• Clone GITHUB repository with exercises:

git clone https://github.com/michalhapka/trex_workshop2023.git

1 Exercise: H_2 - H_2 (static correlation)

Perform SAPT(CISD) calculations for the H₂-H₂ complex (Figure 1):

- a) near the equilibrium geometry (R = 1.44 a.u.),
- b) with a broken covalent bond in one of the monomers (R = 7.20 a.u.).

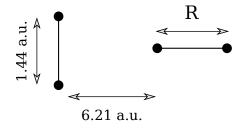


Figure 1: H₂-H₂ in T-shaped geometry.

The basis set is aug-cc-pVDZ.

- 1. Prepare input.inp file for SAPT. You will find the xyz files and input.inp templates in:
 - trex_workshop2023/SAPT/h2_h2/cisd .
- 2. Prepare a script to run CISD calculations (with Quantum Package) followed by SAPT calculation (with GammCor). You can find sample scripts at:
 - https://qchem.gitlab.io/gammcor-manual/pages/calculation/sapt_methods/running_sapt_qpckg.html.

If you do not have access to Quantum Package, you will find the necessary HDF5 files in **results** subfolders.

Answer the questions:

- 1. Which interaction energy components dominate for R = 1.44 a.u. and R = 7.20 a.u.?
- 2. How accurate is SAPT based on Hartree-Fock description of the monomers near the equilibrium and in the case of a stretched bond?
- 3. Table 1 shows also SAPT results obtained with CASSCF wave functions. What is the effect of increasing the active space?

with m electrons occupying n active orbitals (for each monomer). Energy unit is microhartree.										
	$E_{\rm elst}^{(1)}$	$E_{\rm exch}^{(1)}$	$E_{\rm ind}^{(2)}$	$E_{\rm exch-ind}^{(2)}$	$E_{\rm disp}^{(2)}$	$E_{\rm exch-disp}^{(2)}$	$E_{\rm int}^{\rm SAPT}$			
R = 1.44 a.u.										
$_{ m HF}$	-62.29	89.96	-5.169	1.706	-154.2	6.911	-123.0			
CISD										
CAS(2,2)	-47.82	81.28	-4.030	1.637	-143.6	5.693	-106.8			
CAS(2,8)	-52.61	88.43	-4.565	1.980	-151.7	6.094	-112.4			
R = 7.20 a.u.										
$_{ m HF}$	-185.4	445.0	-39.72	26.29	-320.6	33.55	-40.89			
CISD										
CAS(2,2)	-44.87	201.1	-7.994	5.465	-161.1	10.15	2.748			
CAS(2,8)	-47.17	209.4	-8.388	5.992	-165.9	10.43	4.335			

Table 1: Results of SAPT calculations for H_2 - H_2 dimer. CAS(m, n) denotes CASSCF calculation with m electrons occupying n active orbitals (for each monomer). Energy unit is microhartree.

2 Exercise: He-H₂* (excited states, ver 1)

Perform a SAPT(CISD)/aug-cc-pVDZ calculation for the He-H₂ complex (Figure 2):

- a) both monomers are in the ground state and R = 6.6 a.u.,
- b) He is in the ground state, H₂ is in the first singlet excited state $({}^{1}\Sigma_{n}^{+})$, and R = 4.0 a.u.

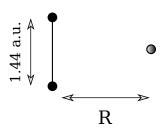


Figure 2: He-H₂ in T-shaped geometry.

- 1. Prepare input.inp file for SAPT. You will find the xyz files and input.inp templates in:
 - trex_workshop2023/SAPT/he_h2.
- 2. Prepare a script to run CISD calculations (with Quantum Package) followed by SAPT calculation (with GammCor). You can find sample scripts at:
 - https://qchem.gitlab.io/gammcor-manual/pages/calculation/sapt_methods/running_ sapt_qpckg.html

Answer the questions:

- 1. What are the key interaction energy ingredients in the van der Waals minimum region in ground- and excited-state?
- 2. Which energy component dominates ground/exited-state interaction at R = 4.0 a.u.?

If you do not have access to Quantum Package, you will find the necessary HDF5 files in /results subfolders.

Table 2: Results of SAPT(CISD)/aug-cc-pVDZ calculations for He-H₂ and He-H₂^{*} dimers. Energy unit is millihartree.

	$E_{\rm elst}^{(1)}$	$E_{\rm exch}^{(1)}$	$E_{\rm ind}^{(2)}$	$E_{\rm exch-ind}^{(2)}$	$E_{\rm disp}^{(2)}$	$E_{\rm exch-disp}^{(2)}$	$E_{\rm int}^{\rm SAPT}$
ground state							
$R=4.0\mathrm{a.u.}$	-1.103	5.740	-0.375	0.395	-0.956	0.114	3.816
R = 6.6 a.u.							
excited state							
R = 4.0 a.u.							
R = 6.6 a.u.	-0.026	-0.060	-0.036	-0.003	-0.204	-0.005	-0.334

3 Computation of singlet-triplet gap of cyclobutadiene with ACn-CAS

- In trex_workshop2023/C4H4 directories you will find all files needed to run ACn calculations with GammCor for singlet (S) and triplet (T) states using CAS(2,2) and CAS(4,4) reference wavefunctions.
- Input files for GammCor with electron integrals and 1,2-reduced density matrices have been generated with Dalton and are provided.

If you want to learn how to use Dalton interfaced with GammCor see example in GammCor user manual:

https://qchem.gitlab.io/gammcor-manual/pages/calculation/correlation_methods/ acn_dalton.html

• To run GammCor, prepare the job1 script for slurm (provide the correct path to gammcor in GAMMCOR_EXEC="....").

```
#!/bin/bash
#SBATCH -n 1
#SBATCH -c 1
#SBATCH --nodelist=cn08
#SBATCH -t 0:10:00
#SBATCH --mem=1GB
$GAMMCOR_EXEC="...."
srun $GAMMCOR_EXEC > "gammcor.out"
```

• Copy the script to CAS22/S, CAS22/T, CAS44/S, CAS44/T directories. In each directory submit the job.

sbatch job1

- Collect the results from gammcor.out files. Look for the line: ECASSCF+ENuc, ACn-Corr, ACn-CASSCF at the end of outputs.
- Compute S-T energy gaps for CASSCF (ECASSCF+ENuc) and ACn-CASSCF (ACn-CASSCF) from CAS(2,2) and CAS(4,4) models. Compare the numbers with the reference value of 0.18 eV from Stoneburner et al., J. Chem. Phys. 2017, 147, 164120.