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Problem of electron correlation

1 Born-Oppenheimer approximation:
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2 Hartree-Fock approximation:
I Single Slater determinant ∆ one-electron problems

3 Post-Hartree-Fock methods:

�el = �HF + �corr Ecorr = Eexact ≠ EHF . . . correlation energy
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Dynamical versus static electron correlation

Weakly correlated regime
Dynamical correlation

DFT, CCSD(T)

Strongly correlated regime
Static correlation

Complete active space (CAS) methods

Ca�eine [3Fe-4S] model cluster

Our targets: molecules requiring very large active spaces
We employ DMRG for proper description of static correlation and other methods (CC, AC) for the missing
dynamical correlation
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What systems can we study?

Polyradical polycyclic aromatic hydrocarbons (PAHs)Transition metal complexes

Cu

Cu
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What are the strong and weak points of DMRG?

Strong points
Variational
Genuinely multireference
Size consistent

Weak(er) points
Not suitable for dynamical correlation
Not truly black-box
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Complexity of the exact (FCI) solution

Full configuration interaction (FCI) active space expansion:

�el =
ÿ

n1n2...nk

Ân1n2...nk |n1n2 · · · nkÍ

|ni Í œ {|emptyÍ , |¿Í , |øÍ , |¿øÍ},
q

i ni = N
Dimension of the vector (Hilbert) space increases exponentially with system
size: ≥ 4k

in PVDZ basis set:

100 ¥ 107

¥ 1046

With FCI one can treat at most 16 (20) active orbitals.
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Complexity of the exact (FCI) solution

Do we really need to exploit the full Hilbert space?
Most of quantum phase space is not explored by physical ground states
How to reduce the complexity of �el and come up with a class of variational wave functions that captures
the physics of electronic Hamiltonian?
Introduction of locality into the wave function parametrization

The simplest approach: Ân1n2...nk ¥ Ân1 Ân2 · · · Ânk

4k
∆ 4k parameters, however not very accurate!
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Matrix Product State (MPS) ansatz

�el =
ÿ

n1n2...nk

Ân1n2...nk |n1n2 · · · nkÍ , |ni Í œ {|0Í , |¿Í , |øÍ , |¿øÍ}

DMRG: Matrix product state (MPS) ansatz:

Ân1n2...nk ¥

ÿ

i1 i2...ik≠1

Ân1
i1 Ân2

i1 i2 Ân3
i2 i3 · · · Ânk

ik≠1
, 4k

∆ O(4M2k) parameters

FCI

MPS

Bond dimension M governs accuracy as well as computational cost: M æ dim(FCI), EDMRG æ Eexact

One or two individual MPS tensors are variationally optimized at a time (sweeping)
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Singular value decomposition (SVD)

Very versatile tool of linear algebra
Arbitarary (rectangular) matrix M can be decomposed as

M = UDV † D . . . diagonal matrix

singular values: d1 Ø d2 Ø . . . Ø dr > 0 r . . . Schmidt rank

SVD provides optimal approximation of M by MÕ with lower Schmidt rank r Õ < r

MÕ = UDÕV † DÕ = diag(d1, d2, . . . , drÕ , 0, . . .)
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Schmidt decomposition

In DMRG, as we will see, we group orbitals into the left and right blocks - bipartite splitting

|�Í =
ÿ

ij

�ij |iÍL |jÍR

=
ÿ

ij

ÿ
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UiaDaaV ú
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da
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Uia |iÍL

21 ÿ

j

V ú
ja |jÍR

2

=
rÿ

a=1

da |aÍL |aÍR

Schmidt rank is a measure of entanglement between the left and right parts!
r = 0 . . . product state, r > 0 . . . entangled state
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Matrix Product State (MPS) ansatz

Any wavefunction can be exactly factorized into the MPS form:

Ân1n2...nk © Ân1,(n2...nk ) =
ÿ

a1

Un1a1 Da1a1 (V †)a1,(n2...nk ) =
ÿ

a1

An1
a1 Âa1n2...nk

=
ÿ

a1

An1
a1 Â(a1n2),(n3...nk ) =

ÿ

a1

ÿ

a2

An1
a1 U(a1n2),a2 Da2a2 (V †)a2,(n3...nk )

=
ÿ

a1

ÿ

a2

An1
a1 An2

a1a2 Âa2n3...nk . . .

Non-truncated auxiliary dimensions would leed to the original, i.e. exponential
scaling!
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Tensor networks

Hamiltonian can be exactly factorized into the matrix product operator (MPO) form

Computation of È�MPS| HMPO |�MPSÍ can be done e�ciently by contraction of the tensor network e.g. from
the left to the right
DMRG/MPS - simplest (1D) tensor network method
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Locality in DMRG

DMRG encodes locality through the structure of contractions of auxiliary indices

E.g. i1 and its contraction give rise to correlations between occupancies n1 and n2

It can be shown that when the underlying orbital (entanglement) topology is linear, DMRG ansatz is
optimal
DMRG is a powerful method even for non-linear topologies
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Basics of the DMRG algorithm

H =
kÿ

pq=1
‡œ{ø,¿}

hpqa†
p‡aq‡ +

kÿ

pqrs=1
‡,‡Õœ{ø,¿}

vpqrsa†
p‡a†

q‡Õ ar‡Õ as‡, vpqrs = 1
2 Èpq|srÍ

MO integrals hpq and vpqrs are input parameters
Zeroth step - ordering of orbitals on 1D lattice

„Energy“ ordering

Optimal ordering

1st iteration

1 2 3 4

Orbitals on 1D lattice

5 6 7 8 9 10

1 6 2 7 5 10 4 9 3 8

DMRG sweeping

2nd iteration

Left block Right block

…

7th iteration

…

Forward sweep

Backward sweep…
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Two-site DMRG algorithm

First iteration:{l} = {|0Í , |¿Í , |øÍ , |ø¿Í} and is complete
Explicit matrix form of second-quantized operators:

a†
ø =

Q

ca

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

R

db , a†
¿ =

Q

ca

0 0 0 0
1 0 0 0
0 0 0 0
0 0 ≠1 0

R

db

Q

ca

0
¿

ø

ø¿

R

db

Hamiltonian of a single site (orbital) can be easily formed from them
Right part {r} is guessed (may be even random matrices)
Increasing the left block by remaining orbitals without truncation ∆ curse of dimensionality!
Renormalization - finding the optimal block basis with bounded dimension M

{lp≠1, dim = M} ¢ {s, dim = 4} ∆ {lp, dim = M}

|lpÍ =
ÿ

lp≠1s

Olp≠1s,lp |lp≠1Í ¢ |sÍ O . . . 4M ◊ M renorm. matrix
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Two-site DMRG algorithm

Determinant representation of many-body basis is not stored, rather matrix representations of
second-quantized operators needed for H · Â

Notice that due to truncation (in-completeness of many-body basis)

(a†
pøaq¿)–— ”=

ÿ

“

(a†
pø)–“(aq¿)“—

Due to e�cient treatment of intermediates, no need for four-index entities
Pre-summation:

A
øø
rs =

ÿ

pqœleft

vpqrsa†
pøa†

qø, rs ”œ left

Høøøø
int –

ÿ

pqœleft
rs ”œleft

vpqrsa†
pøa†

qøarøasø =
ÿ

rs ”œleft

A
øø
rs arøasø.

∆ at most two-index operators
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Two-site DMRG algorithm

Projecting Schrödinger equation onto {l} ¢ {sl} ¢ {sr } ¢ {r}

|�Í =
ÿ

lsl sr r

Âls1s2r |lÍ ¢ |slÍ ¢ |sr Í ¢ |rÍ nø(l) + nø(sl) + nø(sr ) + nø(r) = ntot
ø

n¿(l) + n¿(sl) + n¿(sr ) + n¿(r) = ntot
¿

Hamiltonian has a tensor product structure:

H =
ÿ

–

H(–)
l ¢ H(–)

sl ¢ H(–)
sr ¢ H(–)

r

Since single site operators are due to symmetry reasons scalars:

Âls1s2r ∆ Âlr © C

H |ÂÍ ∆

ÿ

–

f–H(–)
l · C · (H(–)

r )T

Diagonalization of H by means of iterative solvers like Davidson or Lanczos
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Renormalization with truncation

{„left}p ¢ {„site}p+1 ∆ {„left}p+1

Truncation pushes the (bond) dimension from M · 4 back to M
Formation of a reduced density matrix of the enlarged Left (Right) block

DLeft = cc† where c = Â(ls1)(s2r)

and form the rectangular transformation matrix O from M eigenvectors corresponding to the largest
eigenvalues
All the operators {Hi } are transformed to the new basis {„left}p+1

H̃i = O†Hi O

L. Veis (J. Heyrovsk˝ Institute, ASCR) 18 / 34



Equivalence of SVD and RDM approaches

|�Í =
ÿ

ij
�ij |iÍL |jÍR

=
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da |aÍL |aÍR

flL = trR(fl) = trR |�Í È�|

=
rÿ

a=1
Êa |aÍL Èa|L Êa = d2

a

Diagonal form
flL anf flR share the spectrum
U formed by eigenvectors of flL

rÿ

a=1
Êa = 1

‰ = 1≠
r Õÿ

a=1
Êa . . . truncation error, e.g. 10≠5, 10≠6
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Renormalization produces MPS wave function

|„p+1Í =
ÿ

O(p ip+1),p+1 |„pÍ ¢ |ip+1Í where |ip+1Í œ {|0Í , |¿Í , |øÍ , |¿øÍ}

=
ÿ

Aip+1
p,p+1 |„pÍ ¢ |ip+1Í

=
ÿ

Aip
p≠1,p · Aip+1

p,p+1 |„p≠1Í ¢ |ipÍ ¢ |ip+1Í

=
ÿ

Ai1
1 · · · Aip

p≠1,p · Aip+1
p,p+1 |i1Í ¢ . . . ¢ |ipÍ ¢ |ip+1Í

A matrices are reshapes of O matrices!
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Two-site DMRG algorithm scaling

DMRG algorithm recap:

QC-DMRG scaling

O(M3k3) + O(M2k4)
k . . . number of molecular orbitals, O(10)
M . . . bond dimension, O(1000)
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Entanglement entropies

flL . . . info about L ¡ R interaction ∆ S = ≠trflL ln flL . . . entanglement entropy

Single-orbital entropy (Si ): entanglement between a given molecular orbital and the rest

fli = tr’j ”=i fl Si = ≠trfli ln fli

Can be employed for selection of the active space
Two-orbital entropy (Sij): entanglement between a given orbital pair and the rest

flij = tr’k ”=i,jfl Sij = ≠trflij ln flij

Mutual information (Iij): correlation between two orbitals i and j when embedded in the whole system

Iij = Si + Sj ≠ Sij

Can be employed for orbital ordering optimization
Si and Sij (and Iij) can be calculated e�ciently from MPS
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Orbital ordering

Proper ordering of molecular orbitals on a 1D lattice is in the hearth of e�cient DMRG - huge impact on
accuracy/convergence!
In order to minimize an error of truncation, the highly entangled orbitals should be as close as possible and
located in the center of a lattice.

Good ordering

We cut at most one entanglement bond
∆ low truncation error

Bad ordering

We cut the same bond many times
∆ huge truncation error

Pairwise entanglement (more precissely correlation) is described by mutual information Iij .
dij . . . distance of two sites: dij = |i ≠ j|.
Our aim is to minimize cost functions of the following form:

cost÷ =
ÿ

ij

Iijd÷
ij
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Orbital ordering

Brute for approach for optimization is certainly not feasable - factorial cost!
For ÷ = 2, concepts from spectral graph theory can be employed:
Graph: orbitals (sites) = vertices, Iij = edge weights.
It turns out that solving the eigenvalue problem of a discrete graph Laplacian corresponds to cost2
minimization

Lij = ”ijDii ≠ Iij Dii =
ÿ

j

Iij

The second eigenvector (so called Fiedler vector) provides the optimal ordering.
General cost÷ can be minimized using genetic algorithms.
It turns out that Iij from cheap approximate calculations with small D works excellent!
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Mutual information for bonding analysis
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scalable QC-DMRG code

Motivated by large-scale DMRG applications and accessibility
of supercomputers, we have developed the scalable quantum
chemical DMRG implementation

MOLMPS features

Highly templated C++ code, flexible in Hamiltonian definition: Hubbrad-like, RHF,
UHF, relativistic (4c)
Low level lightweight tensor library allowing global memory storage
Post-DMRG features: CASCCF, tailored CC, AC
Interfaced to NWChem, Orca

J. Brabec, J. Brandejs, K. Kowalski, S. Xantheas, Ö. Legeza, and L. V., J. Comp. Chem. 2021, 42, 534–544.
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scaling tests

Fe(II)-porphyrin model, CAS(32,34), left - Davidson, right Renormalization
M = 2048, local data model
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M = 8192, global data model
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scaling tests

fi-conjugated system, CAS(63, 63), M = 4096 FeMoco cluster, CAS(113, 76)ú, M = 6000
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úhttps://github.com/zhendongli2008/Active-space-model-for-FeMoco

J. Brabec, J. Brandejs, K. Kowalski, S. Xantheas, Ö. Legeza, and L. V., J. Comp. Chem. 2021, 42, 534–544.
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Post-DMRG

DMRG-SCF:
Replacing FCI by DMRG in CASSCF orbital optimization
The simplest case - decoupled optimization of MPS and MO coe�cients

initial orbitals ∆ hpq, vpqrs ∆ DMRG: “pq, �pqrs ∆ orbital rotation ∆ new set of hpq, vpqrs . . .

Dynamical electron correlation:
DMRG can treat dozens of active orbitals, but usually not the full orbital space
Missing out-of-CAS dynamical electron correlation - important for chemical accuracy (1 kcal/mol)
DMRG-NEVPT2, DMRG-TCCSD, DMRG-AC
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Dynamical correlation extensions

DMRG active space in spite of being large usually cannot be the full space
DMRG active space: tens of orbitals, full space: hundreds of orbitals
To achieve chemical accuracy (1 kcal/mol) methods for computation of the missing dynamical correlation
are necessary!
Most of the existing methods (e.g. DMRG-NEVPT2) require higher-body RDMs �(n)

Recently, we have presented/tested two methods, which avoid this problem

1 Tailored coupled clusters: DMRG-TCCSD(T) (plus DLPNO)
2 Adiabatic connection: DMRG-SCF-AC0

L. V., A. Antalík, J. Brabec, F. Nesse, Ö. Legeza, J. Pittner, J. Phys. Chem. Lett. 2016, 7, 4072.
P. Beran, M. Matouöek, M. Hapka, K. Pernal, L. V., J. Chem. Theor. Comput., 2021, 17, 7575.
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Tailored coupled clusters

Essentially single reference theory
Split-amplitude ansatz

|�TCCÍ = eT
|�refÍ = eT ext+T CAS

|�refÍ

T
CAS

I amplitudes extracted from DMRG (CASCI)
calculation

I frozen during CC calculation
I account for static correlation

T
ext

I determined through the usual CC
I account for dynamic correlation

|�TCCSDÍ = e
!

T ext
1 +T ext

2

"
e
!

T CAS
1 +T CAS

2

"
|�refÍ

¥ e
!

T ext
1 +T ext

2

"
|�CASCIÍ

Requires minimal modifications of the CC code

T. Kinoshita, O. Hino, and R. J. Bartlett, J. Chem. Phys. 2005, 123, 074106.
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CCSD tailored by MPS wave functions

1. Small active space DMRG calculation

2. Acquisition of CI coe�cients by e�cient contraction of MPS matrices

|�MPSÍ =
ÿ

{n}

An1 An2 · · · Ank |n1n2 · · · nkÍ

3. Calculation of CAS amplitudes

T CAS
1 = C1 T CAS

2 = C2 ≠
1
2 (C1)2

4. CCSD calculation for T ext
1 and T ext

2

Implemented in ORCA
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DMRG-TCCSD performance: Cr2

One of the most notorious and demanding systems
Excellent level of theory for dymamical and static correlation required
Single-point calculation at 1.5 Å, Ahlrichs’ SV basis set æ FCI energy available

L. V., A. Antalík, J. Brabec, F. Nesse, Ö. Legeza, J. Pittner, J. Phys. Chem. Lett. 2016, 7, 4072.
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