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« Most wavefunction (WF) theories assumes a reference (model) WF

Single reference model: electrons are distributed among
orbitals in a single way (single Slater determinant WF)

U =alal...al |vac)

Multireference model: WF is represented as a linear
combination of a few Slater determinants of particular
importance for a problem under consideration

U = Z DQ&ZI AgQ . .&;r]N lvac)
* The energy error is called correlation energy

Ecorr — Eea:act — Eref
Eref = <\I!H\If>



* The concept of electron correlation does not have a sharp definition
(multireference WF definitely accounts for some part of correlation).

» Taking into account a structure of the wavefunction we distinguish, in general,
between

Dynamic electron correlation: included by allowing excitations
to many unoccupied orbitals

Static (non-dynamic) correlation: accounted for by including in
the wavefunction expansion nearly degenerate states.



One-electron reduced density matrix (1-RDM)

v(ry, r}) :N/dO'/dTQ.../dTN U*(ry, 0,72, ..., 7n)V (1], 0, T2, o0y T

one-electron reduced function: one-electron density matrix y

1-RDM contains information about electron correlation
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Electron correlation (dynamic or static) is manifested in the pattern of natural
occupation numbers.

Natural occupation numbers: eigenvalues of the one-electron
reduced density matrix

Natural occupation numbers are nonnegative and not greater than 1

Vp 0<n,<1
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Natural occupation numbers of nitrogen molecule N2 as a function of interatomic distance

Single determinantal WF: W = &I&i ... Q4 |vac)
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Natural occupation numbers of nitrogen molecule N2 as a function of interatomic distance

Exact (fully correlated) wavefunction
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Natural occupation numbers of nitrogen molecule N2 as a function of interatomic distance
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Natural occupation numbers of nitrogen molecule N2 as a function of interatomic distance

natural occupation numbers
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Weak versus strong correlation

U = Cotpg + C1¢01 + Copg + ... Oy, + . ..

Weak correlation: |Col > |C], |Co] ...

Strong correlation: Co| = |Ci| = ... = |Cy

Strong correlation can be efficiently captured by multireference wavefunction (MR-WF) models.

Even with very large m the expansion is not long enough (not even DMRG) to
retrieve all important correlation.

Ecorr — Eeazact — Eref

How to find the correlation correlation energy?



Correlation energy from the perturbation theory

 |If a Hamiltonian is known for an assumed reference WF, i.e.

[f[(O)\I;mf _ ) U,

perturbation theory can be applied to recover correlation energy for
the perturbation operator

A

H =H-HO
Eemact — E(O) + E(l) -+ E(Q) —+ ...

o If
<\I;r6f|]3[‘\pref> — O 4 g

the correlation energy (or rather a part of it) is obtained as

Eopr = E® 4 ...
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* Problems of the perturbation methods:

not general: for each reference WF it may be necessary to figure out
a zeroth-order Hamiltonian, which is not unique

one stops at 2nd-order correction (increasing cost and possible lack
of convergence if higher-orders are included)

intruder state problem (close-lying states)



 Perturbation approaches have been established for single-reference and
multireference methods, the examples are

MP2, CASPT2 or NEVPT2

* Problems of the perturbation methods:

not general: for each reference WF it may be necessary to figure out
a zeroth-order Hamiltonian, which is not unique

one stops at 2nd-order correction (increasing cost and possible lack
of convergence if higher-orders are included)

intruder state problem (close-lying states)

 Perturbation approaches designed for multireference WF’s suffer from
additional problems:

CASPT2 or NEVPT2 methods become very expensive (3rd- and 4th-
order reduced density matrices are needed) when the number of
active electron and orbitals increases

often not accurate enough (2nd-order only)

corrected energies do not show monotonic convergence to the FCI
value with the expansion of the number of active electrons and

orbitals
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General formalism of the adiabatic connection (AC) method



Part 2

General formalism of the adiabatic connection (AC) method

The adiabatic connection formalism has been already proposed in
the framework of DFT as a way of accounting for correlation energy

D. Langreth and J. Perdew, Phys. Rev. B 15, 2884 (1977)
and together with the Random Phase Approximation has recently led
to emergence of a new family of orbital-dependent DF correlation

functionals (RPA and its variants)

H. Eshuis, J. Bates, and F. Furche, Theor. Chem. Acc. 131, 1084 (2012)
X. Ren, P. Rinke, C. Joas, and M. Scheffler, J. Mater. Sci. 47, 7447 (2012)



Adiabatic Connection (AC) formula for the Correlation Energy

» Derivation of the AC expression for the correlation energy (for a given
reference WF)

Ecorr — Liegaet — Eref
Eref — <\Ijref|H‘\Ijref>

IS based on defining the AC Hamiltonian

\V/()Sagl }A[a = [:](0) + Ck[:[/
i = i — B



Adiabatic Connection (AC) formula for the Correlation Energy

* The coupling parameter (alpha) switches between partial-correlation

Ui = W B = (U O, )

and full correlation limits

A A

o=t = H, U= =¥, E¥'= Ey = E.pe

HOUS = ESUS
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* From the Hellmann-Feynman theorem
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on one hand

1 Ea 1 R
o Oda:/ <\P8‘|H’\\If8‘>da
0

o Oa

on the other
L OES
o O«

do = B¢~ — B3

— Liexact — <\Ijref [A{(O)|\Ijref>
— Lvexact — <\Dref ]A{ — [A{/‘\Ijref>
— Lvexact — Eref + <\Ij7“€f|[:]/‘\lj"°€f>

— Ecorr + <\Ijref|f{/|quef>




* From the Hellmann-Feynman theorem

OES
Oa

= (WA )

on one hand

1 Ea 1 R
J Oda:/ <\D8‘|H’|\D8‘>da
0

o Oa

on the other
L OES
o Oa

do = B¢~ — E§™°

— Lvexact — <\Ijref [:I(O)|\Ij’ref>
— Lvexact — <\Ijref }A[ — [A{,|\Ijref>
— Lvexact — Efref + <\Ijref|f{,|\ljref>

= Lieorr T <\Ijref|1£[,|\ljref>

Finally




* From the Hellmann-Feynman theorem

OES
Oa

= (WA )

on one hand

1 1
OES .
’da =/ <\D8‘|H’|\If§‘> dov
0

o Oa

on the other
L OES
o Oa

do = B¢~ — E§™°

— Lvexact — <\Ijref [:I(O)|\Ij’ref>
— Lvexact — <\Ijref [:I — [:I,|\Ijref>
— Lvexact — Efref + <\Ijref|f{,|\ljref>

— Ecorr + <\Ijref|1£[,|\ljref>

Finally

(exact but not practical)



Writing 2-RDM operator in terms of 1-RDM
A. D. McLachlan, M. A. Ball, Rev Mod Phys 36, 844 (1964)

* By using anticommutation relations for fermionic operators 2-RDM operator
can be expressed in terms of 1-RDM operators

Q>

PPCITS — ApAgQqUp = —AAzUplg = — A, Uplg + 5195 g = QpUpQgUyg araq5PS

— /)\/prﬁ/qs — &qréps

FPCJ"‘S — <\Ijo‘quT8|\P0> — <\IJO|§/Z?7“§/QS‘\I]0> _ 7qr5ps

Use the resolution of identity 1= [T,) (U, = [Tg) (To| + ) |T,) (T,
v v#0

quv“s — <\IJO|”AYPT |\IJO> <\110’ ”A7q8’q10> + Z <\PO|’AYpT ‘\Ijv> <\Ij1/| ’AYqS‘\IjO> o ’Vqréps

v#0

Ov . 10
= VprVgs T Z Vpr Vgs — “VarOps
v#0



Using the relation

Q o« o,0v o0 |«
qurs o /Ypr/yqs + Z /ypr /YQS Vqrcsps
v#£0

In the adiabatic connection correlation energy expression

1
Bere = [ (W50 ) do — (g | 1,y )
0

allows one to express the correlation energy in terms of the one-electron
reduced functions:

ﬁ)/o‘ — < 8‘|ﬁ/‘\1184> one-electron reduced density matrix (1-RDM)

/yOéaOV — <\P8‘§/‘\IJS> transition one-electron RDM



Adiabatic Connection (AC) formula for the Correlation Energy

The exact AC expression for the correlation energy reads
1
FAC _ / (W + A% da |
0

87 1 a,uv _ oL,V a— «
W — 5 Z, (Z /Ypfro f}/qs ’ —I_ W/ps O/qu ’ o /)/qr 05p8> <T8‘pQ>

pqrs v+£0

prime indicates that terms corresponding to spinorbitals p, q, r, s belonging to
the same group are excluded and

A=Y, [ g e

I pel J#£I qed




Adiabatic Connection (AC) formula for the Correlation Energy

The exact AC expression for the correlation energy reads
1
FAC _ / (W + A% da |
0

87 1 a,uv _ oL,V a— «
W — 5 Z, (Z /Ypfro f}/qs ’ —I_ W/ps O/qu ’ o /)/qr 05p8> <T8‘pQ>

pqrs v+£0

prime indicates that terms corresponding to spinorbitals p, q, r, s belonging to
the same group are excluded and

A=Y, [ g e

I pel J#£I qed

(still exact but still not practical)
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Complete Active Space (CAS) model

\IJCAS _ A[wDET \IJFCI]

DET DET : :
Qp — Qp [{gpp}peinactive] single determinant

FCI __ 7, FCI .
\ =} [{gpp}pEactive] FCI in a reduced space

N

%““—-

Dynamic correlation energy outside CAS is missing



First approximation
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First approximation

Approximation: the one-body density matrix is constant along the AC path

=0
Va1l Ypg = Vpg
Consequently,

A% =0

... poor approximation if a single determinantal WF were used for a system with
strongly correlated electrons, think for example of the N2 molecule
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First approximation

Approximation: the one-body density matrix is constant along the AC path

=0
Va1l Ypg = Vpg
Consequently,

A% =0

... poor approximation if a single determinantal WF were used for a system with
strongly correlated electrons, think for example of the N2 molecule
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... but the approximation is justified if the reference wavefunction is multiconfigurational.



Second approximation

Transition density matrices for each coupling constant
a,0v ol Q
/for T <\IJO ‘/VPT‘\IJV>

are obtained within the Extended Random Phase Approximation.

K. Chatterjee and K. Pernal, J. Chem. Phys. 137, 204109 (2012).
K. Pernal, J. Chem. Theory Comput. 10, 4332 (2014).



Rowe’s equations-of-motion
D. J. Rowe, Rev. Mod. Phys. 40, 153 (1968)

Consider an eigenequation of the Hamiltonian

H |0) = E, |0)
H\v)=E,|v)
wl/:EV_EO

The Rowe’s equations-of-motion formalism is based on the concept of
excitation and dexcitation operators

O 10) = |v)

v

0, |0} =0

(0[ 60, [H, OT]]|0) = w, (0[ [60,07]|0)



Extended Random Phase Approximation

K. Chatterjee and K. Pernal, J. Chem. Phys. 137, 204109 (2012).



Extended Random Phase Approximation
» Only single excitations in the excitation operator

Ol = Z (qua;aq + quagap)
p>q

A B XY -N 0 X
= W,

B A Y? 0 N Y?

Arspqg = Brsgp = <0H&i&87 H, &Q&p]]\0>

K. Chatterjee and K. Pernal, J. Chem. Phys. 137, 204109 (2012).



Extended Random Phase Approximation

» Only single excitations in the excitation operator

Ol = Z (qua;aq + quagap)
p>q

A B XY -N 0 X
= W,

B A Y” 0 N Y”
Arspqg = Brsgp = <0H&i&87 H, &Q&p]]\0>

VPQTS A’I”SPQ — B”"qu — (nT' R n8)<5prh5q o 53th7")

tu tu

are needed!
£ Toura (psltu) + Y Do (tulgr)
tu tu

- 58(] Z qurt <tp‘wu> -+ 5p7“ Z sttu <tU|UJC]>

twu tuw

K. Chatterjee and K. Pernal, J. Chem. Phys. 137, 204109 (2012).



o-Extended Random Phase Approximation (a-ERPA)

Derive the ERPA equations for the AC Hamiltonian

A, B, X ~N 0 X
— wy

Bo Aa Y, 0 N Y®

Vp>q N;?qrs = (np — Ng)0pr0gs

r>S
Vzgg A grs = Apgrs (R, 9%, 7, T)
Vgig [Ba]pqrs — qum(hav 9%, 1)

We only know 1- and 2-electron reduced density matrices for alpha=0, so we
use them in the ERPA equations.



Transition density matrix elements from a-ERPA

[ 0,00 _ . o
\V/p>q Y qp o (nq np) Yl/_pq
[ o, 0v] - . Q

The eigenvectors are normalized

YNV - (X)X =



Adiabatic Connection (AC) formula for the Correlation Energy

A final spin-summed working form of the AC integrand

K. Pernal, Phys. Rev. Lett. 120, 013001 (2018).



Correlation energy from the Adiabatic Connection approximation: a summary

« Compute the energy for an assumed model (reference) and find one- and
two-electron reduced density matrices.

K. Pernal, Phys. Rev. Lett. 120, 013001 (2018).



Correlation energy from the Adiabatic Connection approximation: a summary

 For a given coupling constant the ERPA equation is solved (the main matrix
requires only 1- and 2-RDM'’s obtained form a reference WF)

A, B, Xo ~N 0 X
— wy

Bo Aa Y, 0 N Y?

K. Pernal, Phys. Rev. Lett. 120, 013001 (2018).
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Correlation energy from the Adiabatic Connection approximation: a summary

 For a given coupling constant the ERPA equation is solved (the main matrix
requires only 1- and 2-RDM'’s obtained form a reference WF)

A, B, Xo ~N 0 X
— wy

Bo Aa Y, 0 N Y?

* The eigenvectors are used as approximate transition density matrices

W =WeQY, 11X}

* The AC integrand is computed and the correlation energy obtained. The
correlation energy is added to the reference energy.

1
EAC :/ W da
0

corr

Etot — Eref + EAC

corr

K. Pernal, Phys. Rev. Lett. 120, 013001 (2018).



Computation cost reduction - linearization of the AC integrand



The AC integrand is almost linear if the multireference reference wavefunction is employed
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Plot of the AC integrand for the Hsg linear chain, R - a distance between adjacent
hydrogen atoms. CAS(8,8) reference wavefunction.



The AC integrand is almost linear if the multireference reference wavefunction is employed
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Plot of the AC integrand for the N2> molecule, R - a distance between nitrogen
atoms. CAS(6,6) reference wavefunction.



Linear extrapolation from the o=0 limit

* First-order expansion of the AC integrand

* First-order corrections to the ERPA eigenvectors are found from perturbation
theory. No need to diagonalize full ERPA matrix (only small blocks).



ACn

2 Nmax (TL)
EAComax — 2T / d D?
o T * Z n' (n + 1)

v high-order in a

v'm?> scaling with the system size

v nbé scaling (only) with the number of active orbitals
v avoids instabilities

D. Drwal, P. Beran, M. Hapka, M. Modrzejewski, A. Sokol, L. Veis, K. Pernal, J. Phys. Chem. Lett. 13, 4570 (2022)
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number of virtual orbitals is much larger than the number of the active orbitals
(which is a typical case).



ACn approximation

« Great computational saving: the cost scales only with the 6th power of the
number of the active orbitals.

* The overall cost of the ACn approximation is close to MP2 method if the
number of virtual orbitals is much larger than the number of the active orbitals
(which is a typical case).

* Size-consistent



CASSCF (or DMRG) reference

AC—CAS AC
k = Ecasscr + &

corr

EACO—C’AS EAC’O

= Foassor + B, .

1. Find CASSCF solution (for assumed spaces of active,
inactive and secondary orbitals).

2. Compute the AC correlation energy, which accounts for
correlation among active, inactive and secondary orbitals.

E. Pastorczak and K. Pernal, J. Phys. Chem. Lett. 9, 5534 (2018)

E. Pastorczak, M. Hapka, L. Veis, and K. Pernal, J. Phys. Chem. Lett. 10, 4668 (2019)

P. Beran, M. Matousék, M. Hapka, K. Pernal, and L. Veis, J. Chem. Theory Comput. 17, 7575 (2021)

D. Drwal, P. Beran, M. Hapka, M. Modrzejewski, A. Sokol, L. Veis, K. Pernal, J. Phys. Chem. Lett. 13, 4570 (2022)
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0.7

Errors of the total energy and the dissociation energy in mHa w.r.t MRCISDTQ() values for the
N2 molecule in cc-pVDZ.

(M. Hanauer, A. Koehn, J. Chem. Phys. 136, 204107 (2012).



Energy difference between mono- and bicyclic forms of the 2,6-pyridyne (CeNH3) diradical

NEVPT2- NEVPT2- ACO-

AC-CAS(8,8) = ACO-CAS(8,8) AC-CAS(10,10)

CAS(8,8) CAS(10,10) CAS(10,10)

Energy differences and energy barrier errors in kcal/mol. Errors of the energy
barriers computed with respect to the multireference CCSD(T) - Mk-
MRCCSD(T) - value, 8.8 kcal/mol, from F.A. Evangelista et al. J. Chem.
Phys. 132, 074107 (2010).



Adiabatic Connection (AC) vs. PT2 (CASPT2, NEVPT2)

No shifts in AC unlike in CASPT2

AC scales with the 6th power with the number of active orbitals - large active
spaces can be treated, unlike in CASPT2/NEVPT?2

Accuracy comparable to NEVPT2 but sometimes better

We have examples for which AC shows more systematic improvements with
enlarging active space than NEVPT2
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https://github.com/pernalk/GAMMCOR




