

latter shows a large variation with compressive strengths 

ranging from 20.8 MPa to 65.3 MPa. The 99th percentile 

strength is 64.9 MPa and the mean strength is 47 MPa.  

The strength distribution within the material categories appears 

to be uniform, with clear trends towards their respective local 

maxima, suggesting a robust correlation between the design 

parameters and material properties. However, the analysis of 

the data shows that it is not trivial to identify exceptional 

formulations.  

Formulations with an equal blend of FA and GGBFS, a W/C ratio 

of 0.5, a low powder content, and heat curing have the highest 

compressive strengths (see Figure 5). Conversely, formulations 

with a higher W/C ratio, a predominance of FA and ambient 

curing are generally associated with lower compressive 

strengths. 

A critical observation is the counter-intuitive relationship 

between W/C ratio, powder content and compressive strength. 

Contrary to the conventional wisdom that a very low W/C ratio 

and higher powder content are associated with higher strength, 

the highest strength formulations in this study had a much more 

nuanced composition. In particular, the role of the powder 

content is ambiguous. In general, higher powder content tends 

to result in higher strength. However, in the case of the 50/50 
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FA/GGBFS blend it is the lower powder content that achieves 

the highest strength. Identifying these anomalies is the key 

challenge for the LLM as it tests its adaptability in scenarios that 

deviate from established concrete mix design principles. This 

dataset illustrates the complexity of sustainable concrete 

design. The variability in the composition of GGBFS and FA, 

coupled with the intricate multi-phase chemistry and reaction 

kinetics over different length and time scales, makes a 

prescriptive approach challenging in a production process 

environment. Nevertheless, the dataset demonstrates that 

exceptional mechanical properties can be achieved, highlighting 

the potential for discovering optimal formulations. 

To integrate this data into the LLM, the LIFT (Language Interface 

for Text) framework [38] was used to convert the data into a 

text-based format. For example, a sample formulation is 

verbalized as:  

 

"The formulation is Powderkg = 380, wc = 0.55, materials = 

0.5/0.5, curing = Heat curing."  

 

Such verbalizations facilitate the LLM in generating predictions 

based on similar descriptions, with the compressive strength of 

each formulation serving as the target metric in a few-shot 

learning context. 

 

Figure 5: Design Space (DS) visualization showing six material clusters, categorized by FA/GGBFS powder  blend and curing method. The materials are color coded to 
reflect the 28-day compressive strength with the target materials above the 99% strength quantile highlighted in orange.

3.3 Baseline Methods and Benchmarking 

In the field of data-driven design (DDD) for material 

formulation, this study evaluates three basic methods: Bayesian 

Optimization (BO) with Gaussian Process Regression (GPR), 

Sequential Learning (SL) with Random Forest (RF), and Random 

Draw (RD) as a stochastic control method. Each method 

represents a unique strategy for tackling the complexities of 

material design.  

BO with GPR is a widely used technique in materials science 

[39]. It uses a probabilistic model, Gaussian Process Regression, 

to predict material properties, facilitating an informed and 

efficient exploration of the design space. This method is 

particularly adept at understanding the nuances of the 

underlying data distribution, which is critical in identifying 

optimal material formulations. 

SL with RF employs the Random Forest algorithm in a sequential 

learning framework [40]. This approach is designed to 

progressively improve the accuracy of material property 

predictions with each iteration. By refining the selection process 

of candidate materials, SL with RF aims to optimize the accuracy 

of predictions, making it a robust method in the iterative DDD 

process.  

A comparison is often made between DDD and RD. In RD, 

experiments are conducted randomly without predictive 

modelling, highlighting their relative effectiveness in navigating 

the material design space. The probability of success of RD 

follows a hypergeometric distribution. 

A common framework for demonstrating its capabilities is 

through simulated experiments, where the outcomes of all data 

points are predetermined. The benchmarking procedure is as 

follows: 

• A subset of the available data is initially provided to the 

DDD algorithms (applicable to RF and GPR only) as a 

basis for training. 

• In each development cycle, the most promising data 

point predicted by the DDD is integrated. This process 
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is repeated for ten cycles or until the target strength is 

reached for all three baseline methods. Within our 

KDD approach we consider ten cycles in the case of 

GPT-3.5-Turbo, while restricting to five cycles for GPT-

4-Turbo. If one of the models reaches the design target 

before the last cycle, we stop the iteration. 

• The success of the optimization is quantified by the 

highest quality material property identified at each 

iteration. 

The benchmarking results are presented as a distribution of the 

cumulative performance achieved in each development cycle. 

This performance distribution, which may vary depending on 

the initial conditions of the experiment, is statistically 

evaluated. For example, using the 10th percentile as an indicator 

provides insight into the efficiency of the methods. This 

percentile marks the lower bound performance limit that was 

achieved in 90% of the design runs, indicating a high robustness 

of the method in attaining such compressive strengths at a 

given number of development cycles. The methodologies 

underlying the benchmarking approach and the baseline 

methods are described in more detail in [9]. 

4. Experiments 

This chapter outlines the experimental program carried out in 

this study. It begins with a detailed description of the 

experimental parameters, followed by an explanation of the 

procedures used. 

 

4.1 Experimental parameters  

The varied experimental parameters and their configurations 

are summarized in Table 2 and are explained below. 

Table 2: Parameters used and/or varied in this study. 

 Parameter Description 

1 Chat Models GPT-3.5-Turbo / GPT-4-Turbo 

2 Baseline Models RF/ BO/ RD 

3 Target Strength 64.9 Mpa (99% quantile) 

4 Design Knowledge None / Generic / Specific 

5 Reasoning Strategy SFDL (TT=1) / TVDL (TT=3, GPT-3.5-

Turbo only) 

6 Number of 

Development Cycles 

GPT-3.5-Turbo, Baseline Models: 10 / 

GPT-4-Turbo: 5 

7 Number of runs Chat 

Model / Baseline 

Methods 

15 / 30 

 

Two versions of the chat model were evaluated: GPT-3.5-Turbo 

and GPT-4-Turbo. The latter serves as a baseline for the impact 

of model scaling compared to the implementation of a TT 

approach. Based on our preliminary investigations, the model 

temperature set to zero provided slightly better performance 

than a higher setting and was therefore chosen for this study. 

Additionally, three baseline methods were used for 

comparative analysis: SL with RF, BO with GPR, and RD. These 

provided a diverse range of strategic approaches to materials 

design, from stochastic to data-driven predictive methods. For 

this work the scikit-learn implementation of GPR [41] and the 

Lolo RF [21] were implemented.  

The target strength for AAC design was set at the 99% quantile 

of the strengths provided in the dataset. This high threshold 

ensured that the formulations proposed by the models were 

not only feasible but also optimized for peak performance. 

The design knowledge built into the context of the chat models 

varied in three categories: generic, specific, and none. The latter 

simply refers to no design knowledge being provided to the DA 

and VM. The aim of this variation was to assess the impact of 

the richness of contextual information on the chat-based design 

predictions. 

Two reasoning strategies were tested: SFDL and TVDL. The 

latter was only used in the case of GPT-3.5-Turbo. The number 

of development cycles differed between the chat models: 10 

cycles for GPT-3.5-Turbo and a reduced number of 5 cycles for 

GPT-4-Turbo due to the significantly higher costs.  

Each KDD was run 15 times (consisting of five runs for three 

rephrased versions of each design knowledge). Multiple runs 

allowed for a statistical analysis of the performance of the 

models. The runs for the baseline methods are on the one hand 

much cheaper and faster, but more prone to variation due to 

randomness, so 30 repetitions were performed for each 

approach.  

 

4.2 Experimental Procedure 

The initialization phase for the models included a preliminary 

dataset relevant to AAC formulations. For the chat models, GPT-

3.5-Turbo and GPT-4-Turbo, this phase included providing 

context in three variations and design knowledge at three levels 

of specificity, resulting in nine unique operating conditions 

(Figure 6, left).  

The GPT-3.5-Turbo model underwent ten development cycles 

for both the Standard Feedback Design Loop (SFDL) and the 

Testing and Verification Design Loop (TVDL), while the GPT-4-

Turbo was limited to five cycles in the SFDL only (Figure 6, center 

and right). Each model configuration was replicated 15 times for 

statistical evaluation. This setup resulted in the GPT-3.5-Turbo 

model generating 900 formulations, with the TVDL requiring 

four API calls per formulation (1800 total prompts for 450 

formulations). The GPT-4-Turbo model, used exclusively in the 

SFDL, generated 225 formulations. In total, 2475 prompts were 

used to create 1125 formulations for user validation. 

In comparison, the baseline models were initialized differently. 

Both GPR and RF started with four random samples, excluding 

any formulations that already met the target requirement. The 

most promising sample from these initial sets was then added 

over ten development cycles. In contrast, the Random Draw 

(RD) method did not require initial samples. Instead, a random 

sample was added in each of the ten development cycles. 
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Figure 6: Benchmarking the KDD approach in different configurations. Left: Variations of the system message including three different levels of design knowledge, each 
in three rephrased versions, respectively. Center: Model selection; Right: Implemented reasoning strategies SFDL and TVDL

5. Results 

The benchmarking results, presented in Figures 7 to 9, show the 

mean achieved strength, along with the 10% and 90% upper- 

and lower limits of each development cycle. The quantitative 

results are summarized in Table 3 in terms of the lower bound 

limit compressive strength achieved. For the baseline and GPT-

3.5-Turbo models the results are shown at three key intervals: 

The first, fifth and tenth development cycles, which allow the 

assessment of zero-shot performance, few-shot performance, 

and final performance, respectively. GPT-4-Turbo only iterates 

over five cycles, i.e. the results at the fifth development cycle 

also mark the final performance of the models. Table 4 also 

shows the relative performance gains that were achieved by 

choosing the ideal strategy over the worst decision.  

In our study, the lower bound value is a crucial performance 

indicator, reflecting the lower bound rule used in the approval 

of civil engineering materials, particularly in Europe [42]. This 

benchmark ensures that materials meet essential safety and 

reliability standards, focusing on worst-case performance 

rather than average results. Applying this criterion to the design 

methods aligns the evaluation with industry practice. It provides 

a realistic assessment of the practical applicability of each 

method, particularly in safety-critical applications. This focus 

becomes critical when considering these methodologies as 

potential replacements for traditional prescriptive approaches. 

Traditionally, the lower bound criteria apply directly to 

materials. However, with innovative, adaptive design methods, 

the criteria shift towards assessing the reliability of the design 

process itself. Therefore, our study's emphasis on the lower 

bound value aims to demonstrate the effectiveness of new 

methodologies not just in theory, but as viable, robust 

alternatives to traditional material design approaches.  

The primary observation from the results is the consistent 

ability of the KDD approach to outperform the baseline models 

in terms of the achieved lower bound compressive strength 

achieved in each development cycle when the correct 

configuration is applied (see results in Table 3).  

The quality of the context proved to be the most significant 

factor, with an 8% improvement with more specific design 

knowledge and an 8.4% decrease in performance when no 

design knowledge was used (see Table 4). This effect was 

particularly pronounced in the first round, where the average 

gain was 22% and the average performance loss was 41%. The 

SFDL implementation of GPT-3.5-Turbo, when equipped with 

specific design knowledge outperforms the baseline methods 

but shows a tendency to plateau in performance improvement 

after the third round (see Figure 7). 

The TVDL showed a continuous improvement over previous 

proposals, resulting in an average performance gain of 3.6 % 

across all development cycles. This improvement was even 

more significant in later iterations, reaching an average relative 

improvement of 7.5 % in the final round. Although these gains 

seem relatively small compared to the quality of the context, 

the TVDL performance curve clearly shows that a lack of design 

knowledge can be compensated by an increase in TT  

as the design progresses: While especially the design processes 

without design knowledge start with a very low performance, 

the TT allows a successive improvement of the design proposals 

based on the few-shot validations from the lab. Even if it 

ultimately fails to catch up with generic or specific design 

knowledge, a longer development time could enable further 

improvements.  

In the TVDL, using either generic or specific design knowledge, 

the chat-based design consistently outperformed the baseline 

methods in every iteration and even outperformed the 

baselines in the final cycle without design knowledge.  

The use of GPT-4-Turbo (see Figure 8) resulted in an average 2 % 

higher strength result compared to GPT-3.5-Turbo in the SFDL. 

However, in the later stages the TVDL implementation 

outperformed GPT-4-Turbo. This is except for scenarios with no 

design knowledge and few validation examples. Here a weak DA 

was not effectively mitigated by a similarly weak VM, 

highlighting the importance of capable verifiers. 
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Table 3: Benchmarking results. Left: Comparison of the 10% lower limits of the 28-day compressive strength: Values recorded at 1st, 5th, and 10th development cycles, along with 

the average value calculated over all development cycles (Note: bold = best, underline = second best, italic = third best).  

C
o

n
te

xt
 

Model TT 
Compressive Strength at 1st 

dev. cycle (MPa) 

Compressive Strength at 5th 

dev. cycle (MPa) 

Compressive Strength at 

10th dev. cycle (MPa) 

n
o

n
e 

GPT-3.5 

Turbo 

1 33.8 58.1 58.1 

3 35.8 49.9 61.2 

GPT-4 Turbo 1 39.5 58.0  

ge
n

er
ic

 GPT-3.5 

Turbo 

1 55.0 55.8 55.8 

3 55.0 61.5 64.3 

GPT-4 Turbo 1 55.0 57.3  

sp
ec

if
ic

 GPT-3.5 

Turbo 

1 60.2 62.3 62.3 

3 64.3 64.3 64.3 

GPT-4 Turbo 1 60.2 60.2  

Gaussian Process 

Regression 
53.9 59.8 59.9 

Random Forrest 44.7 57.1 60.2 

Random Draw 29.9 52.4 55.9 

 

Table 4: Relative performance influence of parameters settings in terms % of lower limit compressive strength.  

  Performance gains in (%) 

Parameter Parameter Setting vs. Alternative 1st dev. cycle 5th dev. cycle 
10th dev. 

cycle 

∅ all dev. 

cycles 

Context 
Generic vs. None  -41.3 -3.6 -3.6 -8.4 

Generic vs.  Specific 22.0 6.9 4.8 8 

Model 

GPT-3.5 Turbo (SFDL) vs. GPT-4 Turbo 

(SFDL) 
3.7 1.8 (-) 2.0 

GPT-3.5 Turbo (SFDL)) vs. GPT-3.5 Turbo 

(TVDL) 
-2.1 3.1 7.5 3.6 

In summary, chat-based design methods have proven to 

outperform strong baseline methods in this analysis. The most 

significant performance gains are achieved through higher 

context quality, especially in the early rounds. The TVDL 

strategy has also been shown to improve performance, 

especially in the later rounds when there are enough few-shot 

examples. Interestingly, more TT and higher context quality 

seem to offer complementary benefits: while higher context 

quality provides a higher initial performance offset, TT leads to 

steeper performance gains over development cycles. 

Surprisingly, the use of GPT-4, a more advanced chat model, in 

the SFDL implementation did not yield significant benefits. 

Consequently, the most effective result after five and ten 

development cycles was achieved by the GPT-3.5-Turbo model 

in the TVDL implementation. At the tenth development cycle 

both, generic and specific knowledge, achieved a lower bound 

strength of 64.3 MPa, narrowly missing the design target of 64.9 

MPa by only 0.6 MPa (see Figure 5). The best baseline model, 

RF, gave a final strength of 60.2 MPa in the final round. The best 

zero-shot result was also achieved by GPT-3.5-Turbo in the TVDL 

implementation with specific design knowledge, reaching 64.3 

MPa. In contrast, the best baseline result in the first 

development cycle was achieved by BO with 53.9 MPa. 
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Figure 7: Performance of the chat-based materials design using GPT-3.5-Turbo in terms of the achieved 28-day compressive strength in MPa at each development cycle 
as the mean value (solid line) and the 10% and 90% lower and upper bounds (areas) for the SFDL implementation (purple) and the TVDL implementation (green). F.l.t.r. 
Design knowledge None/Generic/Specific. 

 

Figure 8: Performance of chat-based materials design using GPT-4-Turbo in terms of the achieved 28-day compressive strength in MPa at each development cycle as 
the mean value (solid line) and the 10% and 90% lower and upper bounds (areas) for the SFDL implementation. F.l.t.r. Design knowledge None/Generic/Specific.  

 

 

Figure 9: Performance of the DDD baseline methods in terms of the achieved 28-day compressive strength in MPa at each development cycle as the mean value (solid 
line) and the 10% and 90% lower and upper bounds (areas). F.l.t.r. BO with GPR, SL with RF, and RD.
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6. Conclusion and Discussion 

The aim of this study was to address a pressing challenge in the 

field of materials science: the optimization of material 

formulations through a KDD approach with a focus on waste-

based materials. The urgency of this challenge lies in the need 

to increase the use of secondary, recycled materials, thereby 

contributing to increased resource efficiency and reducing the 

significant carbon emissions associated with traditional 

cementitious materials.  

The results of this research confirm the central hypothesis that 

a KDD approach using LLMs and incorporating fuzzy design 

knowledge, is indeed capable of producing high quality material 

formulations. This conclusion, drawn from a comprehensive 

benchmarking and analysis, demonstrates the effective 

application and potential of LLMs in the field of sustainable 

materials design.  

Here, natural language knowledge represents an entirely new 

modality of input data that has so far remained untapped in 

computational materials design. This represents a significant 

departure from prescriptive design rules or the more traditional 

DDD. In the benchmarking study presented, this approach 

enabled the rapid and highly reliable design of materials from 

scratch which were based on highly variable resource flows.  

Four main conclusions can be drawn from our systematic 

benchmarking: 

1) In a direct comparison the chat-based design approach with 

established baseline methods, we observed a superior 

performance in terms of the lower bound strength achieved, 

even without any initial training data. This was a remarkable 

achievement, especially considering that methods such as RF 

and GPR initially had a slight advantage due to their 

dependence on initial training data. This was achieved through 

a significantly higher robustness of the design result - which is 

surprising given the apparently more solid input data of 

traditional DDD compared to the relatively fuzzy design 

knowledge in KDD. 

2) A critical finding of our study was the paramount 

importance of the quality of contextual information provided to 

LLMs in enhancing their performance. There were significant 

performance improvements when specific design knowledge 

and sweet spot estimates were incorporated into the model, 

demonstrating that accurate and contextually rich information 

is key to optimizing AI-driven design methodologies. 

Interestingly, much of this core design knowledge was 

autonomously generated using GPT-4, highlighting the 

potential for AI integration in design software to generate 

flexible and accurate information specific to the task at hand. 

3) Another important aspect of our study was the adoption of 

scaling strategies, inspired by applications in text-based 

mathematical problems, and applied here to materials design 

tasks. While we have shown that incorporating of domain 

knowledge into the context is a very effective approach to 

improving predictive performance, it is not universally 

applicable. For example, domain knowledge may not always be 

available and may sometimes be incorrect. Therefore, we 

investigated an additional mechanism to improve the 

performance of LLMs. We focused on strategies that can be 

applied at test time as they do not require access to the model 

weights and can be applied without costly training steps. By 

increasing the TT and using GPT-3.5-Turbo as the verifier model, 

we observed significant performance improvement. The 

’effectiveness of this strategy may be attributed to the inherent 

complexity involved in predicting multiple design parameters in 

AAC formulations, a task that challenges the linear, forward-

looking approach of transformer models. The inverse nature of 

material design queries, requiring inference from a result to 

potential causes, is arguably more complex than the forward 

predictions typically made by verifier models [43]. Thus, the 

integration of verifier models complemented and compensated 

for the limitations of the DA, leading to more efficient use of the 

feedback loop in the design process.  

4) This study demonstrated that GPT-3.5-Turbo with the TVDL 

strategy enabled the smaller model to surpass the performance 

of its larger counterpart GPT-4-Turbo. This was achieved at a 

two and a half times lower cost, highlighting the effectiveness 

of using post-training enhancements such as test-time 

strategies and verifier models. 

In summary, this study demonstrates the of LLMs in AAC design 

and provides a novel path for future AI applications in materials 

science. Our findings highlight how LLMs can advance 

sustainable materials design, contributing to environmental 

goals and enriching the role of AI in materials engineering. 

 

6.1 Future Research 

While this study focuses on a specific design case in AAC, it 

opens the door to a variety of promising research avenues in 

materials science and the application of LLMs. The concept of 

inverse design, combining initial suggestions with systematic 

iterative improvements, stands out as a key area for evaluating 

the capabilities of LLMs. The challenge here is to achieve both, 

a robust initial performance and continuous improvement of 

subsequent proposals. 

A critical takeaway from our research is the significant potential 

for enhancing the domain-specific capabilities of LLMs in 

materials science through relatively generic post-training 

measures. This enhancement involves refining the context 

quality and extending TT in conjunction with a VM. While 

improving context quality may present practical challenges due 

to the constant pursuit of optimal quality, scaling up TT appears 

to be a cost-effective and feasible strategy. This has as recently 

been taken up by Yuan et al. [44]  to improve the overall 

performance of general LLMs (Llama2 ). However, as 

highlighted in an earlier paper [29], the performance of the VM 

can have a critical impact on performance. Identifying ideal VMs 

for specific domain tasks is a fascinating research challenge. 

These exploratory paths are particularly relevant for 

applications in less constrained, real-world design problems. 

Traditional DDD methods often require limiting the solution 

space to be constrained. However, even in such constrained 

domains, the solution space on a coarsely sampled grid can 

contain millions of possibilities, making it difficult to identify 

optimal solutions. Generative design approaches do not require 
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constraints, increasing the chances of identifying solutions not 

previously considered. In this context, scalable TT methods 

offer a promising direction, although their effectiveness 

warrants further investigation and the development of 

methodological benchmarking frameworks. 

Systematic benchmarks, involving a wider range of examples, 

are essential for these future studies. Such benchmarks should 

take into account the dynamic nature of the tasks assigned to 

LLMs. Implementing the automated benchmarking approach 

from this study requires datasets that are large enough to cover 

a significant design space and structured enough (e.g., on a 

regular design grid) to facilitate effective communication with 

LLMs. This will ensure that proposed formulations can be 

validated from the literature. However, most of the available 

data are compiled from many scattered, small-scale, 

heterogeneous laboratory investigations (e.g. [45]). An effective 

restriction of the solution space for benchmarking the 

generative capabilities of the DA is not feasible with currently 

available models - but perhaps by increasing the usable context 

window of future LLM generations. Here, research tasks that 

enable rapid and automatable design processes, either through 

simulation or accelerated laboratory validation, are currently 

highly desirable alternatives (e.g. [46]).  

In summary, this study not only highlights the potential of LLMs 

in materials science, but also lays the groundwork for future 

explorations in three main strategies: improving context 

quality, using enhanced TT, and employing capable VMs. Future 

explorations could range from improving the core reasoning 

capabilities of LLMs to adapting them for more diverse and 

complex scientific applications, thereby broadening their utility 

and impact in the scientific community. 
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