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Monte Carlo methods

Approaches which make repeated use of random numbers:

I to simulate truly stochastic events

I to solve deterministic problems using probabilities

Very important class of methods in statistical mechanics

→ Sampling Boltzmann distribution

Computation of averages (integrals in many dimensions)

For quantum mechanical simulations → Quantum Monte Carlo



A simple example of a Monte Carlo simulation

Basic idea of Monte Carlo through the “dartboard method”

→ Throw darts, compute Acircle, compute π

Throw darts which land randomly within the square

# hits inside circle

# hits inside the square
=

Acircle

Asquare
=
π

4

↑
many, many hits



Monte Carlo integration (1)

We want to compute the integral of f(x) in the interval [a, b]

f(x)

xa b

I =

∫ b

a
f (x) dx = (b − a)

∫ b

a
f (x)

1

b − a
dx

= (b − a)〈f 〉[a,b]

where 〈f 〉[a,b] is the average of the function in the range [a, b]



Monte Carlo integration (2)

〈f 〉[a,b] =

∫ b

a
f (x)

1

b − a
dx

=

∫ b

a
f (x)P(x) dx

f(x)

xa b

x

P(x)
1/(b-a)

a b

Draw M random numbers distributed unformely in [a, b]

x

P(x)
1/(b-a)

a b
−→ 〈f 〉[a,b] ≈

1

M

M∑
i=1

f (xi )



A less uniform function

I =

∫ b

a
f (x) dx

=

∫ b

a

f (x)

P(x)
P(x) dx

f(x)

x
a b

xa b

P(x)

Draw M random numbers distributed as P(x)

xa b

P(x)
−→ I ≈ 1

M

M∑
i=1

f (xi )

P(xi )



Monte Carlo integration in a nutshell

We want to compute 〈A〉 =

∫ b

a
A(x)P(x)

with P(x) ≥ 0 and

∫ b

a
P(x) = 1 ← a probability density!

Monte Carlo → Sample {x1, . . . , xM} from P(x)

Estimate 〈A〉 ≈ 1

M

M∑
i=1

A(xi )

Statistical physics: P(x) =
e−βE(x)

Z
, the Boltzman distribution



Quantum chemical simulations

• Density functional theory methods

Large systems but approximate exchange/correlation

• Quantum chemistry post-Hartree-Fock methods

Accurate on small-medium systems

→ Jungle of approaches: CI, MCSCF, CC, CASPT2 . . .

• Quantum Monte Carlo techniques

Stochastic solution of the Schrödinger equation

Accurate correlated calculations for medium-large systems



Some general words about quantum Monte Carlo methods

Stochastically solve interacting Schrödinger equation

Why (real-space) quantum Monte Carlo?

− Favorable scaling → Energy is O(N4)

− Flexibility in choice of functional form of wave function

− Easy parallelization

− Among most accurate calculations for medium-large systems

Routinely, molecules of up to 100 (mainly 1st/2nd-row) atoms

upto C136H44 (Alfé 2017)



A different way of writing the expectation values

Consider the expectation value of the Hamiltonian on Ψ

EV =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

=

∫
dRΨ∗(R)HΨ(R)∫
dRΨ∗(R)Ψ(R)

≥ E0

=

∫
dR
HΨ(R)

Ψ(R)

|Ψ(R)|2∫
dR|Ψ(R)|2

←
−
=

∫
dREL(R)P(R) = 〈EL(R)〉P

P(R) is a probability density and EL(R) =
HΨ(R)

Ψ(R)
the local energy



Variational Monte Carlo: a random walk of the electrons

Use Monte Carlo integration to compute expectation values

. Sample R from P(R) using Metropolis algorithm

. Average local energy EL(R) =
HΨ(R)

Ψ(R)
to obtain EV as

EV = 〈EL(R)〉P ≈
1

M

M∑
i=1

EL(Ri )

R

Random walk in 3N dimensions, R = (r1, . . . , rN)

Just a trick to evaluate integrals in many dimensions



Is it really “just” a trick?

Si21H22

Number of electrons 4× 21 + 22 = 106

Number of dimensions 3× 106 = 318

Integral on a grid with 10 points/dimension → 10318 points!

MC is a powerful trick ⇒ Freedom in form of the wave function Ψ



Monte Carlo integration

We want to compute an integral

EV =

∫
dREL(R)P(R)

We sample P(R) → EV = 〈EL(R)〉P ≈
1

M

M∑
i=1

EL(Ri )

− Does the trick always work?

− How efficient is it?



The Central Limit Theorem

Probability density P and function f with finite mean and variance

µ =

∫
dx f (x)P(x) σ2 =

∫
dx (f (x)− µ)2P(x)

Sample M independent random variables x1, . . . , xM from P(x)

Define FM =
1

M

M∑
i=1

f (xi )

As M increases, FM is normally distributed as
1√
2πσ

e−(x−µ)
2/2σ2

M

with a mean µ and variance σ2M = σ2/M

→ Irrespective of the original probability density function



Monte Carlo versus deterministic integration

Integration error ε using Mint integration/MMC Monte Carlo points

− Monte Carlo methods

ε ∝ 1√
MMC

independent on dimension !

It follows from Central Limit Theorem

→ width of Gaussian decreases as
σ√
MMC

for finite variance

− Deterministic integration methods

1-dim Simpson rule: ε ∝ 1

M4
int

d-dim Simpson rule: ε ∝ 1

M
4/d
int



Scaling with number of electrons

Roughly, Monte Carlo integration advantageous if d > 8

. . . for many-body wave functions d = 3Nelec !

− Simpson rule integration (Mint integration points)

ε =
c

M
4/d
int

=
c

M
4/3Nelec

int

⇒ Mint =
(c
ε

)3Nelec/4
Exponential

− Monte Carlo integration (MMC Monte Carlo samples)

ε =
σ√
MMC

= c

√
Nelec

MMC
⇒ MMC =

(c
ε

)2
Nelec Linear



Summary of variational Monte Carlo

Expectation value of the Hamiltonian on Ψ

EV =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

=

∫
dR
HΨ(R)

Ψ(R)

|Ψ(R)|2∫
dR|Ψ(R)|2

=

∫
dREL(R)P(R)

EV =

∫
dREL(R)P(R)

σ2 =

∫
dR(EL(R)− EV )2P(R)

Estimate EV and σ from M independent samples as

ĒV =
1

M

M∑
i=1

EL(Ri )

σ̄2 =
1

M − 1

M∑
i=1

(EL(Ri )− ĒV )2



Are there any conditions on many-body Ψ to be used in VMC?

Within VMC, we can use any “computable” wave function if

. Continuous, normalizable, proper symmetry

. Finite variance

σ2 =
〈Ψ|(H− EV )2|Ψ〉

〈Ψ|Ψ〉
= 〈(EL(R)− EV )2〉P

since the Monte Carlo error goes as err(EV ) ∼ σ√
M

Zero variance principle: if Ψ → Ψ0, EL(R) does not fluctuate



Typical VMC run

Example: Local energy and average energy of acetone (C3H6O)

0 500 1000 1500 2000
MC step

-39

-38

-37

-36

-35

-34
E
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rg

y 
(H

ar
tr

ee
)

σ VMC

EVMC = 〈EL(R)〉P = −36.542± 0.001 Hartree (40×20000 steps)

σVMC = 〈(EL(R)− EVMC)2〉P = 0.90 Hartree



Variational Monte Carlo: To do list

− Method to sample distribution function P(R) =
|Ψ(R)|2∫
dR|Ψ(R)|2

→ Obtain a set of {R1,R2, . . . ,RM} distributed as P(R)

How? As in classical Monte Carlo with Metropolis algorithm!

− Build the wave function Ψ(R). Which functional form ?

Here, we spend most of our time, open topic of research

− Compute expectation values
〈Ψ|O|Ψ〉
〈Ψ|Ψ〉

Reformulate them to reduce fluctuations, open topic of research



How do we sample P(R)?

Generate a Markov chain

. . .
M−−−→ R

M−−−→ R′
M−−−→ R′′

M−−−→ . . .

R

Construct M(Rf |Ri) as probability for transition Ri → Rf so that

− M(Rf |Ri) ≥ 0 and

∫
dRfM(Rf |Ri) = 1 (stochastic)

− If we start from an arbitrary distribution Pinit, we evolve to P

→ Impose stationarity condition



Constructing M

To sample P, use M which satisfies stationarity condition :∫
dRi M(Rf |Ri) P(Ri) = P(Rf) ∀ Rf

. Stationarity condition

⇒ If we start with P, we continue to sample P

. Stationarity condition + stochastic property of M + ergodicity

⇒ Any initial distribution will evolve to P



More stringent condition

In practice, we impose detailed balance condition

M(Rf |Ri) P(Ri) = M(Ri|Rf) P(Rf)

���

���

Stationarity condition can be obtained by summing over Ri∫
dRiM(Rf |Ri) P(Ri) =

∫
dRiM(Ri|Rf)︸ ︷︷ ︸

1

P(Rf) = P(Rf)

Detailed balance is a sufficient but not necessary condition



How do we construct the transition matrix P in practice?

Metropolis method → Write M as proposal T × acceptance A

M(Rf |Ri) = A(Rf |Ri) T (Rf |Ri) ���
����

��
����

Let us rewrite the detailed balance condition

M(Rf |Ri) P(Ri) = M(Ri|Rf) P(Rf)

A(Rf |Ri) T (Rf |Ri) P(Ri) = A(Ri|Rf) T (Ri|Rf) P(Rf)

⇒ A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) P(Rf)

T (Rf |Ri) P(Ri)



Choice of acceptance matrix A

Original choice by Metropolis et al. maximizes the acceptance

A(Rf |Ri) = min

{
1,

T (Ri|Rf) P(Rf)

T (Rf |Ri) P(Ri)

}

Note: P(R) does not have to be normalized

→ For complicated Ψ we do not know the normalization!

→ P(R) = |Ψ(R)|2

Original Metropolis method ����

Δ"

Symmetric T (Rf |Ri) = 1/∆3N ⇒ A(Rf |Ri) = min

{
1,

P(Rf)

P(Ri)

}



Better choices of proposal matrix T

Sequential correlation ⇒ Meff < M independent observations

Meff =
M

Tcorr
with Tcorr autocorrelation time of desired observable

Aim is to achieve fast evolution and reduce correlation times

Use freedom in choice of T : For example, use available trial Ψ

T (Rf |Ri) = N exp

[
−(Rf − Ri − V(Ri)τ)2

2τ

]
with V(Ri) =

∇Ψ(Ri)

Ψ(Ri)



Acceptance and Tcorr for the total energy EV

Example: All-electron Be atom with simple wave function

Simple Metropolis

∆ Tcorr Ā

1.00 41 0.17
0.75 21 0.28
0.50 17 0.46
0.20 45 0.75

Drift-diffusion transition

τ Tcorr Ā

0.100 13 0.42
0.050 7 0.66
0.020 8 0.87
0.010 14 0.94



Generalized Metropolis algorithm

1. Choose distribution P(R) and proposal matrix T (Rf |Ri)

2. Initialize the configuration Ri

3. Advance the configuration from Ri to R′

a) Sample R′ from T (R′|Ri).

b) Calculate the ratio p =
T (Ri|R′)

T (R′|Ri)

P(R′)

P(Ri)

c) Accept or reject with probability p

Pick a uniformly distributed random number χ ∈ [0, 1]

if χ < p, move accepted → set Rf = R′

if χ > p, move rejected → set Rf = R

4. Throw away first κ configurations of equilibration time

5. Collect the averages



Variational Monte Carlo → Freedom in choice of Ψ

Monte Carlo integration allows the use of complex and accurate Ψ

⇒ More compact representation of Ψ than in quantum chemistry

⇒ Beyond c0DHF + c1D1 + c2D2 + . . . millions of determinants



Jastrow-Slater wave function

Commonly employed compact Jastrow-Slater wave functions

Ψ(r1, . . . , rN) = J (r1, . . . , rN)×
∑
i

ci Di (r1, . . . , rN)

×

J −→ Jastrow correlation factor

− Explicit dependence on electron-electron distances rij∑
ci Di −→ Determinants of single-particle orbitals

− Few and not millions of determinants



Divergence in potential and behavior of the local energy

Consider two particles of masses mi , mj and charges qi , qj

Assume rij → 0 while all other particles are well separated

Keep only diverging terms in
HΨ

Ψ
and go to relative coordinates

close to r = rij = 0

− 1

2µij

∇2Ψ

Ψ
+ V(r) ∼ − 1

2µij

Ψ′′

Ψ
− 1

µij

1

r

Ψ′

Ψ
+ V(r)

∼ − 1

µij

1

r

Ψ′

Ψ
+ V(r)

where µij = mi mj/(mi + mj)



Divergence in potential and cusp conditions

Diverging terms in the local energy

− 1

µij

1

r

Ψ′

Ψ
+ V(r) = − 1

µij

1

r

Ψ′

Ψ
+

qiqj
r

= finite

⇒ Ψ must satisfy Kato’s cusp conditions:

∂Ψ̂

∂rij

∣∣∣∣∣
rij=0

= µijqi qjΨ(rij = 0)

where Ψ̂ is a spherical average

Note: We assumed Ψ(rij = 0) 6= 0



Cusp conditions: example

The condition for the local energy to be finite at r = 0 is

Ψ′

Ψ
= µijqi qj

• Electron-nucleus: µ = 1, qi = 1, qj = −Z ⇒ Ψ′

Ψ

∣∣∣∣
r=0

= −Z

• Electron-electron: µ =
1

2
, qi = 1, qj = 1 ⇒ Ψ′

Ψ

∣∣∣∣
r=0

= 1/2



Cusp conditions and QMC wave functions

. Electron-electron cusps imposed through the Jastrow factor

Example: Simple Jastrow factor

J (rij) =
∏
i<j

exp

{
b0

rij
1 + b rij

}

with b↑↓0 =
1

2
or b↑↑0 = b↓↓0 =

1

4

Imposes cusp conditions
+

keeps electrons apart
00

rij

. Electron-nucleus cusps imposed through the determinantal part



The effect of the Jastrow factor

Pair correlation function for ↑↓ electrons in the (110) plane of Si

g↑↓(r, r
′) with one electron is at the bond center

Hood et al. Phys. Rev. Lett. 78, 3350 (1997)



Why should ΨQMC = JD work?

Full wave-function
Ψ

−→ Factorized wave-function
JΦ→ →

Full Hamiltonian
H

−→ Effective Hamiltonian
Heff

HΨ = EΨ −→ HJΦ= EJΦ → HJ
J

Φ= EΦ

HeffΦ = EΦ

Heff weaker Hamiltonian than H

⇒ Φ ≈ non-interacting wave function D

⇒ Quantum Monte Carlo wave function Ψ = JD



Beyond VMC?

Removing or reducing wave function bias?

⇒ Projection Monte Carlo methods



Why going beyond VMC?

Dependence of VMC from wave function Ψ

0 0.02 0.04 0.06 0.08

Variance (   rs  (Ry/electron)
2
 )

-0.1090

-0.1085

-0.1080

-0.1075

-0.1070

E
ne

rg
y 

(R
y)

VMC JS+3B

VMC JS+BF

VMC JS+3B+BF

VMC JS

DMC JS

DMC JS+3B+BF

3D electron gas at a density rs=10

x 4

Kwon, Ceperley, Martin, Phys. Rev. B 58, 6800 (1998)



Why going beyond VMC?

What goes in, comes out! Can we remove wave function bias?

Projector (diffusion) Monte Carlo method

. Construct an operator which inverts spectrum of H

Diffusion Monte Carlo → e−τ(H−Eref)

. Use it to stochastically project the ground state of H



Diffusion Monte Carlo

Consider initial guess Ψ(0) and repeatedly apply projection operator

Ψ(n) = e−τ(H−Eref)Ψ(n−1)

Expand Ψ(0) on the eigenstates Ψi with energies Ei of H

Ψ(n) = e−nτ(H−Eref)Ψ(0) =
∑
i

Ψi 〈Ψi |Ψ(0)〉e−nτ(Ei−Eref)

and obtain in the limit of n→∞

lim
n→∞

Ψ(n) = Ψ0〈Ψ0|Ψ(0)〉e−nτ(E0−Eref)

If we choose Eref ≈ E0, we obtain lim
n→∞

Ψ(n) = Ψ0



How do we perform the projection?

Rewrite projection equation in integral form

Ψ(R′, t + τ) =

∫
dRG (R′,R, τ)Ψ(R, t)

where G (R′,R, τ) = 〈R′|e−τ(H−Eref)|R〉

. Can we sample the wave function?

For the moment, assume we are dealing with bosons , so Ψ > 0

. Can we interpret G (R′,R, τ) as a transition probability?

If yes, we can perform this integral by Monte Carlo integration



VMC and DMC as power methods

VMC Distribution function is given P(R) =
|Ψ(R)|2∫
dR|Ψ(R)|2

Construct M which satisfies stationarity condition so that

lim
n→∞

∫
dRn · · · dR1M(R,Rn) · · ·M(R3,R2)M(R2,R1)Pinit(R1) = P(R)

DMC Opposite procedure!

The matrix M is given → M ≡ G = 〈R′|e−τ(H−Eref)|R〉

We do not know P !

lim
n→∞

∫
dRn · · · dR1G (R,Rn) · · ·G (R3,R2)G (R2,R1)Pinit(R1) = Ψ0(R)

In either case, we want to find the dominant eigenvector of M



What can we say about the Green’s function?

G (R′,R, τ) = 〈R′|e−τ(H−Eref)|R〉

G (R′,R, τ) satisfies the imaginary-time Schrödinger equation

(H− Eref)G (R,R0, t) = −∂G (R,R0, t)

∂t

with G (R′,R, 0) = δ(R′ − R)



Evolution equation of the probability distribution

We can understand the behavior of G which satisfies

(H− Eref)G (R,R0, t) = −∂G (R,R0, t)

∂t

to understand evolution of the distribution Ψ

Ψ(R, t) =

∫
dR0 G (R,R0, t)Ψ(0)(R0)

which satisfies the imaginary-time Schrödinger equation

(H− Eref)Ψ(R, t) = −∂Ψ(R, t)

∂t



Can we interpret G (R′,R, τ) as a transition probability? (1)

H = T

Imaginary-time Schrödinger equation is a diffusion equation

−1

2
∇2G (R,R0, t) = −∂G (R,R0, t)

∂t

The Green’s function is given by a Gaussian

G (R′,R, τ) = (2πτ)−3N/2 exp

[
−(R′ − R)2

2τ

]

Positive and can be sampled



Can we interpret G (R′,R, τ) as a transition probability? (2)

H = V

(V(R)− Eref)G (R,R0, t) = −∂G (R,R0, t)

∂t
,

The Green’s function is given by

G (R′,R, τ) = exp [−τ (V(R)− Eref)] δ(R− R′),

Positive but does not preserve the normalization

It is a factor by which we multiply the distribution Ψ(R, t)



H = T + V and a combination of diffusion and branching

Let us combine previous results

G (R′,R, τ) ≈ (2πτ)−3N/2 exp

[
−(R′ − R)2

2τ

]
exp [−τ (V(R)− ET)]

Diffusion + branching factor leading to survival/death/cloning

Why? Trotter’s theorem → e(A+B)τ = eAτeBτ +O(τ2)

→ Green’s function in the short-time approximation to O(τ2)



Time-step extrapolation

Example: Energy of Li2 versus time-step τ

Umrigar, Nightingale, Runge, J. Chem. Phys. 94, 2865 (1993)



Diffusion Monte Carlo as a branching random walk

The basic DMC algorithm is rather simple:

1. Sample Ψ(0)(R) with the Metropolis algorithm

Generate M0 walkers R1, . . . ,RM0 (zeroth generation)

2. Diffuse each walker as R′ = R + ξ

where ξ is sampled from g(ξ) = (2πτ)−3N/2 exp
(
−ξ2/2τ

)
3. For each walker, compute the factor

p = exp [−τ(V(R)− Eref)]

p is the probability to survive/proliferate/die

4. Adjust Eref so that population fluctuates around target M0

→ After many iterations, walkers distributed as Ψ0(R)



Diffusion and branching in a harmonic potential

Ψ(x)
0

V(x)

Walkers proliferate/die where potential is lower/higher than Eref



Problems with simple algorithm

The simple algorithm is inefficient and unstable

. Potential can vary a lot and be unbounded

e.g. electron-nucleus interaction → Exploding population

. Branching factor grows with system size



Importance sampling

Start from integral equation

Ψ(R′, t + τ) =

∫
dRG (R′,R, τ)Ψ(R, t)

Multiply each side by trial ΨT and define π(R, t) = ΨT(R)Ψ(R, t)

π(R′, t + τ) =

∫
dR G̃ (R′,R, τ)π(R, t)

where the importance sampled Green’s function is

G̃ (R′,R, τ) = ΨT(R′)〈R′|e−τ(H−Eref)|R〉/ΨT(R)

We obtain lim
n→∞

π(R) = ΨT(R)Ψ0(R)



Importance sampled Green’s function

The importance sampled G̃ (R,R0, τ) satisfies

−1

2
∇2G̃ +∇ · [G̃ V(R)] + [EL(R)− Eref ] G̃ = −∂G̃

∂τ

with quantum velocity V(R) =
∇ΨT(R)

ΨT(R)
and EL(R) =

HΨT(R)

ΨT(R)

We now have drift in addition to diffusion and branching terms

Trotter’s theorem ⇒ Consider them separately for small enough τ



The drift-diffusion-branching Green’s function

Drift-diffusion-branching short-time Green’s function is

G̃ (R′,R, τ) = (2πτ)−3N/2 exp

[
−(R′ − R− τV(R))2

2τ

]
×

× exp {−τ (EL(R)− Eref)}

What is new in the drift-diffusion-branching expression?

. V(R) pushes walkers where Ψ is large

. EL(R) is better behaved than the potential V(R)

Cusp conditions ⇒ No divergences when particles approach

As ΨT → Ψ0, EL → E0 and branching factor is smaller



Basic DMC algorithm with importance sampling

1. Sample initial walkers from |ΨT(R)|2

2. Drift and diffuse the walkers as R′ = R + τV(R) + ξ

where ξ is sampled from g(ξ) = (2πτ)−3N/2 exp
(
−ξ2/2τ

)
3. Branching step as in the simple algorithm but with the factor

p = exp
{
−τ [(EL(R) + EL(R′))/2− Eref ]

}
4. Adjust the trial energy to keep the population stable

→ After many iterations, walkers distributed as ΨT(R)Ψ0(R)



Electrons are fermions!

We assumed that Ψ0 > 0 and that we are dealing with bosons

Fermions → Ψ is antisymmetric and changes sign!

Fermion Sign Problem

All fermion QMC methods suffer from sign problems

These sign problems look different but have the same “flavour”

Arise when you treat something non-positive as probability density



The DMC Sign Problem

How can we impose antisymmetry in simple DMC method?

Idea Evolve separate positive and negative populations of walkers

Simple 1D example: Antisymmetric wave function Ψ(x , τ = 0)

Rewrite Ψ(x , τ = 0) as

Ψ = Ψ+ −Ψ−

where

Ψ+ =
1

2
(|Ψ|+ Ψ)

Ψ− =
1

2
(|Ψ| −Ψ)

+ −

Ψ

Ψ τ=0 Ψ

τ=0

τ=0

(x,      )

(x,      ) (x,      )



Particle in a box and the fermionic problem (1)

The imaginary-time Schrödinger equation

HΨ = −∂Ψ

∂t

is linear, so solving it with the initial condition

Ψ(x , t = 0) = Ψ+(x , t = 0)−Ψ−(x , t = 0)

is equivalent to solving

HΨ+ = −∂Ψ+

∂t
and HΨ− = −∂Ψ−

∂t

separately and subtracting one solution from the other



Particle in a box and the fermionic problem (2)

. Since E s
0 < E a

0 , both Ψ+ and Ψ− evolve to Ψs
0

Ψ± −→

. Antisymmetric component exponentially harder to extract

|Ψ+ −Ψ−|
|Ψ+ + Ψ−|

∝ e−E
a
0 t

e−E
s
0 t

as t →∞



The Fixed-Node Approximation

Problem Small antisymmetric part swamped by random errors

Solution Fix the nodes! (If you don’t know them, guess them)

impenetrable 
barrier



Fixed-node algorithm in simple DMC

impenetrable 
barrier

How do we impose this additional boundary condition?

. Annihilate walkers that bump into barrier (and into walls)

→ This step enforces Ψ = 0 boundary conditions

→ In each nodal pocket, evolution to ground state in pocket

Numerically stable algorithm (no exponentially growing noise)

→ Solution is exact if nodes are exact

→ Best solution consistent with the assumed nodes



For many electrons, what are the nodes? A complex beast

Many-electron wave function Ψ(R) = Ψ(r1, r2, . . . , rN)

Node → surface where Ψ = 0 and across which Ψ changes sign

A 2D slice through the 321-dimensional nodal surface

of a gas of 161 spin-up electrons.



Some known properties of the nodes

Physical space has d (=1,2,3) dimensions

I Node is (dN − 1)-dimensional surface in dN dimensions

One constraint (Ψ = 0) ⇒ (dN − 1) -dimensional node

I Equations as ri = rj define (dN − d)-dimensional coincidence
surfaces and do not define the node completely if d > 1

I If d = 1, coincidence points xi = xj define the ground-state
node completely → One-dim problems are easy to simulate



Nodal pockets can be divided up into classes

Start from R0 and continously reach all points with Ψ(R) 6= 0

⇒ Nodal pocket accessible from R0

Map this subvolume over rest of the space with permutations

Figure courtesy of Matthew Foulkes
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The Tiling Theorem

Consider Hamiltonian with a local potential

For ground-state wavefunction, all pockets are in the same class
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Use the nodes of trial ΨT → Fixed-node approximation

Use the nodes of the best available trial ΨT wave function

(R)=0Ψ

(R)>0 RΨ

Find best solution with same nodes as trial wave function ΨT

Fixed-node solution exact if the nodes of trial ΨT are exact

Easy to implement in DMC with importance sampling: π ≥ 0



Fixed-node solution and importance-sampling DMC

Given trial ΨT(R), evolve π(R, t) = ΨT(R)Ψ(R, t) as

−1

2
∇2π +∇ · [πV(R)] + [EL(R)− Eref ]π = −∂π

∂τ

with V(R) =
∇ΨT(R)

ΨT(R)
and EL(R) =

HΨT(R)

ΨT(R)

Fixed-node approximation → π(R, t) ≥ 0



Fixed-node solution and behavior at the nodes

Within the nodes HΨFN(R) = EFNΨFN(R)

If the nodes not exact → ΨFN 6= Ψ0

If the nodes not exact → Discontinuity of derivatives at the nodes

HΨFN(R) = EFNΨFN(R) + δ for R ∈ δΩ

Note that the δ function does not affect the computed energy∫
ΨFNHΨFN =

∫
ΨFN(EFNΨFN + δ) =

∫
ΨFNEFNΨFN = EFN



Fixed-node solution is an upper bound to exact energy

In a nodal pocket Ω of the trial wave function Ψ

HΨFN(R) = EFNΨFN(R) R ∈ Ω

with ΨFN(R) = 0 for R 6∈ Ω → Extend solution over all space

Ψ̃FN(R) =
1

N!

∑
P

(−1)PΨFN(PR)

which satisfies∫
dR Ψ̃∗FN(R)HΨ̃FN(R)∫
dR Ψ̃∗FN(R)Ψ̃FN(R)

= EFN ≥ E0



Fixed-node DMC and excited states (1)

No general fixed-node variational principle for excited states

τ = 0:
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Fixed-node DMC and excited states (1)

No general fixed-node variational principle for excited states

τ > 0:

For t →∞, only pockets of the lowest energy class are occupied

It can happen that EFN < Eexact



Fixed-node diffusion Monte Carlo and excited states (2)

Is fixed-node diffusion Monte Carlo variational?

For lowest state in each 1-dim irreducible representation

What about “real” excited states?

In general, exact excited state for exact nodal structure

For excited states, even bigger role of the trial wave function

→ Enforces fermionic antisymmetry + selects the state

In practice, for reasonable wave function, no collapse

→ fixed-node DMC approaches excited state from above



Have we solved all our problems?

Results depend on the nodes of the trail wave function Ψ

Diffusion Monte Carlo as a black-box approach?

εMAD for atomization energy of the G1 set

DMC CCSD(T)/aug-cc-pVQZ

HF orb Optimized orb CAS
εMAD 3.1 2.1 1.2 2.8 kcal/mol

Petruzielo, Toulouse, Umrigar, J. Chem. Phys. 136, 124116 (2012)

With “some” effort on Ψ, we can do rather well



Diffusion Monte Carlo as a black-box approach?

Non-covalent interaction energies for 9 compounds from S22 set

DMC with B3LYP/aug-cc-PVTZ orbitals versus CCSD(T)/CBS

that FN-DMC with single-determinant trial functions is able to
approach the CCSD(T)/CBS reference to within 0.1 kcal/mol
(one standard deviation errors are reported) for small
complexes. In addition, the identified easy-to-use protocol is
tested on larger complexes, where the reliability of CCSD(T)
has yet to be fully tested. Here, the final FN-DMC results agree
to within 0.25 kcal/mol with the best available estimates. These
results show the potential of QMC for reliable estimation of
noncovalent molecular interaction energies well below chemical
accuracy.
The calculations were performed on a diverse set of

hydrogen and/or dispersion bound complexes for which
reliable estimates of interaction energies already exist8,39,40

and which were previously studied within QMC.26,29,34,35 The
considered test set consists of the dimers of ammonia, water,
hydrogen fluoride, methane, ethene, and the ethene/ethyne
complex (Figure 2). The larger considered complexes include
benzene/methane, benzene/water, and T-shape benzene dimer
(Figure 2).

■ ADJUSTING THE QMC PROTOCOL
The present methodology was developed via extensive testing
and elimination of the biases that affect the final FN-DMC
energies. Clearly, this has to be done in a step-by-step manner
since several sets of parameters enter the multistage refinement
strategy16,21 on the way to the final FN-DMC results. The
sequence of the steps includes (i) the construction of the trial
wave function, (ii) its VMC optimization, and (iii) FN-DMC
production calculation. The tasks i and ii involve optimizations
which affect the final interaction energies obtained in iii as the
differences of the statistically independent total energies.
We employ trial wave functions of the Slater-Jastrow

type,10,11 in general, a product of the sum of determinants

and a positive definite Jastrow term12 explicitly describing the
interparticle correlations. Remarkably, we have found that
single-reference wave functions filled with B3LYP/aug-TZV
orbitals reach the desired accuracy criterion for the whole test
set; consequently, multiple determinants were not considered.
Orbital sets from other methods were mostly comparable; in
the ammonia dimer complex, for instance, the HF nodes
provide the same FN-DMC interaction energy as B3LYP
(−3.12 ± 0.07 vs −3.10 ± 0.06 kcal/mol) within the error bars,
due to the FN error cancellation26,28,29 (cf. Figure 1).
Nevertheless, the total energies from B3LYP orbitals were
found to be variationally lower than those from HF (in dimer
by ∼0.001 au), in agreement with previous experience.15,41

Regarding the one-electron basis set, tests on the ammonia
dimer confirm the crucial effect of augmentation functions (cf.
ref 29). For the same system, TZV and QZV bases result in
interaction energies of −3.33 ± 0.07 and −3.47 ± 0.07, whereas
the aug-TZV and aug-QZV bases give −3.10 ± 0.06 and −3.13
± 0.6 kcal/mol, so that the impact of augmentation is clearly
visible and in accord with the reference value of −3.15 kcal/
mol.40 On the other hand, the increase of basis set cardinality
beyond the TZV level plays a smaller role than in the
mainstream correlated wave function methods.
In order to reduce the numerical cost of the calculations,

effective core potentials (ECP) were employed for all elements
(cf. Methods). Typically, this causes a mild dependence of the
FN-DMC total energy on the Jastrow factor,42,43 which cancels
out in energy differences with an accuracy ≈ 1 kcal/mol. In our
systems, elimination of this source of bias requires fully
converged Jastrow factors including electron−electron, elec-
tron−nucleus, and electron−electron−nucleus terms so as to
keep the target of 0.1 kcal/mol margin in energy differences.
This is true except for the water dimer, where a standard
Jastrow factor produces inaccurate energy difference (−5.26 ±
0.09 kcal/mol, cf. Table 1), and a distinct Jastrow factor
including unique parameter sets for nonequivalent atoms of the
same type is required.44 For the sake of completeness, we note
that the model of ammonia dimer, taken from the S22 set,39 is
not a genuine hydrogen bonded case, where the same behavior
would be expected, but a symmetrized transition structure that
apparently does not require more parameters in the Jastrow
factor. Note that a more economic variant of the correlation
factor, with only electron−electron and electron−nucleus
terms, doubles the average error on the considered test set,
and therefore it would be inadequate for our purposes.44 The
parameters of the Jastrow factor were exhaustively optimized
for each complex and its constituents separately, using a linear
combination of energy and variance cost function.45 We have
found that for large complexes, 7−10 iterations of VMC
optimization are sometimes necessary to reach the full
convergence.
The production protocol thus consists of (i) Slater−Jastrow

trial wave functions of B3LYP/aug-TZV quality, (ii) a
converged VMC optimization of the Jastrow factor with
electron−electron, electron−nucleus, and electron−electron−
nucleus terms, and (iii) a FN-DMC ground-state projection
using the T-moves scheme43 and a time step of 0.005 au. Note
that the VMC reoptimization of orbitals has not been explored,
although it could be tested in the future as well. The error bars
were converged to at least ∼0.1 kcal/mol in the projection time
of several thousands of atomic units.

Figure 2. The set of molecules used in the present work (from top left,
to bottom right): ammonia dimer, water dimer, hydrogen fluoride
dimer, methane dimer, ethene dimer, and the complexes of ethene/
ethyne, benzene/methane, benzene/water, and benzene dimer T-
shape.

Journal of Chemical Theory and Computation Letter

dx.doi.org/10.1021/ct4006739 | J. Chem. Theory Comput. 2013, 9, 4287−42924289

∆MAD = 0.058 kcal/mol

Dubecky et al., JCTC 9, 4287 (2013)

With “practically no” effort on Ψ, we can do rather well



Diffusion Monte Carlo end excitation energy

Excitation energy and wave function dependence
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DMC is not a panacea but effort on Ψ pays off!



DMC and solid state calculations

Example: Structural/magnetic properties of superconducting FeSe

→ Accurate lattice constants, bulk moduli, and band dispersion

→ Resolving relative energetics of different magnetic ordering
COMPETING COLLINEAR MAGNETIC STRUCTURES IN . . . PHYSICAL REVIEW B 94, 035108 (2016)

)d()c()b()a(

FIG. 1. Spin densities of magnetic orderings at ambient pressure: (a) collinear, (b) collinear, one flip, (c) bicollinear, and (d) checkerboard.
Four unit cells of a single iron layer are shown, divided by black lines. “Collinear, one flip” refers to flipping the spin of one iron per unit cell in
the collinear configuration. Since four unit cells are shown above, there are four “flipped” iron moments shown in this plot. The larger red Se
atoms lie above and below the plane and show significantly smaller spin density. Irons are smaller and blue and lie within a larger concentration
of spin. The two colors of the isosurfaces denote density of up and down.

cannot describe long-range fluctuations of the magnetic order
that might be the cause of loss of long-range order. For the
experimental crystal structure, the collinear magnetic ordering
is the lowest in energy in our calculations and is observed to
be the dominant short-range order experimentally [12]. The
energetic cost of introducing a “defect” into the magnetic
order is quite small; we will discuss that aspect later. Both the
DMC(opt) and DMC(PBE0) approaches result in a rather large
magnetic moment on the Fe atom. For the collinear magnetic
ordering we obtain a value of ∼3.4µB for DMC(PBE0) and
a slightly lower ∼3.1µB for the fully optimized calculations.
In both cases the magnetic moment is close to the atomic
limit.

Between the two DMC approaches, the energy difference
between different magnetic orderings is in agreement within
stochastic errors, so there is good reason to believe that the
cheaper DMC(PBE0) technique is accurate. In comparison to
PBE calculations, which are the most common in the literature,
the relative energies according DMC are quite different,
including the lowest-energy magnetic phase, which is the
“staggered dimer” configuration in DFT [50–52] but turns
out to be the collinear configuration in DMC. It appears that
hybrid DFT calculations in the PBE0 approximation obtain
reasonably good magnetic energy differences in comparison
to DMC; since this functional also produced the orbitals that
gave the lowest FN-DMC energy, it may be capturing some of
the correct physics for the magnetic properties of this material.

However, the PBE0 functional predicts an insulating gap [53]
for FeSe for all magnetic orderings, in contrast to DMC and
experiment.

B. Crystal structure

Obtaining the correct crystal structure for FeSe is a major
challenge since the layers interact through nonbonded interac-
tions. The c lattice parameter in particular is affected by van
der Waals interactions, and electron correlation plays a key role
in determining the in-plane physics. The behavior of FeSe’s
superconducting properties under pressure gives another clue
to the importance of structural variations in its description. A
first-principles prediction of the lattice parameters is thus an
important test of the description of this physics. Since the DMC
calculations are computationally costly, we limited our study
to the tetragonal phase of FeSe. Because the low-temperature
orthorhombic distortion is small [10], one might expect that
its effect on the overall electronic structure is also small. We
leave such considerations to another paper.

The equilibrium lattice parameters of FeSe are presented in
Table I. As mentioned in the previous sections, these results
are obtained with a direct optimization of FeSe cell parameters
with the VMC(opt) method. The in-plane FeSe properties
should be well captured by QMC since the a lattice parameter
is in close agreement with experimental results (within ∼4σ )
independently of the chosen magnetic configuration. Both
collinear and paramagnetic wave functions show also a

TABLE I. FeSe optimal structural parameters with different computational methods. DFT calculations have been performed with the
software package QUANTUM ESPRESSO [54] using a 10 × 10 × 10 k-point mesh, an energy cutoff of 75 Ry, and norm-conserving pseudopotentials
for both Fe and Se. The variational Monte Carlo VMC(opt) results are obtained at only the " point with the 16-f.u. FeSe supercell containing
32 atoms.

Source Magnetic ordering a c FeFe zSe

DFT-PBE paramagnetic 3.6802 6.1663 2.6023 1.3862
DFT-PBE collinear 3.8007 6.2363 2.6966 1.4568
VMC paramagnetic 3.71(1) 5.49(1) 2.62(1) 1.437(5)
VMC collinear 3.72(1) 5.68(1) 2.63(1) 1.56(1)
Experiment [55], T 7 K 3.7646(1) 5.479 20(9) 1.4622
Experiment [48], T 8 K 3.7685(1) 5.5194(9) 2.6647(3) 1.5879
Experiment [10], T 300 K 3.7724(1) 5.5217(1) 1.4759

035108-3

Busemeyer, Dagrada, Sorella, Casula, and Wagner PRB (2016)



Alternatives to fixed-node DMC: Releasing the nodes (1)

First do a fixed-node DMC simulation



Alternatives to fixed-node DMC: Releasing the nodes (1)

Then release the nodes



Alternatives to fixed-node DMC: Releasing the nodes (1)

Then release the nodes

I Red and blue solutions collapse to boson ground state, but
their difference approaches the fermion ground state

I Back to the sign problem: exponentially growing noise



Alternatives to fixed-node DMC: Determinantal QMC (2)

Given single-particle basis, perform projection in determinant space

Different way to deal with fermionic problem

− Determinantal QMC by Zhang and Krakauer

Appears less plagued by fixed phase than DMC by FN

− Full-CI QMC by Alavi

Start from ΨCI =
∑

i ciDi

HΨ = −∂Ψ

∂t
→ Hijcj = −∂ci

∂t



DMC in summary

The fixed-node DMC method is (in general)

I Easy to do

I Stable

I Accurate enough for many applications in quantum chemistry

. . . especially in large systems

I Accurate enough also for subtle correlation physics

Use of fixed-node DMC for computation of excited states

I In the general landscape, we are doing quite well !

I Sensitivity to wave function but relatively robust

→ basis, size of the determinantal expansion



Beauty of quantum Monte Carlo → Highly parallelizable

Ψ(r1, . . . , rN) → Ensemble of walkers diffusing in 3N dimensions

VMC → Independent walkers ⇒ Trival parallelization

DMC → Nearly independent walkers ⇒ Few communications

Easily take great advantage of parallel supercomputers!

As early as 2001 . . .
VOLUME 87, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 10 DECEMBER 2001
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FIG. 2. CPU time on a 667 MHz EV67 alpha processor to
move a configuration of electrons within DMC for SiH4, Si5H12,
Si35H36, Si87H76, Si123H100, Si211H140, C20, C36, C60, C80, and
C180.

functions in a plane wave basis scales as approximately
N3. The exact scaling is determined by the volume of the
supercell chosen for each system. The computational cost
of the Gaussian basis also scales as N3, but with a smaller
prefactor as the number of basis functions per atom is much
smaller. The calculations using the truncated MLW func-
tions demonstrate that the CPU time required to move a
single configuration of electrons scales approximately lin-
early with the number of electrons. The deviations from
linearity in the hydrogenated silicon cluster MLW curves
are mainly due to differing ratios of hydrogen to silicon
atoms; for the carbon fullerenes, they are due to differ-
ent strain in the clusters requiring slightly different cutoff
radii for the MLW functions. For the systems we com-
pared (SiH4 and Si5H12), the DMC energies for all three
basis sets agreed within 0.001 hartree per atom statistical
error bars.

Once the cost of evaluating the Slater determinant has
been reduced to linear scaling, it is interesting to ask how
large a system one can study before other parts of the al-
gorithm will begin to dominate and the linear scaling will
be lost. For the Si211H140 system (984 electrons), approxi-
mately 10% of the calculation involves the remaining parts
of the algorithm that scale as N2 and N3. With relatively
minor algorithmic improvements, the cost of these terms
could be dramatically reduced, extending the linear regime
to several thousand electrons. In particular, we envisage
(i) the electron-ion interaction could be rewritten with the
sum over ions precomputed so the local part scales linearly.
The nonlocal contribution already scales linearly due to
the cutoff in the range of the interaction. (ii) The electron-
electron interaction could be rewritten to scale linearly by
writing it as a sum of short- and long-ranged pieces [1,7],
or using Greengard’s multipole expansion [20]. (iii) To up-
date the Slater determinant, we adopt the N 3 scaling pro-
cedure based on storing the inverse of the transpose of the
matrix from Ref. [21]. Our introduction of sparsity into

the Slater determinant allows us to significantly reduce the
prefactor for this N3 term. In larger systems where the
determinant is increasingly sparse, it should be possible
to reformulate the determinant update procedure to utilize
this sparsity and obtain a better size scaling.

Note, the discussion thus far involves the scaling of the
computational cost of moving a single configuration of
electrons. In practice, one calculates either (i) the total
energy of the system, or (ii) the energy per atom, with a
given statistical error. The statistical error, d, is related
to the number of uncorrelated moves, M, by d ! s!

p
M,

where s2 is the intrinsic variance of the system. Typi-
cally, the value of s2 increases linearly with system size.
Therefore, to calculate the total energy with a fixed d, the
number of moves, M, must also increase linearly. When
multiplied by our linear increase in the cost of each move,
an N2 size scaling is obtained. For quantities per atom,
such as the binding energy of a bulk solid, s2 still in-
creases linearly with system size, but d is decreased by a
factor of N , and, hence, the number of required moves, M,
actually decreases linearly with system size. Therefore the
cost of calculating energies per atom is now independent
of system size.

To illustrate the range of systems that can now feasibly
be studied within QMC using truncated MLW functions
in the Slater determinant, we have calculated total ener-
gies of a series of carbon fullerenes. In Fig. 3 we plot the
binding energy per atom of C20, C36, C60, C80, and C180
fullerenes. Line (a) shows the binding energies calculated
using LDA; line (b) shows the binding energy calculated
within fixed node DMC. The LDA calculations were per-
formed at the G point of the Brillouin zone, using a cutoff
of 40 Ry. The same pseudopotentials were used in the
LDA and DMC calculations. Six points were used in the
QMC angular integration for the nonlocal pseudopotential.
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FIG. 3. Binding energy per atom (a) within LDA, and
(b) within DMC of carbon fullerenes. DMC statistical error
bars are smaller than the symbols. For comparison, we
have added 0.18 eV zero point energy to the bulk graphite
experimental binding energy [22].
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Up to Si123H100 and C180 !

Williamson, Hood, Grossman (2001)

structures and rapidly decreases to less than 0.1 Å as the cluster
size increases to ∼2 nm. In these clusters, Figure 2a shows that
the change in charge density resulting from the HOMO to
LUMO excitation is distributed relatively evenly throughout the
cluster and hence all atoms experience forces of approximately
equal magnitude. This equality of forces is confirmed by the
similar magnitude of the vector displacements plotted in the
right column of Figure 2a. These displacements show that the
shape of hydrogenated clusters changes from spherical to
elliptical upon excitation of one electron. As the size of the
hydrogenated clusters increases, the relative change in charge
density around each atom due to the excitation of a single
electron decreases inversely proportionally to the number of
atoms, and hence the rms displacements also decrease (see the
first five rows of Table 1).
The clusters with reconstructed surfaces, for example, Si29H24

(Figure 2b), and those with Si-O-Si bridged oxygen on the

surface, for example, Si29H34O (Figure 2c), show smaller rms
displacements than do the completely hydrogenated clusters.
In these reconstructed clusters, the charge density change
associated with the HOMO-LUMO excitation is localized at
the surface, and therefore the surface atoms experience the
greatest force. Similar to hydrogenated clusters, as the size of
the reconstructed clusters increases, the change in charge density
due to the excitation of a single electron from the HOMO to
LUMO is distributed over a larger area, and hence the force on
each individual surface atom again decreases with size; this is
confirmed by the decreasing rms displacements of the larger
reconstructed clusters.
In the clusters with oxygen double bonded to the surface,

for example, Si35H35O (Figure 2d), the rms displacement is
slightly larger. However, in this case, considering the rms
displacement is somewhat misleading as almost all of the atomic
relaxation is concentrated on the double bonded oxygen atom.

Figure 2. The two left columns show charge density isosurfaces of the HOMO and LUMO orbitals of 1 nm clusters with different surface structures and
different passivants. The silicon atoms are gray, the hydrogen atoms are white, and the oxygen atoms are red. The isosurfaces are chosen at 50% of the
maximum amplitude. The right column shows vectors proportional to the displacement of each atom during the Stokes shift (see text). The displacements
have been magnified by 10 for clarity.

Optical Emission of Silicon Nanocrystals A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 125, NO. 9, 2003 2789



Human and computational cost of a typical QMC calculation

Task Human time Computer time

Choice of basis set, pseudo etc. 10% 5%

DFT/HF/CI runs for Ψ setup 65% 10%

Optimization of Ψ 20% 50%

DMC calculation 5% 35%



To conclude: ongoing research in QMC

I Search for different forms of trial wave function

Neural network architecture → Ψ of multi-electron orbitalsAB INITIO SOLUTION OF THE MANY-ELECTRON … PHYSICAL REVIEW RESEARCH 2, 033429 (2020)

FIG. 1. The Fermionic neural network (FermiNet). Top: Global architecture. Features of one or two electron positions are inputs to different
streams of the network. These features are transformed through several layers, a determinant is applied, and the wave function at that position
is given as output. Bottom: Detail of a single layer. The network averages features of electrons with the same spin together, then concatenates
these features to construct an equivariant function of electron position at each layer.

single determinant made up of these permutation-equivariant
functions is sufficient to represent any antisymmetric function
(see Appendix B); however, the practicality of approximat-
ing an antisymmetric function will depend on the choice
of permutation-equivariant function class; we hence use a
small linear combination of nk determinants in this work.
The construction of a set of these permutation-equivariant
functions with a neural network is the main innovation of
the FermiNet. We emphasize that determinants constructed
from permutation-equivariant functions are substantially more
expressive than conventional Slater determinants. Figure 1
contains a schematic of the network and Algorithm I pseu-
docode for evaluating the network.

The Fermionic neural network takes features of single
electrons and pairs of electrons as input. As input to the single-
electron stream of the network, we include both the difference
in position between each electron and nucleus ri − RI and
the distance |ri − RI |. The input to the two-electron stream
is similarly the differences ri − r j and distances |ri − r j |.
Adding the absolute distances between particles directly as
input removes the need to include a separate Jastrow factor
after a determinant. As the distance is a nonsmooth func-
tion at zero, the neural network is capable of expressing the
nonsmooth behavior of the wave function when two particles
coincide—the wave-function cusps. Accurately modeling the
cusps is critical for correctly estimating the energy and other
properties of the system. The quality of the wave-function

cusps for the helium atom are investigated in Appendix F. We
denote the concatenation of all features for one electron h0

i ,
or h0α

i if we explicitly index its spin α ∈ {↑,↓}; the features
of two electrons are denoted h0

i j or h0αβ
i j . If the system has n↑

spin-up electrons and n↓ spin down electrons, then without
loss of generality we can reorder the electrons so that σ j =↑
for j ∈ 1, . . . , n↑ and σ j =↓ for j ∈ n↑ + 1, . . . , n.

To satisfy the overall antisymmetry constraint for a
fermionic wave function, intermediate layers of the Fermionic
Neural Network must mix information together in a
permutation-equivariant way. Permutation-equivariant neural
network layers like self-attention have gained success in re-
cent years in natural language processing [29] and protein
folding [30], but we pursue a simpler yet effective ap-
proach. Permutation-equivariant layers have also been widely
adopted in the computational chemistry and machine learn-
ing community for modeling energies and force fields from
atomic configurations [3,31,32]. The Fermionic Neural Net-
work shares some architectural details with these models, such
as the use of pairwise distances as inputs and parallel streams
of feature vectors, one per particle, through the network, but
is tailored specifically for mapping electronic configurations
to wave-function values with fixed atomic positions, rather
than mapping atomic positions to total energies and other
properties.

In our intermediate layers, we take the mean of activations
from different streams of the network, concatenate these mean

033429-3

Pfau, Spencer, Matthews, Foulkes, Phys. Rev. Res. (2020)

I Push optimization techniques to larger systems

I More work on transition metals

I Alternatives to fixed-node diffusion Monte Carlo



Other applications of quantum Monte Carlo methods

I Electronic structure calculations

I Strongly correlated systems (Hubbard, t-J, . . .)

I Quantum spin systems (Ising, Heisenberg, XY, . . .)

I Liquid-solid helium, liquid-solid interface, droplets

I Atomic clusters

I Nuclear structure

I Lattice gauge theory

Both zero (ground state) and finite temperature
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Introduction



Reminders

Atomic orbitals (AOs): χk . Non-orthogonal set of one-electron functions.

χk(r) =
∑
l

Pkl(r)e−γkl |r|
p

P : Spherical harmonics or Polynomial. p = 1: Slater, p = 2: Gaussian
Molecular orbitals (MOs): LCAO. Orthonormal set of one-electron functions.

φi (r) =
∑
k

Cikχk(r)

Many different types of MOs: Hartree-Fock, Kohn-Sham, localized, natural, . . .
N-electron Wave function: Anti-symmetric product of MOs =⇒ Slater determinant

Ψ(r1, r2, . . . , rN) =

∣∣∣∣∣∣∣∣∣
φ1(r1) φ2(r1) . . . φN(r1)
φ1(r2) φ2(r2) . . . φN(r2)

...
. . .

...
φ1(rN) φ2(rN) . . . φN(rN)

∣∣∣∣∣∣∣∣∣



Orbitals

MOs are linear combinations of AOs (LCAO)
One can build as many MOs as AOs
The space spanned by MOs is the same as the space spanned by AOs

Hartree-Fock MOs are divided into occupied and virtual MOs
Occupied Hartree-Fock MOs: Orthonormal set of LCAOs which minimize the energy
of a Slater determinant
Virtual Hartree-Fock MOs: The orthonormal complement of the Occupied MOs



Slater determinant

The Slater determinant can be rewritten by separating ↑- and ↓-spin electrons:

Ψ(r1, r2, . . . , rN↑ , rN↑+1, . . . , rN) =∣∣∣∣∣∣∣∣∣
φ1(r1) φ2(r1) . . . φN↑(r1)

φ1(r2) φ2(r2) . . . φN↑(r2)
...

. . .
...

φ1(rN↑) φ2(rN↑) . . . φN↑(rN↑)

∣∣∣∣∣∣∣∣∣×
∣∣∣∣∣∣∣∣∣
φ1(rN↑+1) φ2(rN↑+1) . . . φN↓(rN↑+1)

φ1(rN↑+2) φ2(rN↑+2) . . . φN↓(rN↑+2)
...

. . .
...

φ1(rN) φ2(rN) . . . φN↓(rN)

∣∣∣∣∣∣∣∣∣
= D↑(r1, r2, . . . , rN↑)× D↓(rN↑+1, . . . , rN)



Electron correlation

Ψ2 = (D↑ × D↓)
2

= D2
↑ × D2

↓

The N-electron density is the product of a density of N↑ ↑-spin electrons and a
density of N↓ ↓-spin electrons.
Mean-field approach: ↑-spin and ↓-spin electrons are statistically independent
Although same-spin electrons are not statistically independent, the
single-determinant model is said to be uncorrelated.



Electron correlation

We have seen that electron correlation can be introduced with a Jastrow factor:

Ψ(r1, . . . , rN) = D↑(r1, . . . , rN↑)× D↓(rN↑+1, . . . , rN)× exp (J(r1, . . . , rN))

with

J(r1, . . . , rN) =
N∑
i<j

b1 |ri − rj |
1 + b2 |ri − rj |

+ . . .

J couples ↑-spin and ↓-spin electrons, so

Ψ(r1, . . . , rN)2 6= p↑(r1, . . . , rN↑)× p↓(rN↑+1, . . . , rN)

and ↑-spin and ↓-spin electrons are correlated.

Correlation energy

Ecor[Ψ] = E [Ψ]− EHF



N-electron basis functions

Ψ is an N-electron function
It can be expressed as a linear combination of N-electron functions

Ψ(r1, . . . , rN) =

Nd∑
i=1

ci Di (r1, . . . , rN)

If the basis is infinitely large, the exact wave function can be obtained by finding
the ci which minimize the energy.

E (Ψ1) ≥ E (Ψm) ≥ E (ΨNd
) ≥ E (Ψ∞) = Eexact

with 1 ≤ m ≤ Nd .



Slater determinants

A natural N-electron basis is the basis of all possible Slater determinants that can be
built with a given set of M MOs:

Ψ = c1

( −−
−−
−↑−↓

)
+ c2

( −−
−↑−
−−↓

)
+ c3

( −↑−
−−
−−↓

)
+ c4

( −−
−−↓
−↑−

)
+

c5

( −−
−↑−↓
−−

)
+ c6

( −↑−
−−↓
−−

)
+ c7

( −−↓
−−
−↑−

)
+ c8

( −−↓
−↑−
−−

)
+ c9

( −↑−↓
−−
−−

)
Each basis function is antisymmetric =⇒ Ψ is antisymmetric



Slater determinants

The size of the basis grows fast:

Nd =

(
M!

N↑!(M − N↑)!

)
×
(

M!

N↓!(M − N↓)!

)

Example
18 electrons in 111 orbitals:
Nd = 2.5× 1025 determinants.

Ψ(r1, . . . , rN) = c1 D1↑(r1, . . . , rN↑)D1↓(rN↑+1, . . . , rN) +

c2 D2↑(r1, . . . , rN↑)D2↓(rN↑+1, . . . , rN)

Ψ(r1, . . . , rN)2 6= p↑(r1, . . . , rN↑)× p↓(rN↑+1, . . . , rN)=⇒ electron correlation.



Configuration state functions

The exact wave function is an eigenfunction of the spin operator Ŝ2

Slater determinants are eigenfunctions of Ŝz , but not of Ŝ2

To obtain Ψ eigenfunction of Ŝ2, one needs to have in the determinant set all
possible spin flips in open shells

−|
−|
−|
−|
−||

 = a


−−↓
−−↓
−↑−
−↑−
−↑−↓

 + b


−↑−
−−↓
−−↓
−↑−
−↑−↓

 + c


−↑−
−−↓
−↑−
−−↓
−↑−↓

 + d


−↑−
−↑−
−−↓
−−↓
−↑−↓

 + e


−−↓
−↑−
−↑−
−−↓
−↑−↓

 + f


−−↓
−↑−
−−↓
−↑−
−↑−↓





Configuration state functions

Configuration state functions (CSF): Linear combinations of Slater determinants,
which are eigenfunctions of S2:


−|
−|
−|
−|
−||

 = A×
1
2



−↑−
−−↓
−−↓
−↑−
−↑−↓

 +


−−↓
−↑−
−↑−
−−↓
−↑−↓

−

−↑−
−−↓
−↑−
−−↓
−↑−↓

−

−−↓
−↑−
−−↓
−↑−
−↑−↓




+ B ×
√

3
6

−2


−−↓
−−↓
−↑−
−↑−
−↑−↓

 +


−↑−
−−↓
−−↓
−↑−
−↑−↓

 +


−↑−
−−↓
−↑−
−−↓
−↑−↓

− 2


−↑−
−↑−
−−↓
−−↓
−↑−↓

 +


−−↓
−↑−
−↑−
−−↓
−↑−↓

 +


−−↓
−↑−
−−↓
−↑−
−↑−↓




The CSF basis is smaller than the determinant basis: one selects only basis
functions with the desired 〈Ŝ2〉



Configuration interaction

Configuration interaction (CI)

Ψ is a linear combination of Slater determinants (or CSFs)
The energy is minimized by diagonalizing the Hamiltonian in the basis of Slater
determinants (or CSFs)

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

CI methods
Differ by the choice of the basis:

Full configuration interaction (FCI): All possible Slater determinants. O(N!)

CI with Single and Double substitutions (CISD): No more than one or two MOs
differ from the Hartree-Fock determinant. O(N2

oN
2
v )

Complete Active Space (CAS): Only a subset of m MOs can be substituted from
the Hartree-Fock determinant. O(m!)



Dynamic vs static correlation

Dynamic : short-range effects due to the Coulomb hole. Hartree-Fock qualitatively
correct, many small contributions.
Static : near-degeneracies. Hartree-Fock qualitatively incorrect, few large
contributions.

Examples

CH4, 6-31G: 38× 106 determinants. Dynamic
EHF -40.1805 a.u
EFCI -40.3011 a.u

Dissociated H2, STO-6G: 2 determinants (1 CSF). Static

Ψ(1, 2) =
1√
2

(
φ1(1)φ1(2)− φ2(1)φ2(2)

)
EHF -0.5572 a.u ε1 = -0.08619 a.u
EFCI -0.9421 a.u ε2 = -0.08619 a.u



Dynamic vs static correlation

Dynamic: Well described by a Jastrow factor
Static: Well described by a linear combination of Slater determinants
Optimal representation:

Ψ =

(∑
i

ciDi

)
exp (J)

Interplay between static and dynamic correlation: ci should be optimized in the
presence of exp(J).



Size consistency

Size consistency: Strict separability. When two systems A and B are far enough to not
interact:

E [ΨA...B ] = E [ΨA] + E [ΨB ]

If the MOs are localized on fragments A and B , determinants can be written as

|KA...B〉 = |IAJB〉 = |IA〉 ⊗ |JB〉

FCIAB is built as the tensor product of FCIA and FCIB

ΨA...B =
∑
K

cK |KA...B〉 =

(∑
I

cAI |IA〉
)
⊗
(∑

J

cBJ |JB〉
)



Size consistency

CI is usually not size-consistent. Example: CISD
The CISD space for A . . .B is not the tensor product of the spaces of A and B

|IA〉 = T̂ kl
ij |HFA〉 |JB〉 = T̂ pq

mn|HFB〉
|IAJB〉 = T̂ kl

ij T̂
pq
mn|HFAHFB〉

|KA...B〉 = T̂ klpq
ijmn |HFA...B〉 : quadruple excitation, missing in CISD space

The size-consistency error is positive:

E [ΨA...B
CISD] ≥ E [ΨA

CISD] + E [ΨB
CISD]

Size-consistent particular cases

Hartree-Fock FCI CAS-SCF



Configuration Interaction



Configuration Interaction

Define an orthonormal basis of N-electron functions: Slater determinants or CSFs
{|I 〉}
Express the wave function on this basis: 〈I |Ψ〉 = cI

|Ψ〉 =
∑
I

cI |I 〉

The energy is given by

E [Ψ] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

The optimal cI are obtained when |Ψ〉 is an eigenfunction of H, and E is the
corresponding eigenvalue



Diagonalization of the Hamiltonian

〈I |J〉 = δIJ , because MOs are orthonormal.
HIJ = 〈I |Ĥ|J〉
〈Ψ|Ψ〉 =

∑
IJ cI cJ δIJ =

∑
I c

2
I = 1

E [Ψ] =
∑
IJ

cI cJ HIJ

When Nd is small < 104, direct diagonalization of H
When Nd is large, Davidson’s algorithm to extract the desired roots.
Iterative computation of |W 〉 =

∑
I wI |I 〉 =

∑
I |I 〉〈I |H|Ψ〉 (power method).



Slater-Condon rules

Thanks to 〈I |J〉 = δIJ :
Diagonal terms:

HII =
∑
i

〈i |ĥ|i〉+
∑
ij

〈ij ||ij〉

|J〉 = T̂ r
p |I 〉: |I 〉 and |J〉 differ by one MO:

HIJ = 〈p|ĥ|r〉+
∑
i

〈pi ||ri〉

|J〉 = T̂ rs
pq|I 〉: |I 〉 and |J〉 differ by two MOs:

HIJ = 〈pq||rs〉
|I 〉 and |J〉 differ by more than two MOs:

HIJ = 0



Computational aspects

There are:
O(N4) two-electron integrals
Nd Slater determinants

Algorithms
Integral-driven

Loop over integrals
Add the contributions to |W 〉

Determinant-driven
Loop over determinants
Usually, Nd ≫ O(N4), so less efficient than determinant-driven



Excited states

Same symmetry:
Obtained as different eigenvectors of H. Expanded on the same set of
determinants:

Ψ(k) =
∑
I

c
(k)
I |I 〉

Lowest states of different symmetries:
H is block-diagonal:

Pick only determinants of the desired symmetry
Obtain the ground state

Expanded on different sets of determinants:

Ψ(k) =
∑
I

c
(k)
I |I (k)〉



Summary of CI methods

All CI methods are approximations of the FCI
They differ by the choice of the Slater determinant basis

CIS, CISD, CISDT, CISDTQ, . . . : Number of differences wrt Hartree-Fock
(dynamic)
CAS, RAS, GAS, . . . : CI in an active space (static)

MR-CI : active space + CISD for each reference (static + dynamic)
MP2, CAS-PT2, dynamic correlation is computed with perturbation theory:
cheaper than CI



Selected Configuration Interaction



Full CI

FCI: Exact solution of ĤΨ = EΨ in a complete basis of Slater determinants
The determinant basis is derived from the one-electron basis set
Only approximation : one-electron basis-set incompleteness
Intractable : O(N!) scaling
All the post-Hartree-Fock methods are approximations of the FCI within the same
basis set



Largest CAS-SCF (2017)



The Full CI Hamiltonian is very sparse

Each row 〈I | of H has non-zeros when |J〉 differs by less than 3 MOs
(Slater-Condon rules)
Each row has at most O(N2

oN
2
v ) non-zero elements

H is symmetric, the same applies to columns
Davidson’s algorithm involves computing 〈I |Ĥ|Ψ〉
Sparse matrix-vector multiplication: O(Nd × N2

oN
2
v )



Full CI

FCI has seen a breakthrough in 2007-2012
DMRGa

FCI-QMC : Stochastic solution of FCI equations.b

First row diatomics cc-pV5Z.c

Selected Configuration Interaction
Scaling is still O(N!), but pre-factor is killed.
Much larger active spaces are possible today

aG. K.-L. Chan , arXiv:0711.1398 (2007)
bG.H. Booth , J. of Chem. Phys. 131, 054106 (2009).
cD. Cleland , J. Chem. Theory Comput. 8, 4138 (2012)



Modern CAS-SCF



Modern CAS-SCF



Selected Configuration Interaction (SCI)

Select determinants on-the-fly
with perturbation theory (CIPSI1)
or based only on the matrix elements of Ĥ (SHCI2)

Target spaces : Full-CI, MR-CISD, large CAS, . . .
Use PT2 to estimate the missing part

1B. Huron, J.P. Malrieu, and P. Rancurel, J. Chem. Phys. 58, 5745 (1973).
2A.A. Holmes, C.J. Umrigar, and S. Sharma, J. Chem. Phys. 147, 164111 (2017)



CIPSI Algorithm

Start with D0 = {|HF〉} and |Ψ0〉 = |HF〉.

1 ∀ |i〉 ∈ {T̂SD|Ψn〉} \ {Dn}, compute ei = 〈i |H|Ψn〉2
E(Ψn)−〈i |H|i〉

2 if |ei | > εn, select |i〉
3 Estimated energy : E (Ψn) + EPT2(Ψn) = E (Ψn) +

∑
i ei

4 Dn+1 = Dn ∪ {∪i(selected)|i〉}
5 Minimize E (Ψn+1) (Davidson),

Ψn+1 = Ψn +
∑

i(selected) ci |i〉
6 Choose εn+1 < εn

7 Iterate
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∑
i ei

4 Dn+1 = Dn ∪ {∪i(selected)|i〉}
5 Minimize E (Ψn+1) (Davidson),

Ψn+1 = Ψn +
∑

i(selected) ci |i〉
6 Choose εn+1 < εn

7 Iterate



Convergence of CIPSI
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When Nd = NFCI, EPT2 = 0, CI is solved exactly.
Every CI problem can be solved by iterative perturbative selection



Extrapolated FCI energies
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exFCI : Extrapolate E = f (EPT2) at
EPT2 = 0, estimates the complete CI
solution.



Consistent energies

The error of EFCI ∼ E + EPT2 is proportional to EPT2

EFCI = E + (1 + α)EPT2

For 2 states

E
(1)
FCI = E (1) + (1 + α(1))E

(1)
PT2

E
(2)
FCI = E (2) + (1 + α(2))E

(2)
PT2

If α(1) = α(2) and E
(1)
PT2 = E

(2)
PT2

E
(2)
FCI − E

(1)
FCI = E (2) − E (1)



Consistent energies

-150.2

-150.1

-150

-149.9

-149.8

-149.7

-149.6

-149.5

-149.4

-149.3

-149.2

 10  100  1000  10000  100000  1x106  1x107  1x108

E
n
e
rg

y
 (

a
u
)

Number of determinants

Excited state, Evar
Ground state, Evar

Excited state, Evar+PT2
Ground state, Evar+PT2

●
●

●
●

●

●

●

●

●

●

●
●

●
●●●●●●●

■
■

■

■

■

■

■

■

■

■
■

■■■■■■■■

●
●
●

●
●

●

●

●

●

●

●

●
●

●
●●●●●●●

■
■

■
■

■

■

■

■

■

■

■

■
■

■■■■■■■■

●

■

-��� -��� -��� -��� -��� -��� ���

-�����

-�����

-�����

-�����

-�����

−(1 + α) is the slope of the extrapolation curve
α(1) ∼ α(2) can be obtained using state-average orbitals



Multideterminant QMC



Wave function

In a CI calculation:
|Ψ〉 =

∑
I

cI |I 〉

In QMC:

Ψ(r1, . . . , rN) =

(∑
k

ckDk(r1, . . . , rN)

)
eJ(r1,...,rN)

=
∑
k

ck

(
DK (r1, . . . , rN)eJ(r1,...,rN)

)

Computationally expensive
We need to evaluate all the Slater determinants at each MC step
Compacting the wave function is desirable



Evaluation of a determinant

1 Build the Slater Matrix Aij = φj(ri ):

A =


φ1(r1) φ2(r1) . . . φN(r1)
φ1(r2) φ2(r2) . . . φN(r2)

...
. . .

...
φ1(rN) φ2(rN) . . . φN(rN)


2 LU factorization (dgetrf) : A = PLU, costs O(N3)

3 detA =
∏

i Uii



Evaluation of the derivatives of a determinant

∇i (detA)

detA
=
∑
j

∇iφj(ri ).A−1
ji

∆i (detA)

detA
=
∑
j

∆iφj(ri ).A−1
ji

Inverse of A (dgetri) : costs O(N3)



Shermann-Morrison-Woodbury

A and A−1 are known, u and v are column vectors,(
A + uv †

)−1
= A−1 − A−1uv †A−1

1 + v †A−1u
.

Costs O(N2).

Single orbital change:

u =

 φk(r1)− φl(r1)
...

φk(rN)− φl(rN)

 , v =


0
...
1
...
0

 ,



Computational scaling

Ψ(r) =

Nd∑
k

ckDk =

Nd↑∑
i

Nd↓∑
j

Cij Di↑(r↑)Dj↓(r↓)

D↑(r↑) : vector of Nd↑ elements
D↓(r↓) : vector of Nd↓ elements
C : Nd↑ × Nd↓ matrix. The matrix contains Nd non-zero elements

C is constant in a QMC calculation =⇒ preprocessing.



Computational scaling

At every MC step, we need to evaluate:

Ψ = (D↑†(C)D↓)
∇iΨ = ∇iD↑†.(CD↓) or (D↑†C).∇iD↓
∆iΨ = ∆iD↑†.(CD↓) or (D↑

†C).∆iD↓

V non−loc
pseudo Ψ = V non−loc

pseudo D↑
†
.(CD↓) or (D↑

†C).V non−loc
pseudo D↓

(↑ electrons and ↓ electrons)



Computational scaling

O(Nd↑ × N2
elec↑)

D↑ and D↓, ∇D↑ and ∇D↓, ∆D↑ and ∆D↓

O(Nd), tiny prefactor

Sparse vector-matrix product D↑†.C : Nd operations, returns a Nd↓ vector

O(Nelec↓ × Nd↑)

Dot product with D↓ : Nd↓ operations, produces a scalar
Matrix product with ∇D↓ : 3Nelec↓ × Nd↓ operations, produces a 3Nelec↓ vector
Matrix product with ∆D↓ : Nelec↓ × Nd↓ operations, produces a Nelec↓ vector
Matrix product with V non−loc

pseudo D↓ : Nelec↓ × Nd↓ operations, produces a Nelec↓
vector



Post-FCI QMC

Use large CIPSI wave functions as trial wave functions for DMC3:

H2O
best estimate of the
exact energy
∼ 106 Slater
determinants

0.0 0.1 0.2 0.3 0.4 0.5

1/n [ cc-pCVnZ basis set ]

−76.44

−76.43

−76.42

−76.41

−76.40

−76.39

E
n
er
g
y
(a
.u
)

Full-CI

DMC/CIPSI

Estimated exact

✶
TZQZ5Z6Z DZZ

3Caffarel et al, (2016), J. Chem. Phys., 144:15(151103)



Effect of the Jastrow factor on the CI wave function

Adding a Jastrow factor on top of a CI wave function:
The N-electron basis is no more orthonormal

〈DI e
J |DK eJ〉 6= δIK

Double-counting of correlation
Dynamic correlation from the determinants
Dynamic correlation from the Jastrow

The CI coefficients are no more optimal



Effect of the Jastrow factor on the CI wave function

Re-optimizing the CI coefficients in the presence of the Jastrow:
Increases large coefficients
Reduces small coefficients

Solving H.C = E S.C is difficult:
Statistical errors in matrix elements of H and S
Determinants with tiny CI coefficients have a negligible contribution to Ψ2

The error on 〈K |Ĥ|L〉 is often larger than the expectation value when cK is small.



Excited states in QMC

Nodal surfaces (DMC energies) are determined by the determinant expansion.
Accurate energy differences need balanced wave function qualities between the
states

Two different strategies:
1 Stochastic optimization

Use a deterministic method which gives a qualitatively good description (minimal
CAS-SCF)
Reoptimize all the parameters: MOs, CI, Jastrow

2 Deterministic optimization
Use a deterministic method which gives a reasonable ∆E (MR-CI, CIPSI)
Run a DMC without modifying the wave function.



Excited states in QMC

Pros Cons

Deterministic Very good quality control Very large expansions
optimization Smooth potential energy surfaces Limited to small systems

Stochastic Compact wave functions Noisy optimization
optimization Can be applied to large systems Harder to get balanced energies



Excited states in QMC

Good strategy towards large systems: The best of both worlds
Small CIPSI expansions in a large active space : =⇒ compact
Enforcing constant EPT2 for selecting determinants =⇒ ∆E ∼ ∆EFCI consistent
quality for both states
Optimize a Jastrow factor in QMC
Re-optimize all parameters in QMC



TurboRVB and Turbo-Genius:
Overview and Workflow
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Packages: TurboRVB and Turbo-Genius

K. Nakano et al., in preparation (2022)

K. Nakano, C. Attaccalite, M. Barborini, L. Capriotti, M. Casula, E. Coccia, M. Dagrada, 
Y. Luo, G. Mazzola, A. Zen, and S. Sorella, J. Chem. Phys. 152, 204121 (2020)

QMC engines (DFT, VMC-optimization, VMC, LRDMC)

User friendly python wrappers.

© Kosuke Nakano (SISSA/JAIST)
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Wavefunction ansatz

Slater determinant: the most straightforward ansatz

Linear combination of the slater determinants.

c.f. P.W. Anderson

More complex.

should be anti-symmetric under exchange of electron positions.

Geminal functions (i.e., considering pairs of electrons.)

Fermi-net (i.e., anti-symmetric neural network.)

Backflow functions (i.e., increase in the effective mass of electrons.)

The more complex an ansatz is, the better energy we could get. However, the computational cost also increases.

One should increase the number of variational parameters, considering “physics”.
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C2 molecule

Wavefunction C atom (Ha) C2 molecule (Ha) Binding (eV)

Jastrow Slater −37.82966(4) −75.8672(1) 5.656(3)

Jastrow Geminal
(Singlet)

−37.8364(1) −75.8938(2) 6.01(1)

Jastrow Geminal
(Singlet + broken sym.)

−37.8364(1) −75.8935(2) 6.00(1)

Jastrow Geminal
(All-pairing, Pfaffian)

−37.8363(1) −75.9045(2) 6.31(1)

Estimated exact -37.8450 −75.9045(2) 6.44(2) (Exp.)

C.G, T.S, K.Nakano, and S.S. J. Chem. Theory Comput. 16, 6114 (2020)

S. Shaik, et al. Nat. Chem. 4 195–200 (2012)

DMC gives a more accurate result than CCSD(T) for the challenging molecule!

More complex.

Double-bond?? Quadruple-bond??, spin-singlet.

CCSD(T) with the V5Z basis = 6.24 eV

DMC results
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TurboRVB paper

K. Nakano, C. Attaccalite, M. Barborini, L. Capriotti, M. Casula, E. Coccia, M. Dagrada, Y. Luo, G. Mazzola, 
A. Zen, and S. Sorella, J. Chem. Phys. 152, 204121 (2020)
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What we can do with TurboRVB?

Please visit our website :-) All the papers and Ph.D thesis using TurboRVB are listed here.

© Kosuke Nakano (SISSA/JAIST)
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SISSA Gitlab server

Where can we download TurboRVB and Turbo-Genius?

For the  time being, turborvb and turbo-genius are inhouse codes, so please DO NOT distribute to the public.

Within a year, all the codes will be public under an appropriate license (maybe BSD) :-)

From SISSA-gitlab server.

https://git-scm.sissa.it

A request: to kousuke_1123@icloud.com 
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TurboRVB/Turbo-Genius manual and tutorials

From SISSA-gitlab server.

https://git-scm.sissa.it

They are composed by sphinx. All the tutorial in this school is included here.

Any contributor is welcome!!!
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TurboRVB/Turbo-Genius manual and tutorials

If you want to see the userguide, please let us know. We will give you the permission.

git clone git@git-scm.sissa.it:sorella/turborvb_userguides.git

Open  /turborvb_userguides -> build -> html -> index.html
Any contributor is welcome!!!

- User Manuals.

- TurboRVB tutorials.

- Turbo-Genius tutorials (for the hands-on session).

# on your local comp. (for the TREX summer school).
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Compilation (TurboRVB)

We strongly recommend Intel, IBM, and Fujitsu Fortran compilers. (Not gfortran).  

1. Legacy make:

2. Modern CMake:

Copy a config file: config/make_XXX.inc make.inc

Copy a make.txt file: src/make.txt_standard src/make.txt

Compile TurboRVB: ./makeall (serial) or ./makeall-mpi

If you want to clean it: make cleanall

mkdir build
cd build
cmake -DXXXX = YYYY etc...
make install # copy generated binaries to ./bin directory.

Fugaku, Hokusai (RIKEN)

Marconi, Marconi100 (CINECA)

Kagayaki (JAIST)

SISSA-cluster (SISSA)

You do not have to do this for the hands-on session!!!
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A typical workflow in QMC

(Input)

(Output)

WFT (Gaussian16, PySCF) 
or DFT (Quanaum Espresso)

Atomic positions, basis sets, pseudo potentials…

The obtained one-particle WFs 

QMC (TurboRVB, etc…)

Many-body WFs, its energy,  forces, etc…

1) Pre-process:

2) Post-process:
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A typical workflow in TurboRVB (TurboGenius)

1. Prepare a structure and basis set

2. DFT

3. VMC-opt

5. LRDMC

Construct a reasonable initial WF!

Optimize the wavefunction

= Workflow =

makefort10

prep

4. VMC Do a VMC run. turborvb

LRDMC with the optimized WF. turborvb

turborvb
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A typical workflow in TurboRVB (TurboGenius)

1. Prepare a structure and basis set

2. DFT

3. VMC-opt

5. LRDMC

Construct a reasonable initial WF!

Optimize the wavefunction

= Workflow =

makefort10

prep

4. VMC Do a VMC run. turborvb

LRDMC with the optimized WF. turborvb

turborvb
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Wavefunction (makefort.10.x)

Input: makefort10.input Binary: makefort10.x Output:fort10_new

makefort10.x is a tool for generating JAGP WF(fort.10) from makefort10.input.

Structural information.

Basis-set information.
makefort10.input file Wavefunction file (fort.10)

makefort10.x
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Wavefunction file (fort.10)

All the information (except for pseudo potential info.) is included in a single file, named “fort.10”

“fort.10” can be generated by 
“makefort10.x” (see later).
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fort.10 Header

Header:
Nelup: The number of spin up electrons in the system.

Jas 2body: Onebody and Twobody Jastrow types

The total number of Jastrow variational param.

The total number of determinant variational param.

The number of atomic forces.

Nel: The total number of electrons in the system.

Ion: The number of nuclei in the system.
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Structure

Coordinates:

- N: Atomic number

- Z: The number of valence electrons

- xn, yn, zn : atomic positions (Bohr)

Pseudo potential case N != Z

If you want to use a H-pseudo potential, 
please put N=1.0, Z=1.00001 (dummy).
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Basis set in makefort10.input/fort.10

Basis set for the determinant part:

Shell codes: 16 -> s orbital
36 -> p orbital
68 -> d orbital
48 -> f orbital
51 -> g orbital
72 -> h orbital
73 -> i orbital
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Single Slater-determinant (convertfort10mol.x)

Input: convertfort10mol.input, 
fort.10_in Binary: convertfort10mol.x Output:fort10_new

convertfort10mol.x is a tool for adding molecular orbitals to fort.10_in.

This is used for converting a JAGP WF to a JSD WF.

DFT (prep.x) works only with molecular orbitals!! So, one should convert a WF from the JsAGPs to JSD.

with

Slater Determinant
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The generated fort.10 -> JAGPs

Coefficients of the Determinant part (JAGPs case) 

is a symmetric matrix!
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fort.10: details

Molecular orbitals (100000):

Molecular orbitals can be added by “convertfort10mol.x”. DFT works only with molecular orbitals.

In fort.10, 1000000 indicates a molecular orbital.
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Onebody and Twobody Jastrows

twobody: 1B and 2B Jastrows: Various Jastrow types are implemented (see the manual.)

Typically:

-6: Open/PBC with pseudo potentials

-15: Open/PBC with all-electrons

-22: Open/PBC with JAGPu/JPf.

Only two-body parameter.

two-body and one-body parameters.

Only one-body or two-body and one-body parameters.

Spin-dependent Jastrow factors:i.e., electron-ion cusp conditions are enough.

Electron-ion (1b).
Electron-Electron (2b).

To satisfy the cusp conditions.
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DFT Grids

Input: prep.input, fort.10 Binary: prep-(serial, mpi).x Output:fort10_new

Box and mesh sizes are so important for obtaining converged results in practice !!

If you have enough memories, we recommend 
L ~ 20 Bohr for the safety.

# Lz = cell length for a periodic system. Automatically set.

For a calculation with PPs, a~0.10 bohr is small enough.

For an all-electron calculation, a < 0.05 bohr is needed. 
The double-grid algorithm should also be helpful.

L (lbox)

a (grid)

   H = T̂ +Vele-ion

!r( ) +Vele-ele

!r( ) +VXC

!r( )
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Built-in DFT code (prep.x)

Input: prep.input, fort.10 Binary: prep-(serial, mpi).x Output:fort10_new

prep.x is a built-in DFT code!!

Why built-in?

We are also implementing converters for several QC codes (e.g., Gaussian) via TREX-IO. 

As mentioned before, the modified gaussian orbital is used.

So, we cannot exploit the analytical integration even though we employ the Gaussian 
primitive orbitals.

The CRYSTAL basis + cusp. for PBC cases.
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A typical workflow in TurboRVB (TurboGenius)

1. Prepare a structure and basis set

2. DFT

3. VMC-opt

5. LRDMC

Construct a reasonable initial WF!

Optimize the wavefunction

= Workflow =

makefort10

prep

4. VMC Do a VMC run. turborvb

LRDMC with the optimized WF. turborvb

turborvb
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Main QMC engine: turborvb-(serial, mpi).x

Input: datas(min, vmc, 
fn).input, fort.10

Binary: turborvb-(serial, 
mpi).x Output:fort10

=VMC-opt, VMC, DMC, and LRDMC=

- Single-shot VMC run (itestr4=-2 in the &simulation namelist). 

- VMC optimization (itestr4=-4,-5,-8,-9 in the &simulation namelist). 

- Single-shot LRDMC run (itestr4=-6 in the &simulation namelist). 

turborvb.x is the main QMC engine in the turborvb package.

- Single-shot DMC run (itestr4=-5 in the &simulation namelist), but not maintained. 
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What the VMC optimization does?

The variational principle

This integral is evaluated using the MCMC method.

Variational parameters!

e.g.,
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The number of MCMC steps

Relation between ngen and nweight

Each iteration

xi

E

E

x1 x2 x3 x4 xn=

var E( )

s1 s2 s3 s4 sn !  !

nweight× nw

Optimization

steps

Total optimization steps:
ngen

nweight
(default: the num. walker = the num. of MPI process )
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The most difficult part in practice

3. VMC Optimize wavefunctions and VMC run.

Jastrow factor =

Electron-ion.

Electron-Electron.

Anti-symmetric part =

A wavefunction reads
Anti-symmetric part. Jastrow factor. To satisfy the cusp.

No effect on the nodal surface!!

Determines the nodal surface. Its initial guess is taken from a DFT calculation!! 

1st Step 2nd Step
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Implemented optimization methods

Implemented optimization algorithms

-4, -8): Linear method with the natural gradient

-9, -5): Stochastic reconfiguration (natural gradient method)

In both cases, the most important parameters in practice are

1. tpar:

2. parr:

Acceleration parameter (learning rate.)

Regularization (c.f. LASSO)

tpar = 3.5d-1, and 1.0d-3 for -4 and -9, respectively.

Depending on the accuracy your need. parr =  ~ 1.0d-3

e.g.,

e.g.,

C.J. Umrigar, et al., Phys. Rev. Lett. 98, 110201 (2007).

S Sorella, et al., J. Chem. Phys. 127, 014105 (2007).
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Optimization Criteria

Optimization criteria

At least, ``devmax`` should be smaller than 4.0 after optimization. However, we also have 
experienced that this simple criteria is sometimes not sufficient to obtain a converged result.

The definition of ``devmax`` is:

where represents the estimated error bar of a general force 
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Plotting Graphs (Turbo-Genius)

%turbo-genius.sh -j vmcopt -post -am interactive_detail
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Averaging parameters (Turbo-Genius)

turbo-genius.sh -j vmcopt -post -am interactive_detail

Averaged!
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A typical workflow in TurboRVB (TurboGenius)

1. Prepare a structure and basis set

2. DFT

3. VMC-opt

5. LRDMC

Construct a reasonable initial WF!

Optimize the wavefunction

= Workflow =

makefort10

prep

4. VMC Do a VMC run. turborvb

LRDMC with the optimized WF. turborvb

turborvb
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VMC input file

ngen is the total number of Monte Carlo steps.

Default: nw is the number of MPI processes.

One-shot VMC

xi

E

x1 x2 x3 x4 xn=

var E( )

 !

ngen× nw
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All information

e(L), etc… -> written in fort.12
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Reblocking

pip0.d=energy

forcevmc.sh “bin”, “init”, “pulay”, or “bin”: the length of reblocking size

“init”: the length of equilibration steps (init * bin)

“pulay”: the ratio of the pulay term (1 is OK)

forcevmc.dat=forces

turbo-genius.sh –j vmc -post -reb “bin”, -eq “init”
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fort.10: Forces

Ionic Forces:

F1,z for the first atom will be calculated. 

# The number of forces,    atom index,     direction

F1,x  and F2,z will be calculated, assuming, F = F1,x  = - F2,z.  

The output value (forcevmc.dat) is the sum of two forces, i.e., (F = F1,x  - F2,z. )  

If you want to calculate forces, please set “ieskin=1” in the &parameter section in your VMC input.
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forcevmc.dat

forcevmc.dat=forces

Force (total)

Der Eloc: 2*(<OH> - <O><H>)

where, J is the Jacobian of the warp transformation.

The output value (forcevmc.dat) is the sum of two forces, i.e., (F = F1,x  - F2,z. )  

S Sorella, L Capriotti, J. Chem. Phys. 133, 234111 (2010).

(Hellmann-Feynman term) (Pulay term)
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How to choose basis set for Force calc.? (PBC)

TurboRVB employs the CRYSTAL periodic basis for PBC calculations:

-PBC, pseudo potential:

-PBC, all-electron:

Unfortunately, provided basis sets for open systems are redundant for periodic cases, so we 
recommend that one should cut several smaller exponents, typically, smaller than 0.10. 

The same for all-electron cases. Basis sets provided for open systems such as Basis set exchange 
[https://www.basissetexchange.org] are usually redundant for a periodic case, so we 
recommend that one should cut several smaller exponents, typically, smaller than 0.10. 

One can also use all-electron basis sets optimized for periodic systems such as ones provided in 
the CRYSTAL DFT code [https://www.crystal.unito.it/basis-sets.php].

https://www.basissetexchange.org/
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Basis set redundancy for periodic cases

● Diamond: Total Energy (E) ● Diamond: Force (F)

Large <- Lin. Dep. -> Small Large <- Lin. Dep. -> Small

Linear dependency = the condition number of the overlap matrix (S).

Only one C is displaced

K. Nakano et al., Phys. Rev. B 103, L121110 (2021)



2022/6/28© Kosuke Nakano (SISSA/JAIST)45

Recent progress: Phonon dispersion calculations

● Diamond: the conventional 2x2x2 supercell with the experimental lattice parameter

DFT-LDA

VMC

Exp. 40.35 THz

40.65(38) THz

38.55 THz

K. Nakano et al., Phys. Rev. B 103, L121110 (2021)

** These are harmonic frequencies

● The frozen phonon method implemented in Phonopy package. 
A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).

* including anharmonic corrections.

Raman Freq. (optical phonon at Γ)
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Importance of the Space-warp coordinate transformation

K. Nakano et al., J. Chem. Phys. 156, 034101 (2022)

(𝜎!/𝜎")# scales as  𝑍~#.& without SWCT,

QMCPACK group shows that the scaling 

does not change even with SWCT…

consistent with QMCPACK group’s paper

No, the ratio is independent of 𝑍 !! 

J. Tiihonen, et al. J. Chem. Phys. 154, 204111 (2021)
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Energy derivative v.s. Force

1. The system is already at a variational minimum.

2. The variational parameters are not allowed to vary with changing the atomic pos.

Additional terms!!

J. Tiihonen et al., J. Chem. Phys. 154, 204111 (2021)

○

？
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Carbon monoxide: PES v.s. Force

ï0.2

ï0.15

ï0.1

ï0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.9  0.95  1  1.05  1.1  1.15  1.2  1.25  1.3
ï1.5

ï1

ï0.5

 0

 0.5

 1

 1.5

req(vmc PES) = 1.120 angstrom
req(vmc Force:left) = 1.112 angstrom
req(vmc Force:right) = 1.112 angstrom
req(exp.) = 1.128 angstrom

En
er

gy
 (m

in
=0

.0
) (

H
a)

Fo
rc

e 
(H

a/
A

ng
st

ro
m

)
CïO distance (Angstrom)

PES
PES fit

ïdE(x)/dx
Force:left(C)

Force:right(O)
Force:left fit

Force:right fit

JDFT CO (vmc) warpïTrue

ï0.2

ï0.15

ï0.1

ï0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.9  0.95  1  1.05  1.1  1.15  1.2  1.25  1.3
ï1.5

ï1

ï0.5

 0

 0.5

 1

 1.5

req(vmc PES) = 1.122 angstrom
req(vmc Force:left) = 1.121 angstrom
req(vmc Force:right) = 1.121 angstrom
req(exp.) = 1.128 angstrom

En
er

gy
 (m

in
=0

.0
) (

H
a)

Fo
rc

e 
(H

a/
A

ng
st

ro
m

)

CïO distance (Angstrom)

PES
PES fit

ïdE(x)/dx
Force:left(C)

Force:right(O)
Force:left fit

Force:right fit

JDFT CO (vmc) warpïTrue

All-electron calculations, VMC (JDFT). Jastrow factors were optimized for each C-O distance.

Basis = cc-pVDZ Basis = cc-pVQZ
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A typical workflow in TurboRVB (TurboGenius)

1. Prepare a structure and basis set

2. DFT

3. VMC-opt

5. LRDMC

Construct a reasonable initial WF!

Optimize the wavefunction

= Workflow =

makefort10

prep

4. VMC Do a VMC run. turborvb

LRDMC with the optimized WF. turborvb

turborvb
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Lattice regularized DMC (LRDMC)

The projection technique to filer out the ground state from a trial wave function (typically, optimized by VMC).  

the projection filters out the ground state WF from a given trial WFSince

In TurboRVB, “etry” is the corresponding parameter. 

e.g., one can use a VMC energy for etry.

M. Casula et al., Phys. Rev. Lett. 95, 100201 (2005)
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Lattice discretization

To apply the GFMC method for continuous systems.

In TurboRVB, “alat” is the corresponding parameter.  The unit is bohr.

Since the Trotter-Suzuki decomposition is not needed in the LRDMC framework, the “time-step” error does not 
exist in LRDMC unlike DMC, but this “lattice-space” error exists instead. We need extrapolation for alat. (later)

M. Casula et al., Phys. Rev. Lett. 95, 100201 (2005)
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Fixed-node approximation

The Green’s function cannot be made strictly positive for fermions; therefore, the fixed-node (FN) 
approximation has to be introduced in order to avoid the sign problem.

The nodal surface never changes during the simulation! i.e., Only the amplitude is relaxed.

Projection.

Trial WF Fixed-node WF
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Input file for Lattice regularized DMC (LRDMC) 

Itestr4 = -6: LRDMC

ngen: The number of iterations (branchings)

tbra: Projection time

etry: Energy shift for the projection

alat: Coarser grid size (Bohr).

alat2: Denser grid size (Bohr).

Important parameters:

M. Casula et al., Phys. Rev. Lett. 95, 100201 (2005)
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LRDMC

alat extrapolation with funvsa.x
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The extrapolation behaves well unlike the standard DMC!!

K. Nakano et al., J. Chem. Theory Comput. 15, 4044-4055 (2019)
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Branching and related parameters

- The branching is done every τnbra steps. (tbra).

- “ngen” is the number of branchings! (ngen).

weights and positions are updated. Branching!!

Walkers!

too small tbra ->

too large tbra ->

The weights are not update.

Only few walkers survive.

ngen=1 ngen=2 ngen=3

Check your output! Av. num.  of survived walkers/ # walkers in the branching 0.99 > 0.90!

1. Set the new weights

2. Select the new walkers
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Reblocking

pip0_fn.d=energy

forcefn.sh “bin”, “corr”, “init”, “pulay”, or
“bin”: the length of reblocking (binning) size

“corr”: correcting factor

“pulay”: the ratio of the pulay term (1 is OK)

forcefn.dat=forces

turbo-genius.sh –j lrdmc -post -reb “bin”, -eq “init” -col “corr”

“init”: the length of equilibration steps (init * bin)

“corr”: correcting factor (p)

The average weights are stored and are set to 
one for all walkers after each branching. 
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A typical workflow in TurboRVB (TurboGenius)

1. Prepare a structure and basis set

2. DFT

3. VMC-opt

5. LRDMC

Construct a reasonable initial WF!

Optimize the wavefunction

= Workflow =

makefort10

prep

4. VMC Do a VMC run. turborvb

LRDMC with the optimized WF. turborvb

turborvb
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The most difficult part in practice

3. VMC Optimize wavefunctions and VMC run.

Jastrow factor =

Electron-ion.

Electron-Electron.

Anti-symmetric part =

A wavefunction reads
Anti-symmetric part. Jastrow factor. To satisfy the cusp.

No effect on the nodal surface!!

Determines the nodal surface. Its initial guess is taken from a DFT calculation!! 

1st Step 2nd Step



2022/6/28© Kosuke Nakano (SISSA/JAIST)59

Conversion tools (convertfort10.x, convertpfaff)

Input: convertfort.input, 
fort.10_in, fort.10_out Binary: convertfort10.x Output:fort10_new

Convergfort10.x is a tool for converting a WF type., e.g., 

Input: fort.10_in, 
fort.10_out Binary: convertfortpfaff.x Output:fort10_new

Convertpfaff.x is a tool for projecting a WF., e.g., 
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Correlated sampling

Input: readforward.input, 
fort.10, fort.10_corr Binary: readforward.x Output:corrsampling.dat

readforward.x enables us to calculate the difference in two WF using the correlated sampling. 

- The difference in energies - The Overlap between the two WFs 
(the maximum is unity)

%cat corrsampling.dat

reference energy: E(fort.10)  -0.110045875E+02     0.252368934E-01
reweighted energy: E(fort.10_corr)  -0.110045875E+02     0.252368985E-01
reweighted difference: E(fort.10)-E(fort.10_corr)   -0.148834687E-07     0.316227766E-07
Overlap square : (fort.10,fort.10_corr)    0.999999998E+00 0.316227766E-07

If the overlap is unity, it means that the conversion has been done without losing any information.
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Workflow of the TREXIO-TurboRVB converter

This is because of the complication of the 
TurboRVB WF format.

First, the converter generates a TurboRVB WF file 
using only basis set and structure information 
stored in a TREX-IO file. 

Then, the converter writes the MO information 
stored in a TREX-IO file into the generated WF file.
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