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Abstract The proliferation of the Internet of Things
(IoT) paradigm has ushered in a new era of connec-
tivity and convenience. Consequently, rapid IoT expan-
sion has introduced unprecedented security challenges,
among which source code vulnerabilities present a sig-
nificant risk. Recently, machine learning (ML) has been
increasingly used to detect source code vulnerabilities.
However, there has been a lack of attention to IoT-
specific frameworks, in terms of both tools and datasets.
In this paper, we address potential source code vul-
nerabilities in some of the most commonly used IoT
frameworks. Hence, we introduce IoTvulCode - a novel
framework consisting of a dataset-generating tool, and
ML-enabled methods for the detection of source code
vulnerabilities and weaknesses as well as the initial re-
lease of an IoT vulnerability dataset. Our framework
contributes to improving the existing coding practices,
leading to a more secure IoT infrastructure. Addition-
ally, ToTvulCode provides a solid basis for the IoT re-
search community to further explore the topic.

Keywords Internet of Things - Vulnerabilities
Dataset - IoT security - Source Code - Machine
Learning - Natural Language Processing

1 Introduction

Internet of Things (IoT) refers to the interconnected
physical objects connected to the internet or each other,
relying mostly on Wireless Sensor Networks (WSN) to
exchange information without human intervention [29].
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These devices are widely used in both consumer and
industrial applications due to the benefits of the au-
tomation they bring. IoT use cases range from smart
homes, vehicular technology, and healthcare, to trans-
port, power, and agriculture. In recent years, we have
witnessed a rapid increase in the number and complex-
ity of IoT infrastructure. However, IoT devices have
posed security threats and vulnerabilities over the years,
primarily due to the programming languages used as
well as programmers’ disregard for secure coding prac-
tices [20]. The IoT Operating Systems(OS) and appli-
cations are vulnerable to security breaches and the ex-
isting higher-level security measures may not help [2].

Open Web Application Security Project (OWASP)
[30], Common Vulnerability and Enumerations (CVE)
[26], and Common Weakness Enumeration (CWE) [13],
and Common Vulnerability Scoring System (CVSS) [12]
are major resources for understanding, categorizing and
addressing vulnerabilities, including those in IoT sys-
tems. These resources can be used to understand the
common types of vulnerabilities that affect IoT sys-
tems. Particularly, OWASP publishes standard aware-
ness documents for developers and web application se-
curity which represent the most critical security risks to
various systems as reported IoT top 10 list [30], the in-
formation can be considered by IoT developers for more
secure coding. There is also a push to incorporate secu-
rity into DevOps through the development of DevSec-
Ops (Development, Security, and Operations) [1]. De-
vSecOps concentrates on integrating security controls
and practices into the DevOps cycle, offering substan-
tial potential for the development of secure IoT soft-
ware.

Furthermore, in real-world software systems, many
types of IoT data, including, network traffic, sensor
readings, metrics, logs, alerts, and traces play an es-
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sential role in cybersecurity engineering. In particular,
network traffic has been widely exploited for malware
and attack detection [4, 16, 31|. Similarly, sensor data
is used for anomaly detection and environment-control
measures. However, the aforementioned methods are in-
capable of detecting threats in advance, because they
are not designed for a such purpose. When it comes to
threat detection, most of the existing security threats
originate from the vulnerabilities in the code [6, 25, 38].

The attackers can exploit security vulnerabilities to
compromise the affected system’s data and functional-
ity as well as possibly use them for further malicious
activities. Therefore, static application security test-
ing (SAST) is an important process of the DevSecOps
pipeline, during which source code is automatically an-
alyzed to identify security vulnerabilities in the early
development stages [1].

In this study, we present Io TvulCode - a comprehen-
sive framework consisting of a data extraction tool for
C/C++ source code vulnerabilities, and ML and natu-
ral language processing (NLP) methods to detect them.
We also provide an initial release of an IoT vulnerabil-
ity dataset. We collected the source code of the most
commonly used IoT projects to create a labeled dataset
of both vulnerable and benign samples. To create a
generic dataset, we only included projects containing
CVE-recorded vulnerable entries. The types of vulner-
abilities in the extracted dataset are labeled according
to CWE categorization. The main contributions of this
study are the following:

— open-source vulnerability dataset extraction tool,
— ML and NLP-based vulnerability detectors, and
— an initial IoT vulnerability dataset.

The remainder of the paper is organized as follows.
Section 2 discusses the existing datasets for identifying
IoT vulnerable codes and existing Al-based approaches
to vulnerability classification of IoT projects. Section 3

represents the details of the proposed Io TvulCode method-

ology. Section 4 elaborates on the initial release of the
ToTvulCode dataset by the proposed tool and its statis-
tics. Similarly, Section 5 presents the experimental re-
sults and comparative performance measures of the ML
modules on the extracted dataset. The section also dis-
cusses the observations and challenges in Al-based mod-
els for vulnerability detection on the source code of IoT
projects. Finally, Section 6 concludes the paper.

2 Related work

Together with the challenges confronted by the Inter-
net, IoT faces substantial challenges (including scala-
bility, mobility, and resource limitations) due to a mas-

sive number of interconnected devices, and heterogene-
ity of exchanged data [37]. Researchers and practition-
ers have delved into various OSI layers to scrutinize
security concerns within the IoT software development
process, a crucial aspect of the DevSecOps pipeline. In
this section, we present an overview of code vulnera-
bility detection and describe prior work most related to
our study, construction of the IoT vulnerability dataset,
and detection of vulnerability in IoT smart environ-
ments.

2.1 Overview of code vulnerability detection

The rising number of security vulnerabilities in soft-
ware highlights the need for improved detection meth-
ods. Literature shows that there is a practice of us-
ing automated source code scanning tools, specifically
static code analysis, for early detection of vulnerabil-
ities in classic software development. For example, a
survey conducted in [23] explores how deep learning
and neural network approaches are applied in detecting
software vulnerabilities, by leveraging a large amount of
open-source code.

Leveraging a large dataset of C and C+-+ func-
tions, [35] developed a scalable vulnerability detection
tool using deep feature representation learning, demon-
strating its effectiveness on real software. Similarly, [21]
compared three C/C++ tools (flawfinder, RATS, CP-
PCheck) and two JAVA tools (Spotbugs and PMD)
evaluating the categories of vulnerabilities detected and
the likelihood of false positives. The authors pointed out
variations in detection capabilities and false positive re-
porting among the tools.

Github [18] also supports building secure code secu-
rity into the GitHub workflow with features to keep
secrets and vulnerabilities in the codebase. Once we
commit any changes to the repository, it automatically
scans the code for security vulnerabilities. However, the
project should be hosted in GitHub to use that auto-
matic code scanning feature. Similarly, Hanif and Maf-
feis [19] presented VulBERTa model which was pre-
trained on RoBERTa [24] model with a custom tok-
enization pipeline on real-world code from open-source
C/C++ projects. Their deep-learning approach to de-
tect security vulnerabilities in source code was evalu-
ated on binary and multi-class vulnerability detection
tasks across several vulnerability datasets extracted from
general software.

In a related context, [39] introduced another frame-
work for vulnerability detection, namely FUNDED (Flow-
sensitive vUl-Nerability coDE Detection), which em-
ploys graph neural networks to capture program de-
pendencies and operates on a graph representation of
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source code, yielding better representations for vulner-
ability detection. According to the authors, the frame-
work outperforms six state-of-the-art models across var-
ious programming languages, showcasing its effective-
ness. Additionally, a review was conducted focusing on
Android application analysis and source code vulnera-
bility detection methods. It critically assesses both Ma-
chine Learning (ML)-based and conventional methods,
aiming to guide researchers in enhancing secure mo-
bile application development and minimizing vulnera-
bilities, particularly through ML approaches.

2.2 10T vulnerability code dataset

Analyzing datasets containing vulnerable code associ-
ated with IoT is vital for advancing our understanding
of security issues, identifying prevalent vulnerabilities,
and developing effective ML models to enhance the se-
curity of IoT software. Al-Boghdady et al. [2] have cre-
ated a tool called iDetect for detecting vulnerabilities in
the C/C++ source code of IoT operating systems (IoT
OSs). The labeling of the dataset was done using static
code analyzing tools (SATS) - Cppcheck version 2.1 [11],
Flawfinder version 2.0.11 [14], and Rough Auditing Tool
for Security (RATS) [32]. Alnaeli et al. [3] conducted an
empirical study involving 18 open-source systems, en-
compassing millions of lines of C/C++ code utilized
in IoT devices. Static code analysis methods were em-
ployed for each source code project to identify unsafe
commands, such as strepy, stremp, and strlen, which
pose potential risks to the system. Celik et al.[7] intro-
duced an IoT-specific test suite, IoTBench, an open-
source repository for evaluating information leakage in
IoT apps. The IoTBench includes 19 hand-crafted ma-
licious SmartThings apps that contain 27 data leaks via
either Internet or messaging service sinks.

Some of the generic datasets for vulnerability detec-
tion that are publicly available are summarized in Ta-
ble 1. The #Detect dataset is the only IoT code-specific
dataset. However, the dataset has just included 6,245
samples (3,082 vulnerable and 3,163 non-vulnerable) af-
ter removing the duplicates and ambiguous samples.
In comparison with iDetect, our IoTwvulCode dataset
is 162.4 times bigger than ¢Detect covering 1,014,548
statements (948,996 benign and 65,052 vulnerable sam-
ples).

The IoTvulCode dataset and the extraction tool are
unique to existing studies in several ways as follows-

— The size of the dataset is bigger in terms of the
sample size than the existing IoT-specific source-
code dataset.

— The open-source extraction tool makes it easy to
add new projects to the list to crawl more data.

— The incremental service of the tool facilitates the
stop and resume feature to the projects in case the
system hangs in the intermediate state.

— The dataset includes binary and multi-class vulnera-
bility types which enable the classification of binary
as well as multi-class.

— Specially, existing commit-based datasets may suffer
accuracy because they assume all the changes made
in the commit were vulnerable code, however, our
tool picks the exact occurrences of the vulnerable
code rather assumption based vulnerable code.

2.3 ML models for IoT code vulnerability detection

Most of the existing studies on IoT security systems
have concentrated on pinpointing security issues asso-
ciated with IoT communication processes, data privacy,
and authentication methods. Naeem and Alalfi [27] have
presented deep learning-based vulnerability identifica-
tion of IoT system applications. The method catego-
rizes the vulnerabilities that lead to sensitive informa-
tion leakage that can be identified using taint flow anal-
ysis on synthesized test-suite dataset [7]. The source
code is converted into a list of tokens and then trans-
formed into vectors (token2vec). Additionally, the iden-
tified tainted flows are also transformed into vectors
(flow2vec). Similarly, Nazzal and Alalfi have proposed
a tainted flow static analysis approach for the iden-
tification and reporting of information leakage in the
Smarthings IoT app.

Gao et al. [17] have presented IoTSeeker a function
semantic learning-based vulnerability search approach
for cross-platform IoT binary. The loTSeeker aims to
design a vulnerability search approach using semantic
feature extraction and a neural network that can auto-
matically inform whether a given binary program from
IoT devices contains clone vulnerabilities or not.

3 Methodology

The CVE provides vulnerability records of all the soft-
ware and hardware systems and releases them publicly
with their references. There are more than 122,000 vul-
nerability entries in the CVE database. Some of the
vulnerabilities occur within the C/C++ source-code
function and provide corresponding source-code refer-
ences. We analyze the CVE references to select only
the IoT-related ones. The intuition behind this is that
IoT-related code vulnerability follows similar character-
istics on different systems. Natural language processing
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Table 1: The publicly available generic datasets for vulnerability detection

dataset granularity labeling label accuracy publication year
VulDeePecker [22]  slice semi-synthetic High 2018
Draper [34] function Static Analyzer Category filter low 2018
Devign [40] Function Manual high 2019
CVEfixes [5] Commit Security Issues High 2021
DiverseVul [9] Commit Security issues High 2023
ReVeal [8] Function Security Issues High 2021
BigVul [15] Commit Security Issues High 2020
CrossVul [28] Commit Security Issues High 2021
iDetect [2] Statement  Static Analyzer low 2022

(NLP) or machine learning-based approach will be use-
ful to detect such patterns.

3.1 Static security analysis tools

Some static analyzers use similar techniques to detect
security bugs and abnormal behavior of the codes and
some use unique techniques. The use of multiple analyz-
ers covers multiple weaknesses of the source code than
a single analyzer. Therefore, in this study, we have used
three static analysis tools; FlawFinder, CppCheck, and
Rats.

FlawFinder: This static analyzer is licensed under GNU
GPLv2. For the data extraction, we used FlawFinder [14]
version 2.0.19 (x 376) which was released on Aug 29,
2021. The tool implements a syntactic analysis tech-
nique to scan C/C++ source code for potentially vul-
nerable code patterns stored in a local database. It iden-
tifies the susceptible vulnerabilities at the function level
from the integrated rules in the past. It also assesses
their risk of triggering a security bug by analyzing the
arguments in the code, ranking them as likely severity.

CppCheck: It is a static security analysis tool for C/C++

code [11]. The tool is released under GPL3.0 and has
obtained 4.9k GitHub %stars. The tool detects bugs and
focuses on detecting undefined behavior and dangerous
coding constructs. It uses unsound flow-sensitive analy-
sis, unlike other analyzers that use path-sensitive anal-
ysis.

Rats: The rough auditing tool for security (Rats) [33] is
an open-source tool licensed under GPL-2.0 developed
by Secure Software Inc. The tool scans code of multiple
programming languages; C, C++, Perl, PHP, Python,
and Ruby. Unlike other tools, Rats performs only a
rough analysis of source code flagging common security-
related errors such as buffer overflows and TOCTOU
(Time Of Check, Time Of Use) race conditions.

3.2 Other supporting tools

In addition to the above static security analysis tools,
we have used the following libraries and tools for the
construction of the loTwvulCode dataset-

srcML: this is a software tool for the exploration, anal-
ysis, and manipulation of source code [10]. The tool is
mainly used to convert source code into abstract syn-
tax tree (AST) and back into source code, which allows
converting source code into language-independent for-
mat (XML) and translating code of one programming
to another. In this study, we have used srcML tool to
retrieve source code into function blocks and perform
sreML transformation, in the following order: code —
AST — function blocks — function code.

Guesslang: this is an open-source tool used to rec-
ognize the programming language of the source code
file [36]. The tool is trained using deep learning meth-
ods with over a million source-code files and supports
54 programming languages. The Guesslang tool is pre-
cise to guess the language with guessing accuracy higher
than 90%, however, it takes considerable time to guess.

3.3 The IoTvulCode dataset extraction method

The referred IoT software are crawled and analyzed for
security vulnerabilities and flaws using static code anal-
ysis tools, FlawFinder, CppCheck, and Rats. Once the
security flaws contexts were extracted from the tools,
the corresponding file of the project was analyzed to
extract the statement-level, and function-level metrics
to provide additional code information in the dataset.
The extracted metrics include the actual vulnerable
code statements, corresponding function blocks, func-
tion metrics, file names, project names, vulnerability
labels, and some additional information. Algorithm 1
summarizes all the major steps of the data extraction
pipeline. Additionally, Figure 1 also shows the proposed
extraction framework for the collection of vulnerability
data which is also briefly as follows:
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3.8.1 Vulnerable samples extraction

The vulnerable sample extraction mainly involves scan-
ning the projects and composing the collected vulner-
able data into an SQLite2 database file. It resembles
from step 1 to step 4 as shown in Figure 1.

1. To extract the vulnerable sample, at first, the source
code of the projects should be crawled locally and
their directories listed in the configuration file (ext_
projects.yaml). The user can provide the initial in-
put parameters, i.e., database name and other set-
tings. The iteration of the extraction process goes
into each project on an incremental basis. If the
status of any of the projects is 'Not Started’ or 'In
Progress’ then the extraction continues for the re-
maining files of each incomplete project.

2. This step (optional) checks whether the project is
registered to CVE vulnerability records or not. This
process is mainly to pick only the benchmarked IoT
software. The notion is that the project registered in
the CVE records follows standard coding practices.

3. This step scans project files and applies the static
security analysis tools. For the projects that were in-
complete in scanning the vulnerable data, only the
remaining files will be extracted ignoring the already
stored files in the database. The user can select ei-
ther guesslang or file extension-based method op-
tions to classify the programming language of the
file because the file-extension-based method is very
fast as compared to the Guesslang. If a file exten-
sion is not in the given programming language list,
then it is set to 'unknown’. On each file, the static
analyzers run for the detection of vulnerability and
weakness. The analyzers retrieve the composed re-
sults of the statement-level vulnerability data of the
file.

4. The next step is to compose the generated vulnera-
ble statements and populate the function-level data
from the statements. In this study, we have used
sreML [10] for fetching the function-level data.

8.8.2 Benign sample extraction

To apply machine learning techniques to vulnerabil-
ity assessment, we require both vulnerable and benign
(non-vulnerable) samples. The given static analyzers
only provide the context or line of the vulnerable code in
the file and its line number. We have carried out several
steps to collect benign samples for both statement-level
and function-level data.

5. The function is labeled as vulnerable if it contains
any of the vulnerable statements resulting from static

analyzers on the file. The rest of the functions of the
file are labeled as bemign samples.

6. For gathering the benign statements, we took ran-
domly sampled non-vulnerable statements from the
function bodies of the file.

Algorithm 1: Extraction of IoT vulnerable
data

Data: Links of the IoT project directories stored
locally
Result: Vulnerability data of IoT projects
1 initialization;
2 while each IoT project do

3 check the entry in CVE records ;
a if project not in CVE then
5 ‘ ignore the project ;
6 else
7 while each file of the project do
8 apply analyzers; CppCheck, FlawFinder,
and Rats;
9 if statement is "vulnerable’ then
10 label statement as 'vulnerable’ with
CWE type;
11 store the information and the label ;
12 else
13 label ’code-block’ as ’benign’;
14 store the information and the label ;
15 end
16 while check each functions do
17 if statement is in function then
18 label function as 'vulnerable’ ;
19 ‘ store the information and label ;
20 else
21 label function as ’benign’ ;
22 store the information and label ;
23 end
24 end
25 end
26 compose vulnerable data of all files of the
project ;
27 end
28 end

29 compose vulnerable data of all projects ;
30 filtering the duplicates ;

31 removing ambiguous samples ;

32 construct the refined database ;

3.4 Vulnerability detection framework

Creating an ML model for vulnerability detection in-
volves several steps of MLOps. The high-level overview
of the steps is presented in Figure 2 and Algorithm 2
also explained as follows-

1. Data collection: The above data extraction process
gives us a dataset of IoT software both vulnerable
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Fig. 1: The proposed framework for vulnerability data collection

and non-vulnerable. This could be from open-source
projects, vulnerability databases, and other sources.

2. Preprocessing: Perform several preprocessing steps
to the code to convert it into a format suitable for
ML models. In code analysis, this could involve pars-
ing raw code, tokenization, and vectorization to rep-
resent code into an encoded sequence as shown in
step-1 in Figure 2.

3. Model training: Train an ML model on the prepro-
cessed data for the detection of vulnerabilities in-
volved as a next step (step 2 of Figure 2. The train-
ing process implements sequence models like RNNs
or LSTMs as involved in capturing the sequential
nature of the code.

4. FEwvaluation: This process involves the cross-checking
of the trained model on separate data that were not
used for the training. Evaluate the model’s perfor-
mance and calculate metrics such as accuracy, pre-
cision, recall, and loss (step 3 of Figure 2.

5. Deployment: If the model’s performance is satisfac-
tory with training and testing, deploy it to a pro-
duction environment where it can analyze new IoT
code for vulnerabilities. The model can be deployed
as a plugin in any integrated development environ-
ment (IDE) to automatically detect vulnerabilities.

3.5 Experimental setup

The resource-intensive operations, i.e. training of the
machine learning models were carried out on NVIDIA
DGX (DualProcessor Intel Xeon Scalable Platinum 8176

Algorithm 2: vulnerability detection in IoT
code

Data: labeled dataset of IoT code (from Algo 1)
Result: detection result; vulnerable or not, or types
of vulnerability

1 initialization;

2 while preprocessing steps do

3 apply data filtering;

4 remove duplicate samples ;
5 remove ambiguous samples ;
6 tokenized the input code ;

7 vectorized the sequence ;

8 end

9 split data into train/test sets;
10 while ML sequence models do
11 apply the ML models ;

12 if perform train then

13 ‘ train ML model;

14 else

15 examine the trained ML model;
16 end
17 end

w/ 16 qty Nvidia Volta V100) and NVIDIA HGX (Du-
alProcessor AMD EPYC Milan 7763 64-core w/ 8 qty
Nvidia Volta A100/80GB). Both high-performance in-
frastructures (HCI) have GPU power for parallel execu-
tions which is suitable for neural network matrix mul-
tiplications. Both the infrastructures are hosted in eX3
cluster! at Simula Research Laboratory. For the extrac-
tion of the dataset, we have used a general-purpose PC
- Lenovo Legion 7 powered by AMD Ryzen 7 5800H/3.2
GHz, 16GB RAM, 1TB SSD, and RTX 3080 16GB

Thttps://www.ex3.simula.no/
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Fig. 2: The proposed method for vulnerability detection in IoT OSs and applications

GPU. After downloading all the projects to our local
machine, it took 23 hours to extract the vulnerability
data from the 11 downloaded projects.

3.6 Hyperparameter settings

RNN and LSTM models training and testing were car-
ried out, with different setup hyperparameters for the
experiment as presented in Table-2. Additionally, we
have used categorical crossentropy for multiclass and
binary _crossentropy for binary classification on both
statement and function level data.

4 The IoTvulCode dataset

The IoTvulCode dataset is constructed from the source
code of the IoT projects, which are listed in Table 3,
along with their versions and links to the open-source

Table 2: Hyperparameter settings for training sequence
models

hyperparameters statement function
epochs 120 120
batch 128 128
input_length 150 1024
input_dim 150 1024
output dim 1 or more 1 or more
Ir le-4 le-4
patience 35 35
optimizer adam adam

12 reg le-4 le-4
dropout 0.002 0.002
recur__dropout 0.002 0.002
beta 1 0.09 0.09
beta 2 0.099 0.099
epsilon le-08 le-08
decay 0.0 0.0

repositories. The projects are selected based on the fol-
lowing criteria: (1) the project is an IoT project (OS or
software), (2) the project is open-source, (3) the project
is written in C/C++, (4) the project is actively main-
tained, and (5) the project is popular (checking CVE
records).

Table 3: List of the IoT projects

Project version URL
linux-rpi 6.1.y www.raspberrypi.com/software/
ARMmbed 6.17.0 https://os.mbed.com/mbed-os/
FreeRTOS 202212.01 www.freertos.org/a00104.html
RIOT  2023.07 https://github.com/RIOT-OS/RIOT
contiki 2.4 https://github.com/contiki-os/contiki
gnucobol 3.2 https://gnucobol.sourceforge.io/
mbed-os 6.17.0 https://github.com/ARMmbed/mbed-os
miropython 1.12.0 https://micropython.org/
mosquito 2.0.18 https://github.com/eclipse/mosquitto
openwrt 23.05.2 https://github.com/openwrt/openwrt

4.1 Dataset overview

In the current version of the extracted dataset, there are
1,014,548 statements (948,996 benign and 65,052 vul-
nerable samples) and 548,089 functions (481,390 benign
and 66,699 vulnerable samples). Among all extracted
projects, linuz-rpi has the most recorded entries with
816,672 total statements and 456,380 functions, which
is followed by ARMmbed with 43,782 statements and
26,095 functions. Of course, the severity of the project
can be seen in the size of the vulnerability and weak-
ness samples present in the project. However, linux-rpi
being the biggest project in the list can tend to hold
a higher number of vulnerable samples. Table 4 shows
further detailed information on the frequency of the vul-
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nerable and benign samples in both the statement- and
function of all the extracted projects.

project F#statement #function

Benign  Vulnerable ‘ Benign  Vulnerable
ARMmbed 37,798 5,984 21,206 4,889
FreeRTOS 37,980 4,398 17,196 3,675
RIOT 13,349 2,357 7,583 2,227
contiki 3,756 977 1,730 568
gnucobol 8,828 1,356 1,941 909
linux-rpi 772,050 44,622 | 407,684 48,696
mbed-os 27,305 18 216 22
micropython 35,440 3,662 19,005 4,126
mosquitto 4,139 490 817 558
openwrt 6,519 861 3,068 677
tinyos 2,249 410 944 352
TOTAL 949,413 65,135 | 481,390 66,699

Table 4: Number of statements and function on the ex-
tracted projects

4.2 Major vulnerabilities and weaknesses

The majority of the static analyzers categorize the vul-
nerabilities and weaknesses based on CWE type, which
is used as a labeling technique for multiclass vulner-
ability identification. The Figure-3 sunburst plot (or
multi-level pie chart) visualizes the hierarchical data
structures of the vulnerability and weakness type, i.e.,
frequency of the CWE category, name, and types. In
the figure, the majority of classes- memcpy of CWE-
120 type (#21153 samples) and char of CWE-119/-120
type (#16396 samples) covered more than half of the
vulnerability samples.

More specifically, the top 10 CWEs in the statement-
and function-level data are shown in Table 5. At the
statement level, CWE-120 (Buffer Copy without Check-
ing Size of Input) is the most frequent CWE with 30,953
samples, followed by CWE-119!/CWE-120 (Improper
Restriction of Operations within the Bounds of a Mem-
ory Buffer) with 16408 samples. In function-level, again
CWE-120 is the most frequent CWE with 28,119 sam-
ples, followed by CWE-119! /CWE-120 with 12,014 sam-
ples.

4.3 Sequences sizes of the source-code

Sequence models, such as RNN, LSTM, and transform-
ers are the most popular models for the NLP-based
classification and translation of the code. To plan for
the correct sequence size of the NLP-based models for
the prediction of vulnerabilities and weaknesses, obser-
vation of the common distribution of the token sizes

Table 5: Top 10 CWEs in statement- and function-level
data

cwe ##statements ‘ cwe #functions
Benign 949,413 | Benign 481,390
CWE-120 30,953 | CWE-120 28,119
CWE-119!/CWE-120 16,408 | CWE-119!/CWE-120 12,014
CWE-126 4,630 | CWE-126 5,503
CWE-190 2,303 | CWE-unknown 5,008
CWE-120, CWE-20 2,256 | CWE-457 4,785
CWE-362 1,794 | CWE-190 2,550
CWE-134 1,689 | CWE-120, CWE-20 2,496
CWE-457 1,648 | CWE-362 2,277
CWE-362/CWE-367! 598 | CWE-134 1,116

is important. Therefore, Figure 4 and Figure 5 show
the distribution of the number of tokens in the state-
ment and function-level source code respectively. Each
sequence of the input data can be padded to the vo-
cabulary size. The vocabulary size of the NLP-based
models is the number of unique words in the dataset.

Similarly, Figure 6 shows the frequency of the num-
ber of characters in the statement-level data. The ma-
jority of the statements have 10 to 80 characters, and
the average number of characters in a statement is 38.
The number of characters in a statement is a good indi-
cator of the vocabulary size of the NLP-based models.

5 Experimental results

The dataset needs benchmarking to check whether ma-
chine learning models, especially NLP-based approaches
to the data perform well with the prediction of vulnera-
bilities and weaknesses in both statement and function-
level data. Sequence models, such as recurrent neural
networks (RNN) and long-short-term memory networks
(LSTM), are well-suited for classification problems for
the detection of vulnerability in code because they are
designed to work with sequential data. RNN model pro-
cesses sequences of code by maintaining a hidden state
that captures information about the tokens so far. How-
ever, it vanishing gradient problem capturing long-term
dependencies. LSTM overcomes this using an explicit
memory cell that allows them to capture long-term de-
pendencies and makes them more effective for tasks
like vulnerability detection, where context from earlier
in the code can be important for identifying vulnera-
bilities. For vulnerability detection, these ML models
should be trained on both vulnerable and benign sam-
ples for binary classification. For multiclass classifica-
tion, they should be labeled as vulnerability types (i.e.
CWE types).
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Fig. 5: The frequency of #tokens in the function-level
data

5.1 Performance of the models

The performance scores of the ML models provide in-
sights into how well each model is performing in terms
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Fig. 6: The frequency of #chars in the statement-level
data

of classifying statements in the loTvulCode dataset,
with a focus on detecting vulnerabilities. The perfor-
mance metrics help assess the model’s overall accuracy
and its ability to correctly identify positive instances
while minimizing false positives and false negatives.

The loss in training and validation on the dataset
over time with multiple ML models are as given in
Figure-7. The loss curve (also known as the learning
curve) shows the loss function value as a function of the
number of training epochs. At the beginning of train-
ing, the loss is typically high meaning the model has
not learned anything yet. As iteration increases, the
loss should decrease to indicate the model is learning
the data to predict the target variable more accurately.
In our experiment, in both training and testing causes,
the decreasing loss curve tends to 0.01 showing that
the model is learning well to predict the vulnerabilities
accurately.

Similarly, the accuracy scores of training and val-
idation on our loTvulCode dataset using multiple ML
models are projected in Figure 8. An accuracy curve vi-
sualizes the accuracy of a model over training epochs.
The increasing accuracy over time indicates the model
is learning to predict the target label more accurately.
Being both training and validation accuracy almost sim-
ilar in the plot indicates there is no overfitting, i.e. it is
able to generalize the data.

Along with accuracy, precision, and recall are also
two fundamental metrics used to evaluate the perfor-
mance of ML models, especially in classification prob-
lems such as vulnerability detection in source code. Pre-
cision is the ratio of correctly predicted positive obser-
vations (for example, vulnerable samples) to the total

predicted positive observations. Whereas recall is the
ratio of correctly classified positive observations to all
observations in the actual class. Figure-9 and Figure-10
show the training and validation precision and recall,
trained on our statement-level data using different ML
models.

Table 6 provides a summary of performance scores
of different ML models on the loTwvulCode dataset at
the statement level for both training and validation
sets. The table scores loss, accuracy, precision, and re-
call scores of both binary classifications(lo TvulCode -
RNN, CNN, and iDetect-RNN, -CNN) and multiclass

classification (Io TvulCode - RNNmul, -CNNmul, -LSTMmul).

For binary classification, the calculated scores in-
dicate that the IoTwulCode -RNN model achieves su-
perior results in both the training and validation sets
of the IoTvulCode dataset, boasting an accuracy score
of 0.99 and a precision score of 0.99. Specifically, the
training recall stands at 0.97, while the validation recall
reaches an even higher value of 0.99. Our ML models
do better than the iDetect classifiers, having a lower
loss score (0.044) as compared to iDetect (lowest loss
0.196 training and 0.236 validation in RNN) and bet-
ter performance in most measures except recall. Our
IoTvulCode dataset is much larger than iDetect, be-
ing 162.4 times bigger and including 1,014,548 unique
statements (948,996 benign and 65,052 vulnerable sam-
ples). Even though the iDetect has a higher recall, the
dataset may lack performance in the general scenarios
of ToT software.

For multiclass classification, the calculated scores
indicate that the ToTwvulCode -RNN model achieves su-
perior results in both the training and validation sets
of the JToTvulCode dataset, boasting an accuracy, preci-
sion, and recall score of 0.99, among all three multiclass
classifiers (Jo TvulCode -RNNmul, -CNNmul, LS TMmul).
Comparing the loss score, IoTvulCode -RNNmul per-
forms better in the training set and Io TvulCode - LS TMmul
performs better in the validation set. In the case of
multi-classification, pinpointing the precise multiple la-
bels in the iDetect dataset proved challenging. Addi-
tionally, their dataset contains numerous duplicate and
ambiguous samples, necessitating additional preprocess-
ing.

5.2 Discussion on the proposed IoTwvulCode method

For application-level software testing, bad coding prac-
tices not only leave the code vague to understand but
also leaves loopholes and weakness in the code. The
identification of the vulnerabilities in the early stages
of the software development life cycle helps reduce the
cost of maintenance and ensures the program is more
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Table 6: Summary of the performance scores at
statement-level JoTvulCode dataset

model set |loss acc precision recall
loTonlCode BNN  1™0'01s 0001 099 o585
toToulCode NN 1" 0155 0062 096 o557
iDetect-RNN vl 0296 0.926 0.928 0950
iDetect-CNN vl 0.3 0.021 0016 0920
toTouiCode NNt (10045 000 009 o001
foToniCode -CNNmt (10057 0 om0 08 o.089
foTontCode L8 TMmml (10065 0'ons ovs o.085

secure and robust. The proposed IoTvulCode extrac-
tion tool 2 and the initial version of the dataset can be
utilized in multiple applications for the assessment of
IoT vulnerabilities in source code-

— The IToTvulCode extraction tool can easily be ex-
tended for other applications not only limited to the
IoT software but also to the generic software.

— The initial release of the o TvulCode dataset https:
//github.com/SmartSecLab/IoTvulCode can be uti-
lized for the detection of a vulnerability to check its
presence in the source code of the IoT software.

— Similarly, the labeling of the dataset is based on
CWE weakness types, which supports the multi-
class prediction of the vulnerability, not only the
presence but also the category of vulnerability that
appeared in the code.

2https://github.com /SmartSecLab /IoTvulCode

— The extracted dataset by the IoTwvulCode tool also
has multiple granular levels of source code snip-
pets; statement-level and function-level. Therefore
the dataset enables vulnerability assessment at a
multi-granular level.

— The dataset and its extraction tool are open-source
licensed which enables the interested user to repli-
cate, extend, and redistribute the tool and the ex-
tracted dataset.

The extraction tool, the initial release of the dataset,
and the ML models will open up the research in the
implementation of NLP and machine learning models
for the detection of vulnerabilities and security flaws in
IoT source code at both statement-, and function-levels.

6 Conclusion

The detection of vulnerabilities and weaknesses in IoT
operating systems and applications is a critical aspect
of ensuring the security and reliability of interconnected
devices in the smart world. As a component of the De-
vSecOps pipeline for vulnerability detection, our pro-
posed tool scans the source code of the IoT software and
identifies possible loopholes in the source code. In this
study, we created a dataset, named IoTvulCode , which
is labeled as binary and multiclass, based on CWE’s
most common [oT code vulnerabilities. The dataset
contains around a million statements (6.5% vulnera-
ble samples) and around half a million functions (12%
vulnerable samples).

Additionally, we applied several ML methods and
trained the models to detect vulnerabilities in the C/C++
source code of IoT software and compare and validate
the models. Our experiment shows that the RNN model
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achieved a binary accuracy of 99%, precision of 97%, re-
call of 88%, and a multiclass accuracy, precision, and
recall of 99% on the labeled IoTwvulCode dataset. In fu-
ture work, we will extend the labeled dataset to cover
other generic software projects and also to identify se-
curity issues. We will exploit more sequence models and
transformers to fine-tune the existing models like Vul-
BERTa [19] which better understand the semantics of
the code hence improving the performance.

Data availability

The experimented models including the source code of
the study are publicly available at the GitHub repository-
https://github.com/SmartSecLab/IoTvulCode. The
initial version of the extracted IoTwulCode dataset is
available at zenodo with assigned DOI-D0OI:10.5281/
zenodo. 10203899 (To facilitate the review process, we
provide a zipped file of the project repository attached
along with the manuscript, which is also available at
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