

1

An introduction to FCIQMC, the NECI codebase, and more

Pablo Lopez Rios, Philip Haupt, Johannes Hauskrecht, Thomas Schraivogel, Daniel Kats, Ali Alavi

Max Planck Institute for Solid State Research Stuttgart

TREX workshop Lodz April 2023

Overview of the three lectures and tutorials

- Introduction, Full CI Quantum Monte Carlo and NECI (AA)
- Transcorrelation: combining real-space methods such as VMC with quantum chemistry. Integral calculation with TCHint (PLR)
- Transcorrelated Coupled Cluster (DK): solving the TC Hamiltonian with CC (e-co.jl)
- Practical calculations (Philip Haupt, Johannes Hauskrecht)

Many-Electron Schrödinger equation

$$H = -\frac{1}{2} \sum_{i=1}^{N} \nabla_i^2 + \sum_{i < j} \frac{1}{r_{ij}} + \sum_i v(\mathbf{r}_i)$$

$$H\Psi_0 = E_0\Psi_0$$

$$\Psi_0 = \Psi_0(\mathbf{x}_1, ..., \mathbf{x}_N) \qquad \mathbf{x} = (\mathbf{r}, \sigma)$$

Electrons are Fermions:

$$\Psi_0(\dots,\mathbf{x}_i,\dots,\mathbf{x}_j,\dots) = -\Psi_0(\dots,\mathbf{x}_j,\dots,\mathbf{x}_i,\dots)$$

Atomic units $\hbar = m_e = |e| = 1$ $E_h = 27.211 \text{ eV}$

The "standard" Quantum Chemical Hamiltonian 2nd quantisation in finite basis sets

Introduce $M \gg N$ spatial orbitals, together with their **fermionic creation and annihilation operators**

$$\hat{H} = \sum_{pq\sigma} h_q^p c_{p\sigma}^{\dagger} c_{q\sigma} + \sum_{pqrs\sigma\tau} v_{rs}^{pq} c_{p\sigma}^{\dagger} c_{q\tau}^{\dagger} c_{s\tau} c_{r\sigma}$$
$$h_q^p = \langle \phi_p | \hat{h} | \phi_q \rangle \qquad \hat{h} = -\frac{1}{2} \nabla^2 + v_{ext}(\mathbf{r})$$
$$v_{rs}^{pq} = \langle \phi_p \phi_q | \hat{U} | \phi_r \phi_s \rangle \qquad \hat{U} = r_{12}^{-1}$$

Orbitals usually given by Restricted Hartree-Fock for weak-correlation and CAS-SCF for strong correlation

Major capabilities of NECI

- FCIQMC: exact stochastic FCI method which can overcome the fermion sign problem
- High parallelisability (upto ~20000 cores) allowing > 10¹⁰ walker simulations
- Initiator and adaptive-shift approximation for large systems
- Transcorrelated Hamiltonians
- Calculation of 1- and 2-body RDMs and TDMs
- Excited states
- Spin-adapted methodology (GUGA) for large open-shell systems (more than 20 OS orbitals)
- Real-time propagation, and spectral functions

Imaginary time Schrödinger Equation and determinant based expansions

$$-\partial_{\tau} \Psi = (\hat{H} - E) \Psi = 0$$

$$\Psi(\tau) = \sum_{i} C_{i}(\tau) |D_{i}\rangle, \qquad |D_{i}\rangle = \frac{1}{\sqrt{N!}} |\phi_{a\sigma}\phi_{b\tau}\dots|$$

$$N_{FCI} = \binom{M}{N_{\alpha}}\binom{M}{N_{\beta}}, \quad N_{\alpha} + N_{\beta} = N \qquad \stackrel{M=\text{number of spatial orbitals}}{N=\text{number of electrons}}$$

$$\Psi_0 \propto \lim_{\tau \to \infty} \Psi(\tau) = \lim_{\tau \to \infty} e^{-\tau \hat{H}} \Psi(0)$$

We will solve this problem via a stochastic propagation of signed walkers with explicit annihilation (FCIQMC)

FCIQMC: population dynamics of a set of walkers

$$\Psi = \sum_{i} \left(\sum_{\gamma}^{N_{w}} s_{\gamma} \delta(i - i_{\gamma}) \right) |D_{i}\rangle \qquad N_{w} = \sum_{\gamma} |s_{\gamma}|$$

Booth, Thom and Alavi, J Chem Phys. **131**, 054106, (2009)

I hom and Alavi, J Chem Phys, 131, 034100, (2009)

Initiator Method: controlling the sign problem

$$-\partial_{\tau}\Psi = (\hat{H}[\Psi] - E)\Psi = 0$$

Cleland, Booth, Alavi, J Chem Phys, **132**, 041103, (2010)

Adaptive Shift: unbiasing initiator bias in large systems

$$-\partial_{\tau}\Psi = (\hat{H}[\Psi] - E[\Psi])\Psi = 0$$

Ghanem, Lozovoi, Alavi, J Chem Phys, **151**, 224108 (2019) Ghanem, Guther, Alavi, J Chem Phys, **153**, 224115 (2020)

Schrödinger Equation

$$-\partial_{\tau}\Psi = (\hat{H} - E)\Psi = 0$$

FCIQMC: population dynamics of a set of walkers

$$\Psi = \sum_{i} \left(\sum_{\gamma}^{N_{w}} s_{\gamma} \delta(i - i_{\gamma}) \right) |D_{i}\rangle \quad N_{w} = \sum_{\gamma} |s_{\gamma}|$$

Master equation for the first-order kinetics of the walkers:

Pictorial example

Overview of FCIQMC algorithm: a random Game of Life, death and annihilation

Start with N (positive) walkers on D_0 , an initial value of S, and time-step τ

Booth, Thom and Alavi, J Chem Phys, 131, 054106, (2009)

<u>Spawning</u>

Death

Death event $H_{ii} - S$ configuration space i

Annihilation

Booth, Smart, Alavi, Mol. Phys., 112 (14), (2014), 1855-1869

Annihilation

<u>The rules of FCIQMC</u> (derived from the underlying imaginary-time S.E.)

Probability of death

 $p_d = \tau |H_{\mathbf{i}\mathbf{i}} - E_{HF} - S|$ \mathcal{D}^{abc} abcd ijkl D^{ab} D_0 \mathcal{D}^{abc} IJŀ

Probability to spawn new walker

$$p_s = \tau \frac{|H_{\mathbf{ij}}|}{p_{gen}(\mathbf{j}|\mathbf{i})}$$

$$\sum_{\mathbf{j}} p_{gen}(\mathbf{j}|\mathbf{i}) = 1$$

$$p_{gen}(\mathbf{j}|\mathbf{i}) \sim (N^2 M^2 + NM)^{-1}$$

If Hij < 0 , child has same sign as parent. If Hij > 0 child has opposite sign of parent

The projected energy

(non-variational)

$$E_{proj} = \frac{\langle \Psi_T | H | \Psi \rangle}{\langle \Psi_T | \Psi \rangle}$$

For single reference problems

$$\Psi_T = D_{HF}$$

For multi-reference problems

$$\Psi_T = \sum_{i \in \mathcal{T}} c_i D_i$$

$$E_{var} = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

Can be estimated via reduced density matrices

Be₂ (cc-pVTZ). N_{FCI} = 346,485 determinants

Be₂ (cc-pVTZ). N_{FCI} = 346,485 determinants

H2O (all electron, cc-pVDZ, 452x10⁶ determinants)

Predicted FCI results from the 2009 paper

TABLE II. Predicted FCI results. The geometries of the molecules were (in Å): CN (1.1941), HF (0.91622), CH₄(r_{CH} =1.087 728), CO (1.1448), H₂O(r_{OH} =0.975 512, θ =110.565°) (Ref. 35), O₂ (1.2074), and NaH (1.885 977). CN and O₂ orbitals were constructed from a restricted open-shell HF calculation with a spin multiplicity of two and three, respectively. CN, CH₄, CO, and O₂ had frozen core electrons. The number in brackets represents the error in the previous digit, obtained through a Flyvbjerg–Petersen blocking analysis (Ref. 37) of $E(\tau)$.

System	(N,M)	$N_{\rm FCI}/10^6$	$N_c/10^6$	f_c	$E_{ m total}$	$E_{\text{CCSD(T)}}$
Be: cc-V5Z	(4,91)	2.11	0	0	-14.646 38(2)	-14.646 29
CN: cc-pVDZ	(9,26)	246	173	0.704	-92.493 8(3)	-92.491 64
HF: cc-pCVDZ	(10,23)	283	0.998	0.0035	-100.270 98(3)	-100.27044
CH ₄ : cc-pVDZ	(8,33)	419	377	0.898	-40.387 52(1)	-40.389 74
CO: cc-pVDZ	(10,26)	1080	777	0.719	-113.056 44(4)	-113.054 97
H ₂ O: cc-pCVDZ	(10,28)	2410	47.4	0.0196	-76.280 91(3)	-76.28028
O ₂ : cc-pVDZ	(12,26)	5409	2651	0.490	-149.987 5(2)	-149.985 62
NaH: cc-pCVDZ	(12,32)	205 300	63.8	0.000 31	-162.609 0(1)	-162.609 01

Overview of initiator-FCIQMC

Start with N (positive) walkers on D_0 , an initial value of S, and time-step τ

The initiator test: should the newly spawned walker survive?

If D is empty, child of P spawned onto D survives only if P is an initiator $(N_P > n_{add})$

The value of n_{add} is not crucial, as long as it is sensibly chosen. We typically use n_{add} =2 or 3.

Initiators can bring to life new determinants

Demonstration

Extrapolation to the infinite-walker limit using an $N_w^{-1/3}$ law Haupt et al, arXiv: 2302.13683

24

FIG. 14. FCIQMC for Cr2.

Parallelisability of NECI

Total time and time lost due to load imbalance for running 100 iterations with 1.6 × 10⁹ walkers for the Cr₂/cc-pVDZ (28e in 76o) on 640–20 480 cores (not counting initialization). The calculations were run on Intel Xeon Gold 6148 Skylake processors with a 100 Gb/s OmniPath node interconnect.

Guther et al ; J. Chem. Phys. 153, 034107 (2020) DOI: 10.1063/5.0005754

Transcorrelated Hamiltonians

non-unitary similarity transformations

$$\begin{split} \Psi &= e^{\hat{J}} \Phi & \hat{J} = \hat{J}^{\dagger} \\ \hat{H} \Psi &= E \Psi & \text{Only if } \hat{J}^{\dagger} = -\hat{J} \text{ is the transformation unitary} \\ \Rightarrow (e^{-\hat{J}} \hat{H} e^{\hat{J}}) \Phi &= E \Phi \end{split}$$

Baker-Campbell-Hausdorff expansion of the similarity-transformed Hamiltonian:

$$e^{-\hat{J}}\hat{H}e^{\hat{J}} \equiv \tilde{H} = \hat{H} + [\hat{H}, \hat{J}] + \frac{1}{2!}[[\hat{H}, \hat{J}], \hat{J}] + \dots$$

Two forms of the correlators lead to analytically evaluable (exact) BCH expansion

(1) Jastrow correlator, useful for ab initio Hamiltonians, starts in 1st quantisation,

$$J(\mathbf{R}) = \sum_{i < j} u(\mathbf{r}_i, \mathbf{r}_j), \qquad \mathbf{R} = \{\mathbf{r}_1, \dots, \mathbf{r}_N\}$$

u is real symmetric $[u(\mathbf{r}_i, \mathbf{r}_j) = u(\mathbf{r}_j, \mathbf{r}_i)]$ but not necessarily merely a function of $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$

Sophisticated *u*'s suitable for the TC method can be obtained from Variational Monte Carlo (PLR)

(2) Gutzwiller correlator, useful in the Hubbard model, starts in 2nd quantisation

$$\hat{J} = J \sum_{\cdot} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

Hubbard model is a good `toy' model to study strong correlation Dobrautz, Luo, Alavi, PRB **99**, 075119 (2019)

Correlation factor (Ne) with and without e-e-n term

 $n \quad z_1 \\$

e₁

e₂

The cusps locate the position of e₂

Jastrow Factorised Similarity Transformation of the S.E. (Hirschfelder 1963, Boys and Handy 1969)

$$J(\mathbf{R}) = \sum_{i < j} u(\mathbf{r}_i, \mathbf{r}_j), \qquad \mathbf{R} = \{\mathbf{r}_1, \dots, \mathbf{r}_N\}$$

BCH expansion terminates at second order (kinetic energy is 2nd order one-body differential operator):

$$\begin{split} \tilde{H} &= \hat{H} - \sum_{i} \left(\frac{1}{2} \nabla_{i}^{2} J + (\nabla_{i} J) \nabla_{i} + \frac{1}{2} (\nabla_{i} J)^{2} \right) \\ &= \hat{H} - \sum_{i < j} \hat{K}(\mathbf{r}_{i}, \mathbf{r}_{j}) - \sum_{i < j < k} L(\mathbf{r}_{i}, \mathbf{r}_{j}, \mathbf{r}_{k}) \end{split}$$

Jastrow Factorised Similarity Transformation of the S.E.

$$\tilde{H} = \hat{H} - \sum_{i < j} \hat{K}(\mathbf{r}_i, \mathbf{r}_j) - \sum_{i < j < k} L(\mathbf{r}_i, \mathbf{r}_j, \mathbf{r}_k)$$
$$\hat{K}(\mathbf{r}_i, \mathbf{r}_j) = \frac{1}{2} \left(\underbrace{\nabla_i^2 u + \nabla_j^2 u + (\nabla_i u)^2 + (\nabla_j u)^2}_{+ (\nabla_i u \cdot \nabla_i + \nabla_j u \cdot \nabla_j)} \right)$$

 $L(\mathbf{r}_i, \mathbf{r}_j, \mathbf{r}_k) = \nabla_i \, u_{ij} \cdot \nabla_i u_{ik} + \nabla_j u_{ji} \cdot \nabla_j u_{jk} + \nabla_k u_{ki} \cdot \nabla_k u_{kj}$

The TC Hamiltonian in 2nd quantised form

$$\begin{split} \tilde{H} &= \sum_{pq\sigma} h_q^p a_{p\sigma}^{\dagger} a_{q\sigma} + \frac{1}{2} \sum_{pqrs} \left(V_{rs}^{pq} - K_{rs}^{pq} \right) \sum_{\sigma\tau} a_{p\sigma}^{\dagger} a_{q\tau}^{\dagger} a_{s\tau} a_{r\sigma} \\ &- \frac{1}{6} \sum_{pqrstu} L_{stu}^{pqr} \sum_{\sigma\tau\lambda} a_{p\sigma}^{\dagger} a_{q\tau}^{\dagger} a_{r\lambda}^{\dagger} a_{u\lambda} a_{t\tau} a_{s\sigma} \\ K_{rs}^{pq} &= \left\langle \phi_p \phi_q \right| \hat{K} \left| \phi_r \phi_s \right\rangle \qquad L_{stu}^{pqr} = \left\langle \phi_p \phi_q \phi_r \right| L \left| \phi_s \phi_t \phi_u \right\rangle \end{split}$$

The TC integrals are computed using **TCHint**

Excellent two-body-only approximation to the TC Hamiltonian (xTC) exists, and will be covered by Daniel Kats

\tilde{H} is a "pseudo-Hermitian" operator

- The non-Hermitian nature of \tilde{H} has been considered a great source of difficulty in the past, which has prevented the wide-spread adoption of the TC method
- As a non-unitary similarity transformation,

 \tilde{H} is **iso-spectral** with \hat{H}

- The eigenvalues of \tilde{H} are real
- However \tilde{H} has distinct **left** and **right**-eigenvectors

$$\tilde{H} | \Phi^{(R)} \rangle = E | \Phi^{(R)} \rangle$$
$$\langle \Phi^{(L)} | \tilde{H} = \langle \Phi^{(L)} | E$$

• Note that in \tilde{H}^{\dagger} , τ acts in the **wrong** way

$$\begin{split} \tilde{H}^{\dagger} | \Phi^{(L)} \rangle &= E | \Phi^{(L)} \rangle \\ \tilde{H}^{\dagger} &= e^{J} \hat{H} e^{-J}, \text{ i.e. } \quad J \to -J \end{split}$$

- The left-eigenvector is less compact.
- Therefore approaches which must compute $\langle \Phi^{(L)} |$ are not ideal (eg bi-variational)
- Need methods which need only compute the righteigenvector of \tilde{H}

Dobrautz, Luo, Alavi, PRB **99**, 075119 (2019) 18-site 2D Hubbard model, U/t=4

Imaginary-times methods such as FCIQMC can be used as the projective diagonaliser of the similarity transformed Hamiltonian

$$\Psi(\beta) = e^{-\beta(\hat{H} - E_0)}\Psi(0)$$
$$\Psi_0 = \lim_{\beta \to \infty} e^{-\beta(\hat{H} - E_0)}\Psi(0)$$

$$\Psi(\beta) = e^{\hat{J}} \Phi(\beta)$$

$$\Phi(\beta) = e^{-\beta(\tilde{H} - E_0)} \Phi(0)$$

$$\Phi_0 = \lim_{\beta \to \infty} e^{-\beta(\tilde{H} - E_0)} \Phi(0)$$

Strategies and approximations solve transcorrelated Hamiltonians

Transcorrelated FCIQMC

$$\Phi^{(R)} = \sum_{I} C_{I} |D_{I}\rangle$$

Main use is in **multi-reference problems**

• Transcorrelated CC $\Phi^{(R)} = e^{\hat{T}} |D_0\rangle, \quad \hat{T} \approx \hat{T}_1 + \hat{T}_2$

Main use is for weak/medium correlation

Transcorrelated Perturbation theory: test of behaviour for metals

Non-hermitian character TC Hamiltonian does not cause a problem for the above methodologies.

Proof

[Luo, Alavi, JCTC, **14**, 1403, (2018)]

$$e^{\hat{j}}\Phi(\beta) = \Psi(\beta) = e^{-\beta(\hat{H} - E_0)}\Psi(0) = e^{-\beta(\hat{H} - E_0)}e^{\hat{j}}\Phi(0)$$

$$\Rightarrow \Phi(\beta) = e^{-\hat{j}}e^{-\beta(\hat{H} - E_0)}e^{\hat{j}}\Phi(0)$$

$$= \lim_{M \to \infty} e^{-\hat{j}}\left(1 - \frac{\beta}{M}\left(\hat{H} - E_0\right)\right) e^{\hat{j}}e^{-\hat{j}}\left(1 - \frac{\beta}{M}\left(\hat{H} - E_0\right)\right) \dots e^{\hat{j}}\Phi(0)$$

$$= \lim_{M \to \infty} \left(1 - \frac{\beta}{M}\left(e^{-\hat{j}}\hat{H}e^{\hat{j}} - E_0\right)\right)^M \Phi(0)$$

$$= e^{-\beta(\hat{H} - E_0)}\Phi(0)$$

37

Imaginary time propagation with \tilde{H} leads to the ground state!

Boys-Handy form for *u*

$$u(\mathbf{r}_{i}, \mathbf{r}_{j}) = \sum_{mno} c_{nml} (\bar{r}_{i}^{m} \bar{r}_{j}^{n} + \bar{r}_{j}^{m} \bar{r}_{i}^{n}) \bar{r}_{ij}^{o}$$

$$\underset{m+n+o \leq 6}{\overset{mno}{\longrightarrow}}$$

Includes e-e, e-n, and e-e-n terms

$$\bar{r} = \frac{r}{1+r}$$

$$\bar{r} \approx r - r^2 \text{ for small } r$$

$$\bar{r} \approx 1 - 1/r \to 1 \text{ for large } r$$

For the first-row atoms, the 17 parameters have been obtained by a **Variance minimisation** VMC by Schmidt and Moskowitz, JCP, **93**, 4172 (1990)

Correlation factor (Ne) with and without e-e-n term (SM17 vs SM7)

The cusps locate the position of e₂

First application of TC-FCIQMC: First row atoms

Cohen, Luo, Guther, Dobrautz, Tew, Alavi, JCP 151, 0161101 (2019)

TABLE I. Total atomic energies (Hartrees), for CCSD(T), UCSSD(T)-F12, and the ST Hamiltonian, using the SM7, and SM17 correlation factors. The Mean Absolute Error (MAE) for each method across the series is also shown.

basis	Li	Be	В	С	Ν	0	F	Ne	MAE/H
CCSD(T)									
cc-pVDZ	-7.43264	-14.61741	-24.59026	-37.76156	-54.47994	-74.911155	-99.52932	-128.68069	0.121
cc-pVTZ	-7.44606	-14.62379	-24.60538	-37.78953	-54.52487	-74.98494	-99.63219	-128.81513	0.069
cc-pVQZ	-7.44983	-14.64008	-24.62350	-37.81209	-54.55309	-75.02319	-99.68158	-128.87676	0.039
F12									
cc-pVDZ	-7.47458	-14.65400	-24.63121	-37.80901	-54.53707	-74.99208	-99.63623	-128.81125	0.053
cc-pVTZ	-7.47267	-14.65653	-24.63626	-37.81883	-54.55293	-75.01752	-99.66994	-128.85890	0.036
cc-pVQZ	-7.47370	-14.65933	-24.64187	-37.82884	-54.56916	-75.04056	-99.70070	-128.89816	0.020
SM7									
cc-pVDZ	-7.46726	-14.65517	-24.63279	-37.81469	-54.53448	-74.97785	-99.60602	-128.78385	0.063
cc-pVTZ	-7.47627	-14.65943	-24.64458	-37.83703	-54.57236	-75.04055	-99.69421	-128.89389	0.019
cc-pVQZ	-7.47785	-14.66791	-24.65417	-37.84791	-54.58778	-75.06296	-99.72507	-128.92967	0.003
SM17									
cc-pVDZ	-7.47707	-14.66793	-24.64521	-37.82772	-54.55719	-75.01639	-99.65834	-128.83682	0.036
cc-pVTZ	-7.47804	-14.66789	-24.65003	-37.83928	-54.57989	-75.05303	-99.71377	-128.90944	0.010
cc-pVQZ	-7.47845	-14.66749	-24.65287	-37.84461	-54.58844	-75.06609	-99.73283	-128.93542	0.001
Expt	-7.47806	-14.66736	-24.65391	-37.84500	-54.58920	-75.06730	-99.73390	-128.93760	

The role of the K and L terms

Ne atom cc-pVQZ with SM17 correlation factor

$$\langle D_{HF} | \hat{K} | D_{HF} \rangle = -382 \text{ mH}$$
$$\langle D_{HF} | L | D_{HF} \rangle = +108 \text{ mH}$$

The effect of the three-body (L) terms is to raise the energy, countering the large negative (non-Hermitian) contributions coming from the two-body (K) terms.

It is necessary to have an accurate treatment of the 3-body terms

Electronic Structure Theory Group@ MPIFKF

