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Introduction
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= Wavefunction theory provides a systematic way to improve the accuracy
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=+ FCI calculation in a CBS gives the exact solution

= selected CI (CIPSI, QMCFCI,...) are powerful methods to approximate & compactify the FCI space
() What about the convergence with respect to the size of the basis set ?



r2—>< Basis set convergence: understanding the sluggishness

= If we have a CBS {¢1(r), ¢2(r), ...}, we can expand exactly the wavefunction in this basis

For 1 electron:  W(r) = ¢; ¢i(r)
i

oi(r1)  ¢j(r1)

For 2 electrons: W(r1,r2) ZC,(rz i(r1) = %aij ¢j(r2) ¢i(r1) = Z ij $i(r2) ¢j(r2)

=+ The use of truncated basis sets 3 of one-electron functions leads to a poor representation of the “dynamical
correlation” in many-electron systems. A large B is required to cover these effects

=+ Alternatively, one may expect to converge faster by including explicit two-electron functions

)

V(ry,r) = (Z ajj gj(r2 ¢>:(r1)> J(r1,r2)



r2—>< Basis set convergence: understanding the sluggishness

=+ To illustrate the effect of including explicit 2-electron terms we consider the exemple of the Helium atom

nb of parameters  Energy (a.u.)

exact —2.9037
FCl(cc-pVDZ) 196 —2.8876
FCl(cc-pVTZ) 900 —2.9002
FCl(cc-pVQZ) 3025 ~2.9024
FCl(cc-pV5Z) 8281 —2.9032
FCl(cc-pV6Z) 19 600 —2.9034

Hylleraas (1928) 6 —2.9033




r2—>< Basis set convergence: understanding the sluggishness

=> On the other hand, exact wavefunction must satisfies the Kato's cusp
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-rQ ->< Explicitly correlated methods

=> Hylleraas-like approaches r{,,e™7 r122, e YNz |
» very high accuracy but feasible only for systems with at most 3-4 electrons
=> R12/F12 methods:
W =®¢ + F12 Prer

» accelerate convergence with respect to 3 (for exemple CCSD-R12 in cc-pVTZ ~ CCSD in cc-pV5Z)
» but, the wavefunction is expanded instead of being compacted

» involves 3— and 4—electron integrals, auxiliary bases, simple 2-electron geminals, many approximations . ..

= Cl-Jatrow Ansatz:

— T — +T i — T 1.0
V=0cxe = E c D xe with 7 = E u(ri,rj) 5
! i-j g 09 a=1000 —
g os a=02----
. & Nucleus @
» accelerates convergence with respect to 3 07 Electon 1 ®
» compacted wavefunction (x instead of +) Electron2
» very complex integrals (D; e"7|O|D; e™) (Monte Carlo) 005 5500 20

* statistical noise
* computationally expensive algorithms
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Transcorrelated approach
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=+ introduced by Boys & Handy in 1979 and resurrected in 2000 by Ten-no and coworkers

= from 2000 =» 2023: TC has been combined with PT, Cl, CC, DMRG, DFT, Quantum computing, ...
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= The aim of the TC theory is nothing but to solve the Schrédinger equation for the Ansatz

=Y D
1
T = Zu(r;,rj)

iJ

V=0oc xe™ with

A (e®c) =E (e o) = e "H (e b)) = Edg

:>‘ FITC ) = E Py ‘ with ‘ I:ITC =e 7 He++

= A and HArc share the same spectrum (similarity-transformation)

= The effective TC Hamiltonian is non-Hermitian and can be written as

FITC =A+ k12 + £123

A& = E¢) Frc |€r) = Erc |€R)
(€1 AT = E (¢ (€Ll AL = Erc (&l
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& restored Slater-Condon rules: (D,|FI|DJ>, (D,|R12|DJ), <D,\[123\DJ)

& For a good choice of 7, there is no local divergences 1/ri2 in I:I-rc and ®¢, is cuspless

@ Arc is non-Hermitian (W): (f] Rsz g) # (F|Kiz g)
@ Hrc is a 3-electron operator: we need 6d tables for (¢;¢j¢k|[123|¢/¢m¢n)
@ 2-electron integrals are not analytical in general (even with GTOs)

complex 2-e integrals

Cusp condition

N, - electron _4 3 - electron
integrals integrals

S ———

Non - Hermiticity




-r2:>< Toward a practical TC approach

=+ Biorthogonal Quantum Mechanics

% Optimization: W =» stationary principle

to optimize the Cl parameters of ®(P) x e™7, we introduce a left wavefunction X(P’) x e™7

(X|Frc|®)
(X|®)

62/ Erc[X,®] = 0= stationary point P with | Erc[X, ®] =

% Application: Quantum dynamics, perturbation theory, second quantization, ...

=* Integrals complexity
% usually we can reduce the complexity of 3-e integrals from R? to R
% data storage of the 3-e term O(M§g) =» approximations on the 3-e term lead to small bias (xTC)

% For our Jastrow, the involved integrals are semi-analytical
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Optimization of Cl-Jastrow
wavefunction




-r2:>< Optimisation of Cl coefficients

= Recall: Cl coefficients of ®¢; = >, ¢;D; are optimized by solving

Hix = (D,|H|DK Zover 2-electron integrals thanks to Slater-Condon rules

HC=ESC where {
Sik = (Dy|Dk) = ik

=+ For a Cl-Jastow wavefunction ®¢.; =Y, ¢;D; x e'7, the eigenproblem in the variational scheme becomes

Hik = (Dje*™|H|Dke™™), Monte Carlo technics

HC =ESC where
Sik = (Dje""|Dke'T) # S, Monte Carlo technics

=> In the TC framework, we solve rather a non-variational (stationary) eigenproblem

Hik = <D,e_T|I:I|DKe+T) (D,|H-|—C|DK Zover 2- & 3-electron integrals

HC=ESC where
Sik = (Dje” T |Dke'T) = dik



-r2:>< Optimisation of Cl coefficients

lllustration: Hz with FCI wavefunctions

-1.1640
(Peci|H|Pecr)
(Prci|Prar)

(rci et T|Hldrci et T)
(Prci et 7| Prcr et )

-1.1660 = FCl:

-1.1680

» FCI-J (whithout opt) :
-1.1700

Energy (a.u.)

-1.1720

= TC-FCI (whith TC opt): <XZ§<—TFCC'F':|T;'T“C’TFZF>C'>

-1.1740




-r2 -_>< Biorthogonal Canonical orbitals

= Hartree-Fock are widely used as start point for post-HF methods

=+ TC canonical orbitals
= left & right orbitals: {x} & {¢}
= left & right Slater determinants: DX & D¢

=* stationary point of the TC energy =¥ generalized Brillouin theorem

=> TC self consistent field (TC-SCF)
® select an orthogonal orbitals C° as a first guess CX = C? = C°
@ built and diagonalize the TC-Fock matrix to get new biorthogonal vectors {Vi, Vr}, Vf x VR =T
® update orbitals: CX <~ CX x V|, C? + C? x VR

@ if (.not.converged) go to @
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[llustration: Ne in cc-pCVDZ
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selected CI for explicitly correlated
wavefunction




-r2:>< Cl using a Perturbative Selection made Iteratively (CIPSI)

=+ TC-CIPSI algorithm
@ start with a selected Cl space 7

. oA (0
@ diagonalize Hyc in Z: X0 ¢, TC) Hilbert space

@ find the connected external determinants {a| (o|Frc|l) # 0}
external space {|a)}
@ compute the TC second-order perturbative contributions (TC-PT>)

L2 _ XOlfrclo) (ol Arc|@) L) _ T @
o ©) PN ) TC o o
Erl — (a|H|a)

® estimate the TC-FCI energy: Evc.rcl = E#OC) + E?C)

® select the most relevant external determinants A: Z +— 7 U A
@ update the zeroth-order X(©), ) and E?g using Davidson

if not converged, go to ®

= TC-CIPS| — TC-FCl when £ 0




r2->< selected Cl in the presence of Jastrow

CIPSI vs TC-CIPSI
compactify W¢y =Y, ¢/ Dy compactify Wiy =Y, ¢/Dje’™
target the FCI target the TC-FCI
start with ®(9), £(0) start with ®(©), x(0) E.(I.Og
NG R R
o _ |elfeO] L@ _ XOfrcla) (lfirc|o)
o = ~ o — ~
E(O) - <Oé|H|Oz> E-(l—cg = <OC|HTc|Ol>
symmetric Davidson to update (®) E(0) non-symmetric Davidson to update ®(©), X(0), E'(|'(2
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Exemple: Nz in cc-pvVDZ
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=+ Cl-Jastrow wavefunction
4 provides a compacted excplicitly correlated wavefunction

4= accelerates the convergence with respect to the basis set

= TC theory
4 allows to avoid high-dimensional integrals via a similarity transformation

4= combined with Biorthogonal QM, enables to do Quantum Chemistry in an efficient way

=+ TC-CIPSI algorithm
/= selects the most relevant determinants in the Cl-Jastrow wavefunction

4 gives near TC-FCI quality thanks to TC-PT»
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