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• Most wavefunction (WF) theories assumes a reference (model) WF



• Most wavefunction (WF) theories assumes a reference (model) WF

Single reference model: electrons are distributed among 
orbitals in a single way (single Slater determinant WF)
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N
jvaci (1)

Mulitereference WF

 =
X

Q

DQâ
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II. MCSCF 2-ELECTRON REDUCED DENSITY MATRIX (2-RDM)

Let fpqrsg be general indices of spinorbitals in the assumed basis set. DeÖne spin-summed
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For closed-shell systems
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Ppqrs =
D
0jP̂pqrsj0

E
=
D
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Multireference model: WF is represented as a linear 
combination of a few Slater determinants of particular 
importance for a problem under consideration
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r âs âq + â
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y
r
âs âq + â
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ây
2
: : : ây
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âq : (2)

A spin-summed 2-RDM operator

P̂pqrs = â
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• The energy error is called correlation energy
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y
qN
jvaci

Ecorr = Eexact  Eref

Eref =
D
Ĥ
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Êpq = â
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• The concept of electron correlation does not have a sharp definition 
(multireference WF definitely accounts for some part of correlation). 


• Taking into account a structure of the wavefunction we distinguish, in general, 
between

Dynamic electron correlation: included by allowing excitations 
to many unoccupied orbitals

Static (non-dynamic) correlation: accounted for by including in 
the wavefunction expansion nearly degenerate states.



1-RDM contains information about electron correlation

One-electron reduced density matrix (1-RDM)

one-electron reduced function: one-electron density matrix γ

Reduced functions

Basic quantum mechanics

j!(!1; !2; :::!N)j
2 = P (!1; !2; :::; !N)

Z
d!1

Z
d!2:::

Z
d!N P (!1; !2; :::; !N) = 1

Ĥ !(!1; !2; :::!N) = E !(!1; !2; :::!N)

Energy

E =

Z
d!1

Z
d!2:::

Z
d!N !

!(!1; !2; :::; !N)Ĥ!(!1; !2; :::; !N)

Kinetic energy

T =

Z
d!1

Z
d!2:::

Z
d!N !

!(!1; !2; :::; !N)T̂!(!1; !2; :::; !N)

T̂ = t̂(r1) + t̂(r2) + :::+ t̂(rN)

1-RDM

*(r1; r
0
1) = N

Z
d,

Z
d!2:::

Z
d!N !

!(r1; ,; !2; :::; !N)!(r
0
1; ,; !2; :::; !N)

T =

Z
dr1

Z
dr01 -(r1 " r

0
1) t̂ *(r1; r

0
1)

Electron-nuclei interaction energy

Een =

Z
d!1

Z
d!2:::

Z
d!N !

!(!1; !2; :::; !N)V̂en!(!1; !2; :::; !N)

V̂en = /ne(r1) + /ne(r2) + :::+ /ne(rN)

Een =

Z
dr /ne(r)0(r)

Electron density

0(r) = N

Z
d,

Z
d!2:::

Z
d!N !

!(r; ,; !2; :::; !N)!(r; ,; !2; :::; !N)

Relation

0(r) =

Z
d, *(!; !)

Z
0(r) dr = N

1



Electron correlation (dynamic or static) is manifested in the pattern of natural 
occupation numbers.



Electron correlation (dynamic or static) is manifested in the pattern of natural 
occupation numbers.

Natural occupation numbers: eigenvalues of the one-electron 
reduced density matrix

I. TITLE: CORRELATION ENERGY FROM RANDOM PHASE APPROXIMA-

TIONS: REDUCED DENSITY MATRIX PERSPECTIVE

II. GENERAL CONSIDERATIONS

First let us deÖne a few basic quantities that will be needed (deÖnitions are consistent

with the McLachlan&Ball paper):

1-electron reduced matrix operators and elements in a basis set of orthonormal spinor-

bitals f'p(x)g

#̂pq = â
y
qâp (1)

#pq = h%0j#̂pqj%0i (2)

# (x; x0) =
X

pq

#pq'p(x)'q(x
0)# (3)

A spin-summed diagonal part of #(x; x0) is simply an electron density function

&(r) =
X

#

# (x; x) (4)

If the spinorbitals diagonalize a matrix #, i.e.

#pq = np(pq (5)

they are called naturals spinorbitals.

2-electron reduced density matrix operator and the matrix read

&̂pqrs = â
y
râ
y
sâqâp (6)

&pqrs =
"
%0jâyrâ

y
sâqâpj%0

#
(7)

and in the spatial representation 2-RDM takes form

&(x1; x2;x
0
1x
0
2) =

X

pqrs

&pqrs'p(x1)'q(x2)'r(x
0
1)
#'s(x

0
2)
#

(8)

Taking its diagonal part and spin-summing yield a well-known pair density function

&(2)(r1; r2) =
X

#1;#2

&(x1; x2;x1x2) (9)
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y
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râ
y
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Natural occupation numbers are nonnegative and not greater than 1

For closed-shell systems

âyp! â
y
r! âs! âq! = â

y
p"
âyr" âs" âq" (37)

âyp! â
y
r"
âs" âq! = â

y
p"
âyr! âs! âq" (38)

and introducing another deÖnition of 2-RDM (used in my code)

#pqrs =
!
0jâyr! â

y
s! âq! âp!j0

"
+
D
0jâyr! â

y
s"
âq" âp!j0

E
(39)

gives the relation

#qspr =
1

2
Ppqrs : (40)

The spin-summed expression for the electronic energy in terms of 2-RDMís reads

Eee =
X

pqrs

#pqrs hrsjpqi =
1

2

X

pqrs

Prpsq hrsjpqi =
1

2

X

pqrs

Prpsq (rpjsq) ; (41)

where

hrsjpqi = (rpjsq) =
Z Z

*r(r1)
"*s(r2)

"r12*p(r1)*q(r2) dr1dr2 : (42)

Let f'pg be natural orbitals diagonalizing a 1-electron reduced density matrix, i.e.

!
âyp! âq!

"
=
D
âyp" âq"

E
= -pqnp (43)

Assume the natural orbitals are divided into disjoint subsets of active (np = 1), inactive

(0 < np < 1) and secondary (np = 0) orbitals. In the representation of the natural orbitals,

the 2-RDM is of the following structure

#pqrs =

8
<

:
#activepqrs if pqrs 2 active

npnq(2-pr-qs ' -ps-qr) otherwise
: (44)

So only the active part is needed (the other nonzero blocks are obtained from the occupation

numbers).

Nat occup numbers

8p 0 ) np ) 1

IV. EXTENDED RANDOM PHASE APPROXIMATION (ERPA)

General ERPA equations are derived from the equations of motion of Rowe under the

assumption that a given excited state j0i is obtained from a ground state j0i by acting on

6



Natural occupation numbers of nitrogen molecule N2 as a function of interatomic distance

Single determinantal WF:

I. PART I

Single reference

! = ây
1
ây
2
: : : ây

N
jvaci (1)

! = ây
1
ây
2
: : : ây14 jvaci (2)

Mulitereference WF

! =
X

Q

DQâ
y
q1
âyq2 : : : â

y
qN
jvaci

Ecorr = Eexact # Eref

Eref =
D
!jĤj!

E

Ĥ(0)!ref = E
(0)!ref

Ĥ 0 = Ĥ # Ĥ(0)

Eexact = E
(0) + E(1) + E(2) + : : :

Often D
!ref jĤj!ref

E
= E(0) + E(1)

and only 2nd-order correction is computed

Ecorr = E
(2) + : : :

II. AC CORRELATION ENERGY

Derivation of the adiabatic connection (AC) expression for the correlation energy deÖned

as

Ecorr $ Eexact # Eref (3)

Eref =
D
!ref jĤj!ref

E
; (4)

is based upon deÖning the AC Hamiltonian

80#+#1 Ĥ+ = Ĥ(0) + )Ĥ 0
(5)

Ĥ 0 = Ĥ # Ĥ(0)
(6)

2



Natural occupation numbers of nitrogen molecule N2 as a function of interatomic distance

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

na
tu

ra
l o

cc
up

at
io

n 
nu

m
be

rs

R [a.u.]

For closed-shell systems
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r! âs! âq! = â
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#pqrs =
!
0jâyr! â

y
s! âq! âp!j0

"
+
D
0jâyr! â

y
s"
âq" âp!j0

E
(39)

gives the relation

#qspr =
1

2
Ppqrs : (40)

The spin-summed expression for the electronic energy in terms of 2-RDMís reads

Eee =
X

pqrs

#pqrs hrsjpqi =
1

2

X

pqrs

Prpsq hrsjpqi =
1

2

X

pqrs

Prpsq (rpjsq) ; (41)

where

hrsjpqi = (rpjsq) =
Z Z

*r(r1)
"*s(r2)

"r12*p(r1)*q(r2) dr1dr2 : (42)

Let f'pg be natural orbitals diagonalizing a 1-electron reduced density matrix, i.e.

!
âyp! âq!

"
=
D
âyp" âq"

E
= -pqnp (43)

Assume the natural orbitals are divided into disjoint subsets of active (np = 1), inactive

(0 < np < 1) and secondary (np = 0) orbitals. In the representation of the natural orbitals,

the 2-RDM is of the following structure

#pqrs =

8
<

:
#activepqrs if pqrs 2 active

npnq(2-pr-qs ' -ps-qr) otherwise
: (44)

So only the active part is needed (the other nonzero blocks are obtained from the occupation

numbers).

Nat occup numbers

8p 0 ) np ) 1

n1 = n2 = : : : = n14 = 1

n15 = n16 = : : : = 0
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y
s! âq! âp!j0
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Single reference

! = ây
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ây
2
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N
jvaci (1)
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1
ây
2
: : : ây14 jvaci (2)

Mulitereference WF
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X

Q

DQâ
y
q1
âyq2 : : : â

y
qN
jvaci

Ecorr = Eexact # Eref

Eref =
D
!jĤj!

E

Ĥ(0)!ref = E
(0)!ref

Ĥ 0 = Ĥ # Ĥ(0)

Eexact = E
(0) + E(1) + E(2) + : : :

Often D
!ref jĤj!ref

E
= E(0) + E(1)

and only 2nd-order correction is computed

Ecorr = E
(2) + : : :

II. AC CORRELATION ENERGY

Derivation of the adiabatic connection (AC) expression for the correlation energy deÖned

as

Ecorr $ Eexact # Eref (3)

Eref =
D
!ref jĤj!ref

E
; (4)

is based upon deÖning the AC Hamiltonian

80#+#1 Ĥ+ = Ĥ(0) + )Ĥ 0
(5)

Ĥ 0 = Ĥ # Ĥ(0)
(6)
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y
p"
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âyp! âq!
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#pqrs =

8
<

:
#activepqrs if pqrs 2 active

npnq(2-pr-qs ' -ps-qr) otherwise
: (44)
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No correlation

Single determinantal WF:

I. PART I

Single reference

! = ây
1
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: : : ây
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jvaci (1)
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ây
2
: : : ây14 jvaci (2)

Mulitereference WF

! =
X
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DQâ
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âyq2 : : : â

y
qN
jvaci

Ecorr = Eexact # Eref

Eref =
D
!jĤj!

E

Ĥ(0)!ref = E
(0)!ref

Ĥ 0 = Ĥ # Ĥ(0)

Eexact = E
(0) + E(1) + E(2) + : : :

Often D
!ref jĤj!ref

E
= E(0) + E(1)

and only 2nd-order correction is computed

Ecorr = E
(2) + : : :

II. AC CORRELATION ENERGY

Derivation of the adiabatic connection (AC) expression for the correlation energy deÖned

as

Ecorr $ Eexact # Eref (3)

Eref =
D
!ref jĤj!ref

E
; (4)

is based upon deÖning the AC Hamiltonian

80#+#1 Ĥ+ = Ĥ(0) + )Ĥ 0
(5)

Ĥ 0 = Ĥ # Ĥ(0)
(6)
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Weak versus strong correlation 

I. GENERAL ADIABATIC CONNECTION FORMULA FOR THE CORRELA-

TION ENERGY

! = C0 0 + C1 1 + C2 2 + : : : Cm m + : : :

jC0j " jC1j ; jC2j ; : : :

jC0j # jC1j # : : : # jCmj

!CAS = Â[ DET !FCI]

 DET =  DET[f'pgp2inactive]

!FCI = !FCI[f'pgp2active]

Eexact = ECAS + Ecorr

Let !ref be a model wavefunction, and Eref a corresponding energy

Eref =
D
!ref jĤj!ref

E
: (1)

Introduce a model Hamiltonian Ĥ(0)
such that

Ĥ(0)
##!ref

$
= E(0)

##!ref
$

(2)

Ĥ(0)!ref = E(0)!ref (3)

and deÖne the AC Hamiltonian as

Ĥ. = Ĥ(0) + )Ĥ 0
(4)

Ĥ 0 = Ĥ & Ĥ(0) : (5)

The Schrˆdinger equation for the *th state of Ĥ.
reads

Ĥ.!./ = E./!
.
/ ; (6)

remember that

##!.=00

$
=
##!ref

$
:

1

How to find the correlation correlation energy?

I. PART I

Single reference

 = ây
1
ây
2
: : : ây

N
jvaci (1)

Mulitereference WF

 =
X

Q

DQâ
y
q1
âyq2 : : : â

y
qN
jvaci

Ecorr = Eexact  Eref

Eref =
D
Ĥ

E

II. MCSCF 2-ELECTRON REDUCED DENSITY MATRIX (2-RDM)

Let fpqrsg be general indices of spinorbitals in the assumed basis set. DeÖne spin-summed

excitation operators

Êpq = â
y
p âq + â

y
p
âq : (2)

A spin-summed 2-RDM operator

P̂pqrs = â
y
p â

y
r âs âq + â

y
p â

y
r
âs âq + â

y
p
âyr âs âq + â

y
p
âyr âs âq (3)

gives rise to 2-RDM written in terms of Ê as

Ppqrs =
D
0jP̂pqrsj0

E
=
D
ÊpqÊrs

E
 qr

D
Êps

E
: (4)

For closed-shell systems

âyp â
y
r âs âq = â

y
p
âyr âs âq (5)

âyp â
y
r
âs âq = â

y
p
âyr âs âq (6)

and introducing another deÖnition of 2-RDM (used in my code)

pqrs =

0jâyr â

y
s âq âpj0


+
D
0jâyr â

y
s
âq âpj0

E
(7)

gives the relation

qspr =
1

2
Ppqrs : (8)
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Êps

E
: (4)

For closed-shell systems
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Weak versus strong correlation 

Weak correlation: 

I. GENERAL ADIABATIC CONNECTION FORMULA FOR THE CORRELA-

TION ENERGY

! = C0 0 + C1 1 + C2 2 + : : : Cm m

jC0j " jC1j ; jC2j ; : : :

jC0j # jC1j # : : : # jCmj

!CAS = Â[ DET !FCI]

 DET =  DET[f'pgp2inactive]

!FCI = !FCI[f'pgp2active]

Eexact = ECAS + Ecorr

Let !ref be a model wavefunction, and Eref a corresponding energy

Eref =
D
!ref jĤj!ref

E
: (1)

Introduce a model Hamiltonian Ĥ(0)
such that

Ĥ(0)
##!ref

$
= E(0)

##!ref
$

(2)

Ĥ(0)!ref = E(0)!ref (3)

and deÖne the AC Hamiltonian as

Ĥ. = Ĥ(0) + )Ĥ 0
(4)

Ĥ 0 = Ĥ & Ĥ(0) : (5)

The Schrˆdinger equation for the *th state of Ĥ.
reads

Ĥ.!./ = E./!
.
/ ; (6)

remember that

##!.=00
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=
##!ref
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1
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Ĥ.!./ = E./!
.
/ ; (6)

remember that

##!.=00

$
=
##!ref

$
:

1

How to find the correlation correlation energy?

I. PART I

Single reference

 = ây
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y
r
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y
qN
jvaci

Ecorr = Eexact  Eref

Eref =
D
Ĥ
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p âq + â
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âs âq + â
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y
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reads
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âq : (2)

A spin-summed 2-RDM operator

P̂pqrs = â
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y
p
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y
q1
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âq : (2)

A spin-summed 2-RDM operator

P̂pqrs = â
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Ppqrs =
D
0jP̂pqrsj0

E
=
D
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r âs âq = â
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Weak versus strong correlation 

Strong correlation can be efficiently captured by multireference wavefunction (MR-WF) models.

Even with very large m the expansion is not long enough (not even DMRG) to 
retrieve all important correlation.

Weak correlation: 

I. GENERAL ADIABATIC CONNECTION FORMULA FOR THE CORRELA-

TION ENERGY
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The Schrˆdinger equation for the *th state of Ĥ.
reads
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such that
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y
p
âq : (2)

A spin-summed 2-RDM operator

P̂pqrs = â
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âyr âs âq (3)

gives rise to 2-RDM written in terms of Ê as
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0jâyr â
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âq âpj0

E
(7)

gives the relation

qspr =
1

2
Ppqrs : (8)

2



• If a Hamiltonian is known for an assumed reference WF, i.e.

perturbation theory can be applied to recover correlation energy for 
the perturbation operator

I. PART I

Single reference

 = ây
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âyq2 : : : â
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y
q1
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y
q1
âyq2 : : : â
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âq : (2)

A spin-summed 2-RDM operator

P̂pqrs = â
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Correlation energy from the perturbation theory 



• Perturbation approaches have been established for single-reference and 
multireference methods, the examples are

MP2, CASPT2 or NEVPT2 



• Problems of the perturbation methods:

not general: for each reference WF it may be necessary to figure out 
a zeroth-order Hamiltonian, which is not unique


one stops at 2nd-order correction (increasing cost and possible lack 
of convergence if higher-orders are included)


intruder state problem (close-lying states)
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• Perturbation approaches have been established for single-reference and 
multireference methods, the examples are

MP2, CASPT2 or NEVPT2 

CASPT2 or NEVPT2 methods become very expensive (3rd- and 4th-
order reduced density matrices are needed) when the number of 
active electron and orbitals increases 


often not accurate enough (2nd-order only) 


corrected energies do not show monotonic convergence to the FCI 
value with the expansion of the number of active electrons and 
orbitals

• Perturbation approaches designed for multireference WF’s suffer from 
additional problems:
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General formalism of the adiabatic connection (AC) method



Part 2

General formalism of the adiabatic connection (AC) method

The adiabatic connection formalism has been already proposed in 
the framework of DFT as a way of accounting for correlation energy

D. Langreth and J. Perdew, Phys. Rev. B 15, 2884 (1977)

and together with the Random Phase Approximation has recently led 
to emergence of a new family of orbital-dependent DF correlation 
functionals (RPA and its variants)

H. Eshuis, J. Bates, and F. Furche, Theor. Chem. Acc. 131, 1084 (2012)

X. Ren, P. Rinke, C. Joas, and M. Scheffler, J. Mater. Sci. 47, 7447 (2012)



Adiabatic Connection (AC) formula for the Correlation Energy 

• Derivation of the AC expression for the correlation energy (for a given 
reference WF)

is based on defining the AC Hamiltonian
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N
jvaci (1)

Mulitereference WF

 =
X

Q

DQâ
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Ĥ 0 = Ĥ  Ĥ(0)
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Derivation of the adiabatic connection (AC) expression for the correlation energy deÖned

as

Ecorr  Eexact  Eref (2)

Eref =
D
ref jĤjref

E
; (3)

is based upon deÖning the AC Hamiltonian

801 Ĥ = Ĥ(0) + Ĥ 0
(4)

Ĥ 0 = Ĥ  Ĥ(0) ; (5)

Ĥ(0) =
X
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ĤI (6)
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y
qN
jvaci

Ecorr = Eexact  Eref

Eref =
D
jĤj
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ĤI (6)

2



Adiabatic Connection (AC) formula for the Correlation Energy 

• The coupling parameter (alpha) switches between partial-correlation

it exploits Hellman-Feynman theorem

801
@E0
@

=
D
0 jĤ

0j0
E

; (7)

where

Ĥ = E

 (8)

and it assumes that at  = 0

=00 = ref ; E=00 =
D
ref jĤ(0)jref

E
: (9)

For the adiabatic connection parameter  = 1 the AC Hamiltonian is equivalent to the

full-interaction electronic Hamiltonian and consequently

Ĥ=1 = Ĥ; =10 = 0; E=10 = E0 = Eexact : (10)

From the Hellman-Feynman theorem one obtains

@E0
@

=
D
0 jĤ

0j0
E

: (11)

Integration of the left-hand-side of Eq.(7) and employing Eq.(??) yield on one hand
Z 1
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Z 1
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D
0 jĤ
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E
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and we have
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E
d

D
ref jĤ 0jref

E

So far everything is exact. Exact but impractical.

The AC correlation energy expression has been formulated for wavefunctions of the form

 =
Y

I

 ̂yI jvaci (16)
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ref jĤ 0jref

E
(15)

and we have

Ecorr =

Z 1

0

D
0 jĤ

0j0
E
d

D
ref jĤ 0jref
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ref jĤ(0)jref

E
(12)

= Eexact 
D
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• From the Hellmann-Feynman theorem

with the eigenvalue

E
(0)

=

X

I

EI . (9)

A correlation energy is defined as a di↵erence between the exact ground state energy E0

satisfying the Schrödinger equation

Ĥ 0 = E0 0 , (10)

and the energy E given in Eq.(7), namely

Ecorr ⌘ E0 � E . (11)

We will find the adiabatic connection formula for Ecorr. For that purpose define the

adiabatic-connection (AC) Hamiltonian

Ĥ
↵
= Ĥ
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+ ↵Ĥ

0
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0
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. (13)

The Schrödinger equation for the ⌫th state of Ĥ
↵
reads
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↵

⌫
 

↵

⌫
. (14)

For the adiabatic connection parameter ↵ = 1 the AC Hamiltonian is equivalent to the

full-interaction electronic Hamiltonian and consequently

Ĥ
↵=1

= Ĥ,  
↵=1
0 =  0, E

↵=1
0 = E0 . (15)

For ↵ = 0 the groups are not correlated and the energy E
↵=0
0 is equal to the 0th-order energy

given in Eq.(9), namely

↵ = 0 Ĥ
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,  
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0 =  , E
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0 = E
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(0)
. (13)

The Schrödinger equation for the ⌫th state of Ĥ
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ref jĤ(0)jref

E
: (9)

For the adiabatic connection parameter  = 1 the AC Hamiltonian is equivalent to the

full-interaction electronic Hamiltonian and consequently
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0 |Ĥ 0| ↵

0

E
. (17)

Integration of the left-hand-side of Eq.(17) and employing Eq.(7) yield

Z 1

0

@E
↵

0

@↵
d↵ = E0 �

X

I

EI

= E0 � E � 1

2

X

I

X

p2I

X

J 6=I

X

q2J

npnq [hpq|pqi � hpq|qpi] . (18)

3

on one hand

it exploits Hellman-Feynman theorem

801
@E0
@

=
D
0 jĤ
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E
(13)

= Eexact  Eref +
D
ref jĤ 0jref
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(exact but not practical)
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ref jĤ(0)jref

E
(12)

= Eexact 
D
ref jĤ  Ĥ 0jref

E
(13)

= Eexact  Eref +
D
ref jĤ 0jref
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• By using anticommutation relations for fermionic operators 2-RDM operator 
can be expressed in terms of 1-RDM operators

Writing 2-RDM operator in terms of 1-RDM

and in the spatial representation
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râ
y
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âq = â
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in the adiabatic connection correlation energy expression

As it has been already noted in Ref.???surjan_rosta an optimal group function (1) is an

eigenfunction of the 0th-order Hamiltonian

Ĥ(0) =
X

I

ĤI : (14)

To Önd expression for the correlation energy in the adiabatic connection framework deÖne

an adiabatic-connection Hamiltonian in the usual way as

Ĥ = Ĥ(0) + Ĥ 0 ; (15)

Ĥ 0 = Ĥ  Ĥ(0) ; (16)

By varying a parameter  from 0 to 1 one smoothly switches between a group-noninteracting

system ( = 0) and a fully interacting case ( = 1). Let fg be a complete set of

eigenfunctions of the adiabatic connection Hamiltonian

Ĥ = E




 : (17)

For  = 0 inter-group correlation e§ects are absent and the ground state eigenfunction 0

turns into a group-function given in Eq.(1), whereas the energy is given by a sum of the

group-energies:

Ĥ=0 = Ĥ(0); =00 = ; E=00 =
X

I

EI : (18)

Ĥ=1 = Ĥ; =10 = 0; E=10 = E0 :

Having deÖned the adiabatic connection Hamiltonian, Eq.(15), with the known ground

state of the "noninteracting" Hamiltonian Ĥ(0)
it is straightforward to derive an adiabatic-

connection formula for the correlation energy given in Eq.(9). A derivation employs an

exact relation between a two-electron reduced density matrix  =
D
0 j̂j0

E
, a reduced

one-electron density matrix  = h0 j̂j0 i and transition one-electron density matrices

;0 = h0 j̂j i for transitions between a ground state and excited states ís, reading

???maclachlan-ball

pqrs = 

pr


qs +

X

 6=0

;0pr ;0qs  qrps : (19)

The Önal adiabatic connection expression for the correlation energy reads (details of the

derivation can be found in Suppl. Mat.)

EACcorr =

Z 1

0

W  d ; (20)
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transition one-electron RDM

Using the relation 

it exploits Hellman-Feynman theorem

801
@E0
@

=
D
0 jĤ

0j0
E

; (7)

where

Ĥ = E

 (8)

and it assumes that at  = 0

=00 = ref ; E=00 =
D
ref jĤ(0)jref

E
: (9)

For the adiabatic connection parameter  = 1 the AC Hamiltonian is equivalent to the

full-interaction electronic Hamiltonian and consequently

Ĥ=1 = Ĥ; =10 = 0; E=10 = E0 = Eexact : (10)

From the Hellman-Feynman theorem one obtains

@E0
@

=
D
0 jĤ

0j0
E

: (11)

Integration of the left-hand-side of Eq.(7) and employing Eq.(??) yield on one hand
Z 1

0

@E0
@

d =

Z 1

0

D
0 jĤ

0j0
E
d

on the other

Z 1

0

@E0
@

d = E=10  E=00

= Eexact 
D
ref jĤ(0)jref

E
(12)

= Eexact 
D
ref jĤ  Ĥ 0jref

E
(13)

= Eexact  Eref +
D
ref jĤ 0jref

E
(14)

= Ecorr +
D
ref jĤ 0jref

E
(15)

and we have

Ecorr =

Z 1

0

D
0 jĤ

0j0
E
d

D
ref jĤ 0jref

E

So far everything is exact. Exact but impractical.

The AC correlation energy expression has been formulated for wavefunctions of the form

 =
Y

I

 ̂yI jvaci (16)

3

allows one to express the correlation energy in terms of the one-electron 
reduced functions:



Adiabatic Connection (AC) formula for the Correlation Energy 

The exact AC expression for the correlation energy reads

prime indicates that terms corresponding to spinorbitals p, q, r, s belonging to 
the same group are excluded and

The exact AC expression for the correlation energy reads

EACcorr =

Z 1

0

(W  +) d ; (27)

W  =
1

2

X

pqrs

0

 
X

 6=0

;0pr ;0qs + =0ps =0qr  =0qr ps

!
hrsjpqi ; (28)

;0pr = h0 j̂prj

i (29)

a prime indicates that spinorbitals pqrs do not belong at the same time to one of the groups

I, and

 =
X

I

X

p2I

X

J 6=I

X

q2J

h
0

pq

Z 1

0

(qp  
=0
qp )d

Approximation: assuming the equality of the 1-RDMís for all allowed values of the para-

meter 

82[0;1] pq = 
=0
pq (30)

yields

 = 0 : (31)

III. MCSCF 2-ELECTRON REDUCED DENSITY MATRIX (2-RDM)

Let fpqrsg be general indices of spinorbitals in the assumed basis set. DeÖne spin-summed

excitation operators

Êpq = â
y
p âq + â

y
p
âq : (32)

A spin-summed 2-RDM operator

P̂pqrs = â
y
p â

y
r âs âq + â

y
p â

y
r
âs âq + â

y
p
âyr âs âq + â

y
p
âyr âs âq (33)

gives rise to 2-RDM written in terms of Ê as

Ppqrs =
D
0jP̂pqrsj0

E
=
D
ÊpqÊrs

E
 qr

D
Êps

E
: (34)

For closed-shell systems

âyp â
y
r âs âq = â

y
p
âyr âs âq (35)

âyp â
y
r
âs âq = â

y
p
âyr âs âq (36)
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y
r
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y
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âq : (32)

A spin-summed 2-RDM operator

P̂pqrs = â
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y
p
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âs âq = â
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Complete Active Space (CAS) model

I. GENERAL ADIABATIC CONNECTION FORMULA FOR THE CORRELA-

TION ENERGY

! =  1 +  2 +  3 + : : :  m

!CAS = Â[ DET !FCI]

 DET =  DET[f'pgp2inactive]

!FCI = !FCI[f'pgp2active]

Eexact = ECAS + Ecorr

Let !ref be a model wavefunction, and Eref a corresponding energy

Eref =
D
!ref jĤj!ref

E
: (1)

Introduce a model Hamiltonian Ĥ(0)
such that

Ĥ(0)
##!ref

$
= E(0)

##!ref
$

(2)

Ĥ(0)!ref = E(0)!ref (3)

and deÖne the AC Hamiltonian as

Ĥ. = Ĥ(0) + 'Ĥ 0
(4)

Ĥ 0 = Ĥ $ Ĥ(0) : (5)

The Schrˆdinger equation for the (th state of Ĥ.
reads

Ĥ.!./ = E./!
.
/ ; (6)

remember that

##!.=00

$
=
##!ref

$
:

A correlation energy is deÖned as a di§erence between the exact ground state energy E0

satisfying the Schrˆdinger equation

Ĥ.=1!.=10 = E.=10 !.=10 ; (7)
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Ĥ 0 = Ĥ $ Ĥ(0) : (5)

The Schrˆdinger equation for the (th state of Ĥ.
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such that
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Ĥ(0)!ref = E(0)!ref (3)

and deÖne the AC Hamiltonian as
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reads
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Ĥ 0 = Ĥ $ Ĥ(0) : (5)

The Schrˆdinger equation for the (th state of Ĥ.
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First approximation

Approximation: the one-body density matrix is constant along the AC path

The exact AC expression for the correlation energy reads

EACcorr =

Z 1

0

(W  +) d ; (27)

W  =
1

2

X

pqrs

0

 
X

 6=0

;0pr ;0qs + =0ps =0qr  =0qr ps

!
hrsjpqi ; (28)

;0pr = h0 j̂prj

 i (29)

a prime indicates that spinorbitals pqrs do not belong at the same time to one of the groups

I, and

 =
X

I

X

p2I

X

J 6=I

X

q2J

h
0

pq

Z 1

0

(qp  
=0
qp )d

Approximation: assuming the equality of the 1-RDMís for all allowed values of the para-

meter 

82[0;1] pq = 
=0
pq (30)

=0pq =

ref jâyqâpjref



yields

 = 0 : (31)

III. MCSCF 2-ELECTRON REDUCED DENSITY MATRIX (2-RDM)

Let fpqrsg be general indices of spinorbitals in the assumed basis set. DeÖne spin-summed

excitation operators

Êpq = â
y
p âq + â

y
p
âq : (32)

A spin-summed 2-RDM operator

P̂pqrs = â
y
p â

y
r âs âq + â

y
p â

y
r
âs âq + â

y
p
âyr âs âq + â

y
p
âyr âs âq (33)

gives rise to 2-RDM written in terms of Ê as

Ppqrs =
D
0jP̂pqrsj0

E
=
D
ÊpqÊrs

E
 qr

D
Êps

E
: (34)

For closed-shell systems

âyp â
y
r âs âq = â

y
p
âyr âs âq (35)

âyp â
y
r
âs âq = â

y
p
âyr âs âq (36)
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Êpq = â
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y
p â
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I, and

 =
X

I

X

p2I

X

J 6=I

X

q2J

h
0

pq

Z 1

0

(qp  
=0
qp )d

Approximation: assuming the equality of the 1-RDMís for all allowed values of the para-

meter 

82[0;1] pq = 
=0
pq (30)

=0pq =

ref jâyqâpjref



yields

 = 0 : (31)

III. MCSCF 2-ELECTRON REDUCED DENSITY MATRIX (2-RDM)

Let fpqrsg be general indices of spinorbitals in the assumed basis set. DeÖne spin-summed

excitation operators

Êpq = â
y
p âq + â

y
p
âq : (32)

A spin-summed 2-RDM operator

P̂pqrs = â
y
p â

y
r âs âq + â

y
p â
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r
âs âq + â

y
p
âyr âs âq + â

y
p
âyr âs âq (33)

gives rise to 2-RDM written in terms of Ê as

Ppqrs =
D
0jP̂pqrsj0

E
=
D
ÊpqÊrs

E
 qr

D
Êps

E
: (34)

For closed-shell systems

âyp â
y
r âs âq = â

y
p
âyr âs âq (35)

âyp â
y
r
âs âq = â

y
p
âyr âs âq (36)
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y
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y
p â
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âyp â
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... poor approximation if a single determinantal WF were used for a system with 
strongly correlated electrons, think for example of the N2 molecule
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For closed-shell systems

âyp! â
y
r! âs! âq! = â

y
p"
âyr" âs" âq" (37)

âyp! â
y
r"
âs" âq! = â

y
p"
âyr! âs! âq" (38)

and introducing another deÖnition of 2-RDM (used in my code)

#pqrs =
!
0jâyr! â

y
s! âq! âp!j0

"
+
D
0jâyr! â

y
s"
âq" âp!j0

E
(39)

gives the relation

#qspr =
1

2
Ppqrs : (40)

The spin-summed expression for the electronic energy in terms of 2-RDMís reads

Eee =
X

pqrs

#pqrs hrsjpqi =
1

2

X

pqrs

Prpsq hrsjpqi =
1

2

X

pqrs

Prpsq (rpjsq) ; (41)

where

hrsjpqi = (rpjsq) =
Z Z

*r(r1)
"*s(r2)

"r12*p(r1)*q(r2) dr1dr2 : (42)

Let f'pg be natural orbitals diagonalizing a 1-electron reduced density matrix, i.e.

!
âyp! âq!

"
=
D
âyp" âq"

E
= -pqnp (43)

Assume the natural orbitals are divided into disjoint subsets of active (np = 1), inactive

(0 < np < 1) and secondary (np = 0) orbitals. In the representation of the natural orbitals,

the 2-RDM is of the following structure

#pqrs =

8
<

:
#activepqrs if pqrs 2 active

npnq(2-pr-qs ' -ps-qr) otherwise
: (44)

So only the active part is needed (the other nonzero blocks are obtained from the occupation

numbers).

Nat occup numbers

8p 0 ) np ) 1

n1 = n2 = : : : = n14 = 1

n15 = n16 = : : : = 0

0 = 0

0 = 1
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âyp! âq!
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First approximation

Approximation: the one-body density matrix is constant along the AC path

The exact AC expression for the correlation energy reads

EACcorr =

Z 1

0

(W  +) d ; (27)

W  =
1

2

X

pqrs

0

 
X

 6=0

;0pr ;0qs + =0ps =0qr  =0qr ps

!
hrsjpqi ; (28)

;0pr = h0 j̂prj

 i (29)

a prime indicates that spinorbitals pqrs do not belong at the same time to one of the groups

I, and

 =
X

I

X

p2I

X

J 6=I

X

q2J

h
0

pq

Z 1

0

(qp  
=0
qp )d

Approximation: assuming the equality of the 1-RDMís for all allowed values of the para-

meter 

82[0;1] pq = 
=0
pq (30)

=0pq =

ref jâyqâpjref



yields

 = 0 : (31)

III. MCSCF 2-ELECTRON REDUCED DENSITY MATRIX (2-RDM)

Let fpqrsg be general indices of spinorbitals in the assumed basis set. DeÖne spin-summed

excitation operators

Êpq = â
y
p âq + â

y
p
âq : (32)

A spin-summed 2-RDM operator

P̂pqrs = â
y
p â

y
r âs âq + â

y
p â

y
r
âs âq + â
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p
âyr âs âq + â
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âyr âs âq (33)

gives rise to 2-RDM written in terms of Ê as

Ppqrs =
D
0jP̂pqrsj0

E
=
D
ÊpqÊrs

E
 qr

D
Êps

E
: (34)

For closed-shell systems

âyp â
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r âs âq = â
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âyr âs âq (35)

âyp â
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p
âyr âs âq (36)
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5

... but the approximation is justified if the reference wavefunction is multiconfigurational.

... poor approximation if a single determinantal WF were used for a system with 
strongly correlated electrons, think for example of the N2 molecule
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For closed-shell systems

âyp! â
y
r! âs! âq! = â

y
p"
âyr" âs" âq" (37)

âyp! â
y
r"
âs" âq! = â

y
p"
âyr! âs! âq" (38)

and introducing another deÖnition of 2-RDM (used in my code)

#pqrs =
!
0jâyr! â

y
s! âq! âp!j0

"
+
D
0jâyr! â

y
s"
âq" âp!j0

E
(39)

gives the relation

#qspr =
1

2
Ppqrs : (40)

The spin-summed expression for the electronic energy in terms of 2-RDMís reads

Eee =
X

pqrs

#pqrs hrsjpqi =
1

2

X

pqrs

Prpsq hrsjpqi =
1

2

X

pqrs

Prpsq (rpjsq) ; (41)

where

hrsjpqi = (rpjsq) =
Z Z

*r(r1)
"*s(r2)

"r12*p(r1)*q(r2) dr1dr2 : (42)

Let f'pg be natural orbitals diagonalizing a 1-electron reduced density matrix, i.e.

!
âyp! âq!

"
=
D
âyp" âq"

E
= -pqnp (43)

Assume the natural orbitals are divided into disjoint subsets of active (np = 1), inactive

(0 < np < 1) and secondary (np = 0) orbitals. In the representation of the natural orbitals,

the 2-RDM is of the following structure

#pqrs =

8
<

:
#activepqrs if pqrs 2 active

npnq(2-pr-qs ' -ps-qr) otherwise
: (44)

So only the active part is needed (the other nonzero blocks are obtained from the occupation

numbers).

Nat occup numbers

8p 0 ) np ) 1

n1 = n2 = : : : = n14 = 1

n15 = n16 = : : : = 0

0 = 0

0 = 1

6

For closed-shell systems
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Second approximation

Transition density matrices for each coupling constant

are obtained within the Extended Random Phase Approximation.

The exact AC expression for the correlation energy reads

EACcorr =

Z 1

0

(W  +) d ; (27)

W  =
1

2

X

pqrs

0

 
X

 6=0

;0pr ;0qs + =0ps =0qr  =0qr ps

!
hrsjpqi ; (28)

;0pr = h0 j̂prj

 i (29)

a prime indicates that spinorbitals pqrs do not belong at the same time to one of the groups

I, and

 =
X

I

X

p2I

X

J 6=I

X

q2J

h
0

pq

Z 1

0

(qp  
=0
qp )d

Approximation: assuming the equality of the 1-RDMís for all allowed values of the para-

meter 

82[0;1] pq = 
=0
pq (30)

=0pq =

ref jâyqâpjref



yields

 = 0 : (31)

III. MCSCF 2-ELECTRON REDUCED DENSITY MATRIX (2-RDM)

Let fpqrsg be general indices of spinorbitals in the assumed basis set. DeÖne spin-summed

excitation operators

Êpq = â
y
p âq + â

y
p
âq : (32)
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For closed-shell systems

âyp â
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âyr âs âq (35)
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Rowe’s equations-of-motion

Consider an eigenequation of the Hamiltonian 

In the adiabatic approximation

8pqvw Kpqvw =
@
P

rs(W

rs[]Wsr[])U


rpUsq



@vw


=(0)

; (102)

where

Wpq =


Eee[]

'p
'q


: (103)

Eee[] =
1

2

X

pqrs

rspq[n] hpqjrsi

Wpq =


Eee[]

'p
'q


=
X

ptrs

ptrs[n] hrsjqti : (104)

0

@ A B

B A

1

A

0

@ X

Y

1

A = !

0

@ N 0

0 N

1

A

0

@ X

Y

1

A (105)

Apqrs = Bpq;sr = (nr  ns)(prhqs  qshrp +Kpqrs)

Npqrs = (np  nq)prqs

8p>q 0qp = (nq  np)Y

pq ; (106)

8p<q 0qp = (np  nq)X

qp ; (107)

8p 0pp = 0 (108)

Rowe

Ĥ j0i = E0 j0i

Ĥ ji = E ji

! = E  E0

19

D. J. Rowe, Rev. Mod. Phys. 40, 153 (1968)

The Rowe’s equations-of-motion formalism is based on the concept of 
excitation and dexcitation operators 

I. EOM

Define the Hamiltonian and the excitation and the deexcitation operators

H |⇥⇤ = E� |⇥⇤ (1)

O+
� |0⇤ = |⇥⇤ (2)

O� |0⇤ = 0 (3)

Then

[H, O+] |0⇤ = ⇤�O
+ |0⇤ (4)

Multiply by an arbitrary state ⇥0| �O to obtain

⇥0| �O[H, O+] |0⇤ = ⇥0| �O[H, O+] |0⇤ � ⇥0| [H, O+]�O |0⇤ = ⇥0| [�O, [H, O+]] |0⇤ (5)
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• Only single excitations in the excitation operator

In the adiabatic approximation

8pqvw Kpqvw =
@
P

rs(W

rs[]Wsr[])U


rpUsq



@vw


=(0)

; (6)

where

Wpq =


Eee[]

'p
'q


: (7)

And the adiabatic equations read (A changed to A and the deÖnition modiÖed
accordingly)

(A+B) XI(!) = ! N XR(!) ; (8)

(AB) XR(!) = ! N XI(!) ; (9)

Apq;rs = Bpr;sr = (nr  ns)(prhqs  qshrp +Kpqrs)

Npq;rs = (np  nq)prqs

8p>q XR
pq(!) = (np  nq)1Repq (!)

8p>q XI
pq(!) = (np  nq)1Impq (!)

8pq pq(!) = pq np(!) + (np  nq) Upq(!) : (10)

If the functional is of the form

Eee[] =
1

2

X

pqrs

rspq[n] hpqjrsi

then

ATDRDMFT = AERPA

BTDRDMFT = BERPA

2 ERPA

Oy =
X

p>q


Xpqa

y
paq + Ypqa

y
qap


(11)

The ERPA equations [cf. K. Chatterjee and K. Pernal, J. Chem. Phys. 137,
204109 (2012).] are given by the A and B matrices and for singlet excitations
they read

8r>s
X

p>q

(Arspq +Brspq)(Xpq + Ypq) = !(nr  ns)(Yrs Xrs) (12)

8r>s
X

p>q

(Arspq Brspq)(Ypq Xpq) = !(nr  ns)(Xrs + Yrs) (13)

2

In the adiabatic approximation

8pqvw Kpqvw =
@
P

rs(W

rs[]Wsr[])U


rpUsq



@vw


=(0)

; (102)

where

Wpq =


Eee[]

'p
'q


: (103)

Eee[] =
1

2

X

pqrs

rspq[n] hpqjrsi

Wpq =


Eee[]

'p
'q


=
X

ptrs

ptrs[n] hrsjqti : (104)

0

@ A B

B A

1

A

0

@ X

Y

1

A = !

0

@ N 0

0 N

1

A

0

@ X

Y

1

A (105)

Apqrs = Bpq;sr = (nr  ns)(prhqs  qshrp +Kpqrs)

Npqrs = (np  nq)prqs

8p>q 0qp = (nq  np)Y

pq ; (106)

8p<q 0qp = (np  nq)X

qp ; (107)

8p 0pp = 0 (108)

Rowe

Ĥ j0i = E0 j0i

Ĥ ji = E ji

! = E  E0

19

where ayp, ap are creation and annihilation operators pertaining to natural spinorbitals.

Notice that diagonal terms like âypâp are excluded for two reasons: (1) we have observed that

they give negligible contributions to excitation energies, (2) the resulting ERPA equations

would be of higher dimension if diagonal terms are included.

The ERPA equations presented in. K. Chatterjee and K. Pernal, J. Chem. Phys. 137,

204109 (2012) read

X

p>q

ArspqXpq +
X

p>q

BrspqYpq = !(nr  ns)Xrs ;

X

p>q

BrspqXpq +
X

p>q

ArspqYpq = !(nr  ns)Yrs ; (45)

The matrices A and B are real and they are deÖned as follows:

Arspq = Brsqp =
D
0j[âyrâs; [Ĥ; â

y
qâp]]j0

E
: (46)

If only singlet excitations are included in Eq.(44) and

Xpq = Xpq = Xpq (47)

Ypq = Ypq = Ypq (48)

then

Arspq = Brsqp =
1

2

D
0j[Êrs; [Ĥ; Êqp]]j0

E
: (49)

or if the matrices are written explicitely in terms of 2-RDM their (spin-summed) elements

take form

8pqrs Apqrs = Bpqsr = hsqpr(np  ns) + hprsq(nq  nr)

+
X

tu

hstjquipurt +
X

tu

hstjuqiputr

+
X

tu

hupjtristqu +
X

tu

hupjrtistuq


X

tu

hpsjtuituqr 
X

tu

htujqrisput


1

2
sqWpr 

1

2
prWqs (50)

where

Wpr =
X

twu

[htpjwuiwutr + htpjuwiwurt] (51)
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Apqrs = Bpq;sr = (nr  ns)(prhqs  qshrp +Kpqrs)

Npqrs = (np  nq)prqs

8p>q 0qp = (nq  np)Y

pq ; (106)

8p<q 0qp = (np  nq)X

qp ; (107)

8p 0pp = 0 (108)

Rowe

Ĥ j0i = E0 j0i
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! = E  E0

8pqrs Arspq = Brsqp = (nr  ns)(prhsq  sqhpr)

+
X

tu

purt hstjjqui+
X

tu

stqu hupjjtri

+
X

tu

turq hpsjtui+
X

tu

sptu htujqri

+ sq
X

twu

wurt htpjwui+ pr
X

tuw

swtu htujwqi

19

only 1- and 2-RDM’s 
are needed!

• Only single excitations in the excitation operator

In the adiabatic approximation
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where
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accordingly)
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then
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The ERPA equations [cf. K. Chatterjee and K. Pernal, J. Chem. Phys. 137,
204109 (2012).] are given by the A and B matrices and for singlet excitations
they read
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X
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(Arspq Brspq)(Ypq Xpq) = !(nr  ns)(Xrs + Yrs) (13)

2

In the adiabatic approximation

8pqvw Kpqvw =
@
P

rs(W

rs[]Wsr[])U


rpUsq



@vw


=(0)

; (102)

where

Wpq =


Eee[]

'p
'q


: (103)

Eee[] =
1

2

X

pqrs

rspq[n] hpqjrsi

Wpq =


Eee[]

'p
'q


=
X

ptrs

ptrs[n] hrsjqti : (104)

0

@ A B

B A

1

A

0

@ X

Y

1

A = !

0

@ N 0

0 N

1

A

0

@ X

Y

1

A (105)

Apqrs = Bpq;sr = (nr  ns)(prhqs  qshrp +Kpqrs)

Npqrs = (np  nq)prqs

8p>q 0qp = (nq  np)Y

pq ; (106)

8p<q 0qp = (np  nq)X

qp ; (107)

8p 0pp = 0 (108)

Rowe
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where ayp, ap are creation and annihilation operators pertaining to natural spinorbitals.

Notice that diagonal terms like âypâp are excluded for two reasons: (1) we have observed that

they give negligible contributions to excitation energies, (2) the resulting ERPA equations

would be of higher dimension if diagonal terms are included.
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204109 (2012) read
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The matrices A and B are real and they are deÖned as follows:

Arspq = Brsqp =
D
0j[âyrâs; [Ĥ; â
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E
: (46)

If only singlet excitations are included in Eq.(44) and
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Ypq = Ypq = Ypq (48)

then

Arspq = Brsqp =
1

2
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E
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or if the matrices are written explicitely in terms of 2-RDM their (spin-summed) elements

take form

8pqrs Apqrs = Bpqsr = hsqpr(np  ns) + hprsq(nq  nr)

+
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tu
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+
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hupjtristqu +
X

tu

hupjrtistuq


X

tu

hpsjtuituqr 
X

tu

htujqrisput


1

2
sqWpr 

1

2
prWqs (50)

where
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α-Extended Random Phase Approximation (α-ERPA)

W =
1

2

X

pqrs

(1 IpIqIqIrIrIs)

 
X

 6=0

;0pr ;0qs + (np  1)nqrqps

!
hrsjpqi ; (21)

where the indices p; q; r; s pertain to the natural spinorbitals corresponding to the group

product wavefunction . A symbol Ip denotes a group which a spinorbital p is assigned to.

The expression for the adiabatic connection integrand given in Eq.(21) has been obtained

by assuming that for each  one-electron reduced density matrices are equal to , i.e.

82[0;1] pq = pqnp : (22)

Notice that a similar assumption is exploited in the standard random phase approximation

(RPA) for the correlation energy ??maclachlan, furche_review. In fact, it can be checked by

inspection that in a special case of one-electron group function (a group function (1) taking

form of a Slater determinant) the adiabatic connection expression (21) becomes equivalent to

the one used in the RPAX correlation energy formula ???furche?. In RPAmethods (proposed

for a single reference wavefunction) transition density matrices ;0 (or transition densities)

follow from TD-HF or TD-DFT approaches (in the latter, the exchange-correlation kernel

is typically set to zero). The recently proposed extended random phase approximation

(ERPA) based on the Roweís equation of motion ???rowe, allows one to Önd approximate

transition density matrix elements for the adiabatic connection Hamiltonian Ĥ given in

Eq.(15). By following derivation of the ERPA equations shown in Ref.??? with the fully

interacting Hamiltonian Ĥ replaced by its adiabatic connection counterpart Ĥ one is led

to the following set of -ERPA equations
0

@ A B

B A

1

A

0

@ X


Y


1

A = !

0

@ N 0

0 N

1

A

0

@ X


Y


1

A : (23)

The matrices A, B, N are given by one- and two-electron elements of the adiabatic

connection Hamiltonian

hpq = hpq + IpIq(1 )h
eff
pq ;

grspq =

 + IpIqIqIrIrIs(1 )


hrsjpqi

and one- and group-two-electron reduced density matrices,  and

I

, respectively namely

A = A[h;g; ;

I

] ;

B = B[h;g; ;

I

] ;

(N )pq;rs = (np  nq)prqs

6

Derive the ERPA equations for the AC Hamiltonian

We only know 1- and 2-electron reduced density matrices for alpha=0, so we 
use them in the ERPA equations.

and the elements pqrs have been deÖned in Eq.(37).

The ERPA equations, Eq.(45) can be written as an eigenproblem

A+A ~Y = !2 ~Y (52)

~X =
1

!
A ~Y (53)

where

~Xpq = (cp + cq)(Xpq + Ypq)

~Yrs = (cr  cs)(Yrs Xrs)

A+rspq = (cr + cs)
1(Arspq +Brspq)(cp + cq)

1
(54)

Arspq = (cr  cs)
1(Arspq Brspq)(cp  cq)1 (55)

c2p = np (56)

If the matrices are symmetric and positive-semideÖnite the ERPA problem turns into a

symmetric eigenproblem reading


A+
1=2

A

A+
1=2

Z = !2Z (57)

Z =

A+
1=2 ~Y (58)

V. AC-ERPA CORRELATION ENERGY

-ERPA equations derived for the AC Hamiltonian read
0

@ A B

B A

1

A

0

@ X


Y


1

A = !

0

@ N 0

0 N

1

A

0

@ X


Y


1

A : (59)

The matrices are given as

8p>q
r>s

Npqrs = (np  nq)prqs ; (60)

8p>q
r>s

[A]pqrs = Apqrs(h
; g; ;) ; (61)

8p>q
r>s

[B]pqrs = Bpqrs(h
; g; ;) ; (62)

where A, B follows from Eqs.(50) and (51) after replacing one-electron Hamiltonian h

and two-electron integrals with h and g deÖned, respectively, as

801 8pq hpq = hpq + IpIq(1 )h
eff
pq ; (63)

801 8pqrs gpqrs =

 + IpIqIqIrIrIs(1 )


hpqjrsi ; (64)

8



Transition density matrix elements from α-ERPA
directly related to transition density matrix elements in ERPA approximation, namely [8]

8p>q

⇥
�
↵,0⌫

⇤
qp

= (nq � np) [Y
↵

⌫
]
pq

, (17)

8q>p

⇥
�
↵,0⌫

⇤
qp

= (np � nq) [X
↵

⌫
]
qp

(18)

The final form of the spin-summed AC integrand reads (13)

W
↵ = 2

X0

p>q,r>s

{(np � nq)(nr � ns) (19)

⇥
X

⌫

([Y↵

⌫
]
pq
� [X↵

⌫
]
pq
)([Y↵

⌫
]
rs
� [X↵

⌫
]
rs
)

� 1

2
[np(1� nq) + nq(1� np)]�pr�qs} hpr|qsi . (20)

Notice than only eigenvectors corresponding to positive eigenvalues (excitation energies),

enter the summation with respect to ⌫.

Eq.(20) together with (12) constitute a central achievement of the paper and they provide

a way of obtaining electron correlation for a broad class of multireference wavefunctions. One

expects that if the orbitals are localized in space and group functions describes electrons

localized on distinct fragments of a molecule then the integrand W
↵ could be approximated

with the two lowest-order terms in the ↵-expansion, i.e.

W
↵ = W

(0) + ↵W
(1)

, (21)

(where W
(0) = W

↵=0) which, upon performing ↵-integration, would result in the following

expression for the correlation energy

E
AC0
corr

= W
(0) +

1

2
W

(1)
. (22)

Notice that in a special case of a single reference (HF) wavefunction (all groups are just single-

electron ones) the ERPA equations become equivalent to those of the TD-HF approach,

the 0th-order term W
(0) vanishes, and the correlation expression (22) reduces to the well

known MP2 correlation energy expression. For a general multiconfiguration wavefunction

of the form (1) 0th- and 1st-order terms W
(0)
, W

(1) can be found by applying a standard

second-order perturbation theory to the ERPA eigenproblem treating blocks A(1)
,B(1) in

Eqs.(15),(16) as perturbation to the 0th-order matrix. Explicit, surprising simple, expression

for the correlation energy EAC0
corr

in the interpolated formula (22) will be presented for a special

6

The eigenvectors are normalized A symbol Ip denotes a group which a spinorbital p belongs to. Eigenvectors are normalized

in the following way

[Y
 ]
T NY

  [X

 ]
T NX

 =
1

2
(65)

Approximation: use eigenvectors [X
 ;Y


 ] to approximate 

;0

8p>q

;0


qp
= (nq  np) [Y

 ]pq ; (66)

8q>p

;0


qp
= (np  nq) [X

 ]qp (67)

This leads to spin-summed expressions (c.f. Eq.(27)-(29))

EAC =

Z 1

0

W  d (68)

W  = 2
X

p>q;r>s

0f(np  nq)(nr  ns)
X



([Y
 ]pq  [X


 ]pq)([Y


 ]rs  [X


 ]rs)


1

2
[np(1 nq) + nq(1 np)]prqsg hprjqsi : (69)

where a prime indicates that all four indices pqrs do not belong at the same time to the

set of active orbitals (i.e. terms for which pqrs are active are not included in the expression

above). The same is true if pqrs are all inactive - such terms are simply vanishing because

(np  nq)(nr  ns) and np(1 nq) + nq(1 np) are equal to 0. So EERPAcorr introduces active-

inactive, active-secondary, and inactive-secondary correlation.

VI. AC CORRELATION ENERGY FOR CASSCF, DMRG, GVB

1- and 2-electron reduced density matrices from CASSCF, DMRG or GVB calculation

must be available. For a given  ERPA equations given in Eq.(59) are solved, eigenvectors

[X
 ;Y


 ] are found, and the AC integrand W

, Eq.(69), is computed. We have found out

that W is very much linear so it seems reasonable to consider four variants of the AC

approximation

 full  integration (involves numerical integration and solving -ERPA equations for a

number of values );

EAC =

Z 1

0

W d ; (70)

9
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up to their absolute values |!+
⌫
| = |!�

⌫
|. The elements of

the matrices A↵, B↵ are linear in terms of the coupling
strength parameter ↵, which can be written explicitly as

A↵ = A(0) + ↵A(1)
, (15)

B↵ = B(0) + ↵B(1)
, (16)

the A(0), B(0), A(1), and B(1) matrices being ↵-
independent. The eigenvectors (X↵

⌫
,Y↵

⌫
) are directly re-

lated to transition density matrix elements in ERPA ap-
proximation, namely [11]

8p>q

⇥
�
↵,0⌫

⇤
qp

= (nq � np) [Y
↵

⌫
]
pq

, (17)

8q>p

⇥
�
↵,0⌫

⇤
qp

= (np � nq) [X
↵

⌫
]
qp

(18)

The final form of the spin-summed AC integrand reads
(13)

W
↵ = 2

X0

p>q,r>s

{(np � nq)(nr � ns)

⇥
X

⌫

([Y↵

⌫
]
pq

� [X↵

⌫
]
pq
)([Y↵

⌫
]
rs

� [X↵

⌫
]
rs
)

� 1

2
[np(1� nq) + nq(1� np)]�pr�qs} hpr|qsi .

(19)

Notice that only eigenvectors corresponding to positive
eigenvalues (excitation energies), enter the summation
with respect to ⌫.

Eqs.(19) and (12) constitute the central achievement
of the paper. They provide a way of obtaining electron
correlation for a broad class of multireference wavefunc-
tions. Since static correlation is taken into account by the
multireference character of the wavefunction one expects
the near-linear behavior of the integrand. Consequently,
the integrand W

↵ could be approximated with the two
lowest-order terms in the ↵-expansion, i.e.

W
↵ = W

(0) + ↵W
(1)

, (20)

(where W
(0) = W

↵=0) which would result in the follow-
ing expression for the correlation energy

E
AC0
corr

= W
(0) +

1

2
W

(1)
. (21)

Notice that in a special case of a single reference (HF)
wavefunction (all groups are just single-electron ones)
the ERPA equations become equivalent to those of the
TD-HF approach, the 0th-order term W

(0) vanishes, and
the correlation expression (21) reduces to the well known
MP2 correlation energy expression. For a general mul-
ticonfiguration wavefunction of the form (1) 0th- and
1st-order terms W

(0)
, W

(1) can be found by applying
perturbation theory to the ERPA eigenproblem treat-
ing blocks A(1)

,B(1) in Eqs.(15),(16) as a perturbation.
Explicit, surprisingly simple, expression for the correla-
tion energy E

AC0
corr

in the interpolated formula (21) will

be presented for a special case when each group function
describes two electrons, 8I NI = 2. In addition, spins
are singlet-coupled in each group, and each orbital sub-
set I is only two-dimensional (unoccupied spinorbitals
will form a separate group of virtual orbitals). The con-
sidered case of two-electron strongly orthogonal group
functions has been known in the literature as generalized
valence bond perfect-pairing (GVB-PP) or simply GVB
method [12–14]. Due to a block-diagonal structure of the
ERPA matrices for ↵ = 0 the 0th-order solutions of the
ERPA equations for the GVB reference state take a sim-
ple form for both the inter-group excitations, involving
excitations from an orbital belonging to one group to an
orbital assigned to another group

8 ⌫=(pq)
p>q

p2I q2J I 6=J

!
+
⌫
= � "⌫

np � nq

, (22)

as well as for the intra-group excitations for which

8 ⌫=(pq)
p>q

p2I q2I

!
+
⌫
=

"⌫

(cp + cq)2
. (23)

⌫ is a superindex combining two orbital indices, and
8⌫=(pq)

p>q

"⌫ =
⇥
A(0) + B(0)

⇤
pq,pq

. The coe�cients {cp}

are expansion coe�cients of the two-electron group func-
tions { I} if the latter are given as linear combinations
of Slater determinants built of the natural spinorbitals
and, consequently, 8p c

2
p
= np. In the equations above is

has been assumed that the orbitals are in a descending
order, i.e. np < nq if p > q. By employing in Eq.(19)
ERPA eigenvectors obtained for ↵ = 0 the expression for
the 0th-order integrand follows

W
(0) = 2

X0

p>q

np (nq � 1) hpp|qqi , (24)

where, as before, a prime indicates that terms corre-
sponding to indices p, q belonging to the same group are
excluded. Perturbation theory applied to the ERPA
problem given by Eqs.(14)-(16) for the GVP reference
wavefunction leads to the following 1st-order term in the
expansion (20) (cf. the Supp. Mat.)

W
(1) =

X0

p>q,r>s

hpr|qsi

⇥

⇣
A(1)+B(1)

⌘

pq,rs

� apq

�
A(1) � B(1)

�
pq,rs

ars

!
+
pq + !

+
rs

,

(25)

where the elements {apq} are defined as

apq =

⇢
�1 for p 2 I, q 2 J, I 6= J

(cp + cq)(cp � cq)�1 for p 2 I, q 2 J, I = J
,

(26)
and the denominator in each term includes excitation en-
ergies of a noninteracting-group limit (↵ = 0), defined in

A final spin-summed working form of the AC integrand

2

defined as

Ĥ =
X

pq

â
†
p
âqhpq +

1

2

X

pqrs

â
†
p
â
†
q
âsâr hpq|rsi . (3)

The one-electron integrals hpq =R
'p(x)⇤

⇥
t̂+ �̂ext

⇤
'q(x)dx involve a kinetic energy

operator, t̂, and �̂ext - an external potential operator.
Two-electron integrals are defined in a usual way as
hpq|rsi =

R R
'p(x1)⇤'q(x2)⇤r

�1
12 'r(x1)'s(x2)dx1dx2.

The expectation value of the Hamiltonian for the
assumed wavefunction given in Eq.(1) can be written as

E =
X

I

h I | [
NIX

i=1

ĥ(xi)+
NIX

i<j

r
�1
ij

] | Ii+
X

I>J

E
IJ

HX
. (4)

The second term in Eq.(4) collects group-pairwise
Coulomb (H) and exchange (X) electron interactions be-
tween di↵erent groups of electrons. The interaction of
electrons belonging to di↵erent groups is described only
in an averaged (SCF) way and correlation among groups
is missing. Introduce a correlation energy as a di↵erence
between an exact ground state energy, E0, of a given
system and E given in Eq.(4), i.e.

Ecorr ⌘ E0 � E . (5)

The optimal wavefunction (1), minimizing the en-
ergy expression given in Eq.(4), is composed of
group-wavefunctions  I satisfying group-eigenequations,
namely

ĤI I = EI I . (6)

A group Hamiltonian ĤI is given as

ĤI =
X

pq2I

h
eff

pq
â
†
p
âq +

1

2

X

pqrs2I

â
†
r
â
†
s
âqâp hrs|pqi , (7)

where an e↵ective one-electron Hamiltonian element,
h
eff

pq
, for a group I includes a contribution from

the Coulomb and exchange interaction with all other
groups, namely 8pq2I h

eff

pq
= hpq +

⌦
p|�̂I

HX
|q
↵
where⌦

p|�̂I
HX

|q
↵

=
P

J 6=I

P
r2J

nr [hpr|qri � hpr|rqi]. As it
has been already noted in Ref.[7] an optimal group func-
tion (1) is an eigenfunction of the 0th-order Hamiltonian

Ĥ
(0) =

X

I

ĤI . (8)

To find expression for the correlation energy in the
adiabatic connection framework define an adiabatic-
connection (AC) Hamiltonian in the usual way as

Ĥ
↵ = Ĥ

(0) + ↵Ĥ
0

, (9)

where Ĥ
0 = Ĥ � Ĥ

(0). By varying the coupling strength
parameter ↵ between 0 and 1 one smoothly switches be-
tween a group-noninteracting system (↵ = 0) and a fully

interacting case (↵ = 1). Let { ↵

⌫
} be a complete set of

eigenfunctions of the adiabatic connection Hamiltonian

Ĥ
↵ ↵

⌫
= E

↵

⌫
 ↵

⌫
. (10)

For ↵ = 0 inter-group correlation e↵ects are absent and
a ground state eigenfunction  ↵

0 turns into a group-
function  given in Eq.(1), whereas the energy is given
by a sum of the group-energies, i.e. E↵=0

0 =
P

I
EI . A

derivation of the adiabatic-connection formula for the
correlation energy employs an exact relation between a

two-electron reduced density matrix �↵ =
D
 ↵

0 |�̂| ↵

0

E
,

a one-electron reduced density matrix �↵ = h ↵

0 |�̂| ↵

0 i
and transition one-electron density matrices �

↵,0⌫ =
h ↵

0 |�̂| ↵

⌫
i reading [8]

�↵
pqrs

= �
↵

pr
�
↵

qs
+

X

⌫ 6=0

�
↵,0⌫
pr

�
↵,⌫0
qs

� �
↵

qr
�ps . (11)

The final adiabatic connection expression for the correla-
tion energy reads (details of the derivation can be found
in Supp. Mat.)

E
AC

corr
=

Z 1

0
W

↵
d↵ , (12)

W
↵ =

1

2

X0

pqrs

0

@
X

⌫ 6=0

�
↵,0⌫
pr

�
↵,⌫0
qs

+ (np � 1)nq�rq�ps

1

A hrs|pqi ,

(13)
where the prime indicates that terms corresponding to
spinorbitals p, q, r, s belonging to the same group are ex-
cluded from the summation.
The expression for the adiabatic connection integrand

given in Eq.(13) has been obtained by assuming that for
each value of ↵ a one-electron reduced density matrix �↵

is equal to �, i.e. 8↵2[0,1] �
↵

pq
= �pqnp. Notice that a

similar assumption is exploited in the standard random
phase approximation (RPA) for the correlation energy
[5, 8]. The recently proposed extended random phase
approximation (ERPA) [9] based on the Rowe’s equation
of motion [10], allows one to find approximate transi-
tion density matrix elements for the adiabatic connection
Hamiltonian Ĥ

↵ given in Eq.(9). By following derivation
of the ERPA equations shown in Ref.[9] with the fully
interacting Hamiltonian Ĥ replaced by its adiabatic con-
nection counterpart Ĥ↵ one is led to the following set of
↵-ERPA equations

✓
A↵ B↵

B↵ A↵

◆✓
X↵

⌫

Y↵

⌫

◆
= !⌫

✓
�N 0
0 N

◆✓
X↵

⌫

Y↵

⌫

◆
.

(14)
The matrices A↵, B↵, N are given solely by ↵-dependent
elements of the adiabatic connection Hamiltonian and
one and two-electron reduced density matrices (cf. Supp.
Mat. for the explicit forms of the matrices A↵ and B↵).
Solutions of ↵-ERPA equations come in pairs of positive
and negative eigenvalues, !+

⌫
and !

�
⌫
, which are equal

Adiabatic Connection (AC) formula for the Correlation Energy 
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• Compute the energy for an assumed model (reference) and find one- and 
two-electron reduced density matrices.



Correlation energy from the Adiabatic Connection approximation: a summary

K. Pernal, Phys. Rev. Lett. 120, 013001 (2018).

• For a given coupling constant the ERPA equation is solved (the main matrix 
requires only 1- and 2-RDM’s obtained form a reference WF)

W =
1

2

X

pqrs

(1 IpIqIqIrIrIs)

 
X

 6=0

;0pr ;0qs + (np  1)nqrqps

!
hrsjpqi ; (21)

where the indices p; q; r; s pertain to the natural spinorbitals corresponding to the group

product wavefunction . A symbol Ip denotes a group which a spinorbital p is assigned to.

The expression for the adiabatic connection integrand given in Eq.(21) has been obtained

by assuming that for each  one-electron reduced density matrices are equal to , i.e.

82[0;1] pq = pqnp : (22)

Notice that a similar assumption is exploited in the standard random phase approximation

(RPA) for the correlation energy ??maclachlan, furche_review. In fact, it can be checked by

inspection that in a special case of one-electron group function (a group function (1) taking

form of a Slater determinant) the adiabatic connection expression (21) becomes equivalent to

the one used in the RPAX correlation energy formula ???furche?. In RPAmethods (proposed

for a single reference wavefunction) transition density matrices ;0 (or transition densities)

follow from TD-HF or TD-DFT approaches (in the latter, the exchange-correlation kernel

is typically set to zero). The recently proposed extended random phase approximation

(ERPA) based on the Roweís equation of motion ???rowe, allows one to Önd approximate

transition density matrix elements for the adiabatic connection Hamiltonian Ĥ given in

Eq.(15). By following derivation of the ERPA equations shown in Ref.??? with the fully

interacting Hamiltonian Ĥ replaced by its adiabatic connection counterpart Ĥ one is led

to the following set of -ERPA equations
0

@ A B

B A

1

A

0

@ X


Y


1

A = !

0

@ N 0

0 N

1

A

0

@ X


Y


1

A : (23)

The matrices A, B, N are given by one- and two-electron elements of the adiabatic

connection Hamiltonian

hpq = hpq + IpIq(1 )h
eff
pq ;

grspq =

 + IpIqIqIrIrIs(1 )


hrsjpqi

and one- and group-two-electron reduced density matrices,  and

I

, respectively namely

A = A[h;g; ;

I

] ;

B = B[h;g; ;

I

] ;

(N )pq;rs = (np  nq)prqs

6
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• For a given coupling constant the ERPA equation is solved (the main matrix 
requires only 1- and 2-RDM’s obtained form a reference WF)

W =
1

2

X

pqrs

(1 IpIqIqIrIrIs)

 
X

 6=0

;0pr ;0qs + (np  1)nqrqps

!
hrsjpqi ; (21)

where the indices p; q; r; s pertain to the natural spinorbitals corresponding to the group

product wavefunction . A symbol Ip denotes a group which a spinorbital p is assigned to.

The expression for the adiabatic connection integrand given in Eq.(21) has been obtained

by assuming that for each  one-electron reduced density matrices are equal to , i.e.

82[0;1] pq = pqnp : (22)

Notice that a similar assumption is exploited in the standard random phase approximation

(RPA) for the correlation energy ??maclachlan, furche_review. In fact, it can be checked by

inspection that in a special case of one-electron group function (a group function (1) taking

form of a Slater determinant) the adiabatic connection expression (21) becomes equivalent to

the one used in the RPAX correlation energy formula ???furche?. In RPAmethods (proposed

for a single reference wavefunction) transition density matrices ;0 (or transition densities)

follow from TD-HF or TD-DFT approaches (in the latter, the exchange-correlation kernel

is typically set to zero). The recently proposed extended random phase approximation

(ERPA) based on the Roweís equation of motion ???rowe, allows one to Önd approximate

transition density matrix elements for the adiabatic connection Hamiltonian Ĥ given in

Eq.(15). By following derivation of the ERPA equations shown in Ref.??? with the fully

interacting Hamiltonian Ĥ replaced by its adiabatic connection counterpart Ĥ one is led

to the following set of -ERPA equations
0

@ A B

B A

1

A

0

@ X


Y


1

A = !

0

@ N 0

0 N

1

A

0

@ X


Y


1

A : (23)

The matrices A, B, N are given by one- and two-electron elements of the adiabatic

connection Hamiltonian

hpq = hpq + IpIq(1 )h
eff
pq ;

grspq =

 + IpIqIqIrIrIs(1 )


hrsjpqi

and one- and group-two-electron reduced density matrices,  and

I

, respectively namely

A = A[h;g; ;

I

] ;

B = B[h;g; ;

I

] ;

(N )pq;rs = (np  nq)prqs

6

• The eigenvectors are used as approximate transition density matrices

The exact AC expression for the correlation energy reads

EACcorr =

Z 1

0

(W & +$&) d$ ; (28)

W & =
1

2

X

pqrs

0

 
X

* 6=0

&&;0*pr &&;*0qs + &&=0ps &&=0qr ! &&=0qr 'ps

!
hrsjpqi ; (29)

&&;0*pr = h(&0 j&̂prj(
&
* i (30)

a prime indicates that spinorbitals pqrs do not belong at the same time to one of the groups

I, and

$& =
X

I

X

p2I

X

J 6=I

X

q2J

h
0

pq

Z 1

0

(&&qp ! &
&=0
qp )d$

Approximation: assuming the equality of the 1-RDMís for all allowed values of the para-

meter $

8&2[0;1] &&pq = &
&=0
pq (31)

&&=0pq =
%
(ref jâyqâpj(ref

&

yields

$& = 0 : (32)

Etot = Eref + E
AC
corr

W& = W&=0 +
dW&

d$

''''
&=0

$ = 0 +W (1)$ (33)

EAC0corr =

Z 1

0

W (1)$ d$ =
W (1)

2
(34)

W& = W&(fY&
* g ; fX

&
*g)

III. MCSCF 2-ELECTRON REDUCED DENSITY MATRIX (2-RDM)

Let fpqrsg be general indices of spinorbitals in the assumed basis set. DeÖne spin-summed

excitation operators

Êpq = â
y
p! âq! + â

y
p"
âq" : (35)

A spin-summed 2-RDM operator

P̂pqrs = â
y
p! â

y
r! âs! âq! + â

y
p! â

y
r"
âs" âq! + â

y
p"
âyr" âs" âq" + â

y
p"
âyr! âs! âq" (36)
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Correlation energy from the Adiabatic Connection approximation: a summary

K. Pernal, Phys. Rev. Lett. 120, 013001 (2018).

• For a given coupling constant the ERPA equation is solved (the main matrix 
requires only 1- and 2-RDM’s obtained form a reference WF)

W =
1

2

X

pqrs

(1 IpIqIqIrIrIs)

 
X

 6=0

;0pr ;0qs + (np  1)nqrqps

!
hrsjpqi ; (21)

where the indices p; q; r; s pertain to the natural spinorbitals corresponding to the group

product wavefunction . A symbol Ip denotes a group which a spinorbital p is assigned to.

The expression for the adiabatic connection integrand given in Eq.(21) has been obtained

by assuming that for each  one-electron reduced density matrices are equal to , i.e.

82[0;1] pq = pqnp : (22)

Notice that a similar assumption is exploited in the standard random phase approximation

(RPA) for the correlation energy ??maclachlan, furche_review. In fact, it can be checked by

inspection that in a special case of one-electron group function (a group function (1) taking

form of a Slater determinant) the adiabatic connection expression (21) becomes equivalent to

the one used in the RPAX correlation energy formula ???furche?. In RPAmethods (proposed

for a single reference wavefunction) transition density matrices ;0 (or transition densities)

follow from TD-HF or TD-DFT approaches (in the latter, the exchange-correlation kernel

is typically set to zero). The recently proposed extended random phase approximation

(ERPA) based on the Roweís equation of motion ???rowe, allows one to Önd approximate

transition density matrix elements for the adiabatic connection Hamiltonian Ĥ given in

Eq.(15). By following derivation of the ERPA equations shown in Ref.??? with the fully

interacting Hamiltonian Ĥ replaced by its adiabatic connection counterpart Ĥ one is led

to the following set of -ERPA equations
0

@ A B

B A

1

A

0

@ X


Y


1

A = !

0

@ N 0

0 N

1

A

0

@ X


Y


1

A : (23)

The matrices A, B, N are given by one- and two-electron elements of the adiabatic

connection Hamiltonian

hpq = hpq + IpIq(1 )h
eff
pq ;

grspq =

 + IpIqIqIrIrIs(1 )


hrsjpqi

and one- and group-two-electron reduced density matrices,  and

I

, respectively namely

A = A[h;g; ;

I

] ;

B = B[h;g; ;

I

] ;

(N )pq;rs = (np  nq)prqs
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• The eigenvectors are used as approximate transition density matrices

The exact AC expression for the correlation energy reads

EACcorr =

Z 1

0

(W & +$&) d$ ; (28)

W & =
1

2

X

pqrs

0

 
X

* 6=0

&&;0*pr &&;*0qs + &&=0ps &&=0qr ! &&=0qr 'ps

!
hrsjpqi ; (29)

&&;0*pr = h(&0 j&̂prj(
&
* i (30)

a prime indicates that spinorbitals pqrs do not belong at the same time to one of the groups

I, and

$& =
X

I

X

p2I

X

J 6=I

X

q2J

h
0

pq

Z 1

0

(&&qp ! &
&=0
qp )d$

Approximation: assuming the equality of the 1-RDMís for all allowed values of the para-

meter $

8&2[0;1] &&pq = &
&=0
pq (31)

&&=0pq =
%
(ref jâyqâpj(ref

&

yields

$& = 0 : (32)

Etot = Eref + E
AC
corr

W& = W&=0 +
dW&

d$

''''
&=0

$ = 0 +W (1)$ (33)

EAC0corr =

Z 1

0

W (1)$ d$ =
W (1)

2
(34)

W& = W&(fY&
* g ; fX

&
*g)

III. MCSCF 2-ELECTRON REDUCED DENSITY MATRIX (2-RDM)

Let fpqrsg be general indices of spinorbitals in the assumed basis set. DeÖne spin-summed

excitation operators

Êpq = â
y
p! âq! + â

y
p"
âq" : (35)

A spin-summed 2-RDM operator

P̂pqrs = â
y
p! â

y
r! âs! âq! + â

y
p! â

y
r"
âs" âq! + â

y
p"
âyr" âs" âq" + â

y
p"
âyr! âs! âq" (36)
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• The AC integrand is computed and the correlation energy obtained. The 
correlation energy is added to the reference energy.

The exact AC expression for the correlation energy reads

EACcorr =

Z 1

0

(W  +) d ; (27)

W  =
1

2

X

pqrs

0

 
X

 6=0

;0pr ;0qs + =0ps =0qr  =0qr ps

!
hrsjpqi ; (28)

;0pr = h0 j̂prj

 i (29)

a prime indicates that spinorbitals pqrs do not belong at the same time to one of the groups

I, and

 =
X

I

X

p2I

X

J 6=I

X

q2J

h
0

pq

Z 1

0

(qp  
=0
qp )d

Approximation: assuming the equality of the 1-RDMís for all allowed values of the para-

meter 

82[0;1] pq = 
=0
pq (30)

=0pq =

ref jâyqâpjref



yields

 = 0 : (31)

Etot = Eref + E
AC
corr

III. MCSCF 2-ELECTRON REDUCED DENSITY MATRIX (2-RDM)

Let fpqrsg be general indices of spinorbitals in the assumed basis set. DeÖne spin-summed

excitation operators

Êpq = â
y
p âq + â

y
p
âq : (32)

A spin-summed 2-RDM operator

P̂pqrs = â
y
p â

y
r âs âq + â

y
p â

y
r
âs âq + â

y
p
âyr âs âq + â

y
p
âyr âs âq (33)

gives rise to 2-RDM written in terms of Ê as

Ppqrs =
D
0jP̂pqrsj0

E
=
D
ÊpqÊrs

E
 qr

D
Êps

E
: (34)

For closed-shell systems

âyp â
y
r âs âq = â

y
p
âyr âs âq (35)

âyp â
y
r
âs âq = â

y
p
âyr âs âq (36)
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2

defined as

Ĥ =
X

pq

â
†
p
âqhpq +

1

2

X

pqrs

â
†
p
â
†
q
âsâr hpq|rsi . (3)

The one-electron integrals hpq =R
'p(x)⇤

⇥
t̂+ �̂ext

⇤
'q(x)dx involve a kinetic energy

operator, t̂, and �̂ext - an external potential operator.
Two-electron integrals are defined in a usual way as
hpq|rsi =

R R
'p(x1)⇤'q(x2)⇤r

�1
12 'r(x1)'s(x2)dx1dx2.

The expectation value of the Hamiltonian for the
assumed wavefunction given in Eq.(1) can be written as

E =
X

I

h I | [
NIX

i=1

ĥ(xi)+
NIX

i<j

r
�1
ij

] | Ii+
X

I>J

E
IJ

HX
. (4)

The second term in Eq.(4) collects group-pairwise
Coulomb (H) and exchange (X) electron interactions be-
tween di↵erent groups of electrons. The interaction of
electrons belonging to di↵erent groups is described only
in an averaged (SCF) way and correlation among groups
is missing. Introduce a correlation energy as a di↵erence
between an exact ground state energy, E0, of a given
system and E given in Eq.(4), i.e.

Ecorr ⌘ E0 � E . (5)

The optimal wavefunction (1), minimizing the en-
ergy expression given in Eq.(4), is composed of
group-wavefunctions  I satisfying group-eigenequations,
namely

ĤI I = EI I . (6)

A group Hamiltonian ĤI is given as

ĤI =
X

pq2I

h
eff

pq
â
†
p
âq +

1

2

X

pqrs2I

â
†
r
â
†
s
âqâp hrs|pqi , (7)

where an e↵ective one-electron Hamiltonian element,
h
eff

pq
, for a group I includes a contribution from

the Coulomb and exchange interaction with all other
groups, namely 8pq2I h

eff

pq
= hpq +

⌦
p|�̂I

HX
|q
↵
where⌦

p|�̂I
HX

|q
↵

=
P

J 6=I

P
r2J

nr [hpr|qri � hpr|rqi]. As it
has been already noted in Ref.[7] an optimal group func-
tion (1) is an eigenfunction of the 0th-order Hamiltonian

Ĥ
(0) =

X

I

ĤI . (8)

To find expression for the correlation energy in the
adiabatic connection framework define an adiabatic-
connection (AC) Hamiltonian in the usual way as

Ĥ
↵ = Ĥ

(0) + ↵Ĥ
0

, (9)

where Ĥ
0 = Ĥ � Ĥ

(0). By varying the coupling strength
parameter ↵ between 0 and 1 one smoothly switches be-
tween a group-noninteracting system (↵ = 0) and a fully

interacting case (↵ = 1). Let { ↵

⌫
} be a complete set of

eigenfunctions of the adiabatic connection Hamiltonian

Ĥ
↵ ↵

⌫
= E

↵

⌫
 ↵

⌫
. (10)

For ↵ = 0 inter-group correlation e↵ects are absent and
a ground state eigenfunction  ↵

0 turns into a group-
function  given in Eq.(1), whereas the energy is given
by a sum of the group-energies, i.e. E↵=0

0 =
P

I
EI . A

derivation of the adiabatic-connection formula for the
correlation energy employs an exact relation between a

two-electron reduced density matrix �↵ =
D
 ↵

0 |�̂| ↵

0

E
,

a one-electron reduced density matrix �↵ = h ↵

0 |�̂| ↵

0 i
and transition one-electron density matrices �

↵,0⌫ =
h ↵

0 |�̂| ↵

⌫
i reading [8]

�↵
pqrs

= �
↵

pr
�
↵

qs
+

X

⌫ 6=0

�
↵,0⌫
pr

�
↵,⌫0
qs

� �
↵

qr
�ps . (11)

The final adiabatic connection expression for the correla-
tion energy reads (details of the derivation can be found
in Supp. Mat.)

E
AC

corr
=

Z 1

0
W

↵
d↵ , (12)

W
↵ =

1

2

X0

pqrs

0

@
X

⌫ 6=0

�
↵,0⌫
pr

�
↵,⌫0
qs

+ (np � 1)nq�rq�ps

1

A hrs|pqi ,

(13)
where the prime indicates that terms corresponding to
spinorbitals p, q, r, s belonging to the same group are ex-
cluded from the summation.
The expression for the adiabatic connection integrand

given in Eq.(13) has been obtained by assuming that for
each value of ↵ a one-electron reduced density matrix �↵

is equal to �, i.e. 8↵2[0,1] �
↵

pq
= �pqnp. Notice that a

similar assumption is exploited in the standard random
phase approximation (RPA) for the correlation energy
[5, 8]. The recently proposed extended random phase
approximation (ERPA) [9] based on the Rowe’s equation
of motion [10], allows one to find approximate transi-
tion density matrix elements for the adiabatic connection
Hamiltonian Ĥ

↵ given in Eq.(9). By following derivation
of the ERPA equations shown in Ref.[9] with the fully
interacting Hamiltonian Ĥ replaced by its adiabatic con-
nection counterpart Ĥ↵ one is led to the following set of
↵-ERPA equations

✓
A↵ B↵

B↵ A↵

◆✓
X↵

⌫

Y↵

⌫

◆
= !⌫

✓
�N 0
0 N

◆✓
X↵

⌫

Y↵

⌫

◆
.

(14)
The matrices A↵, B↵, N are given solely by ↵-dependent
elements of the adiabatic connection Hamiltonian and
one and two-electron reduced density matrices (cf. Supp.
Mat. for the explicit forms of the matrices A↵ and B↵).
Solutions of ↵-ERPA equations come in pairs of positive
and negative eigenvalues, !+

⌫
and !

�
⌫
, which are equal



Computation cost reduction - linearization of the AC integrand



The AC integrand is almost linear if the multireference reference wavefunction is employed
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Plot of the AC integrand for the H8 linear chain, R - a distance between adjacent 
hydrogen atoms. CAS(8,8) reference wavefunction.



The AC integrand is almost linear if the multireference reference wavefunction is employed
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 R=10.00 (a.u.)

Plot of the AC integrand for the N2 molecule, R - a distance between nitrogen 
atoms. CAS(6,6) reference wavefunction.



• First-order expansion of the AC integrand 

• First-order corrections to the ERPA eigenvectors are found from perturbation 
theory. No need to diagonalize full ERPA matrix (only small blocks).

Linear extrapolation from the α=0 limit

The exact AC expression for the correlation energy reads

EACcorr =

Z 1

0

(W  +) d ; (27)

W  =
1

2

X

pqrs

0

 
X

 6=0

;0pr ;0qs + =0ps =0qr  =0qr ps

!
hrsjpqi ; (28)

;0pr = h0 j̂prj

 i (29)

a prime indicates that spinorbitals pqrs do not belong at the same time to one of the groups

I, and

 =
X

I

X

p2I

X

J 6=I

X

q2J

h
0

pq

Z 1

0

(qp  
=0
qp )d

Approximation: assuming the equality of the 1-RDMís for all allowed values of the para-

meter 

82[0;1] pq = 
=0
pq (30)

=0pq =

ref jâyqâpjref



yields

 = 0 : (31)

Etot = Eref + E
AC
corr

W = W=0 +
dW

d


=0

 = 0 +W (1) (32)

EAC0corr =

Z 1

0

W (1) d =
W (1)

2
(33)

III. MCSCF 2-ELECTRON REDUCED DENSITY MATRIX (2-RDM)

Let fpqrsg be general indices of spinorbitals in the assumed basis set. DeÖne spin-summed

excitation operators

Êpq = â
y
p âq + â

y
p
âq : (34)

A spin-summed 2-RDM operator

P̂pqrs = â
y
p â

y
r âs âq + â

y
p â

y
r
âs âq + â

y
p
âyr âs âq + â

y
p
âyr âs âq (35)

gives rise to 2-RDM written in terms of Ê as

Ppqrs =
D
0jP̂pqrsj0

E
=
D
ÊpqÊrs

E
 qr

D
Êps

E
: (36)
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ACn

To achieve the reduction of the computational cost of solving Eq. (24), we introduce Cholesky

decomposition of the modified two-electron integrals g

gpq,rs =
NCDX

L=1

Dpq,LDrs,L , (25)

expand C↵(!) at ↵ = 0

C↵(!) =
X

n=0

1

n!
C(!)(n)↵n , (26)

C(!)(n) =
@nC↵(!)

@↵n

����
↵=0

, (27)

and solve Eq. (24) iteratively in the reduced space, by retrieving, in the nth iteration, the

nth-order correction C(n), projected on the space spanned by NCD Cholesky vectors {DL}.

To account for the prime (exclusion of terms for all-active indices pqrs) in the AC correlation

energy, Eq. (22), define the auxiliary matrices of Cholesky vectors as

8p>q D1
pq,L =

8
><

>:

2Dpq,L if pq 2 act

Dpq,L otherwise
, (28)

8p>q D2
pq,L =

8
><

>:

0 if pq 2 act

Dpq,L otherwise
. (29)

Assuming expansion of the response matrix C↵(!), cf. Eq. (26), up to nmax order in ↵, and

employing Cholesky decomposition of integrals, Eq. (25) together with the matrices D1 and

D2 in Eq. (22) lead to a new AC formula for the correlation energy reading

EACnmax
corr =

2

⇡
Tr

" Z 1

0

d!
nmaxX

n=1

C̄(!)(n)

n!(n+ 1)

!
D2

#
. (30)

8
✓high-order in α

✓m5 scaling with the system size

✓n6 scaling (only) with the number of active orbitals

✓avoids instabilities

D. Drwal, P. Beran, M. Hapka, M. Modrzejewski, A. Sokol, L. Veis, K. Pernal, J. Phys. Chem. Lett. 13, 4570 (2022)



ACn approximation



• Great computational saving: the cost scales only with the 6th power of the 
number of the active orbitals.

ACn approximation



• Great computational saving: the cost scales only with the 6th power of the 
number of the active orbitals.

ACn approximation

• The overall cost of the ACn approximation is close to MP2 method if the 
number of virtual orbitals is much larger than the number of the active orbitals 
(which is a typical case). 



• Great computational saving: the cost scales only with the 6th power of the 
number of the active orbitals.

ACn approximation

• The overall cost of the ACn approximation is close to MP2 method if the 
number of virtual orbitals is much larger than the number of the active orbitals 
(which is a typical case). 

• Size-consistent



CASSCF (or DMRG) reference 

1. Find CASSCF solution (for assumed spaces of active, 
inactive and secondary orbitals).

2. Compute the AC correlation energy, which accounts for 
correlation among active, inactive and secondary orbitals.

above). The same is true if pqrs are all inactive - such terms are simply vanishing because

(np ! nq)(nr ! ns) and np(1! nq) + nq(1! np) are equal to 0. So EERPAcorr introduces active-

inactive, active-secondary, and inactive-secondary correlation.

VI. AC CORRELATION ENERGY FOR CASSCF, DMRG, GVB

1- and 2-electron reduced density matrices from CASSCF, DMRG or GVB calculation

must be available.

EAC!CAS = ECASSCF + E
AC
corr

EAC0!CAS = ECASSCF + E
AC0
corr

For a given ' ERPA equations given in Eq.(62) are solved, eigenvectors [X.
/ ;Y

.
/ ] are found,

and the AC integrand W., Eq.(72), is computed. We have found out that W . is very much

linear so it seems reasonable to consider four variants of the AC approximation

" full ' integration (involves numerical integration and solving '-ERPA equations for a

number of values ');

EAC =

Z 1

0

W . d' ; (73)

" small-' linear extrapolation of W. (use W.=0 = 0); the advantage is that W (1) =

dW
d.

""
.=0

can be found analytically from the perturbation theory

EAC0 =

Z 1

0

(W.=0 +W (1)') d' =
W (1)

2
(74)

" ' = 1=2 linear extrapolation (we have already observed that W. corresponding to

CASSCF may su§er from instability when ' is close to 1 so it could be safer to use

' = 1=2 instead of ' = 1 - it is something to explore more)

EAC1=2 =

Z 1

0

W.=1=2' d' =
W .=1=2

2
(75)
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RN2=10.0 [a.u.] 29.3 32.4 23.1 27.2 31.4 16.6

Ediss -1.4 4.6 -6.9 3.3 11.3 0.7

Errors of the total energy and the dissociation energy in mHa w.r.t MRCISDTQ(*) values for the 
N2 molecule in cc-pVDZ.
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NEVPT2-
CAS(8,8) AC-CAS(8,8) AC0-CAS(8,8)

NEVPT2-
CAS(10,10) AC-CAS(10,10)

AC0-
CAS(10,10)

Ebi-Emono 7.4 7.8 7.3 10.8 9.1 10.4

error -1.4 -1 -1.5 2 0.3 1.6

Energy difference between mono- and bicyclic forms of the 2,6-pyridyne (C6NH3) diradical 

corresponds to the HF solution, while the second reference,
!2, is obtained by replacing the HOMO in the monocyclic
form !a1 symmetry" by the LUMO !b2 symmetry". In all
calculations, C2v symmetry has been imposed.

The results of our computations are visualized in Fig. 8.
At the Mk-MRCCSD geometries, the CCSD energy for the
bicyclic form is lower than that for the monocyclic form and
at the transition state the energy lies in between. Mk-
MRCCSD yields a lower energy for the monocyclic form
!3.6 kcal mol−1" with respect to the bicyclic form, and a bar-
rier from the bicyclic to monocyclic form of only
0.3 kcal mol−1.

When the effect of triple excitations is included at the
CCSD!T" and Mk-MRCCSD!T" levels of theory, the mono-
cyclic isomer is found to be lower in energy than the bicyclic
form, with the energy computed at the Mk-MRCCSD transi-
tion state geometry lying in between. The inclusion of triple
excitations via the Mk-MRCCSD!T" correction leads to an
additional stabilization of the monocyclic form with respect
to the bicyclic form by ca. 5.2 kcal mol−1. This is a rather
large correction compared to the other examples in this pa-
per, but nevertheless it is smaller than the difference pre-
dicted by the SRCC method, 9.1 kcal mol−1.

These results suggest that the minimum corresponding to
the bicyclic structure may be an artifact of theory !both in its
single-reference and Mk-MRCC formulation" due to the
lacking triple excitations in the cluster operator. Interestingly,
the effects of triples are rather large, which indicates that
triple !and possibly higher" excitations may play an impor-
tant role in determining the accurate thermochemistry of
such multireference species.

VI. CONCLUSIONS

In this work we formulated and implemented a perturba-
tive triples correction #Mk-MRCCSD!T"$ for the state-
specific MRCC method advanced by Mukherjee and

co-workers.25 Our approach for deriving Mk-MRCCSD!T" is
based on a Lagrangian formalism, where the Mk-MRCC
equations are recast as an energy functional !Ẽ" whose sta-
tionary points coincide with the Mk-MRCC energy. By em-
ploying a generalized perturbation theory, we expand the en-
ergy contributions to Ẽ arising from triples order-by-order
and use the lowest contributions !third- and fourth-order" to
define our Mk-MRCCSD!T" correction. The resulting energy
correction is the sum of two terms. The first term !Eeff

#3+4$"
may be identified with a correction to the off-diagonal matrix
elements of the effective Hamiltonian and is unique to meth-
ods based on the Jeziorski–Monkhorst ansatz.23 The second
contribution !E"

#4$" to the Mk-MRCCSD!T" energy is analo-
gous to the energy correction in the "-CCSD!T" !Ref. 37"
and a-CCSD!T" !Ref. 39" approaches.

Our numerical examples show that both terms are essen-
tial to improve the quality of Mk-MRCCSD. E"

#4$ is sizable in
the single-reference and multireference regions of the poten-
tial energy surface. On the contrary, the Eeff

#3+4$ term plays an
important role only in the multireference regions and van-
ishes in the single-reference case. In particular, from our
analysis of the BeH2 system Eeff

#3+4$ seems to be necessary to
counterbalance the contribution of E"

#4$ when the Mk-
MRCCSD energy falls below the FCI energy.

In order to solve the Mk-MRCCSD!T" equations via a
noniterative algorithm, the zeroth-order Hamiltonian adopted
in our Mk-MRCCSD!T" correction has only diagonal terms.
This choice represents a pragmatic compromise between the
desire to achieve an orbital-invariant method and the compu-
tational viability of the method. We also considered the pos-
sibility of using semicanonical orbitals with respect to each
determinant.110 However, several problems arise when adopt-
ing this representation. First of all, there is the need to per-
form as many integral transformations as references appear
in the model space. Second, the presence of the coupling
term in conjunction with the use of a different orbital basis
for each reference would couple all the cluster amplitudes T̂#

from each reference with T̂$. Consequently, the use of semi-
canonical orbitals would require the storage of the triples
amplitudes and make the Mk-MRCCSD!T" method iterative.
Semicanonical orbitals may be used if the triples coupling
terms are neglected, and indeed this is the strategy adopted
by Bhaskaran-Nair, Demel, and Pittner in their perturbative
correction to Mk-MRCCSD.50 We prefer to avoid this strat-
egy because of the possibility of reintroducing the intruder
state problems, as documented by our results on the BeH2
model system.

Our results for F2 and ozone show that the equilibrium
geometry, dissociation energy, and harmonic vibrational fre-
quencies computed with Mk-MRCCSD!T" are much im-
proved with respect to Mk-MRCCSD, when compared with
experiment. In these examples, the role of the Eeff

#3+4$ energy
term is less clear and does not always lead to improvements
with respect to the simpler Mk-MRCCSD+E"

#4$ approach.
Nevertheless, we do not find sufficient reasons to neglect
Eeff

#3+4$ from the definition of Mk-MRCCSD!T".
We consider Mk-MRCCSD!T" to be particularly prom-

ising for computing accurate thermochemistry for species
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FIG. 8. Energetic ordering of the monocyclic and bicyclic forms of 2,6-
pyridyne, as obtained for various levels of theory using the cc-pCVTZ basis
set and computed using the RHF-Mk-MRCCSD/cc-pCVTZ geometry from
Ref. 33. For all methods the energy is given relative to the bicyclic form.
Figures were generated using HFSmol !Ref. 112".
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corresponds to the HF solution, while the second reference,
!2, is obtained by replacing the HOMO in the monocyclic
form !a1 symmetry" by the LUMO !b2 symmetry". In all
calculations, C2v symmetry has been imposed.

The results of our computations are visualized in Fig. 8.
At the Mk-MRCCSD geometries, the CCSD energy for the
bicyclic form is lower than that for the monocyclic form and
at the transition state the energy lies in between. Mk-
MRCCSD yields a lower energy for the monocyclic form
!3.6 kcal mol−1" with respect to the bicyclic form, and a bar-
rier from the bicyclic to monocyclic form of only
0.3 kcal mol−1.

When the effect of triple excitations is included at the
CCSD!T" and Mk-MRCCSD!T" levels of theory, the mono-
cyclic isomer is found to be lower in energy than the bicyclic
form, with the energy computed at the Mk-MRCCSD transi-
tion state geometry lying in between. The inclusion of triple
excitations via the Mk-MRCCSD!T" correction leads to an
additional stabilization of the monocyclic form with respect
to the bicyclic form by ca. 5.2 kcal mol−1. This is a rather
large correction compared to the other examples in this pa-
per, but nevertheless it is smaller than the difference pre-
dicted by the SRCC method, 9.1 kcal mol−1.

These results suggest that the minimum corresponding to
the bicyclic structure may be an artifact of theory !both in its
single-reference and Mk-MRCC formulation" due to the
lacking triple excitations in the cluster operator. Interestingly,
the effects of triples are rather large, which indicates that
triple !and possibly higher" excitations may play an impor-
tant role in determining the accurate thermochemistry of
such multireference species.

VI. CONCLUSIONS

In this work we formulated and implemented a perturba-
tive triples correction #Mk-MRCCSD!T"$ for the state-
specific MRCC method advanced by Mukherjee and

co-workers.25 Our approach for deriving Mk-MRCCSD!T" is
based on a Lagrangian formalism, where the Mk-MRCC
equations are recast as an energy functional !Ẽ" whose sta-
tionary points coincide with the Mk-MRCC energy. By em-
ploying a generalized perturbation theory, we expand the en-
ergy contributions to Ẽ arising from triples order-by-order
and use the lowest contributions !third- and fourth-order" to
define our Mk-MRCCSD!T" correction. The resulting energy
correction is the sum of two terms. The first term !Eeff

#3+4$"
may be identified with a correction to the off-diagonal matrix
elements of the effective Hamiltonian and is unique to meth-
ods based on the Jeziorski–Monkhorst ansatz.23 The second
contribution !E"

#4$" to the Mk-MRCCSD!T" energy is analo-
gous to the energy correction in the "-CCSD!T" !Ref. 37"
and a-CCSD!T" !Ref. 39" approaches.

Our numerical examples show that both terms are essen-
tial to improve the quality of Mk-MRCCSD. E"

#4$ is sizable in
the single-reference and multireference regions of the poten-
tial energy surface. On the contrary, the Eeff

#3+4$ term plays an
important role only in the multireference regions and van-
ishes in the single-reference case. In particular, from our
analysis of the BeH2 system Eeff

#3+4$ seems to be necessary to
counterbalance the contribution of E"

#4$ when the Mk-
MRCCSD energy falls below the FCI energy.

In order to solve the Mk-MRCCSD!T" equations via a
noniterative algorithm, the zeroth-order Hamiltonian adopted
in our Mk-MRCCSD!T" correction has only diagonal terms.
This choice represents a pragmatic compromise between the
desire to achieve an orbital-invariant method and the compu-
tational viability of the method. We also considered the pos-
sibility of using semicanonical orbitals with respect to each
determinant.110 However, several problems arise when adopt-
ing this representation. First of all, there is the need to per-
form as many integral transformations as references appear
in the model space. Second, the presence of the coupling
term in conjunction with the use of a different orbital basis
for each reference would couple all the cluster amplitudes T̂#

from each reference with T̂$. Consequently, the use of semi-
canonical orbitals would require the storage of the triples
amplitudes and make the Mk-MRCCSD!T" method iterative.
Semicanonical orbitals may be used if the triples coupling
terms are neglected, and indeed this is the strategy adopted
by Bhaskaran-Nair, Demel, and Pittner in their perturbative
correction to Mk-MRCCSD.50 We prefer to avoid this strat-
egy because of the possibility of reintroducing the intruder
state problems, as documented by our results on the BeH2
model system.

Our results for F2 and ozone show that the equilibrium
geometry, dissociation energy, and harmonic vibrational fre-
quencies computed with Mk-MRCCSD!T" are much im-
proved with respect to Mk-MRCCSD, when compared with
experiment. In these examples, the role of the Eeff

#3+4$ energy
term is less clear and does not always lead to improvements
with respect to the simpler Mk-MRCCSD+E"

#4$ approach.
Nevertheless, we do not find sufficient reasons to neglect
Eeff

#3+4$ from the definition of Mk-MRCCSD!T".
We consider Mk-MRCCSD!T" to be particularly prom-

ising for computing accurate thermochemistry for species
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FIG. 8. Energetic ordering of the monocyclic and bicyclic forms of 2,6-
pyridyne, as obtained for various levels of theory using the cc-pCVTZ basis
set and computed using the RHF-Mk-MRCCSD/cc-pCVTZ geometry from
Ref. 33. For all methods the energy is given relative to the bicyclic form.
Figures were generated using HFSmol !Ref. 112".
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Energy differences and energy barrier errors in kcal/mol. Errors of the energy 
barriers computed with respect to the multireference CCSD(T) - Mk-
MRCCSD(T) - value, 8.8 kcal/mol, from F.A. Evangelista et al. J. Chem. 
Phys. 132, 074107 (2010).



Adiabatic Connection (AC) vs. PT2 (CASPT2, NEVPT2)

No shifts in AC unlike in CASPT2


AC scales with the 6th power with the number of active orbitals - large active 
spaces can be treated, unlike in CASPT2/NEVPT2


Accuracy comparable to NEVPT2 but sometimes better


We have examples for which AC shows more systematic improvements with 
enlarging active space than NEVPT2
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