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Abstract—Ocean and climate research benefits from global
ocean observation initiatives such as Argo, GLOSS, and EMSO.
The Argo network, dedicated to ocean profiling, generates a vast
volume of observatory data. However, data quality issues from
sensor malfunctions and transmission errors necessitate strin-
gent quality assessment. Existing methods, including machine
learning, fall short due to limited labeled data and imbalanced
datasets. To address these challenges, we propose an Outlier
Detection-Enhanced Active Learning (ODEAL) framework for
ocean data quality assessment, employing Active Learning (AL)
to reduce human experts’ workload in the quality assessment
workflow and leveraging outlier detection algorithms for effective
model initialization. We also conduct extensive experiments on
five large-scale realistic Argo datasets to gain insights into our
proposed method, including the effectiveness of AL query strate-
gies and the initial set construction approach. The results suggest
that our framework enhances quality assessment efficiency by up
to 465.5% with the uncertainty-based query strategy compared
to random sampling and minimizes overall annotation costs by
up to 76.9% using the initial set built with outlier detectors.

Index Terms—ocean data quality control, Argo, machine learn-
ing, active learning, initial set construction

I. INTRODUCTION

To support ocean and climate research, several international
ocean observation programs and projects, such as Array for
Real-time Geostrophic Oceanography (Argo) [1], Global Sea
Level Observing System (GLOSS) [2], European Multidisci-
plinary Seafloor Observatory (EMSO) [3], have been launched
for observations and measurements at different sea depths [4].
The Argo observation network, dedicated to profiling the
global ocean, comprises thousands of profilers that produce
enormous observatory data over time. However, the data
records usually suffer from quality problems caused by sensor
damage, equipment malfunction, and data transmission errors,
which may potentially lead to inaccurate scientific conclusions.
Thus, it is of great significance to conduct data Quality
Control (QC) before it can be used for any downstream
applications [5]. Due to the strict requirements on the data
credibility, the QC process is mainly done by domain experts
or involves a high degree of human engagement, and hence is
extremely laborious and time-consuming [6].

Existing studies have proposed automated and semi-
automated data quality assessment approaches to assist QC
experts. Traditional methods apply a sequence of rule-based
statistical tests on the data instances [6]–[8]. These methods

rely on pre-defined quality criteria and are subject to specific
observation types. As a result, it can only perform basic
examination for the validity of data and still depends on
manual inspection for accurate outputs. An emerging research
direction is to exploit Machine Learning (ML) methods for
ocean data quality assessment [9]–[12]. One branch of studies
utilizes anomaly detection techniques [13] to identify erro-
neous measurements from the dataset [9], [10]. Another line
of research employs deep neural networks to classify samples
into different quality categories [11].

Nonetheless, two main challenges remain in automated QC
research. The first challenge is the lack of labeled data for
training ML models. Despite the existence of historically
labeled data, it is not trivial to transfer knowledge from
one dataset to another due to domain shift or concept drift
issues. Targeting this challenge, we propose utilizing AL meth-
ods [14] to reduce the number of labeled instances required
for optimizing ML models. AL query strategies can select the
most informative data instances for labeling and thus improve
model performances in a data-efficient manner. In the context
of data quality assessment, AL can select the most tricky
samples that require manual examination and automate the
quality assessment for the rest of the samples.

The second challenge is the cold-start problem in AL
methods posed by severe data imbalance w.r.t. quality labels,
with erroneous measurements occupying less than 1% of the
datasets. In a typical AL scenario, an initial set is required
to initialize the classifiers, and the iterative query process
follows to refine the classifiers [14]. However, a small initial
set built from a severely imbalanced dataset likely contains
zero erroneous instances, on which classifiers are unable to
learn meaningful representations for the erroneous instances
and consequentially mislead the query process. This is referred
to as the cold-start problem. To address this issue, we propose
to leverage the outlier detectors for initial set construction,
which can increase the probability for initial sets to include
erroneous samples and improve their effectiveness in initializ-
ing classifiers.

In this paper, we present an Outlier Detection-Enhanced
Active Learning (ODEAL) framework for ocean data quality
assessment, which applies AL to reduce the workload of QC
experts in a semi-automated data quality assessment workflow
and employs outlier detection algorithms to initialize the



learning models effectively with a minimal number of samples.
To validate our method, we conducted extensive experiments
on five realistic datasets provided by Argo [15]. The re-
sults suggest that the AL method can increase the F1-score
by 465.5% compared to random sampling, and the outlier
detection-initialized approach reduces overall annotation cost
by 76.9%. Our contributions are three-fold:

• presenting a novel AL-based data quality assessment
framework to reduce the workload of human analysts;

• proposing using outlier detection to construct the initial
set for a highly imbalanced dataset to solve the cold-start
problem and minimize the overall annotation cost;

• providing empirical evidence and insights for the effec-
tiveness of the proposed method via extensive experi-
ments.

The related datasets and codes can be found here1.

II. RELATED WORK

Automated and semi-automated QC approaches on large-
scale ocean observatory data have been studied to support
human experts. Classical automated QC procedures involve
constant value check, spike and step check, range check, and
stability check [6]–[8] to screen out gross errors from mea-
surements but are subject to human experts for fine-grained
quality examination. More advanced methods utilize ML mod-
els, such as Multi-layer Perceptron (MLP) and ARIMA, to
analyze large-scale data [9]–[11]. A common approach is
using anomaly detection for quality assessment, considering
the infrequent occurrence of erroneous samples. Castelão [10]
characterizes the typical behavior of the data by estimating
a probability density function (PDF) for each feature, and
the survival function (SF) of the estimated PDF is used to
quantify the anomalousness of a certain measurement. This
approach reduces the error by at least 50% when applied to 13
years of hydrographic profiles. Zhou et al. [9] focus on time-
series data and employ the ARIMA model to detect erroneous
measurements. The proposed method was applied to pH and
CTD data from the Xiaoqushan Seafloor Observatory and
achieved an F1 score of 0.9506 in outlier detection. However,
ARIMA is a time series forecasting model that requires clean
and well-preprocessed time series data for training, which
implicitly demands quality labels for historical data points.

Different from the above methods, Mieruch et al. [11] frame
data quality assessment as a binary classification problem,
where each sample is categorized as of good or bad qualities.
They present SalaciaML, aiming to mimic the skillful QC
experts with a deep learning artificial neural network in
identifying potentially erroneous samples. A MLP is trained
on more than 2 million temperature measurements over the
Mediterranean Seas spanning the last 100 years and detects
correctly more than 90% of all good and/or bad data in 11 out
of 16 Mediterranean regions. However, it does not consider
the correlations between different water properties.

1https://github.com/QCDIS/odeal

The high accuracy achieved by the reviewed studies is at
the cost of a large amount of labeled data, which is usually
the most tricky problem in real-world scenarios. Therefore,
our goal is to decrease the demand for labeled data in data
quality assessment by leveraging AL methods.

III. METHODOLOGY

A. Problem Definition

To formally define the problem, let xst ∈ R be an obser-
vation record measured at time point t by sensor s. Given
a time frame T , data records produced by a set of sensors
S are {[xsit , x

s2
t , · · · , x

sd
t ]} ∈ R|T |×|S|, si ∈ S, t ∈ T . For

simplicity, we will denote [xsit , x
s2
t , · · · , x

sd
t ] as xt thereafter.

The task of quality assessment is to assign a quality flag ŷt to a
data instance xt. In this work, we only consider binary quality
labels, where each instance is classified as with OR without
quality issues, and thus we have ŷt ∈ {0, 1}. The quality flag
1 means there are quality issues in the data instance, while 0
means there is no quality problem.

B. Outlier Detection-Enhanced Active Learning Framework

We propose an AL-based data quality assessment frame-
work called Outlier Detection-Enhanced Active Learning
(ODEAL), which aims to label all the data instances with high
accuracy while minimizing the annotation cost, i.e., the num-
ber of samples that need to be manually labeled. It operates
under the pool-based AL paradigm. Figure 1 depicts the high-
level structure of the proposed framework. It consists of the
Initial set construction and the Active learning cycles phases.
In the first phase, we build an initial set DI with anomaly
detectors, which select the top-NI anomalous samples from
the target dataset D, where NI is the size of DI . And the
remaining samples are put into the unlabeled set DU . DI is
sent to human experts for labels and then used for classifier
initialization.

During the AL cycles, the labeled set DL stores all the
labeled instances generated by the human annotators. The
target models are quality assessors that assign quality labels
to data instances. A human expert is involved as the oracle
providing legitimate quality labels for queried samples. The
AL workflow is described below:

1) The quality assessment models are trained on the initial
set (Step 1).

2) The quality assessment models predict the quality labels
on all instances in the unlabeled set (Step 2).

3) If the budget is exhausted or the models are confident
enough for the predicted results, output the predictions
(Step 3);

4) Otherwise, the models produce intermediate results for
the query strategy to select the K most informative
instances (Step 4).

5) The selected instances are presented to human annota-
tors for labeling. Meanwhile, they are moved from the
unlabeled set to the labeled set (Step 5).

6) The quality assessment models are updated using the
labeled set (Step 6).

https://github.com/QCDIS/odeal


Fig. 1: High-level structure of the proposed ODEAL framework

7) Repeat Steps 2, 4, 5, and 6 until the annotation budget
exhausts or the confidence threshold is reached.

For implementation, the annotation budget and the con-
fidence threshold should be defined under the operational
condition depending on the requirements. It is also application-
dependent in terms of quality assessment model selection
and query strategy development. We illustrate our choices of
quality assessment models and query strategy in the ocean
observation use case context. However, it is at the readers’
discretion to make their decisions.

C. Initial Set Construction

The importance of the initial set is often overlooked by
previous studies. Most of them create an initial set using a
pre-defined number of randomly selected samples and exclude
the labeling of the initial set from the annotation budget. There
are two problems with it. First, in real applications, the labels
of the initial set are also provided by human experts and
should be included in the overall budget. Second, the initial set
can significantly affect the following AL process. Insufficient
initial instances may cause cold-start issues, while redundant
initial instances will result in a wastage of annotation costs.
Moreover, some classifiers, e.g., CatBoost, can only learn from
different classes of data, which will require a large initial set
when the abnormal samples are elusive in the dataset, i.e., a
highly imbalanced dataset.

To address the above challenges, we propose exploiting out-
lier detectors (or anomaly detectors) for forming the initial set
DI . The objective here is to identify anomalies for inclusion
in DI , while maintaining its compact size. Because there is a
scarcity of labeled data, the outlier detection algorithms must
function in an unsupervised manner or be fine-tuned with a
minimal amount of labeled samples. While it is possible to uti-
lize the outlier detectors alone for implementing AL methods,
updating an unsupervised outlier detector with labeled data
is complex. As a result, our research places its emphasis on

employing outlier detectors to only build the initial set. Let
ψ be an outlier detector, and then we have an outlier score
µt = ψ(xt) for data instance xt. DI is composed of the top-
NI samples from the dataset D ranked by outlier scores, i.e.,

DI = {xt | µt ∈ top-NI outlier scores}, (1)

where NI is the size of DI . This method increases the
possibility of including abnormal samples in a small initial
set to warm up the classifiers and is expected to be effective
in severely imbalanced datasets. In this work, we consider
three common outlier detection algorithms, i.e., Isolation
Forest (iForest) [16], One-Class Support Vector Machine
(OCSVM) [17], and Local Outlier Factor (LOF) [18].

D. Quality Assessment Model Selection

The classifiers (also called target models or learners in
the AL paradigm) being investigated in our study include
k-nearest Neighbor (KNN) [19], Extreme Gradient Boosting
(XGBoost) [20], Categorical Boosting (CatBoost) [21] and
Light Gradient Boosting Machine (LightGBM) [22]. KNN
is an instance-based algorithm that classifies data points by
considering the class of their nearest neighbors. XGBoost is
an ensemble algorithm utilizing gradient boosting, excelling
in structured data tasks, and featuring sequential model cor-
rection. CatBoost is a gradient boosting approach tailored for
categorical data, automatically handling categorical features
during training. LightGBM is a high-efficiency gradient boost-
ing framework using histogram-based techniques for faster
training, suitable for large datasets. XGBoost, CatBoost, and
LightGBM are effective in dealing with imbalanced data, as
they assign higher weights to misclassified samples, which
give more attention to the minority class.

E. Query Strategy

We adopt the Uncertainty-based Sampling (US) strategies
for classifiers to select instances. These query strategies are



based on the hypothesis that the more uncertain one classifier
is about the predictive result, the more informative the data
sample is. Thus, it will be more useful for optimizing the clas-
sifier. There are various ways to compute the uncertainty for
predictions, such as confidence, margin, and entropy. In binary
classification scenarios, the corresponding query strategies,
i.e., least confident, smallest margin, and maximum entropy,
become equivalent [14]. Here we describe the prediction
entropy query strategy. Supposing that a classifier ϕ can output
the class probability Pϕ(ŷt|xt), ŷt ∈ {0, 1} for a sample xt,
the entropy-based uncertainty of the classifier is defined as:

HEN (xt) = −
∑

ŷt∈{0,1}

Pϕ(ŷt|xt) logPϕ(ŷt|xt). (2)

The sample with maximum entropy will be requested for
labeling:

x∗EN = argmax
t
HEN (xt) (3)

IV. EXPERIMENTS

A. Experiment Setup

1) Dataset: We use ocean observatory data provided by
Argo [15], an international program that collects subsurface
ocean water properties such as temperature, salinity, and
currents across the global earth using a fleet of robotic instru-
ments. The instruments called floats or profilers, drift with the
ocean currents and move up and down between the surface
and a mid-water level. We build five datasets using records
produced by five similar floats in order to reduce the influence
of environmental and operational factors. The five floats were
equipped with the same sensors and deployed in the same
month (March 2019) within the same area (Atlantic Ocean).
We consider totally six features, including datetime, latitude,
longitude, pressure, temperature and salinity. The datasets
have extensive quality labels for all the data samples provided
by human analysts. To mimic the real usage scenario, we only
use labels of queried samples, treating them as acquired from
human experts. When processing the quality flags, we treat
samples labeled as good data as error-free, denoted as 0, and
others as erroneous data, denoted as 1. Originally, the quality
flags were assigned for each feature. To get a global quality
label for the data, we treat the data instance as 0 only if all
the features have the label 0.

The statistics of the datasets are listed in Table I. The dataset
DShigh exhibits a substantial error rate of 33.72%, whereas
the remaining four datasets, namely DSlow1-4, demonstrate
exceedingly minimal error rates, all below 1%. Each dataset
is randomly split into 60% training, 20% validation, and 20%
test subsets while maintaining the same error rate for each
subset. All the features are first normalized using the Z-score
method before feeding into the classifiers.

2) Evaluation metrics: We use F1-score to evaluate the
performance of the classifiers.

B. Effectiveness of AL Query Strategies

We examine the effectiveness of the Uncertainty-based
Sampling (US) method by comparing it to Random Sampling

TABLE I: Statistics of the datasets.

Dataset Float
code

Launch
date

Error
rate

Training
samples

Test
samples

DShigh 4903217 21/03/2019 33.72% 179,539 59,847
DSlow1 4903218 10/03/2019 0.84% 175,583 58,528
DSlow2 4903220 07/03/2019 0.16% 181,009 60,337
DSlow3 4903052 20/03/2019 0.69% 179,000 59,667
DSlow4 4903054 23/03/2019 0.23% 177,455 59,152

(RS). The initial set is formed by randomly selected instances.
Considering the error rates of the datasets, we set the initial set
size to 1000 for DShigh and 100 for the rest datasets. Figure 2
shows the results for four classifiers on five datasets.

The results suggest that the US method is effective for
all datasets, either with high error rates or low error rates,
but is remarkably successful on severely imbalanced datasets.
First, we observe that on DShigh XGBoost and CatBoost
rapidly reach their best F1-score with less than 10 queried
samples using US, while the RS method makes no differ-
ence in the models’ performance throughout the AL cycles.
LightGBM shows similar behavior though it needs more
samples to optimize. An exception is KNN, where the RS
method still increases its accuracy but takes much longer to
achieve optimal performance compared to the US method.
Compared with RS, US improve the F1-score for KNN,
XGBoost, CatBoost and LightGBM on DShigh by 0.4%,
0.8%, 0.8%, and 1.8%, respectively. The subtle progress is
due to the fair performance achieved by classifiers before the
AL query process. Second, US completely beats RS on four
low-error datasets, i.e., DSlow1-4, regardless of classifiers.
On DSlow1, compared with RS, the US approach increases
the F1-score of KNN, XGBoost, CatBoost and LightGBM by
465.5%, 46.8%, 47.1%, and 63.2%, respectively with merely
100 queried samples. And on DSlow3, the improvement of
F1-score for KNN, XGBoost, CatBoost and LightGBM are
80.5%, 15.1%, 10.0%, and 17.8%, respectively. On DSlow2
and DSlow4, KNN and XGBoost report F1-score of 0 using
RS but rapidly reach the highest F1-score with US. CatBoost
and LightGBM see performance increase of 2.6% and 88.3%
respectively on DSlow2, 3.2% and 44.1% respectively on
DSlow4, when comparing US to RS.

C. Effectiveness of using outlier detectors for initial set con-
struction

We compare iForest [16], OCSVM [17], and LOF [18] to
detect outliers on DSlow4 and report the results in Table II. We
use OCSVM with non-linear kernels (RBF). NI/2 randomly
selected samples are used to train OCSVM, together with the
top-NI/2 predicted anomalous samples to form the initial set.
The number of estimators in iForest is set to 100. The number
of neighbors in LOF is set to 10. The contamination value for
iForest and LOF are defined as the dataset’s error rate.

Compared with using random selection to build the initial
set, LOF can largely reduce the size of the initial set DI to
contain erroneous instances. According to Table II, LOF suc-
cessfully recognizes 4, 6, 14, and 21 true anomalies within the



(a) KNN (b) XGBoost (c) CatBoost (d) LightGBM

(e) KNN (f) XGBoost (g) CatBoost (h) LightGBM

(i) KNN (j) XGBoost (k) CatBoost (l) LightGBM

(m) KNN (n) XGBoost (o) CatBoost (p) LightGBM

(q) KNN (r) XGBoost (s) CatBoost (t) LightGBM

Fig. 2: Comparisons of query strategies on different datasets. Legends denote the query strategies: “random” stands for random
sampling, and “uncertainty” uncertainty-based sampling. (a)(b)(c)(d): DShigh; (e)(f)(g)(h): DSlow1; (i)(j)(k)(l): DSlow2;
(m)(m)(o)(p): DSlow3; (q)(r)(s)(t): DSlow4. K=1 for all datasets.

TABLE II: Number of anomalies identified by outlier detection
methods on DSlow4. NI stands for the initial set size.

Method # anomalies@NI

NI=100 NI=200 NI=300 NI=400

iForest 0 0 0 0
OCSVM 0 0 0 0
LOF 4 6 14 21

top-100, 200, 300, and 400 predicted anomalies, respectively,
while iForest and OCSVM fail to identify any anomalies in
the same settings. LOF is 4/100/0.0023 ≈ 17 times efficient
in building the initial set containing erroneous samples in

comparison with random selection.
Therefore, we exploit LOF to construct the initial set DI ,

denoted as DLOF
I , differing from the one formed by randomly

selected instances, denoted as DRD
I . To quantify the efficacy

of the LOF-initialized AL method, we employ the reduced
annotation cost as the evaluation metric. Let NI and NL be
the numbers of instances in the initial set and in the labeled
set, respectively, and then we have the total annotation cost of
NI +NL. The reduced cost is computed as:

Costreduced = 1− NLOF
I +NLOF

L

NRD
I +NRD

L

. (4)

It ranges in (−∞, 1]; the higher, the better. Table III summa-



rizes the comparison results on dataset DSlow4.

TABLE III: Comparing the effectiveness of LOF-based to
randomly-built initial set on dataset DSlow4. K:1.

Classifier Random initialization LOF initialization Reduced
cost

NI NL F1 NI NL F1

KNN 740 60 0.7719 400 212 0.7719 23.5%
XGBoost 740 68 0.7753 100 251 0.7753 56.5%
CatBoost 740 9 0.7719 100 73 0.7719 76.9%
LightGBM 740 258 0.7699 400 261 0.7706 33.8%

The results suggest that our outlier detection-initialized AL
method significantly reduces the overall annotation cost to
achieve comparable performances. CatBoost and XGBoost di-
minish the initial set size from 740 to 100 and yield 76.9% and
56.5% cost reductions, respectively, while achieving the same
F1-scores compared with randomly initialized counterparts.
Compared with CatBoost and XGBoost, KNN and LightGBM
require more instances for initialization (400 rather than 100),
possibly due to their low efficiency in learning imbalanced
data. Yet, the LOF initialization method manages to reduce
their costs by 23.5% and 33.8%, respectively.

V. CONCLUSION AND DISCUSSION

This paper presents an Outlier Detection-Enhanced Active
Learning (ODEAL) framework to reduce the workload of
QC experts on ocean data quality assessment tasks. By ex-
ploiting the ability of AL query strategies in selecting the
most informative samples, our method achieved increases in
F1-score of KNN, XGBoost, CatBoost, and LightGBM by
465.5%, 46.8%, 47.1%, and 63.2%, respectively with merely
100 queried samples. The LOF-based initial set construction
approach successfully identified 3 erroneous instances within
top-100 ranked samples from a highly imbalanced dataset and
accomplished a great decrease of annotation cost by 76.9% for
CatBoost. To our knowledge, this is the first study dedicated to
applying AL to ocean data quality assessment. The promising
experimental results on real Argo observatory data provide
strong evidence of the effectiveness of this methodology.

Nonetheless, there are some limitations associated with
this work. First, classifier performances remain sub-optimal
on highly imbalanced datasets, which calls for data-cleaning
operations or more proficient learning models. Conflicts may
exist in data distribution resulting from the inconsistency of
data labeling over a long time period. Second, we exploit pool-
based AL methods, which require access to the entire dataset
and might be unsuitable for real-time applications. Stream-
based AL that decides on the current instance for labeling
could be more appropriate in such scenarios.
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