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Monte Carlo methods

Approaches which make repeated use of random numbers:

» to simulate truly stochastic events

P to solve | deterministic problems | using probabilities

Very important class of methods in statistical mechanics

— Sampling Boltzmann distribution

Computation of averages (integrals in many dimensions)

For quantum mechanical simulations — ‘Quantum Monte Carlo‘




’A simple example of a Monte Carlo simulation

Basic idea of Monte Carlo through the “dartboard method”

— Throw darts, compute Acircle, COMpute 7

Throw darts which land randomly within the square

# hits inside circle _ Acircle
# hits inside the square  Agquare
/]\

many, many hits

N



Monte Carlo integration

We want to compute the integral of f(x) in the interval [a, b]

f(x)

a b
| = /f )dx = ( —a/ f(x
= (b=a)(F)ay

where (f), ) is the average of the function in the range [a, b]



’ Monte Carlo integration‘

b 1
(o = [ )5 dx

- / ’ F(x)P(x) dx

1/(b-a)

a

{ P(x)

|

a

Draw M random numbers distributed unformely in [a, b]

A

P(x)

1/(b-a) l
—)(—)(—)MHHJ—» x

a

b

Flab) ~

Mfo,




A less uniform function‘

f(x)

P(x)




Monte Carlo integration in a nutshell‘

b
We want to compute | (A) = / A(x)P(x)
a

b
with| P(x) >0 and / P(x) =1 | < a probability density!
a

Monte Carlo — Sample {xq,...,xpm} from P(x)
LM
Estimate (A) ~ v ZlA(x,-)

efﬁE(X)

Statistical physics: P(x) = >

, the Boltzman distribution




’ Quantum chemical simulations

e Density functional theory methods

Large systems but approximate exchange/correlation

e Quantum chemistry post-Hartree-Fock methods
Accurate on small-medium systems

— Jungle of approaches: Cl, MCSCF, CC, CASPT2 ...

° ’Quantum Monte Carlo techniques

Stochastic solution of the Schrodinger equation

Accurate correlated calculations for medium-large systems



’Some general words about quantum Monte Carlo methods

Stochastically solve interacting Schrodinger equation

Why (real-space) quantum Monte Carlo?

— Favorable scaling — Energy is m

— Flexibility in choice of functional form of wave function

— Easy parallelization

— Among most accurate calculations for medium-large systems

Routinely, molecules of up to 100 (mainly 1st/2nd-row) atoms

upto Ci3gHag (A|fé 2017)




A different way of writing the expectation values

Consider the expectation value of the Hamiltonian on W

_ (VH|W)  [dRV*(R)HW(R) > E

ST wiw) T ARV RV(R) ©

HY(R)|  [W(R)”
V(R) | [ dRIV(R)]?

J
:/dR EL(R) P(R) = (EL(R))p

= [ dR

HV(R)

P(R) is a probability density and Ep,(R) = V(R)

the local energy



’Variational Monte Carlo: a random walk of the electrons

Use Monte Carlo integration to compute expectation values

> Sample R from P(R) using Metropolis algorithm
HV(R)
V(R)

> Average local energy Ep(R) = to obtain Ey as

M
Ev = (EL(R Z
R

%\ Random walk in 3N dimensions, R = (r,...,ry)

Just a to evaluate integrals in many dimensions




Is it really “just” a trick?|

Number of electrons 4 x 21422 =106
Number of dimensions 3 x 106 =

Integral on a grid with 10 points/dimension — 103! points!

MC is a powerful trick = Freedom in form of the wave function W



Monte Carlo integration‘

We want to compute an integral

Ey = /dREL(R)P(R)

M
We sample P(R) — | Ey = (E.(R))p Z

— Does the trick always work?

— How efficient is it?



’The Central Limit Theorem‘

Probability density P and function f with finite mean and variance

— [ axfoPeo — [ ax(f() - 2P

Sample M independent random variables xi, ..., xp from P(x)
1M
Define Fm = o Zl f(xi)

As M increases, Fy, is normally distributed as e~ (—m)?/207,

2o

with a mean [ and variance | 02, = 02 /M

— of the original probability density function




Monte Carlo versus deterministic integration ‘

Integration error € using Miy;, integration/Myc Monte Carlo points

— Monte Carlo methods

1 : .
€ x ———— independent on dimension !

vV Myic
It follows from Central Limit Theorem

. . g .. .
— width of Gaussian decreases as ———— for finite variance

vV Muc

— Deterministic integration methods

M2

int

1-dim Simpson rule: € o

d-dim Simpson rule: € —7d

int



Scaling with number of electrons

Roughly, Monte Carlo integration advantageous if d > 8

... for many-body wave functions d = 3Nje !

— Simpson rule integration (M integration points)

C C C 3Nelec/4 -
€= "4/d — 43N, = M = (*) Exponential
M M elec €

int int

— Monte Carlo integration (Myic Monte Carlo samples)

o N, C\?2 .
€= =cC clec = Myc = (*) Netec
vV Myic Myic €




’Summary of variational Monte Carlo‘

Expectation value of the Hamiltonian on W

g, = WHIY) _ [ rHY(R) V(R)?

(VW) VU(R) [dR|V(R)]2 :/dR EL(R) P(R)

Ey = /dREL(R)P(R)

o? = /dR(EL(R)—EV)2P(R)

Estimate Ey and o from M independent samples as
1M
E, = MZIEL(R;)
1=

M
1 _
-2 _ - N 2



Are there any conditions on many-body W to be used in VMC?

Within VMC, we can use any “computable” wave function if

> Continuous, normalizable, proper symmetry

> ’ Finite variance‘

(WI(H — Ev)’|V)

2 2
0" = = ((EL(R) — Ev)")p
(V[v)
ag
since the Monte Carlo error goes as |err(Ey) ~ ——
g ( V) m

Zero variance principle: if W — Wy, Ep,(R) does not fluctuate




Typical VMC run

Example: Local energy and average energy of acetone (C3HgO)

Oyme

Energy (Hartree)

o 500 1000 1500 2000

Evnvic = (EL(R))p = —36.542 + 0.001 Hartree (40x20000 steps)

ovmc = ((EL(R) — Evac)?)p = 0.90 Hartree



Variational Monte Carlo: To do Iist‘

V(R)|?
— Method to distribution function P(R) = fc‘1R|(\Uzl?)|2

— Obtain a set of {R1,R2,...,Ry} distributed as P(R)

How? As in classical Monte Carlo with Metropolis algorithm!

— Build the wave function W(R). Which | functional form | ?

Here, we spend most of our time, open topic of research

(V|o[v)

— Compute expectation values
(V]w)

Reformulate them to reduce fluctuations, open topic of research



How do we sample P(R)?‘

Generate a

M R M

R

R’/ M R" M . %\

Construct M(R¢|R;) as probability for transition R; — R¢ so that

— M(R¢|R;) >0 and /deM(Rf|Ri) =1 (stochastic)

— If we start from an arbitrary distribution P;n;;, we evolve to P

— Impose stationarity condition



Constructing I\/l‘

To sample P, use M which satisfies ’ stationarity condition |

/ dR; M(R¢|R;) P(R;) = P(R;) ¥Ry

> Stationarity condition

= ’ If we start with P, we continue to sample P‘

> Stationarity condition + stochastic property of M + ergodicity

= ’Any initial distribution will evolve to P‘




More stringent condition‘

In practice, we impose ‘ detailed balance‘ condition

[M(R(|R)) P(Ri) = M(Ri[R:) P C D

Stationarity condition can be obtained by summing over R;

/dRiM(Rf|Ri) P(R;) = /dRiM(Ri\Rf) P(R) = P(R;)
S

1

Detailed balance is a sufficient but not necessary condition




How do we construct the transition matrix P in practice?

Metropolis method — Write M as proposal T x acceptance A

T A?
o——0

Ry

| M(R¢|R;) = A(R¢|R;) T (R¢[Ry)

R.

Let us rewrite the detailed balance condition
M(R¢|R;) P(R;) = M(R;|R¢) P(Ry)
A(R¢[Ri) T(R¢[Ri) P(R;) = A(Ri|R¢) T(Ri|R¢) P(Ry)

A(R¢[Ri) _ T(RilRr) P(Ry)
A(Ri|R¢) T(R¢|R;) P(R;)




Choice of acceptance matrix A‘

Original choice by Metropolis et al. maximizes the acceptance

- T(Ri|R¢) P(Ry)
A(R¢|R;) = mm{l’ T(Rf‘Rfi) P(Rf)}

Note: P(R) does not have to be normalized
— For complicated W we do not know the normalization!

— P(R) = [V(R)[?

A

—>

Original Metropolis method‘ Ri

P(R
Symmetric T(R¢|R;) =1/A3V = A(Rf\Ri):mm{l, ( f)}



Better choices of proposal matrix T

Sequential correlation = M.y < M independent observations

M
Tcorr

Meff -

with T.opr autocorrelation time of desired observable

is to achieve fast evolution and reduce correlation times

Use in choice of T: For example, use available trial W

(Rf — Ri — V(Ri)T)2
2T

_ VU(R)

T(Rf’Rj) :Nexp — with V(Rl) = \U(R)




Acceptance and T, for the total energy Ey

Example: All-electron Be atom with simple wave function

Simple Metropolis
A T A

1.00 41 0.17
0.75 21 0.28
0.50 17 0.46
020 45 0.75

Drift-diffusion transition
T 7—v:orr A

0.100 13 042
0.050 7 0.66
0.020 8 0.87
0.010 14 094



Generalized Metropolis algorithm‘

1. Choose distribution P(R) and proposal matrix T(R¢|R;)
2. Initialize the configuration R;
3. Advance the configuration from R; to R’

a) Sample R’ from T(R’|R;).

T(Ri[R) P(R')

b) Calculate the ratio p = m P(R;)

c) Accept or reject with probability p

Pick a uniformly distributed random number x € [0, 1]
if x < p, move accepted — set Ry = R’
if x > p, move rejected — set Rt =R

4. Throw away first x configurations of equilibration time

5. Collect the averages



Variational Monte Carlo — Freedom in choice of W

Monte Carlo integration allows the use of complex and accurate W

= More representation of W than in quantum chemistry
= coDgr +c1D1+ Dy + ... of determinants



’ Jastrow-Slater wave function ‘

Commonly employed compact Jastrow-Slater wave functions

V(ry,...,ry) = J(r1, ...,y Zc, i(r1, ... rN)

Z

(]
dddtl
e A RSN
Lt
e e

—— Jastrow correlation factor

— Explicit dependence on electron-electron distances

Z ¢; D;i | — Determinants of single-particle orbitals

- and not millions of determinants



Divergence in potential and behavior of the local energy

Consider two particles of masses m;, m; and charges q;, g;

Assume r;; — 0 while all other particles are well separated

: : . HVY . .
Keep only diverging terms in v and go to relative coordinates

closetor=r; =0

1 Vv 1 v 11V
V() ~ = ——— + V()
2pij ¥ 2pp Vo pr W
11V
pij r ¥ )

where pjj = m;m;/(m; + m;)



Divergence in potential and cusp conditions

Diverging terms in the local energy

11V 11V iqj
_7,7_|_V(r):_777-|-ﬂ = finite
pijr W pijrv r

= W must satisfy Kato's cusp conditions:

~

ov
6r,-j

= wiiqi q;V(rj = 0)

rij=0

where W is a spherical average

Note: We assumed W(r;j =0) #0



Cusp conditions: example

The condition for the local energy to be finite at r =0 is

w/
v = Kijqi qj
\U/
e Electron-nucleus: p=1,q9;=1,q=-2 = | =—-7
v r=0
1 g
e Electron-electron: p=_-,¢9;=1,¢qg;=1 = | — =1/2
2 v r=0




Cusp conditions and QMC wave functions

> Electron-electron cusps imposed through the Jastrow factor
Example: Simple Jastrow factor
Fij
i) = € b
s0-Tleofe 5}
1<J

1 1
with bt = 5 o bt = byt = .

Imposes cusp conditions
+
keeps electrons apart

rij

> Electron-nucleus cusps imposed through the determinantal part



‘ The effect of the Jastrow factor‘

Pair correlation function for 1| electrons in the (110) plane of Si
gry(r,r') with one electron is at the bond center

Hood et al. Phys. Rev.

Lett. 78, 3350 (1997)

o>



Why should Wqne = J D work?

Full wave-function — Factorized wave-function
v To
N N
Full Hamiltonian —_— Effective Hamiltonian
H Heff
HT
HVY = EV — HIOP=EJd — 7<D: Eo

Heg® = Eb

Heg weaker Hamiltonian than H

= ® = non-interacting wave function D

= Quantum Monte Carlo wave function ¥ = 7D



Beyond VMC?

Removing or reducing wave function bias?

= Projection Monte Carlo methods



Why going beyond VMC?

Dependence of VMC from wave function W

-0.1070 T T

‘ \ \ \
3D electron gas at a density r =10

VMC JS.
@

-0.1075
VMC JS+3B..-~
e

-0.1080| -
VMC JS+BE-"

DMC JS ,,—"'..VMC JS+3B+BF
-0.10858- -

Energy (Ry)

L
-0.1090

PDMC JS+3B+BF
L 1 L | 1
0 0.02 0.04 0.06 0.08
. 2
Variance ( x r;‘ (Ry/electron)™)

Kwon, Ceperley, Martin, Phys. Rev. B 58, 6800 (1998)



| Why going beyond VMC?|

What goes in, comes out! Can we remove wave function bias?

’ Projector (diffusion) Monte Carlo method

> Construct an operator which inverts spectrum of H

‘Diffusion Monte Carlo‘ — e T(H—Ewer)

> Use it to stochastically project the ground state of H



’ Diffusion Monte Carlo‘

Consider initial guess V() and repeatedly apply projection operator

\U(n) — efT(,HfEref)\U(nfl)

Expand W(9 on the eigenstates W; with energies E; of H
\U(n) — e_nT(H_Eref)w(O) — Z \UI <\Ui‘\u(0)>e_n7—(Ei_Eref)
and obtain in the limit of n — oo

||m ‘U(I‘l) g \U0<\UO‘\U(0)>e7”T(E07Eref)

n—oo

If we choose E,of ~ Eg, we obtain Ii_}m v =y,




How do we perform the projection?‘

Rewrite projection equation in integral form

V(R 4 7) = /dR G(R,R, 7)V(R, t)

where G(R',R,7) = (R'|e "(H~Eet)|R)

> Can we sample the wave function?
For the moment, assume we are dealing with , soV >0

> Can we interpret G(R’, R, 7) as a transition probability?

If yes, we can perform this integral by Monte Carlo integration



’VMC and DMC as power methods‘

L __NR)E
Distribution function is given | P(R) = [dR|W(R)2

Construct M | which satisfies stationarity condition so that

lim /dR,7 ---dRiM(R,R;) - - - M(R3,R2)M(R2, R1) Pinit(R1) = P(R)

n—oo

Opposite procedure!
The matrix M is given — |M = G = (R'|e ("~ E=)|R)
We do not know !

lim /dR,,---deG(R,R,,)---G(R3,R2)G(R2,Rl)Pimt(Rl) = Vy(R)

n—o0

In either case, we want to find the dominant eigenvector of M



What can we say about the Green's function?‘

G(R.R,7) = (R "0 E|R)

G(R’,R, 7) satisfies the imaginary-time Schrédinger equation

aG(Rv ROa t)

(7‘[ — Eref)G(R7 Ro, t) = — ot

with G(R’,R,0) = §(R' — R)



Evolution equation of the probability distribution ‘

We can understand the behavior of G which satisfies

8G(R, Ro, t)

_Ere R,R ) - =
(H £)G(R, Ro, t) i

to understand evolution of the distribution W

V(R, t) = /dRo G(R, R, )V (Ry)

which satisfies the imaginary-time Schrodinger equation

OV(R, 1)

(H — Eer)V(R, t) = ot




’Can we interpret G(R’,R, 7) as a transition probability?‘ (1)

H=T
Imaginary-time Schrodinger equation is a diffusion equation

8G(R, Ro7 t')

1 2
~IV2G(R,Ry, t) = —
2V G( 3 07t) ot

The Green's function is given by a Gaussian

G(R,R,7) = (277) 3N/2 exp [_(R’2—TR)2]

Positive and can be sampled‘




’Can we interpret G(R’,R, T) as a transition probability?‘ (2)

H=V

8G(R, Ro, t)

(V(R) — Eref)G(R, Ro, t) = — ot ,

The Green's function is given by

G(R/? R’T) = &xp [_7- (V(R) - Eref)] 6(R - Rl)?

but does not preserve the normalization

It is a factor by which we multiply the distribution W(R, t)



H =T +V and a combination of diffusion and branching

Let us combine previous results

(R"—R)?

G(R',R,T) ~ (27T7')_3N/2 exp [— 5
-

] exp[—7 (V(R) — E7)]

Diffusion + branching factor leading to survival/death/cloning

Why? Trotter's theorem — | eATE)™ = ATeB™ 1 0(72)

— Green's function in the | short-time approximation ‘ to O(72)




Time-step extrapolation

Example: Energy of Liy versus time-step 7

—14.988

14980

@

[ih]

o

=1

t

£

~—-14.902

>

<

b

<

c

w

—14.994 |
PO Simple DMC, Emx (0, 1, 3/2 2, 5/2) AN
+ oo Simple DMC, Egr (O, 1 2 3/2 2, 5/2)
o Improved OMC,” Emie (0. ) 3
o ——= Improved DMC g (0, 1,72)
—14.996
0.00 0.05 0.10 0.15 0.20 0.25

Time Step T (Hartree™')

Umrigar, Nightingale, Runge, J. Chem. Phys. 94, 2865 (1993)



Diffusion Monte Carlo as a branching random walk

The basic DMC algorithm is rather simple:

1.

Sample W(O)(R) with the Metropolis algorithm

Generate My walkers Ry, ..., Ry, (zeroth generation)

Diffuse each walker as|R’ = R + ¢

where ¢ is sampled from g(¢) = (277) 7 3V/2 exp (—52/27')

. For each walker, compute the factor

|p=exp[~7(V(R) — Ewer)]|

p is the probability to survive/proliferate/die

. Adjust E,.t so that population fluctuates around target My

After many iterations, walkers distributed as Wy(R)



Diffusion and branching in a harmonic potential

V() \\J

VA G0RN

\

W) T

Walkers proliferate/die where potential is lower/higher than Ef




Problems with simple algorithm ‘

The simple algorithm is | inefficient and unstable

> Potential can vary a lot and be unbounded

e.g. electron-nucleus interaction — Exploding population

> Branching factor grows with system size



Importance sampling‘

Start from integral equation

V(R t+7)= /dR G(R',R,7)V(R, 1)

Multiply each side by trial Wy and define | 7(R, t) = Wr(R)V(R, t) |

(R, t+7) = /dR G(R,R,7)n(R, 1)

where the importance sampled Green's function is

G(R',R,7) = Wp(R')(R'|e "H=Ee)|R) /W (R)

We obtain | lim (R) = Wp(R)Wo(R)

n—oo




Importance sampled Green's function ‘

The importance sampled G (R, Ro, 7) satisfies

1 .. . oG
V26 + V- [GV(R)] + [EL(R) — Eref] G = ——~
2 or
: : ~ VVr(R) _ HV(R)
with quantum velocity V(R) = V1(R) and Ep(R) = Vr(R)

We now have in addition to diffusion and branching terms

Trotter's theorem =- Consider them separately for small enough 7



’The drift-diffusion-branching Green's function ‘

Drift-diffusion-branching short-time Green's function is

2T
x exp{—7 (Er(R) — Ewer)}

E(R',R,7) = (277) " 3N/2 exp {_(R/ —-R-— TV(R))2:| .

What is new in the drift-diffusion-branching expression?
> V(R) pushes walkers where W is large
> Er(R) is better behaved than the potential V(R)
Cusp conditions = No divergences when particles approach

As Ut — W, E;, — Ey and branching factor is smaller



Basic DMC algorithm with importance sampling‘

1. Sample initial walkers from |Wr(R)|?

2. Drift and diffuse the walkers as R" = R+ 7V(R) + ¢
where ¢ is sampled from g(¢) = (2r7) 3V 2 exp (—&2/27)

3. Branching step as in the simple algorithm but with the factor

p = exp {—7[(EL(R) + EL(R'))/2 — Eref]}

4. Adjust the trial energy to keep the population stable

— After many iterations, walkers distributed as W (R)Wo(R)



Electrons are fermions!

We assumed that Wy > 0 and that we are dealing with bosons

Fermions — W is antisymmetric and changes sign!

Fermion Sign Problem ‘

All fermion QMC methods suffer from sign problems
These sign problems look different but have the same “flavour”

Arise when you treat something non-positive as probability density



| The DMC Sign Problem

How can we impose antisymmetry in simple DMC method?

Evolve separate positive and negative populations of walkers

Simple 1D example: Antisymmetric wave function W(x, 7 = 0)

Rewrite W(x, 7 = 0) as W(x1=0)
Vv, v
where
1
Vo= (v v)

1 W(x1=0) W(x1=0)
Vo = S(vI-v) |




Particle in a box and the fermionic problem

The imaginary-time Schrodinger equation

ov

is linear, so solving it with the initial condition
VU(x,t=0) = VWV (x,t=0)—WV_(x,t=0)

is equivalent to solving

v oW _
HY, = —86; and MV =——=

separately and subtracting one solution from the other



Particle in a box and the fermionic problem

> Since E§ < E§, both W and W_ evolve to ¥}

\Ui—>

> Antisymmetric component exponentially harder to extract

Wy —v_| e 5t
XX
Vv | C Ee

as t — o0



The Fixed-Node Approximation ‘

Problem Small antisymmetric part swamped by random errors

Solution Fix the nodes! (If you don’t know them, guess them)

impenetrable

barrier \




impenetrable

barrier \

Fixed-node algorithm in simple DMC‘

How do we impose this additional boundary condition?

> Annihilate walkers that bump into barrier (and into walls)

— This step enforces boundary conditions

— In each nodal pocket, evolution to ground state in pocket

Numerically algorithm (no exponentially growing noise)

— Solution is exact if nodes are exact

— Best solution consistent with the assumed nodes



’ For many electrons, what are the nodes? A complex beast‘

Many-electron wave function W(R) = W(ry,ra, ..., ry)

— surface where W = 0 and across which W changes sign

A 2D slice through the 321-dimensional nodal surface
of a gas of 161 spin-up electrons.



Some known properties of the nodes‘

Physical space has d (=1,2,3) dimensions
» Node is (dN — 1)-dimensional surface in dN dimensions

constraint (W = 0) = | (dN — 1) -dimensional node

» Equations as r; = r; define (dN — d)-dimensional coincidence
surfaces and do not define the node completely if d > 1

» If d =1, coincidence points x; = x; define the ground-state
node completely — One-dim problems are easy to simulate



Nodal pockets can be divided up into classes‘

Start from Rg and continously reach all points with W(R) # 0
= Nodal pocket accessible from Ry

Map this subvolume over rest of the space with permutations

2

\ ¥

Xy

Figure courtesy of Matthew Foulkes
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Figure courtesy of Matthew Foulkes
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Nodal pockets can be divided up into cIasses|

Start from Rg and continously reach all points with W(R) # 0
= Nodal pocket accessible from Rg

Map this subvolume over rest of the space with permutations

Figure courtesy of Matthew Foulkes

o>



Nodal pockets can be divided up into cIasses|

Start from Rg and continously reach all points with W(R) # 0
= Nodal pocket accessible from Rg

Map this subvolume over rest of the space with permutations

Figure courtesy of Matthew Foulkes

o>



Nodal pockets can be divided up into cIasses|

Start from Rg and continously reach all points with W(R) # 0
= Nodal pocket accessible from Rg

Map this subvolume over rest of the space with permutations
Xy

Figure courtesy of Matthew Foulkes

o>



The Tiling Theorem

Consider Hamiltonian with a local potential

For ground-state wavefunction, all pockets are in the same class
Xy

Figure courtesy of Matthew Foulkes

o>
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For ground-state wavefunction, all pockets are in the same class
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o>
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Use the nodes of trial W — Fixed-node approximation

Use the nodes of the best available trial W wave function

W(R)=0

<

Find best solution with same nodes as trial wave function W

Fixed-node solution exact if the nodes of trial W are exact

Easy to implement in DMC with importance sampling: m > 0



Fixed-node solution and importance-sampling DMC‘

Given trial W (R), evolve ’W(R, t) = Vp(R)V(R, t) ‘ as

_%Vzﬁ +V- [7r V(R)] + [EL(R) - Eref] ™= _g:-
with V(R) = ST (I(g) and Er(R) = TJTT(,(-S)

Fixed-node approximation — |7(R,t) >0



Fixed-node solution and behavior at the nodes‘

Within the nodes | HWpn (R) = EpxWen(R) |

If the nodes not exact — Wpn # Vg

If the nodes not exact — Discontinuity of derivatives at the nodes

‘HWFN(R) = EFN\UFN(R) -+ (5‘ for R € 6Q

Note that the § function does not affect the computed energy

/WFNHWFN = /‘UFN(EFNWFN +9) = /WFNEFN‘UFN = Epn



Fixed-node solution is an upper bound to exact energy

In a nodal pocket Q of the trial wave function W

HVpn(R) =

ErnVren(R)

ReQ

with Wgn(R) =0 for R € Q — Extend solution over all space

which satisfies

Upn(R =i Z 1)Pwen(PR)
[ AR Uy (RyHFpx(R)

= = =Epn > Eo
J ARV (R)Wen(R)




Fixed-node DMC and excited states

No general fixed-node variational principle for excited states

T=0:



Fixed-node DMC and excited states

No general fixed-node variational principle for excited states

> 0:




Fixed-node DMC and excited states (1)

No general fixed-node variational principle for excited states

> 0:

For t — o0, only pockets of the lowest energy class are occupied

It can happen that Epn < Ecxact



Fixed-node diffusion Monte Carlo and excited states (2)

Is fixed-node diffusion Monte Carlo variational?

For lowest state in each 1-dim irreducible representation

What about “real” excited states?‘

In general, exact excited state for exact nodal structure
For excited states, even bigger role of the trial wave function

— Enforces fermionic antisymmetry + selects the state

In practice, for reasonable wave function, no collapse

— fixed-node DMC approaches excited state from above



’ Have we solved all our problems?

Results depend on the nodes of the trail wave function W

’ Diffusion Monte Carlo as a black-box approach?‘

enmap for atomization energy of the G1 set

DMC CCSD(T)/aug-cc-pVQZ
HF orb Optimized orb CAS
EMAD 3.1 2.1 1.2 2.8 kcal/mol

Petruzielo, Toulouse, Umrigar, J. Chem. Phys. 136, 124116 (2012)

With “some” effort on W, we can do rather well



Diffusion Monte Carlo as a black-box approach?‘

Non-covalent interaction energies for 9 compounds from S22 set

DMC with B3LYP /aug-cc-PVTZ orbitals versus CCSD(T)/CBS

' ‘ Apniap = 0.058 kecal/mol ‘

Dubecky et al., JCTC 9, 4287 (2013)

With “practically no” effort on W, we can do rather well



Diffusion Monte Carlo end excitation energy

Excitation energy and wave function dependence

Vertical excitation energy (eV)

5.3

52 r

51 r

5.0

4.9

4.8

* VMC —e—
DMC —e&—
)
¢
[0]
@ o)
[0]
exFCl
| ccs . _ _ % 0.0
CAS CIPSI

HF/HL CIS (6,5) (6,10) (14,13) 1k 6k 11k 18k

Cuzzocrea, Scemama, Briels, Moroni, Filippi, JCTC 16, 4203 (2020)

DMC is not a panacea but effort on W pays off!



| DMC and solid state calculations |

Example: Structural/magnetic properties of superconducting FeSe
— Accurate lattice constants, bulk moduli, and band dispersion

— Resolving relative energetics of different magnetic ordering

' \/\/‘(\/\'\
@

X /\,
gRe=9n

)
¢

e
G\ N

1
B
° |
<
9

Busemeyer, Dagrada, Sorella, Casula, and Wagner PRB (2016)



Alternatives to fixed-node DMC: Releasing the nodes‘

First do a fixed-node DMC simulation




Alternatives to fixed-node DMC: Releasing the nodes‘

Then release the nodes




Alternatives to fixed-node DMC: Releasing the nodes‘

Then release the nodes

» Red and blue solutions collapse to boson ground state, but
their difference approaches the fermion ground state

> Back to the sign problem: exponentially growing noise



Alternatives to fixed-node DMC: Determinantal QMC‘ (2)

Given single-particle basis, perform projection in determinant space

Different way to deal with fermionic problem

— Determinantal QMC by Zhang and Krakauer
Appears less plagued by fixed phase than DMC by FN

— Full-Cl QMC by Alavi
Start from Wep =D . ¢iD;

8\IJ 86,'
HY = —E — H,'J'Cj = —E



DMC in summary

The fixed-node DMC method is (in general)
> Easy to do

» Stable

» Accurate enough for many applications in quantum chemistry

... especially in large systems

» Accurate enough also for subtle correlation physics

Use of fixed-node DMC for computation of excited states

» In the general landscape, we are doing quite well !

> Sensitivity to wave function but relatively robust

— basis, size of the determinantal expansion



’ Beauty of quantum Monte Carlo — Highly parallelizable

V(ry,...,ry) — Ensemble of walkers diffusing in 3N dimensions

VMC — Independent walkers = Trival parallelization

DMC — Nearly independent walkers = Few communications
Easily take great advantage of parallel supercomputers!

As early as 2001 . ..

@ Up to SizpzHip0 and Cyigg !
sl T B
Carbon  —#— (d) MLW

5

»
8

CPU Time (s)

3

5
o

0 200 400 600 800 1000
Number of electrons

Williamson, Hood, Grossman (2001)




Human and computational cost of a typical QMC calculation

Task Human time Computer time
Choice of basis set, pseudo etc. 10% 5%
DFT/HF/Cl runs for W setup 65% 10%
Optimization of W 20% 50%

DMC calculation 5% 35%



To conclude: ongoing research in QI\/IC‘

» Search for different forms of trial wave function

Neural network architecture — W of multi-electron orbitals
“F

Pfau, Spencer, Matthews, Foulkes, Phys. Rev. Res. (2020)

» Push optimization techniques to larger systems
» More work on transition metals

» Alternatives to fixed-node diffusion Monte Carlo



’Other applications of quantum Monte Carlo methods‘

> ’ Electronic structure caIcuIations‘

Strongly correlated systems (Hubbard, t-J, ...)

Quantum spin systems (Ising, Heisenberg, XY, ...)

>
>
» Liquid-solid helium, liquid-solid interface, droplets
» Atomic clusters

>

Nuclear structure

» Lattice gauge theory

Both zero (ground state) and finite temperature
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Targeting Real chemical accuracy at the EXascale

Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union
Horizoon 2020 research and innovation programme under Grant Agreement No. 952165.
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Multideterminant wave

functions
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m Atomic orbitals (AOs): xk. Non-orthogonal set of one-electron functions.
Xi(r) =Y Piy(r)ewll?
]

P : Spherical harmonics or Polynomial. p = 1: Slater, p = 2: Gaussian
m Molecular orbitals (MOs): LCAO. Orthonormal set of one-electron functions.

¢i(r) =) Caoxalr)
k

m Many different types of MOs: Hartree-Fock, Kohn-Sham, localized, natural, ...
m N-electron Wave function: Anti-symmetric product of MOs = Slater determinant

¢1(r1)  da(r1) ... on(r1)
o1(r2)  ¢2(r2) ... on(r2)

W(r17r27"'7rN): .

brlrn) dalrw) - dnlew)
. TINeeeerenp!’nnknLBn\l!|:odo oo
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MOs are linear combinations of AOs (LCAO)
One can build as many MOs as AOs
The space spanned by MOs is the same as the space spanned by AOs

m Hartree-Fock MOs are divided into occupied and virtual MOs
m Occupied Hartree-Fock MOs: Orthonormal set of LCAOs which minimize the energy
of a Slater determinant
m Virtual Hartree-Fock MOs: The orthonormal complement of the Occupied MOs




TR

The Slater determinant can be rewritten by separating 1- and |-spin electrons:

\U(rl, rn,..., rNT’ rN¢+17 ceey I’N) =

¢1(r1)  d2(r1) oo ong(r1) d1(rnvs+1)  d2(rnvp+1) o dn (rv+1)
¢1(r2)  ¢2(r2) ... o (r2) y d1(rne+2)  d2(rm2) oo Oy (rvg+2)
¢1(;‘NT) ba(rn,) - QSNT(.VNT) le(.rN) Pa(rnv) - (bNL-(rN)

= DT(I’l,Q, .. "rNT) X DJ,(rNT-‘rlv .. .,FN)




- -
rQ ->< Electron correlation
@ -

w2 = (Dy x D))?
2 2

m The N-electron density is the product of a density of N} 1-spin electrons and a
density of N |-spin electrons.

m Mean-field approach: 1-spin and |-spin electrons are statistically independent

m Although same-spin electrons are not statistically independent, the
single-determinant model is said to be uncorrelated.



- -
I'Q ->< Electron correlation
@ -

We have seen that electron correlation can be introduced with a Jastrow factor:

\U(rl, .. .,I’N) = DT(rl, .. ”rNT) X Di(rNTH,. . .,rN) X exp (J(l’l, o .,I’N))

with N
by |ri —rj|
J(r,. .. =y ———r J 4
(r1,eorm) Zl+b2|ri_rj|
1<J

J couples T-spin and |-spin electrons, so

W(rl,. . '7rN)2 7& pT(rla .. '7rNT) X Pi(rN¢+1a .. '7rN)

and 1-spin and |-spin electrons are correlated.

Correlation energy

Ecor[w] = E[W] - EHF




r2 —>< N-electron basis functions
@ -

m V is an N-electron function
m |t can be expressed as a linear combination of N-electron functions

W(I’l,..., ZC, r1,...,N)

m If the basis is infinitely large, the exact wave function can be obtained by finding
the ¢; which minimize the energy.

E(\Ul) > E(\Um) > E(de) > E(Woo) - Eexact

with 1 < m < Njy.



rQ ->< Slater determinants
@ -

A natural N-electron basis is the basis of all possible Slater determinants that can be
built with a given set of M MOs:

ol )ea(5) o) (5)-
() a( ) en(2) ool oo 2)

Each basis function is antisymmetric = W is antisymmetric



I'Q ->< Slater determinants
@ -

The size of the basis grows fast:

M= (NT!(/\/IIVIi NT)!) : (NU(’V’Mi ’VU!>

18 electrons in 111 orbitals:
Ny = 2.5 x 10%® determinants.

\U(I’l, ey rN) = DlT(rl, ceey rNT) Dli(rNT-H? ey rN) +
2 DQT(rl, ey rNT) Dgi(r/\/?_i_l, SN I’N)
v(rg,..., rN)2 # pr(re, ...,y ) X py(rag 41, - - -, rnv)== electron correlation.



r2 _>< Configuration state functions
@ -

m The exact wave function is an eigenfunction of the spin operator $2
m Slater determinants are eigenfunctions of S,, but not of §2

= To obtain W eigenfunction of 52, one needs to have in the determinant set all
possible spin flips in open shells

+ -+ +- +- +- -+ -+
+ -+ -+ -+ $- +- $-
t | =a| #= | +b| —F | +c| #= [+d]| —F |[+e| #= [+f| -+
+
it

+- - —% -4 ~% +-
+4 +4 +4 +4 +4 +4




r2 _>< Configuration state functions
@ -

m Configuration state functions (CSF): Linear combinations of Slater determinants,
which are eigenfunctions of S2:

+ - —+ $— —4

+ Ll -+ - -+ #—
| = Axs|| =+ [+] #= [-] #= || —¢
1 $— —+ -+ -
f# +4 o +4 44

—+ $— $- $— -4 -4

3 —+ —+ -+ - $- $-

+oBx 22w |+ 4 [+ 2= |-2| ¢ $- -+

$— - —+ —+ -+ -

+4 +4 +4 +4 +4 +4

m The CSF basis is smaller than the determinant basis: one selects only basis
functions with the desired (52)



r2—>< Configuration interaction
@ -
Configuration interaction (Cl)

m V is a linear combination of Slater determinants (or CSFs)
m The energy is minimized by diagonalizing the Hamiltonian in the basis of Slater
determinants (or CSFs)
(V[H|V)

E=11100

(Vv |

Cl methods

Differ by the choice of the basis:
m Full configuration interaction (FCI): All possible Slater determinants. O(N!)
m Cl with Single and Double substitutions (CISD): No more than one or two MOs
differ from the Hartree-Fock determinant. O(N2N2)
m Complete Active Space (CAS): Only a subset of m MOs can be substituted from
the Hartree-Fock determinant. O(m!)




r2_>< Dynamic vs static correlation
@ -

m Dynamic : short-range effects due to the Coulomb hole. Hartree-Fock qualitatively
correct, many small contributions.

m Static : near-degeneracies. Hartree-Fock qualitatively incorrect, few large
contributions.

m CHy, 6-31G: 38 x 10° determinants. Dynamic

EHF -40.1805 a.u
EFCI -40.3011 a.u

m Dissociated Hp, STO-6G: 2 determinants (1 CSF). Static

75 (10)02) ~ 62(1)02(2)

Enr  -0.5572 a.u € =-0.08619 a.u
EFCI -0.9421 a.u € = -0.08619 a.u

W(1,2) =




r2_>< Dynamic vs static correlation
@ -

m Dynamic: Well described by a Jastrow factor
m Static: Well described by a linear combination of Slater determinants

m Optimal representation:

V= (Z C;D,-) exp (J)

m Interplay between static and dynamic correlation: ¢; should be optimized in the
presence of exp(J).




TR

Size consistency: Strict separability. When two systems A and B are far enough to not
interact:
E[\UA“_B] = E[\UA] + E[WB]

m If the MOs are localized on fragments A and B, determinants can be written as
[KAB) = 1418 = |14) & |J°)

m FCIAB is built as the tensor product of FCI* and FCIB

Va.g=> cklK*B) (ch |14 ) ® <¥cf|JB>>

K



[R=<
@ -
Cl is usually not size-consistent. Example: CISD

The CISD space for A... B is not the tensor product of the spaces of A and B
m |14) = THIHFA) |JB) = THI|HFB)
m |14JB) = THTHIHFAHF5)
k/ A..B\ . L ..
m |KABY = Un’,’ﬂHF ) : quadruple excitation, missing in CISD space
The size-consistency error is positive:

E[VEisg] > EMVEspl + E[VEsp]

.

Size-consistent particular cases

Hartree-Fock FClI CAS-SCF

v
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rQ ->< Configuration Interaction
@ -

m Define an orthonormal basis of N-electron functions: Slater determinants or CSFs

{IN}

m Express the wave function on this basis: (/|W) = ¢

vy =3 qln

/

m The energy is given by
(W|H|W)

=y

m The optimal ¢; are obtained when |W) is an eigenfunction of H, and E is the
corresponding eigenvalue



-r2:>< Diagonalization of the Hamiltonian

m (/|J) = d;y, because MOs are orthonormal.
= Hy = (I|H]J)
= (W) =X aciy=3c =1

EWV] =) ccsHy
1

m When Ny is small < 10*, direct diagonalization of H

m When Ny is large, Davidson's algorithm to extract the desired roots.
Iterative computation of [W) =", wy|l) =", |I)(I|H|V) (power method).



TR

Thanks to (/|J) = d;:
m Diagonal terms:

Hi = > (lhi) + > (il

i

m [J) = T5|1): |I) and |J) differ by one MO:

iy = (plhlr) + > (pillr)

m [J)y = T7|0): |I) and |J) differ by two MOs:

Hiy = (pql|rs)
m |/) and |J) differ by more than two MOs:
Hy=0



rQ ->< Computational aspects

There are:
m O(N*) two-electron integrals

m Ny Slater determinants

Algorithms

m Integral-driven

m Loop over integrals
m Add the contributions to |W)

m Determinant-driven

m Loop over determinants
m Usually, Ny >> O(N*), so less efficient than determinant-driven




TR

m Same symmetry:
Obtained as different eigenvectors of H. Expanded on the same set of

determinants:
Wi = b
!

m Lowest states of different symmetries:
H is block-diagonal:

m Pick only determinants of the desired symmetry
m Obtain the ground state

Expanded on different sets of determinants:

wik) — Z c,(k)|l(k)>
I



TR

m All Cl methods are approximations of the FCI
m They differ by the choice of the Slater determinant basis

m CIS, CISD, CISDT, CISDTQ, ... : Number of differences wrt Hartree-Fock
(dynamic)
m CAS, RAS, GAS, ... : Clin an active space (static)

m MR-CI : active space + CISD for each reference (static + dynamic)

m MP2, CAS-PT2, dynamic correlation is computed with perturbation theory:
cheaper than CI
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Selected Configuration Interaction




TR

FCl: Exact solution of AW = EW in a complete basis of Slater determinants

m The determinant basis is derived from the one-electron basis set

m Only approximation : one-electron basis-set incompleteness
m Intractable : O(N!) scaling

m All the post-Hartree-Fock methods are approximations of the FCI within the same
basis set
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THE JOURNAL OF CHEMICAL PHYSICS 147, 184111 (2017)

w LrossMark

Pushing configuration-interaction to the limit: Towards massively parallel

MCSCEF calculations

Konstantinos D. Voglat2|s 1.3.6) Dongxia Ma,"® Jeppe Olsen,? Laura Gagliardi,’

and Wibe A. de Jong?®?)

'Department of Chemistry, Minnesota Supercomputing lnmrute and Chemical Theory Center,

University of Minnesota, 207 Pleasant Street South lis, Mii 55455-0431, USA
2Department of Chemistry, Aarhus University, langelandsgade 140, 8000 Aarhus C, Denmark
iCompula!ional Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 12 June 2017; accepted 20 October 2017; published online 14 November 2017)

A new large-scale parallel multiconfigurational self-consistent field (MCSCF) implementation in
the open-source NWChem computational chemistry code is presented. The generalized active space
approach is used to partition large configuration interaction (CI) vectors and generate a sufficient
number of batches that can be distributed to the available cores. Massively parallel CI calcu-
lations with large active spaces can be performed. The new parallel MCSCF implementation is
tested for the chromium trimer and for an active space of 20 electrons in 20 orbitals, which can
now routinely be performed. Unprecedented CI calculations with an active space of 22 electrons
in 22 orbitals for the pentacene systems were performed and a FTis @RS GO wE GHEFTT
with an active space of 24 electrons in 24 orbitals for the chromium tetramer was possibleB¥it
chromium tetramer corresponds to a Cl expansion of one trillion Slater determinants (914 058 513 424)
and is the largest conventional CI calculation attempted up to date. Published by AIP Publishing.
https://doi.org/10.1063/1.4989858




-r2:>< The Full Cl Hamiltonian is very sparse

m Each row (/| of H has non-zeros when |J) differs by less than 3 MOs
(Slater-Condon rules)

m Each row has at most O(N2N2) non-zero elements
m H is symmetric, the same applies to columns

= Davidson's algorithm involves computing (/|H|W)

m Sparse matrix-vector multiplication: O(Ny x N2N?2)
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= DMRG?

m FCI-QMC : Stochastic solution of FCI equations.?
m First row diatomics cc-pV5Z.¢

m Selected Configuration Interaction

m Scaling is still O(N!), but pre-factor is killed.
m Much larger active spaces are possible today

2G. K.-L. Chan , arXiv:0711.1398 (2007)
5G.H. Booth , J. of Chem. Phys. 131, 054106 (2009).
°D. Cleland , J. Chem. Theory Comput. 8, 4138 (2012)
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OpenMolcas: From Source Code to Insight

‘submitted on 06.06.2019, 09:41 and posted on 06.06.2019, 18:08 by Ignacio Fdez. Galvan,
Morgane Vacher, Ali Alavi, Celestino Angeli, Jochen Autschbach, Jie J. Bao, Sergey |. Bokarev, Nikolay
A. Bogdanov, Rebecca K. Carlson, Liviu F. Chibotaru, Joel Creutzberg, Nike Dattani, Mickagl G. Delcey,
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views downloads citations
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Sebastian Keller, Stefan knecht, Goran Kovacevic, Erik Kallman, Giovanni Li Manni, Marcus Lundberg
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Kragh Serensen, Donald G. Truhlar, Mihkel Ugandi, Liviu Ungur, Alessio Valentini, Steven Vancoille,
Valera Veryazov, Oskar Weser, Per-Olof Widmark, Sebastian Wouters, J. Patrick Zobel, Roland Lindh

CATEGORIES

In this article we describe the OpenMolcas environment and invite the computational RiCoepitatanalichemisTant Moreling

« Theory - Computational

* Chemoinformatics - Computational Chemistry
number of new developments realized during the transition from the commercial = Spectroscopy (Physical Chem.)

MOLCAS product to the open-source platform. The paper initially describes the technical gEin=talad CheniuallBiopatiae

details of the new software development platform. This is followed by brief presentations

chemistry community to collaborate. The open-source project already includes a large

KEYWORD(S)

active space self-consistent field, density matrix renormalization group (DMRG) Molecular dynamics

nal wave function and density functional theor Wave function analysis Spectroscopy

ulEENSome of these implementations include an array of additional options and

of many new methods, implementations, and features of the OpenMolcas program suite.

hese developments include novel wave function methods such as stochastic complete

methods, and hybrid multiconfigurat

Basis sets
functionalities. The paper proceeds and describes developments related to explorations

of potential energy surfaces. Here we present methods for the optimization of conical LICENCE
intersections, the simulation of adiabatic and nonadiabatic molecular dynamics and [@O88) ccevncap 4o

interfaces to tools for semiclassical and quantum mechanical nuclear dynamics.
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ram Modern CAS-SC
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‘ I ‘ Journal of Chemical Theory and Computation
& Cite This: . Chem. Theory Comput. 2017, 13, 5468-5478 pubs.acs.org/JCTC

Cheap and Near Exact CASSCF with Large Active Spaces
James E. T. Smith,** Bastien Mussard, Adam A. Holmes, and Sandeep Sharma™

Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States

ABSTRACT: We use the recently developed Heat-bath Configuration The HCISCF module

I.nteracnon (HCI) algorithm as an efficient active space solver to perform

self-consi field calculations (HCISCE) with large f
act)ve spaces. We give a detailed derivation of the theory and show that ; pysc min(@|H|v)
lti d with non-variationality of the HCI procedure can be |! [(orbital optimizer)  *

overcome by making use of the Lagrangian formulation to calculate the HCI
relaxed two-body reduced density matrix. HCISCF is then used to study the
electronic structure of butadiene, pentacene, and Fe—porphyrin. One of the
most striking results of our work is that the converged active space orbitals
obtained from HCISCF are relatively insensitive to the accuracy of the HCI
calculation. This allows us to obtain nearly converged CASSCF energies with  |'--
an estimated error of less than 1 mHa using the orbitals obtained from the
HCISCF procedure in which the int transformation

Two-electron integrals
FCIDUMP

DICE " min(y)f10) l

'

Two-body reduced
density matrix

the dominant cost.

used mainly for integral transformation. Fma]ly, we also show that active space orlnhls can be optimized using HCISCF to
substantially speed up the convergence of the HCI energy to the Full CI limit because HCI is not invariant to unitary
transformations within the active space.




-r2:>< Selected Configuration Interaction (SCI)

m Select determinants on-the-fly

m with perturbation theory (CIPSI') A
m or based only on the matrix elements of H (SHCI?)

m Target spaces : Full-Cl, MR-CISD, large CAS, ...
m Use PT2 to estimate the missing part

!B. Huron, J.P. Malrieu, and P. Rancurel, J. Chem. Phys. 58, 5745 (1973).
2A.A. Holmes, C.J. Umrigar, and S. Sharma, J. Chem. Phys. 147, 164111 (2017)
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Start with Do = {|HF)} and |Wo) = |HF).
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Start with Do = {|HF)} and |Wo) = |HF).
iHV,)?

¥i) € {Tsp|Wa)} \ {Dn}, compute e; = gy le
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Start with Do = {|HF)} and |Wo) = |HF).
iHV,)?

Vi) € {Tsp|Wa)} \ {Dn}, compute e = m
if |ei| > €n, select |i)
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Start with Dy = {|HF)} and |Vo) = |[HF).
- al / 2
V1]i) € {Tsp|Vn)} \ {Dn}, compute ¢ = %
if |ei| > €n, select |i)
Estimated energy : E(V,,) + Ep12(Vy) = E(Wn) + > &
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Start with Do = {|HF)} and |Wo) = [HF).
Vi) € {Tsp|Wa)} \ {Da}, compute e = i d%er
if |ei| > €n, select |i)

Estimated energy : E(V,,) + Ep12(Vy) = E(Wn) + > &
Dpy1 =DpU {Ui(selected)|i>}

— E(Wa) =]
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Start with Do = {|HF)} and |Wo) = |HF).

- TS i 2
Vi) € {Tsp|Wa)} \ {Dn}, compute & = i

if |ei| > €n, select |i)
Estimated energy : E(V,,) + Ep12(Vy) = E(Wn) + > &
Dny1 = Dp U {Uj(selected) 1) }
Minimize E(W,1) (Davidson),
Vi1 = Vi + X i selected) Gl 1)
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Start with Do = {|HF)} and |Wo) = |HF).

- TS i 2
Vi) € {Tsp|Wa)} \ {Dn}, compute & = i

if |ei| > €n, select |i)
Estimated energy : E(V,,) + Ep12(Vy) = E(Wn) + > &
Dny1 = Dp U {Uj(selected) 1) }
Minimize E(W,1) (Davidson),
Vi1 = Vi + X i selected) Gl 1)
[@ Choose €511 < €,
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Start with Dy = {|HF)} and |Vo) = |[HF).
Vi) € {Tsp|Wa)} \ {Dn}, compute e = %
if |ei| > €n, select |i)
Estimated energy : E(V,,) + Ep12(Vy) = E(Wn) + > &
Dny1 = Dp U {Uj(selected) 1) }
Minimize E(W,1) (Davidson),
Vi1 = Vi + X i selected) Gl 1)
[@ Choose €511 < €,
Iterate
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-149.2 4 ; T T
Excited state, Eyyr —+—
-149.3 | Ground state, Eyar —¢—
Excited state, Eyar+PT2 K
-149.4 + : Ground state, Eyar+PT2 1
-149.5
3 1496 PN
> -149.7
g H2N+ NH2
S -149.8
-149.9 ¢ aug—cc—pVDZ
-150
-150.1
_150.2‘ ‘\ 1 1 | 1 1 1 1
10 100 1000 10000 100000 1x106 1x107  1x108

Number of determinants
m When Ny = Ngcp, Ep12 = 0, Cl is solved exactly.

m Every Cl problem can be solved by iterative perturbative selection



I'Q ->< Extrapolated FCI energies

\ L ES
TS . -GS
&
s
S, -Moab
B>
20
% el | exFCl : Extrapolate E = f(EpT2) at
g Ept> = 0, estimates the complete Cl
g solution.
S 1498}
2
]
N
~150.0f
06 05 D04 03 D02 o1 00

Second-order energy E() (a.u.)



r2 —>< Consistent energies
@ -
The error of Egc) ~ E + Epts is proportional to Epts

Erci = E+ (1 +a) Epm

For 2 states

| A\

1 1
EY = EO 1 @a+aM)EY,
2 2
EQ = E® 4+ (1+a@)ER)

If o = 0@ and EM. = E?)

PT2 PT2

2 1
EISC)I - EISC)I = E® — W




I'Q ->< Consistent energies
@ -

-149.2 T T T Ty T T
Excited state, Eyqr —+—
-149.3 - Ground state, Eygy —%— T2
Excited state, Eya+PT2 % 5 o
-149.4 | : Ground state, Eyar+PT2 1 s
-149.5 S, -mar
= >
E -149.6 %o )
3 -149.7 § —196
] g
5 -149.8 ; k=
_—K Q
-149.9 S 1498
o
£
-150 N
'150'1[3”, ~150.0)
_1502 1 1 1 i 1 1 1 1
10 100 1000 10000 100000 1x10® 1x107  1x108 -06 05 -04 -03 -02 -01 00
Number of determinants Second-order energy E@ (a.u.)

m —(1+ «) is the slope of the extrapolation curve
m oM ~ a® can be obtained using state-average orbitals
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Multideterminant QMC
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m In a Cl calculation:
W) = all)
/

= In QMC:
\U(rly-.-er) = (Z Cka(r17 7rN)> eJ(I’l,...,I'N)
k
= Z Ck <DK(r1, o rN)eJ(r1,...,rN))
k

Computationally expensive

m We need to evaluate all the Slater determinants at each MC step

m Compacting the wave function is desirable




- -
r2—>< Evaluation of a determinant
@ -

Build the Slater Matrix Aj; = ¢;(r;):

o1(r1)  ¢2(r1) ... on(r1)
o1(r2)  @a(r2) ... on(r2)

é1(rn)  d2(rn) . dn(ra)

LU factorization (dgetrf) : A=PLU, costs O(N3)
det A = Hi U;i



- -
r2—>< Evaluation of the derivatives of a determinant
@ -

Taeta 2 Vil
J

A,-(detA) . L\ a-1
e T ;A,dy(r,).Aﬁ

Inverse of A (dgetri) : costs O(N3)
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A and A1 are known, u and v are column vectors,

-1 A~ luvtA-l
i — A1 _
) R S
Costs O(N?).

Single orbital change:

0
or(r) — ¢i(r) :
u= : ,v= 1|11,
or(rn) — di(rn) :
L 0 .




rQ ->< Computational scaling

Ng Nat Nay
V()= Dk =) > CjDir(ry) Djy(r))
k i
m Dy(ry) : vector of Ny4 elements
m Dy(ry) : vector of Ny, elements

m C: Ngp x Ng; matrix. The matrix contains Ny non-zero elements

C is constant in a QMC calculation = preprocessing.




I'Q ->< Computational scaling

At every MC step, we need to evaluate:

v = (D+/(C)Dy)
Vv = V,;D;1.(CD)or(D;7C).V;D,
AV = ADy'.(CD))or(D4+7C).A,D;
vnonflocw — Vnonfloc DTT(CDi) or (DTTC) Vnonfloc DJ,

pseudo pseudo pseudo

(T electrons and | electrons)



r2—>< Computational scaling
O(NdT S NglecT)

DT and Di’ VDT and VDi, ADT and ADi
O(Ny), tiny prefactor

m Sparse vector-matrix product DTT.C : Ny operations, returns a Ny vector

4

Dot product with D} : Ny operations, produces a scalar
Matrix product with VD : 3Nejec| X Ng, operations, produces a 3Ncjec| vector
Matrix product with AD| : Njec| X Ng| operations, produces a Njec| vector

Matrix product with Vg‘soerlllgéocD¢ . Nelecy % Ng operations, produces a Nejec|
vector

v
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Use large CIPSI wave functions as trial wave functions for DMC3:

H,O
m best estimate of the
exact energy

m ~ 109 Slater
determinants

T T T T T
—76.39 |H e o Ful-CI g
+ + DMC/CIPSI
—76.40 [+ . E
— Estimated exact
=
f_é/ —76.41 |- g
=
&6
T —76.42 |- g
<
=
—76.43 | -
—76.44 [* e
207 @5z Q¢ 17 Dz
0.0 0.1 0.2 0.3 0.4 0.5

1/n [ cc-pCVnZ basis set |

3Caffarel et al, (2016), J. Chem. Phys., 144:15(151103)



-rg:-x Effect of the Jastrow factor on the Cl wave function

m Adding a Jastrow factor on top of a Cl wave function:
m The N-electron basis is no more orthonormal

<D[ eJ|DK eJ> 7é 5IK

m Double-counting of correlation

m Dynamic correlation from the determinants
m Dynamic correlation from the Jastrow

m The Cl coefficients are no more optimal




-rg:-x Effect of the Jastrow factor on the Cl wave function

m Re-optimizing the Cl coefficients in the presence of the Jastrow:

m Increases large coefficients
m Reduces small coefficients

m Solving H.C = E S.C is difficult:
m Statistical errors in matrix elements of H and S
m Determinants with tiny Cl coefficients have a negligible contribution to W?2
= The error on (K|H|L) is often larger than the expectation value when c is small.
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m Nodal surfaces (DMC energies) are determined by the determinant expansion.

m Accurate energy differences need balanced wave function qualities between the
states

Two different strategies:
Stochastic optimization
m Use a deterministic method which gives a qualitatively good description (minimal
CAS-SCF)
m Reoptimize all the parameters: MOs, Cl, Jastrow
Deterministic optimization

m Use a deterministic method which gives a reasonable AE (MR-CI, CIPSI)
m Run a DMC without modifying the wave function.
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Pros

Cons

Deterministic
optimization

Very good quality control
Smooth potential energy surfaces

Very large expansions
Limited to small systems

Stochastic
optimization

Compact wave functions
Can be applied to large systems

Noisy optimization
Harder to get balanced energies
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Good strategy towards large systems: The best of both worlds
m Small CIPSI expansions in a large active space : = compact

m Enforcing constant Ept, for selecting determinants = AE ~ AEgc consistent
quality for both states

m Optimize a Jastrow factor in QMC

m Re-optimize all parameters in QMC
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R _->< Packages: TurboRVB and Turbo-Genius

""; Tu r bo R\/B QMLC engines (DFT, VMC-optimization, VMC, LRDMC)

Quantum Monte Carlo Package (Y

K. Nakano, C. Attaccalite, M. Barborini, L. Capriotti, M. Casula, E. Coccia, M. Dagrada,
Y. Luo, G. Mazzola, A. Zen, and S. Sorella, J. Chem. Phys. 152, 204121 (2020)

g =1,
%% Tu rbOIG e n | us User friendly python wrappers.

K. Nakano et al., in preparation (2022)

© Kosuke Nakano (SISSA/JAIST) 2022/6/28



R _->< Wavefunction ansatz

1\ (rl, Io, .. .rN) should be anti-symmetric under exchange of electron positions.

Slater determinant: the most straightforward ansatz ¥, = Det|¢,.9,,--.9,|

_____ Linear combination of the slater determinants. ¥y, = Det|9,.0,,.0x| +

{Y; SNAYS ;K‘\:}(
p o e
> Geminal functions (i.e., considering pairs of electrons.) 5. ,}‘“J :;

. . } ] . c.f. P.W. Anderson
———— Backflow functions (i.e., increase in the effective mass of electrons.)

v ——— Fermi-net (i.e., anti-symmetric neural network.)

More complex.

The more complex an ansatz is, the better energy we could get. However, the computational cost also increases.

One should increase the number of variational parameters, considering “physics”.

© Kosuke Nakano (SISSA/JAIST) 2022/6/28
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Double-bond?? Quadruple-bond??, spin-singlet.

S. Shaik, et al. Nat. Chem. 4 195-200 (2012)

DMC results
Wavefunction C atom (Ha) C2 molecule (Ha) Binding (eV) mvpram—
4 IndipendrecchAetoms T
JAGP —
JsAGPs
Jastrow Slater -37.82966(4) -75.8672(1) 5.656(3) ot JsSD —— _ 4
>
Jast Geminal é ’ N?’
astrow bemina ~37.8364(1) -75.8938(2) 6.01(1) & 2 3
(Singlet) gt E
E
)
; ar 1
Al ~37.8364(1) ~75.8935(2) 6.00(1)
(Singlet + broken sym.) 6
1 Il Il L L 1 1 0
i 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Jastrov e —37.8363(1) ~75.9045(2) 6.31(1) Distance [Boh]
(All-pairing, Pfaffian)
v Estimated exact -37.8450 -75.9045(2) 6.44(2) (Exp.)

More complex. C.G, T.S, K.Nakano, and S.S. J. Chem. Theory Comput. 16, 6114 (2020)

CCSD(T) with the V57 basis = 6.24 eV

DMC gives a more accurate result than CCSD(T) for the challenging molecule!

© Kosuke Nakano (SISSA/JAIST) 2022/6/28
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# » Home View page source

TurboRVB: A many-body toolkit for ab initio
electronic simulations by quantum Monte Home -,

Carlo P
.‘ : . @ : ; e
Cite as: J. Chem. Phys. 152, 204121 (2020); https://doi.org/10.1063/5.0005037 >

Submitted: 19 February 2020 . Accepted: 20 March 2020 . Published Online: 29 May 2020 4 O N

TurboRVB

Quantum Monte Carlo Package EEYY

Kousuke Nakano ", Claudio Attaccalite "/, Matteo Barborini '/, Luca Capriotti ', Michele Casula
Emanuele Coccia "/, Mario Dagrada, Claudio Genovese 1, Ye Luo ' , Guglielmo Mazzola "/, Andrea News
Zen ', and Sandro Sorella

e K. Nakano et al. have published a paper in Phys. Rev. B 103, L121110 (2021).

o
(o)
©
c
o
=]
O
)
)
K =
-

Chemical Physics

COLLECTIONS This paper has been selected as an Editors’ Suggestion.
Paper published as part of the special topic on Collection e Our TurboRVB workshop will be held on 12-16 July 2021 at SISSA (Italy)!
Note: This article is part of the JCP Special Topic on Electronic Structure Software. Please have a look at Summer School on Quantum Monte Carlo methods 2021.

Online registration can be done from the TREX website.

@ é @ e C. Genovese and S. Sorella have published a paper in J. Chem. Phys. 153, 164301 (2020).

Mart e C. Genovese et al. have published a paper in J. Chem. Theory Comput. 16 6114-6131 (2020).

e We have published a TurboRVB review paper in J. Chem. Phys. 152, 204121 (2020).

K. Nakano, C. Attaccalite, M. Barborini, L. Capriotti, M. Casula, E. Coccia, M. Dagrada, Y. Luo, G. Mazzola,
A. Zen, and S. Sorella, J. Chem. Phys. 152, 204121 (2020)

© Kosuke Nakano (SISSA/JAIST) 2022/6/28
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What we can do with TurboRVB?

Please visit our website :-) All the papers and Ph.D thesis using TurboRVB are listed here.

# TurboRVB website

News

Developers

Source code

Workshops

Positions

B Publications

2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009

#@ » Publications View page source

Publications

Turbo RVEB

Ouantum Monte Carlo Package / SISSA
2021

e Atomic forces by quantum Monte Carlo: Application to phonon dispersion calculations,
K. Nakano, T. Morresi, M. Casula, R. Maezono, and S. Sorella,
Phys. Rev. B 103, L121110 (2021).
Selected as an Editors’ Suggestion

2020

e Ground-state properties of the hydrogen chain: insulator-to-metal transition, dimerization, and
magnetic phases,
M. Motta, C. Genovese, F. Ma, Z. Cui, R. Sawaya, G.K. Chan, N. Chepiga, P. Helms, C. Jiménez-
Hoyos, A.J. Millis, U. Ray, E. Ronca, H. Shi, S. Sorella, E.M. Stoudenmire, S.R. White, and S. Zhang
(Simons Collaboration on the Many-Electron Problem),
Phys. Rev. X 10, 031058 (2020).

a Tha mabiien afbtha chaminal hand in bha dlcackhan ccalanda

© Kosuke Nakano (SISSA/JAIST)

@ » PhD thesis View page source

PhD thesis

e Dr. Claudio Genovese, 2020:
Geminal Power in QMC, pdf

« Dr. Félix Mouhat, 2018:
Fully guantum dynamics of protonated water clusters, pdf

« Dr. Nicolas Dupuy, 2016:
Corrélations électroniques des acénes vers la limite de longue taille : Etude par Monte Carlo
quantique (Electronic correlations in the acenes to ards the long-size limit: a Monte Carlo study),
pdf

e Dr. Henri Hay, 2016:
Etude de la structure et des propriétés des polymorphes de SiO, et B,O5 par méthodes ab initio
(Structural properties of SiO, and B2O; polymorphs by ab initio methods), pdf

« Dr. Mario Dagrada, 2016:
Improved quantum Monte Carlo simulations: from open to extended systems, pdf

e Dr. Nicolas Dévaux, 2015:
Etude par Monte Carlo quantique de la transition a-y du Cérium (Quantum Monte Carlo study
of the a-y transition in Cerium), pdf

« Dr. Guglielmo Mazzola, 2014:
Metallization and dissociation in high pressure liquid hydrogen by an efficient molecular
dynamics with quantum Monte Carlo, pdf

e Dr. Ye Luo, 2014:
Ab initio molecular dynamics of water by quantum Monte Carlo, pdf

2022/6/28
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Where can we download TurboRVB and Turbo-Genius?

& GitLab  Projects v  Groups v  More v v Search or jump to... (o} D Iy =@ O~ \‘::\ v

T Sandro Sorella > TurboRVB

. From SISSA-gitlab server.
T TurboRVB & Av||[sstar1] ¥Fork|o

Project ID: 91  Leave project

--4,600 Commits F 13 Branches ¢ 1Tag [ 350.4 MB Files [ 350.5 MB Storage

’ https://git-scm.si it
pS://gIt-SCM.SISSa.l
n master TurboRVB | 4+ ~ History Find file Web IDE & v
g
o .
4, Revised. adf20e61 | [
(0] #Z¥» Sandro Sorella authored 1 hour ago
(°\ PR REEEEEEEEEEEEE PR o LT L L L LR R TR T | pTmmmmmmmesmmeseeeeeeaaay .
B REAOME | G AddLIGENSE | G Add CHANGELOG | | @ Add CONTRIEUTING || @ Erale At Dvors A request: to kousuke_1123@icloud.com
1 T S JooTTTTTmmmmmmemmmm 3
bt [ Add Kubernetes cluster | | [ Setup CI/CD !
0O
Name Last commit Last update
&
& AD Revised. 1 hour ago
13 ) -
& DFT Now everything passes also the serial with... 1 week ago
‘D & bin K.N. has done a big refactoring of the turb... 4 months ago

For the time being, turborvb and turbo-genius are inhouse codes, so please DO NOT distribute to the public.

Within a year, all the codes will be public under an appropriate license (maybe BSD) :-)

© Kosuke Nakano (SISSA/JAIST) 2022/6/28
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Day 3 and 4:

- Hands-on session

Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union
Horizon 2020 research and innovation programme under Grant Agreement No. 952165.




R _‘>< TurboRVB/Turbo-Genius manual and tutorials

# TurboRVB userguides

@ » TurboRVB user manuals View page source
TurboRVB user manuals

User Manuals

Tutorials e User Manuals

Developer Manuals o TurboRVB Manual

= [nstallation

= TurboRVB in a nutshell

= Wavefunction H

[ e From SISSA-gitlab server.
= DFT driver

= QMCdriver

= Tools and input examples

- Workfiow https://git-scm.sissa.it

o Turbo-Genius Manual

= [nstallation

" Tubo Genlus in nutshel Any contributor is welcome!!!

e Tutorials
o TurboRVB tutorials

= 00 TurboRVB install

= 01_O1Hydrogen_dimer

= 01_02Hydrogen_dimer

= 02_01Lithium_dimer

s 98 Wavefuntion optimization

They are composed by sphinx. All the tutorial in this school is included here.

© Kosuke Nakano (SISSA/JAIST) 2022/6/28



R _‘>< TurboRVB/Turbo-Genius manual and tutorials

If you want to see the userguide, please let us know. We will give you the permission.

git clone git@git-scm.sissa.it:sorella/turborvb_userguides.git
Any contributor is welcome!!!

Open /turborvb_userguides -> build -> html -> index.html

# TurboRVB userguides

I

User Manuals

- User Manuals.

- TurboRVB tutorials.

Tutorials

Developer Manuals N Turbo-Genius tutorials (for the hands-on session).

# on your local comp. (for the TREX summer school).

© Kosuke Nakano (SISSA/JAIST) 2022/6/28
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We strongly recommend Intel, IBM, and Fujitsu Fortran compilers. (Not gfortran).

You do not have to do this for the hands-on session!!!

1. Legacy make:

Copy a config file: config/make_XXX.inc make.inc

Copy a make.txt file: src/make.txt standard src/make.txt
Py / - / Fugaku, Hokusai (RIKEN)

Marconi, Marconi100 (CINECA)
SISSA-cluster (SISSA)
2. Modern CMake: Kagayaki (JAIST)

Compile TurboRVB: ./makeall (serial) or ./makeall-mpi

If you want to clean it: make cleanall

mkdir build

cd build

cmake -DXXXX = YYYY etc...

make install # copy generated binaries to ./bin directory.

© Kosuke Nakano (SISSA/JAIST) 2022/6/28
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(Input) Atomic positions, basis sets, pseudo potentials...

}

WFT (Gaussian16, PySCF)
or DFT (Quanaum Espresso)

1) Pre-process:

* The obtained one-particle WFs

2) Post-process: QMC (TurboRVB, etc...)

\

(Output)

Many-body WFs, its energy, forces, etc...

© Kosuke Nakano (SISSA/JAIST) 2022/6/28
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.Preparation........................ .

Generate a JAGPs/u template from a
. . . makefort10.x
chosen basis set and a structure

JAGPs JAGPu
. Conversion........coooeveeeinn... .
JAGPs/u — JSD ansatz for DFT .3 convertfort10mol.x

Optimize coefficients of molecular ]
orbitals by SCF calculation i

convertfortpfaff.x

JAGPu - JPfansatz

JAGPs JAGPu JAGP/JPf

* A turborvb.x
.VMC optimization ....

. Find an optimal variational  :
parameter set

turborvb.x
_lonic dynamics ...
' Langevin MD :
Path Integral MD

turborvb.x

.VMC evaluation..... =~ .LRDMC...................0. .
:  Compute observables Extrapolation with several
(energy, forces, etc...) different lattice spaces

.Post-processing ... .

E_ Correlated sampling, Electron and lonic correlation functions, etc...

= Workflow =

1. Prepare a structure and basis set makefort10

\/

Construct a reasonable initial WF! prep

\/

3. VMC-opt Optimize the wavefunction

\/

2. DFT

turborvb

4. VMC DoaVMCrun. turborvb
5. LRDMC LRDMC with the optimized WF. turborvb

A typical workflow in TurboRVB (TurboGenius)

© Kosuke Nakano (SISSA/JAIST)
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.Preparation........................ .

Generate a JAGPs/u template from a
: . . makefort10.x
chosen basis set and a structure

. Conversion........coooeveeeinn... .
JAGPs/u = JSD ansatz for DFT

. convertfort10mol.x

JSD
DFT o
Optimize coefficients of molecular  : ;
orbitals by SCF calculation 3 Ll
JSD convertfort10(mol).x convertfortpfaff.x
. JSD — JAGP(s/u) ansatz . JAGPu — JPf ansatz 'j-
------------------------------ . ' tesessssessss st ssssssssesnsans”

JAGPs JAGPu JAGP/JPf

‘ v turborvb.x
.VMC optimization ....

Find an optimal variational
parameter set

turborvb.x
_lonic dynamics ...
' Langevin MD :
Path Integral MD

turborvb.x

.VMC evaluation.....
:  Compute observables
(energy, forces, etc...)

Extrapolation with several
different lattice spaces

_Post-processing ... _
Correlated sampling, Electron and lonic correlation functions, etc...

A typical workflow in TurboRVB (TurboGenius)

= Workflow =

1. Prepare a structure and basis set

2. DFT

\/

Construct a reasonable initial WF!

© Kosuke Nakano (SISSA/JAIST)

makefort10

prep

2022/6/28



Wavefunction (makefort.10.x)

Input: makefort10.input Binary: makefort10.x Output:fort10_new

makefort10.x is a tool for generating JAGP WF(fort.10) from makefort10.input.

# Ion coordinates # fort.10 of the C2-dimer (the Pfaffian ansatz with the Filippi pseudo potential.)

posunits='crystal’

Nl 21 X1 yl Zl natoms=2 # Nelup 4»‘Nel # Iofs )

N2 Z2 X2 y2 z2 ntyp=1 # Shell Det. # Shell Jas.
complexfortl@=. false. B stg ) 43 o )

. . . . pbcfortle=.true. # Jas 22)2/ # Det 14;‘2 ody arg;;u par.

Nn Zn xn yn zn lyes_pfaff=.true. R e
celldm(1)=4.648726266579395 120 8370
celldm(2)=1.0 # Eq. Det atomic par. # Eq. 3 body atomic. par.

— 741 21

celldm(3)=4.065040650406504 # unconstrained iesfree,iessw,ieskinr,I/0 flag

celldm(4)=1.5707963267948966 8370 120 6 o

St ructura I | nfo rmat | on. celldm(5)=1.5707963267948966 i # Ion coordinates

celldm(6)=2.0943951023931953 4. 6. 0. +000
. 0.000000000000000E+000 -1.14999954166875
yes_tilted=.true.

4, 6. 0. +000

nxyz(1)=3 0.000000000000000E+000  1.14999954166875
nxyz(2)=3 # Constraints for forces: ion - coordinate
mxyz(3)=1 makefort10.x : ! :
phase(1)=0. 1 1 3
phase(2)=0. 1 2 1

1 2 2

1

[}
[}
) phase(3)=0.0 : 5
# Parameters atomic Wf phasedo(1)=0.0 # Parameters Jastrow two body
1 4 300 phasedo(2)=0.0 -1 0.342214663461764
phasedo(3)=0.0 e

1 2.0 1.0 3.231 7.54

, _ _ makefort10.input file Wavefunction file (fort.10)
Basis-set information.

© Kosuke Nakano (SISSA/JAIST) 2022/6/28




-[R :->< Wavefunction file (fort.10)

All the information (except for pseudo potential info.) is included in a single file, named “fort.10”

# fort.10 of the C2-dimer (the Pfaffian ansatz with the Filippi pseudo potential.)
# Nelup #Nel # Ion

4 -8 2
# Shell Det. # Shell Jas.
50 43
# Jas 2body # Det # 3 body atomic par.
-22 1482 42
# Det mat. =/0 # Jas mat. =/0
120 8370
# Eq. Det atomic par. # Eq. 3 body atomic. par.
741 21
# unconstrained iesfree,iessw,ieskinr,I/0 flag
8370 120 6 0 “fort.10” can be generated by
# Ion coordinates
4.00000000000000 6.00000000000000 0.000000000000000E +000 “makefort10.x” (see later).
0.000000000000000E+000 -1.14999954166875
4.00000000000000 6.00000000000000 0.000000000000000E+000
0.000000000000000E+000  1.14999954166875
# Constraints for forces: ion - coordinate
1 il 1
1 1 2
1 il 3
1 2 1
1 2 2
1 2 3
it Parameters Jastrow two body

-1 0.342214663461764
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1=>€

Header:

Nelup: The number of spin up electrons in the system.
# Nelup #Nel # Ion

2 4 1 Nel: The total number of electrons in the system.
# Shell Det. # Shell Jas. o
3 3 lon: The number of nuclei in the system.
# Jas 2body # Det # 3 body atomic par.
-8 16 8
# Det mat. =/0 # Jas mat. =/0
6 6
# Eq. Det atomic par. # Eg. 3 body atomic. par. Jas 2body: Onebody and Twobody Jastrow types
13 8
# unconstrained iesfree,iessw,ieskinr,I/0 flag
4 0 0

4
\ \‘ The number of atomic forces.
The total number of determinant variational param.

The total number of Jastrow variational param.
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TR=><

Coordinates:

# Ion coordinates

N1 Z1 x1 y1 z1
N2 Z2 X2 y2 z2
Nn Zn XN yn zn
- N: Atomic number Pseudo potentialcase N !=7

- Z: The number of valence electrons _
If you want to use a H-pseudo potential,

- xn, yn, zn : atomic positions (Bohr) please put N=1.0, Z=1.00001 (dummy).
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R _->< Basis set in makefort10.input/fort.10

Basis set for the determinant part:

i Parameters atomic wf s Parameters atomic wf
Shell_Multiplicity Number of par. 1 4 300
Ion index [par (1, NUMBER OF PAR.)] 1 2.0 1.0 3.231 7.54
it Parameters atomic wf 2 2
1 1 16 o(r) =3.231 - exp(—2.0- %) + 7.54 - exp(—1.0 - r7)
1 ©.500000000000000
3 1 36
1 1.00000000000000 —_— Shell codes: 16 -> s orbital
1 1 16 :
2 0.300000000000000 36->p orb!tal
1 1 16 68 -> d orbital
i 0.309000020000000 y 48 -> f orbital
4 ©0.300000000000000 51 -> g orbital
L 1 16 72 -> h orbital
5 0.300000000000000 “—

73 -> i orbital

.
(1) ~ exp(—Zr°)
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Single Slater-determinant (convertfort10mol.x)

LS con]\c/oerrttffortilr?mol.mput, Binary: convertfort10mol.x Output:fort10_new

convertfortl0Omol.x is a tool for adding molecular orbitals to fort.10 _in.

This is used for converting a JAGP WF to a JSDWF.  JAGPs » JSD

'JSD  Slater Determinant

M=Ng /2
JAGPs f(rir;) = Z MA@y (r;) D (r5)
f(ri,r;) = Z Afa i}, {b,m}¥a,l (Ti) Yo,m (1) » Npasi
Il,m,a,b x =
with P, = Z Cik - ¢i (1)
i=1

DFT (prep.x) works only with molecular orbitals!! So, one should convert a WF from the JsAGPs to JSD.
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R :->< The generated fort.10 -> JAGPs

Coefficients of the Determinant part (JAGPs case)

(All A12 oo e A]_n\
it Nonzero values of detmat A22 o Azn
1 5 9.421753101774391E-002 A=
1 6 9.421753101774391E-002 . :
1 7 9.421753101774391E-002 ) :
\ A )

f(ri,rj) = Z Afay {b,my¥a (£1) Yo,m (1)

[,m,a,b

gua(i,J) = g9s(1,j) = fs(ri,r J)m>\/§m>, ==p  JAGPs

A{a,l},{b,m} is @ symmetric matrix!
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-R :->< fort.10: details

Molecular orbitals (100000): In fort.10, 1000000 indicates a molecular orbital.

#always 1, the number of components, 100000
#index of basis [1,2,....]

#coefficients for basis [1,2,....]
1 180 1000000
1 1 2 3 4 5
6 7 8 9 10 11
7 13 14 15 16 17
18 19 20 21 22 23
24 25 26 27 28 29 N basis
30 31 32 33 34 35
36 37 38 39 40 41 @ . . (b . ( )
42 43 44 45 46 47 — C * ’l"
48 49 50 51 52 53 k 2”}8 :
54 55 56 57 58 59 .
60 61 62 63 64 65 1=1
66 67 68 69 70 71
72 73 74 75 76 77 )
78 79 80 81 82 83
84 85 86 87 88 89 JSD
90 0.438271164894104 -4.608166217803955E-002
0.189550578594208 7.299757003784180E-002 —0.129178702831268
-0.241831779479980 ~7.793867588043213E-002 —0.143670558929443
-0.181271851062775 -0.265352427959442 0.374841809272766

C ATTYACOCTICACTNONC nnn n NOCCcCANNODLETACNATIN n AN TICAANTNOOCOC

Molecular orbitals can be added by “convertfort10mol.x”. DFT works only with molecular orbitals.
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-R :->< Onebody and Twobody Jastrows

twobody: 1B and 2B Jastrows:  Various Jastrow types are implemented (see the manual.)

Typically:
-6: Open/PBC with pseudo potentials -22: Open/PBC with JAGPu/JPf.
Only two-body parameter. 1b = i(l — e Only one-body or two-body and one-body parameters.
2a
i.e., electron-ion cusp conditions are enough. Spin-dependent Jastrow factors:
-15: Open/PBC with all-electrons o

Electron-ion (1b).

two-body and one-body parameters. Electron-Electron (2b)

r.

. r 1 —br U
2b = Ib=—(1—e™™) To satisfy the cusp conditions.

o(1+or)  2b
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TR=><

Input: prep.input, fort.10 Binary: prep-(serial, mpi).x Output:fortl0_new

Box and mesh sizes are so important for obtaining converged results in practice !!

H:f_l_l/ele-ion (F)+I/e1e-e1e(F)+ch (F)

For a calculation with PPs, a~0.10 bohr is small enough.

For an all-electron calculation, a < 0.05 bohr is needed.
The double-grid algorithm should also be helpful.

If you have enough memories, we recommend
- a (grid) L ~ 20 Bohr for the safety.

# Lz = cell length for a periodic system. Automatically set.
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TR=>4

Input: prep.input, fort.10 Binary: prep-(serial, mpi).x

prep.x is a built-in DFT code!!

Output:fort10_new

Why built-in? $ (r —Ry) = ¢ (r — Ry) Jy (r)

As mentioned before, the modified gaussian orbital is used.

So, we cannot exploit the analytical integration even though we employ the Gaussian
primitive orbitals.

The CRYSTAL basis + cusp. for PBC cases.

We are also implementing converters for several QC codes (e.g., Gaussian) via TREX-10.
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[g _—>< A typical workflow in TurboRVB (TurboGenius)

.Preparation........................ .

Generate a JAGPs/u template from a
chosen basis set and a structure

JAGPs JAGPu
. Conversion........coooeveeeinn... .
JAGPs/u — JSD ansatz for DFT .3 convertfort10mol.x

makefort10.x = Workflow -

Optimize coefficients of molecular
orbitals by SCF calculation

prep.x

convertfort10(mol).x convertfortpfaff.x
£ JSD — JAGP(s/u) ansatz : ' JAGPu - JPfansatz
------------------------------ ' S essesssssssssssssssssssseas”
JAGPs JAGPu N YA IS
JAGP/JPf . . .
3 | 3. VMC-opt Optimize the wavefunction turborvb
turborvb.x M turborvb.x
.VMC optimization .... _lonic dynamics ...
:  Find an optimal variational : Langevin MD :
parameter set : S Path Integral MD
v turborvb.x turborvb.x
.VMC evaluation.....  .LRDMC.................0.0. .
. Compute observables : : Extrapolation with several  :
(energy, forces, etc...) .S E. different lattice spaces
b . readforward.x
_Post-processing ... _

Correlated sampling, Electron and lonic correlation functions, etc...
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Main QMC engine: turborvb-(serial, mpi).x

Input: datas(min, vmc, Binary: turborvb-(serial, _
fn).input, fort.10 mpi).x QUi

turborvb.x is the main QMC engine in the turborvb package.

=VMC-opt, VMC, DMC, and LRDMC=

- Single-shot VMC run (itestr4=-2 in the &simulation namelist).
- VMC optimization (itestr4=-4,-5,-8,-9 in the &simulation namelist).

- Single-shot LRDMC run (itestr4=-6 in the &simulation namelist).
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R _->< What the VMC optimization does?
[dR - w (1%’, 52) HW (R’, 52)

- — — > [y The variational principle
[dR - o (R, 52) U (R, 52)

This integral is evaluated using the MCMC method.

Variational parameters!
&i+1 — a; + Aa
e.g.,
fs (ri,r;) = Z Agay o,my¥al (i) Yom (T5).

l,m,a,b

(
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TR=>4

&simulation
ngen=10000 Relation between ngen and nweight
;ggiz;e=10800
/ . . .. .
&pseudo Each iteration Optimization
/ — — —
&vmcepSCUtZ@.0 €L (x) A T E A az_|_]_ % az —I_ AO[

' ) var (E ) CT \
&optimization ? ‘ . A'§

nweight=100

nbinr=5 l ‘ | <E> ------ % § §

iboot=0
= @ | *

/

&rea?%o s > >

, liread= xl xz x3 x4 ., xn xi Sl S2 S3 S4 e Sl’l Steps
desnl nweight X nw Total optimization steps: .
iesde1 nweight
iesfree=

/ ' (default: the num. walker = the num. of MPI process )
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R _->< The most difficult part in practice

3. VMC Optimize wavefunctions and VMC run.

A wavefunction reads W55 (ﬁ) x exp(J (}_?:)) —_— /K s

ij

Anti-symmetric part. Jastrow factor. )
Y P To satisfy the cusp.

Jastrow factor = exp(](R)) No effect on the nodal surface!! W(R)= ¥(ri,73,---,rk) =0
Anti-symmetric part = Waus (R) Determines the nodal surface. Its initial guess is taken from a DFT calculation!!
1stStep ~ JSD 2nd Step  JAGPS
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r@z _->< Implemented optimization methods

Implemented optimization algorithms -9, -5): Stochastic reconfiguration (natural gradient method)
S Sorella, et al., J. Chem. Phys. 127, 014105 (2007).

-4, -8): Linear method with the natural gradient
C.J. Umrigar, et al., Phys. Rev. Lett. 98, 110201 (2007).

In both cases, the most important parameters in practice are

1. tpar: Acceleration parameter (learning rate.)

—1
e.g., O — QU + A - (8' f) . tpar = 3.5d-1, and 1.0d-3 for -4 and -9, respectively.

2. parr: Regularization (c.f. LASSO)

L= ' . = ~1.0d-3
eg., S; ;= 371.73(1 + S) Depending on the accuracy your need. parr
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1R=>4

Optimization criteria

At least, 'devmax  should be smaller than 4.0 after optimization. However, we also have
experienced that this simple criteria is sometimes not sufficient to obtain a converged result.

)

where O f, represents the estimated error bar of a general force [ = —

S

The definition of "devmax  is: devmaxr = max (
O fr

k

OE (o) _ 0 (Wa|H|V.)
Oap o (Ue|W,)
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[R _->< Plotting Graphs (Turbo-Genius)

® -@- Energy - 160
—110.0 4 : —-»- devmax
’,‘ --=- devmax < 4.5 (converged criteria) | 140
|
—110.5 - f
L - 120
k
_ -111.04 ? -
>
o —111.5 - -80 >
v 3
c
= 60
=112.04
- 40
-112.51 ¢
- L 20
~113.0 -
- 0

0 100 200 300 400 500 600 700 800

%turbo-genius.sh -j vmcopt -post -am interactive_detail
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R _->< Averaging parameters (Turbo-Genius)

Parameter No.1

-o- all
-®- averaged

[ 4
1.05 A '
L4

1.00 + ‘
0.95 A
0.90 -

0.85 A

Value

0.80 -

0.75 A

0.70 A

0.65 A

1
1
1
. Averaged!
1
T T T T T T — T !
0 100 200 300 400 500 600 1700 800 |
\

Iteration @ = S----------- .

turbo-genius.sh -j vmcopt -post -am interactive_detail
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[g _—>< A typical workflow in TurboRVB (TurboGenius)

.Preparation........................ .

Generate a JAGPs/u template from a
chosen basis set and a structure

JAGPs JAGPu
. Conversion........coooeveeeinn... .
JAGPs/u — JSD ansatz for DFT .3 convertfort10mol.x

makefort10.x = Workflow =

Optimize coefficients of molecular
orbitals by SCF calculation

prep.x

convertfort10(mol).x convertfortpfaff.x

£ JSD — JAGP(s/u) ansatz : ' JAGPu - JPfansatz
------------------------------ ' S essesssssssssssssssssssseas”
# JAGPs JAGPu JAGP/JPf

A turborvb.x M turborvb.x
.VMC optimization .... _lonic dynamics ...
:  Find an optimal variational : Langevin MD :

parameter set : S Path Integral MD
v turborvb.x turborvb.x .
.VMC evaluation">™"** .LRDMC.............. """ 4. VMC DoaVMCrun.  turborvb

Compute observables 5' Extrapolation with several
(energy, forces, etc...) .S E. different lattice spaces

POSEt-Processing ...............ccccccoooiciiiiieiiieren, _
Correlated sampling, Electron and lonic correlation functions, etc...
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1R=>4

&simulation

itestr4=2 One'ShOt VMC

ngen=10000

maxtime=10800 S .

iopt=1 ( ) A
/ er\xr

® Var(E)

&pseudo

: o o
Lt

'epscut=0.90
/
&readio >
) liread=3 X Xy, X3 X4 0 X, X,
&parameters ||
, !ieskin=1 r]§;63r1 X nW

ngen is the total number of Monte Carlo steps.

Default: nw is the number of MPI processes.
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TR=>4

# for ngen=10

from scipy.io import FortranFile s>> fort12
import numpy as np array([(40, [ 1 , 1 , -11.23924971, -11.23924971, 126.32073395], 40),
(40, [ 1 , 1. , -11.4465321 , -11.4465321 , 131.02309712], 40),
(40, [ 1 R , -11.25058355, -11.25058355, 126.57563015], 40),
# check length of fort.12 (40, [ 1 , 1. , -11.88021352, -11.88021352, 141.13947319], 40),
f = FortranFile('fort.12', 'r') (40, [ 1. , 1. , -10.89686295, -10.89686295, 118.74162225], 40),
-t d reals(dtype='float64"') (40, [ 1. , 1. , -11.8906161 , -11.8906161 , 141.38675112], 40),
o «read_ yp (40, [ 1 , 1. , -10.50040878, -10.50040878, 110.25858451], 40),
column_length = len(a) (40, [ 1 , 1. , -10.85804034, -10.85804034, 117.89704005], 40),
f.close() (40, [ 1 , 1. , -11.3042634 , -11.3042634 , 127.78637111], 40),
(40, [ 1. , 1. , -10.86745849, -10.86745849, 118.10165397], 40)],
dtype=[('head', '<i4'), ('a', '<f8', (5,)), ('tail', '<i4')])

# start reading fort.12

head = ("head", "<i")

tail = ("tail", "<i")

dt = np.dtype([head, ("a", "<{}d".format(column_length)), taill)

fd = open('fort.12', "r")

fortl2 = np.fromfile(fd, dtype=dt, count=-1)

data_length=1len(fort12) _ )
fd.close() e(L), etc... -> written in fort.12

# end reading fort.12

print(fortl2)
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1=>€

forcevmc.sh “bin”, “init”, “pulay”, or “bin”: the length of reblocking size

I

turbo-genius.sh —j vmc -post -reb “bin”, -eq “init” “init”: the length of equilibration steps (init * bin)

0ip0.d=energy pulay”: the ratio of the pulay term (1 is OK)

#cat pipd.d

number of bins read = 1496

Energy = =1.1379192772188327 1.7589095174214898E-004

Variance square = 1.7369139136828382E-003 2.7618833870090571E-005

Est. energy error bar = 1.7510470092362484E-004 3.9800256121536918E-006
Est. corr. time = 2.6420266523220208 0.10738159557488412

forcevmc.dat=forces

Force component 1
Force = 6.004763869201490E-003 4.997922374161991E-005

6.273565633363322E-007

Der Eloc = 6.927675852724724E-003 4.999242839793062E-005

<0H> = ©0.557134685159244 7.437283601136703E-005

<0><H> = -0.557596141151006 7.447559481785158E-005

2%(<0H> - <0><H>) = -9,229119835232336E-004 2.922997214772288E-006
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1=>€

lonic Forces:

# Constraints for forces: ion - coordinate . . .
1 1 3 # The number of forces, atom index, direction

F1,z for the first atom will be calculated.

# Constraints for forces: ion - coordinate
2 1 1 2 -3

F1,x and F2,z will be calculated, assuming, F = F1,x =-F2,z.

The output value (forcevmc.dat) is the sum of two forces, i.e., (F=F1,x - F2,z.)

If you want to calculate forces, please set “ieskin=1" in the &parameter section in your VMC input.
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1R=>4

forcevmc.dat=forces Force component 1
Force = 6.004763869201490E-003 4.997922374161991E-005

6.273565633363322E-007

Der Eloc = 6.927675852724724E-003 4.999242839793062E-005

<0H> = ©0.557134685159244 7.437283601136703E-005

<0><H> = -0.557596141151006 7.447559481785158E-005

2%(<0H> - <0><H>) = -9,229119835232336E-004 2.922997214772288E-006

d
Force (total) Fyo = _<dR Ep) —2 (EL'dR log(J'/2W)) — (EL>'(dR log(J*/2W)) | ,

Der Eloc: 2*(<OH> - <O><H>)

(Hellmann-Feynman term) (Pulay term)

where, J is the Jacobian of the warp transformation. sSorella, L Capriotti, J. Chem. Phys. 133, 234111 (2010).

# Constraints for forces: ion - coordinate
2 1 1 2 -3

The output value (forcevmc.dat) is the sum of two forces, i.e., (F=F1,x - F2,z.)

2022/6/28
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R _‘>< How to choose basis set for Force calc.? (PBC)

TurboRVB employs the CRYSTAL periodic basis for PBC calculations:
PBC . _ . —iks- T
lom,I (I‘, C) _ Z wl,m,[ (I‘ + TS’ C) e
-PBC, pseudo potential: T,

Unfortunately, provided basis sets for open systems are redundant for periodic cases, so we
recommend that one should cut several smaller exponents, typically, smaller than 0.10.

-PBC, all-electron:

The same for all-electron cases. Basis sets provided for open systems such as Basis set exchange
[https://www.basissetexchange.org] are usually redundant for a periodic case, so we
recommend that one should cut several smaller exponents, typically, smaller than 0.10.

One can also use all-electron basis sets optimized for periodic systems such as ones provided in
the CRYSTAL DFT code [https://www.crystal.unito.it/basis-sets.php].
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R- Basis set redundancy for periodic cases

PR ~ ’—-.~

U =.J X‘I’SD PR = Za,zi"ci,{a,l}‘.'w&l} Linear dependency = the condition number of the overlap matrix (S).

.
.

~
.......

e Diamond: Total Energy (E) e Diamond: Force (F)
_45160 T T T T T _90001 E 002 — T T T T T 3 01
= --©- VMCenergy [ 18 gj Cca 0.00+ --© - Force i
8 - - Error bar 17 e = | - - Error bar of force | |
= -45.162 16 o = S0.02 ; --=-- All-electron force | |, e
= 3 = = N 5
ko T = g -004F | 5 0.01 5
E 451641 meT oA A e 03 = Lo 1 o
» \ =< 2 -0.06f N ] =4
= \ - a "c% ’ -.._.._.._.._“.\ ..... ‘.,\_ ............ ;9_' ..'_'.:_-.-.;Q;.’.;Q‘.‘..‘.Q.‘.‘..’.Q.-..E4 8
= g = O -0.08F ow S 1 o
&>B -45.166 = § L o
5 | =3 g -010F~—— e 4 0.001
z \ s £ VoSt — % &
Q 45168} % R S 5 0.12F =-=-=-® 3, 2 OnlyoneCisdisplaced
2 \\ ‘%_——% o g \\m, i
> % e, = -0.14r £
~ o
-45.170 ! ! ' ! ! 0.0001  -0.16 : : : : : 0.0001
10 10™ 10" 10" 10° 10° 10* 10" 10" 10 10" 100 10" 10"
Inverse of condition number of overlap matrix Inverse of condition number of overlap matrix
Large <- Lin. Dep. -> Small Large <- Lin. Dep. -> Small

K. Nakano et al., Phys. Rev. B 103, L121110 (2021)
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R _->< Recent progress: Phonon dispersion calculations

e Diamond: the conventional 2x2x2 supercell with the experimental lattice parameter

e The frozen phonon method implemented in Phonopy package.
A. Togo and |. Tanaka, Scr. Mater. 108, 1 (2015).

4= .
~ Raman Freq. (optical phonon atT) <
§ 301 DFT-LDA  38.55 THz
~
2 VMC 40.65(38) THz
g 20
3 EXp. 40.35 THz
P~ X Experiment (Warren, et al.)
10F # " Eipiﬂﬁiﬁi Eil“fd? il{)al)
, A Experiment (Schwaerer, e al ** These are harmonic frequencies
W © VMC-Raman (This work) \_ )
i B0 LRDMC-Raman (This work)
;’ VMC-Phonon (This work) i
O ] ]
r X K r L K. Nakano et al., Phys. Rev. B 103, 1.121110 (2021)

*including anharmonic corrections.
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[g _->< Importance of the Space-warp coordinate transformation
10°F

e VMC(w/warp) - ) 55
| ¢ LROMC(w/warp) (or/0g)*“ scales as Z™“~ without SWCT,
10°F « VMC(wo/warp)
e LRDMC(wo/warp) /,' consistent with QMCPACK group’s paper
4| e
10 A J. Tiihonen, et al. J. Chem. Phys. 154, 204111 (2021)
> o
© 103} P .
g QMCPACK group shows that the scaling
- 102} : does not change even with SWCT...
/,""o,/
1 ,,9"’/ l
10 ::’.? _______ - EP——— "":'=====!:._.::::::.
: t . I No, the ratio is independent of Z !!
10 ‘ Y
10 10T
K. Nakano et al., J. Chem. Phys. 156, 034101 (2022)

Atomic number (2)
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TR=>4

dE 0 0 0
— E 2((F log W) — (F log W
dR., <8Ra L>+ (< LaRa g > < L><8Ra g >)
N R
! — 8E 807; i
i . Additional t N __4
E—I_ Zl 807; 8Ra HonarIerm USDD ? ¢ = Za,l Ci,{a,z}tﬂﬁfl}
o= / ------
OF
1. The system is already at a variational minimum. e =0 » JAGPs O
8(:,&-

=0
OR,

J. Tiihonen et al., J. Chem. Phys. 154, 204111 (2021)

2. The variational parameters are not allowed to vary with changing the atomic pos.
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-R:-x Carbon monoxide: PES v.s. Force

All-electron calculations, VMC (JDFT). Jastrow factors were optimized for each C-O distance.

JDFT CO (vmc) warp—True JDFT CO (vmc) warp—True
0.2 ; T T PES T 1.5 02 T T o T 1.5
— —t
PES fit —— PES fit ——
0.15 —dE(x)/dx —— 0.15 | —dE(x)/dx ——
Force:left(C) —&— | Force:left(C) —&— | 4
Force:right(Q) +—=— Force:right(0) ~——=—
0.1 Force:left fit 01 k Force:left fit
' Force:right fit Force:right fit
= 05~ = 05~
T 005 i g T o005 i g
5 2 2 g
g g 3
£ 3 £ ]
> - 2 0
5 005 2 5 005 | g
s —05 H i 05 =
-0.1 req(vmc PES) = 1.120 angstrom -0.1 - req(vmc PES) = 1.122 angstrom
req(Vmc Force:left) = 1.112 angstrom req(vmc Force:left) = 1.121 angstrom I
015 - Teq(vme Force:right) = 1.112 angstrom | -1 015 L roq(vme Force:right) = 1.121 angstrom | ~
e req(exp.) = 1.128 angstrom ' req(exp.) = 1.128 angstrom
-0.2 L \ \ \ | _15 02 \ \ \ \ ! _15
09 0.95 1 1.05 1.1 1.15 12 1.25 1.3 0.9 0.95 1 1.05 1.1 1.15 12 1.25 1.3
C-0 distance (Angstrom) C-O distance (Angstrom)

Basis = cc-pVDZ Basis = cc-pVQZ
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[g _—>< A typical workflow in TurboRVB (TurboGenius)

.Preparation........................ .

Generate a JAGPs/u template from a
chosen basis set and a structure

makefort10.x - Workflow -

. Conversion........coooeveeeinn... .
JAGPs/u — JSD ansatz for DFT .3 convertfort10mol.x

Optimize coefficients of molecular
orbitals by SCF calculation

prep.x

convertfort10(mol).x convertfortpfaff.x
£ JSD — JAGP(s/u) ansatz : ' JAGPu - JPfansatz
.............................. g e
‘ JAGPs JAGPu JAGP/JPf
v turborvb.x turborvb.x
.VMC optimization .... _lonic dynamics ...
:  Find an optimal variational : Langevin MD :
parameter set : i Path Integral MD
v turborvb.x turborvb.x
.VMC evaluation..... = .LRDMC................0.. .

Compute observables - Extrapolation with several
(energy, forces, etc...) 'S E. different lattice spaces

-Post-processing..........................To0000 . 5. LRDMC LRDMC with the optimized WF. turborvb

: Correlated sampling, Electron and lonic correlation functions, etc... :
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[g _—>< Lattice regularized DMC (LRDMC)

The projection technique to filer out the ground state from a trial wave function (typically, optimized by VMC).

M. Casula et al., Phys. Rev. Lett. 95, 100201 (2005)

To) o< lim_ (A _ ﬂ)M W)

A— B\

M — o0 _ T /\— E() |
Since = < 1 the projection filters out the ground state WF from a given trial WF
— Lo
In TurboRVB, “etry” is the corresponding parameter. A = —2 X etry

e.g., one can use a VMC energy for etry.
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R .->< Lattice discretization

To apply the GFMC method for continuous systems.

Aif (i, v, 20) = AF f (4,95, 2:)

M. Casula et al., Phys. Rev. Lett. 95, 100201 (2005)

_ a—12 f (@i +a) — f (@:)] + [f (@i — a) — £ ()]}
= Yi 7z,
Ve (x) =V (x)+ % 2 (qu;?;)) Yo &)

In TurboRVB, “alat” is the corresponding parameter. The unit is bohr.

Since the Trotter-Suzuki decomposition is not needed in the LRDMC framework, the “time-step” error does not
exist in LRDMC unlike DMC, but this “lattice-space” error exists instead. We need extrapolation for alat. (later)
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'I'R :_>< Fixed-node approximation

The Green’s function cannot be made strictly positive for fermions; therefore, the fixed-node (FN)
approximation has to be introduced in order to avoid the sign problem.

Trial WE Fixed-node WF

A T A T
N

Projection.

The nodal surface never changes during the simulation! i.e., Only the amplitude is relaxed.
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=X

&simulation
itestrd=-6
ngen=24100
iopt=1
maxtime=10800

/

&pseudo

/

&dmclrdmc
thra=0.1
etry=-5.50
Klrdmc=0.0
alat=-0.40
!iesrandoma=.true.
'alat2=0.0
gamma=0.0
parcutg=1

/

&readio
!iread=2

/

&parameters
lieskin=1

/

Input file for Lattice regularized DMC (LRDMC)

M. Casula et al., Phys. Rev. Lett. 95, 100201 (2005)

Important parameters:

ltestr4 = -6: LRDMC

ngen: The number of iterations (branchings)

tbra: Projection time
etry: Energy shift for the projection
alat: Coarser grid size (Bohr).

alat2: Denser grid size (Bohr).
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TR=><

Aif (i, 95, 2) = AL f (24,5, 27) The extrapolation behaves well unlike the standard DMC!!

a,_12 {If (@i+a) = f @)+ [f (xi —a) = (@)}

-324.450 - — — — T . .
alat extrapolation with funvsa.x
-~ dyana = 30789 A
| . : 5 4
- ::::::::::::::]:::';;Z‘i\\‘ quartic: E(CI,) — E(O) + k?l -a” + kz - a
() ) ::Z: Sy
B -324.500p e a,  Oup y X
- o pmmeeeeaa . s~o . —
N g, quadratic: E(a) = E(0) + k1 - a
— Soag \\:\‘\\
> -324.525t B N A
20 O
o A Na atom (GF=IDFT) \\\ # See. Readme of funvsa.x in detail.
8 2324 550 F B Naatom (GF=JSD) \\\; # 2=(up to a™4) number of data 4 1
= @ Naatom (GF=JAGP) 2 5 41
= A Na, dimer (GF=IDFT) o 7 9.10 -11.0850188375511 1.250592379643920E-004
i : ~ % 0.20 -11.0854289356563 1.239503202184784E-004
M -324575F | @ N j?mer (GF:JiD) 0.30 -11.0855955871707 1.334024389855123E-004
©  Na, dimer (GF=JAGP) .40 -11.0860656088368 1.279739901272860E-004
224,600 -, ., . 0.50 -11.0868942724581 1.340429878094154E-004

000 002 004 006 008 0.10
a K. Nakano et al., J. Chem. Theory Comput. 15, 4044-4055 (2019)
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R _">< Branching and related parameters

ngen=1 ngen=2 ngen=3
(3704 ny Wq n) "
o et O S — x b
T ®« @ -0 0
® @ ¢ @ 8 0
Walkers!
N Qo >Qf---—————--————-———————————————————————————————————-ﬂ Qe +@® o
w
@O . S I
@ @ » O 8 @
(A - H)M — exp (—%7:[) = exp (—tbra?-[) (M — o0)
1. Set the new weights wan=w= = > wpn.
weights and positions are updated. Branching!! Nuw 75
2. Select the new walkers po,n = wan/Y | wsn,
8

- “ngen” is the number of branchings! (ngen). .
_» too small tbra -> The weights are not update.

- The branching is done every t,,,, steps. (tbra). = _
* too large tbra -> Only few walkers survive.

Check your output! Av. num. of survived walkers/ # walkers in the branching 0.99 > 0.90!
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14

n n u

forcefn.sh “bin”, “corr”, “init”, “pulay”, or
“bin”: the length of reblocking (binning) size

turbo-genius.sh —j Irdmc -post -reb “bin”, -eq “init” -col “corr”
“corr”: correcting factor
pip0_fn.d=energy o o . _
init”: the length of equilibration steps (init * bin)

% cat pip@_fn.d p .
number of bins read = 1201 ”pulay": the ratio of the pulay term (1 IS OK)
Energy = =11.0854289356563 1.239503202184784E-004
Variance square = 0.126708380716482 1.148750765092961E-003
Est. energy error bar = 1.234807072779590E-004 2.503947626011507E-006
Est. corr. time = 1.85075908836029 7.596952532743223E-002
Energy (ave) = =11.0854159959592 1.144905833254917E-004 ucorrn: Correcting factor (p)

forcefn.dat=forces The average weights are stored and are set to

one for all walkers after each branching.

Force component 1
Force = 6.004763869201490E-003 4.997922374161991E-005 p p
6.273565633363322E-007 > nGher () | I =
Der Eloc = 6.927675852724724E-003 4.999242839793062E-005 0 > GP n n=Jo
<0H> = ©0.557134685159244 7.437283601136703E-005 n I j=1
<0><H> = -0.557596141151006 7.447559481785158E-005

2%(<0H> - <0><H>) = -9,229119835232336E-004 2.922997214772288E-006
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[g _—>< A typical workflow in TurboRVB (TurboGenius)

.Preparation........................ .

Generate a JAGPs/u template from a
chosen basis set and a structure

JAGPs JAGPu
. Conversion........coooeveeeinn... .
JAGPs/u — JSD ansatz for DFT .3 convertfort10mol.x

makefort10.x = Workflow -

Optimize coefficients of molecular
orbitals by SCF calculation

prep.x

convertfort10(mol).x convertfortpfaff.x
£ JSD — JAGP(s/u) ansatz : ' JAGPu - JPfansatz
------------------------------ ' S essesssssssssssssssssssseas”
JAGPs JAGPu N YA IS
JAGP/JPf . . .
3 | 3. VMC-opt Optimize the wavefunction turborvb
turborvb.x M turborvb.x
.VMC optimization .... _lonic dynamics ...
:  Find an optimal variational : Langevin MD :
parameter set : S Path Integral MD
v turborvb.x turborvb.x
.VMC evaluation.....  .LRDMC.................0.0. .
. Compute observables : : Extrapolation with several  :
(energy, forces, etc...) .S E. different lattice spaces
b . readforward.x
_Post-processing ... _

Correlated sampling, Electron and lonic correlation functions, etc...
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R _->< The most difficult part in practice

3. VMC Optimize wavefunctions and VMC run.

A wavefunction reads W55 (ﬁ) x exp(J (}_?:)) —_— /K s

ij

Anti-symmetric part. Jastrow factor. )
Y P To satisfy the cusp.

Jastrow factor = exp(](R)) No effect on the nodal surface!! W(R)= ¥(ri,73,---,rk) =0
Anti-symmetric part = Waus (R) Determines the nodal surface. Its initial guess is taken from a DFT calculation!!
1stStep ~ JSD 2nd Step  JAGPS

© Kosuke Nakano (SISSA/JAIST) 2022/6/28




Conversion tools (convertfort10.x, convertpfaff)

Input: convertfort.input, : _ _
fort.10_in, fort.10_out Binary: convertfort10.x Output:fort10_new

Convergfort10.x is a tool for converting a WF type., e.g., ~ JSD =p» JAGPs JAGPu

Input: fort.10 _in, , : :
fort.10_out Binary: convertfortpfaff.x Output:fortl0_new

Convertpfaff.x is a tool for projecting a WF,, e.g., JAGPU » JAGP/JPf

AGPu (singlet+triplet)
( A AGPs (singlet) ) -} Conversion (no loss of information)
SD (singlet + MO) -} Projection (loss of information)

k Single Slater determinant J
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- -
R')( Correlated sampling
o\ m
Input: readforward.input, B; . readf q Output: ling.dat
fort.10, fort.10_corr LAEL BUCCRI AL R utput:corrsampling.da

readforward.x enables us to calculate the difference in two WF using the correlated sampling.

JSD <@=» JAGPs - The difference in energies - The Overlap between the two WFs

(the maximum is unity)
%cat corrsampling.dat

reference energy: E(fort.10) -0.110045875E+02 0.252368934E-01

reweighted energy: E(fort.10_corr) -0.110045875E+02 0.252368985E-01

reweighted difference: E(fort.10)-E(fort.10_corr) -0.148834687E-07 0.316227766E-07
Overlap square : (fort.10,fort.10 _corr) 0.999999998E+00 0.316227766E-07

If the overlap is unity, it means that the conversion has been done without losing any information.
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R _‘>< Workflow of the TREXIO-TurboRVB converter

TREX-10
Preparation.................. § . .
| Extract necessary information  : exio.py First, the converter generates a TurboRVB WF file
o o using only basis set and structure information
Structure MO info. ‘ Stored |n a TREX'IO f'le.
Generate WF .-l .
. Generate a JAGPs/u ansatz using ~ : makefort10.py
: the information makefort10.x
JAGPs fort.10 with random MO coeffs. . . .
- CONVErtWF o -. Then, the converter writes the MO information
L P stored in a TREX-10 file into the generated WF file.
......................... o
WriteMOS ..., .
Write MO coefficients into fort.10 io_fort10.py <

A This is because of the complication of the
TurboRVB WF format.

JSD  fort.10 with opt. MO coeffs.
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Thank you!

Follow us
@ company/trex-eu

O @trex_eu
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