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Abstract 13 

Modelling microalgae-bacteria in wastewater treatment systems has gained significant attention in 14 

the last few years. In this study, we present an enhanced version of the ABACO model, named 15 

ABACO-2, which demonstrates improved accuracy through validation in outdoor pilot-scale systems. 16 

ABACO-2 enables the comprehensive characterization of microalgae-bacteria consortia dynamics, 17 

allowing to predict the biomass concentration (microalgae, heterotrophic bacteria, and nitrifying 18 

bacteria) and nutrient evolution. The updated version of the model incorporates new equations for 19 

nutrient coefficient yields, oxygen mass balance, and microorganism cellular decay, while 20 

significantly reducing the number of calibrated parameters, simplifying the parameter identification. 21 

Calibration and validation were performed using data from a 80 m2 raceway reactor operated in a 22 

semicontinuous mode over an extensive period (May to November, total of 206 days) at a fixed 23 

dilution rate of 0.2 day-1 (corresponding to 5 days of hydraulic retention time), where untreated urban 24 

wastewater was used as culture medium. ABACO-2 exhibited robustness, accurately forecasting 25 

biomass production, population dynamics, nutrient recovery, and prevailing culture conditions across 26 

a wide range of environmental and water composition conditions. Mathematical models are essential 27 

instruments for the industrial development and optimization of microalgae-related wastewater 28 

treatment processes, thereby contributing to the sustainability of the wastewater treatment industry. 29 

 30 

 31 

KEYWORDS: Microalgae, wastewater, modeling 32 

  33 



2 
 

1. Introduction  34 

Water reuse and recycling have become crucial topics of discussion in recent decades, owing to 35 

their significant environmental and social implications. With rapid industrialization and population 36 

growth, the volume of wastewater generated annually has escalated (Angelakis and Gikas, 2014). 37 

contributing to water stress in various regions worldwide, particularly in southern Europe, including 38 

Spain, Italy, and Greece (Strosser et al., 2012). Consequently, researchers have directed their efforts 39 

toward developing innovative water remediation technologies. Among these technologies, 40 

microalgae-based wastewater systems have emerged as a promising solution, capable of replacing 41 

traditional secondary and tertiary classical wastewater treatment processes (Abdel-Raouf et al., 42 

2012). The utilization of microalgae in water remediation offers several advantages. Firstly, it 43 

demands less energy compared to conventional methods. Secondly, it significantly reduces 44 

greenhouse gas emissions. Additionally, microalgae systems eliminate residues effectively and yield 45 

valuable biomass, which can be utilized in various industrial applications (Mohd Udaiyappan et al., 46 

2017).  47 

Microalgae are photosynthetic microorganisms capable of using CO2 as a carbon source and light 48 

as an energy source, in addition to using nitrogen (N) and phosphorus (P) present in wastewater to 49 

produce biomass. Moreover, thanks to the presence of bacteria, the organic matter's degradation is 50 

ensured (Muñoz and Guieysse, 2006). The effectiveness of microalgae-based wastewater systems 51 

has been demonstrated through pilot-scale testing in raceway reactors (Morillas-España et al., 52 

2021b) and thin layers (Grivalský et al., 2019). These studies have proven that these systems are 53 

robust and reliable, enabling the recovery of nutrients from wastewater and producing treated water 54 

that meets the regulatory standards set by European legislation (Council Directive of May 1991 55 

concerning urban wastewater treatment, 1991). One of the key factors contributing to the success 56 

of this technology is its resilience in the face of significant variations in water composition and 57 

weather conditions (Nordio et al., 2023). However, high costs and relatively low efficiency are 58 

foreclosing the entire industrial development of these systems (Acién et al., 2014). The industrial 59 

development of these processes can be possible only after the improved understanding and 60 
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optimized management of the biological system allowing to study which are the main parameters 61 

influencing biomass productivity and the water remediation capacity (Solimeno and García, 2017).  62 

In this framework, mathematical modelling serves as a valuable tool for describing these processes; 63 

as it enables simulations and performance evaluations under different environmental and process 64 

conditions, aiding optimization and the development of control strategies (Solimeno and García, 65 

2017). In the literature, it is possible to find many examples of microalgae models that evaluate the 66 

growth rate as a function mainly of light, temperature, nutrients and pH (Lee et al., 2015). On the 67 

contrary, a few examples of comprehensive models for microalgae-based wastewater treatments 68 

are available, defined as models that consider the effect of multiple process parameters and 69 

biological mechanisms. Examples of recent comprehensive models are the Zambrano model 70 

(Zambrano et al., 2016), the BIOALGAE model (Solimeno et al., 2019), and the ALBA model (Casagli 71 

et al., 2021). Nevertheless, it is challenging to obtain validation data over an extended period and 72 

using urban wastewater in industrial facilities, so in the literature, some alternatives can be found, 73 

such as validations achieved with digestates, synthetic waters, or small-scale reactors. However, it 74 

is crucial to develop models that accurately represent the biological system in real conditions (both 75 

environmental and operational) since they are intended for use in commercial wastewater treatment 76 

facilities. In Spain, for example, there are currently four industrial facilities using microalgae for urban 77 

wastewater treatment, employing reactors ranging from 0.5 to 1.0 ha (Masojídek et al., 2022).  78 

To apply these models to large-scale production, it is important to balance complexity and realism. 79 

For instance, very complex mathematical descriptions of all the metabolic reactions involved in 80 

photosynthesis, may not improve the model prediction accuracy, compared to the computational 81 

cost required. Additionally, mechanisms that are not relevant for long-time series and continuous 82 

conditions can be omitted from the model (Darvehei et al., 2018). Furthermore, in wastewater, 83 

thousands of bacterial groups can interact with microalgae, and it is fundamental to carefully select 84 

the most relevant groups to reduce the number of equations and the overall complexity. Generally, 85 

only a few groups are considered relevant, as they influence nutrient uptake from the culture 86 

medium. The first model was proposed by Buhr & Miller in 1983 (Buhr and Miller, 1983), for example, 87 
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only two populations (algae and aerobic bacteria) were considered. However, afterwards, the leading 88 

bacterial groups identified were the heterotrophic bacteria, which permitted the oxidation of the 89 

organic matter, and nitrifying bacteria that compete with microalgae for the consumption of nitrogen 90 

(together with phosporous and carbon) in some cases distinguished between ammonia-oxidizing 91 

bacteria (AOB) and nitrite-oxidizing bacteria (NOB) (Aparicio et al., 2022a).  92 

In this work, an improved version of the ABACO model (Sánchez‐zurano et al., 2021), named the 93 

ABACO-2 model is proposed, calibrated and validated for outdoor conditions. The original ABACO 94 

model is a recent microalgae-bacteria model designed to represent the dynamics of these 95 

populations in wastewater systems. This model underwent validation over three weeks using a 1L 96 

tubular reactor, fed with various types of wastewaters. While it served as a valid foundation for 97 

subsequent modeling research, further improvements were necessary to validate it at the pilot-scale 98 

level. Specifically, new equations are included to reduce the number of calibrated parameters, and 99 

the use of the oxygen mass balance allows for improvement in the accuracy of the model. Equations 100 

have been implemented using Python language and numpy packages while the calibration has been 101 

carried out with Scipy library and the optimization tool that uses the "Nelder-Mead" algorithm. The 102 

model has been validated over an extensive period (May-November); data have been collected from 103 

a demonstrative pilot-scale raceway reactor of 12 m3 (80 m2) on which the prevailing strain was 104 

Scenedesmus sp.. The reactor was operated in semi-continuous mode at a fixed rate of 0.2 day-1 105 

using urban wastewater as culture medium. For this study, wastewater not pre-treated besides the 106 

removal of large particles was used, so subjected to high variation in terms of composition. This 107 

large variability of water nutrient concentration, together with different values of solar radiation and 108 

temperature typical of different year seasons, allowed to calibrate and validate the model in a wide 109 

range of conditions (Section 2.2), so increasing its prediction accuracy and robustness. 110 

2. Material and methods 111 

2.1. Raceway reactor and inoculum  112 

Experimental data were collected from an 80 m2 (12 m3) raceway reactor working in semi-continuous 113 

mode between April and December, with a fixed dilution rate (reverse of the hydraulic retention time 114 
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time) of 0.2 day-1, meaning that every day a 20% of the total volume of the culture have been 115 

removed and replaced with wastewater. The raceway was installed in the SABANA Demo Plant 116 

located in the IFAPA research centre in La Cañada, Almería, Spain. It was composed of a double 117 

channel of 40 m and a sump of 0.59 m3 for the gas injections through diffusers and an electric motor 118 

connected to a paddlewheel system for culture mixing. The pH was monitored through sensors and 119 

controlled through CO2 injection in the reactor sump. Additionally, an independent airflow allowed 120 

reducing the concentration of dissolved oxygen. The culture depth was fixed at 0.15 m. In order to 121 

thoroughly monitor the culture dynamics, additional sensors have been installed for recording the 122 

dissolved oxygen (0-400% Sat), pH (0-14), temperature (0-80°C) and culture depth (4-40 cm). 123 

Moreover, a meteorological station allowed for registering the weather conditions regarding solar 124 

radiation and environmental temperature. 125 

The chosen inoculum was Scenedemus sp. because it was demonstrated to be suitable microalgae 126 

that can easily be grown in wastewater and a wide range of conditions (Fernández Sevilla et al., 127 

2006). The strain was initially grown on a fertilizer medium (0.9 g·L-1 of NaNO3, 0.18 g·L-1 of MgSO4, 128 

0.14 g·L-1 of KH2PO4 and 0.003 g·L-1 of Kerantol), first using columns of 0.1 m3 and then in a tubular 129 

system of 3 m3 until it reached the concentration of 1 g•L-1. The biomass was then used as inoculum 130 

for the raceways. The culture was diluted with wastewater and kept in batch mode for one week, 131 

after that being operated in semi-continuous mode until it reached a stable biomass concentration 132 

(approximating a steady state condition). 133 

2.2. Environmental conditions and water composition 134 

As previously mentioned, environmental conditions in terms of temperature and radiation were 135 

continuously recorded throughout the entire period. The Photosynthetically Active Radiation (PAR) 136 

registered were ranged from 2000 µE·m-2·s-1 during the months of April and May, gradually 137 

decreasing during the colder seasons with peaks at 1200 µE·m-2·s-1, with an average of 620 µE·m-138 

2·s-1 and 350 µE·m-2·s-1respectevely. Regarding temperature, the highest values were recorded 139 

during the summer season (July-August), reaching peaks of 38°C, while in the spring season (April-140 
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May), they ranged between 25-35 °C, and in the autumn  season (September-November), between 141 

25-12 °C. 142 

Regarding the culture medium, it consisted of wastewater collected from the University of Almería 143 

during the entire data collection period, except for August when the water was sourced from the 144 

primary water treatment plant in the city of Almeria. In both instances, the water underwent pre-145 

treatment, involving the removal of solid particles through an industrial filter (Azud Helix, 200 µm), 146 

before being introduced into the culture. During the study period, the nutrient concentration of the 147 

wastewater varied over a wide range. Specifically, ammonium (NH4
+) concentration varies between 148 

10 - 400 g•m-3, nitrate (NO3
-) concentration ranged from 0- 13 g•m-3, phosphate (PO4

2-) between 30 149 

- 76 g•m-3, while the chemical oxygen demand (COD) between 100 – 600 gO2•m-3.    150 

2.3. Biomass concentration and nutrients analysis 151 

The influent wastewater and the filtered effluent were analysed in terms of nutrient content (N-NO3
-, 152 

N-NH4
+, P-PO4

3-) and COD. The biomass concentration in the culture was daily measured through 153 

the dry weight (DW) method. The culture was collected in the morning after the reactor sump, and 154 

100 mL were filtered in a 0.5 µm filter and let dry for 24h at 80°C in an oven. Regarding the nutrients, 155 

they were analysed through colourimetric methodologies in a spectrophotometer according to 156 

standard procedures (Standard IC 74246, Standard IC 38364, Standard IC 59755). The total COD 157 

was measured with Hanch-Lange kits (LCI-400) and the biodegradable soluble organic matter 158 

(BSMO) was estimated as a percentage of the total COD as reported in the literature by Pasztor I. 159 

et al., 2009. 160 

2.4. Data collection and analysis 161 

Experimental online data were collected every second by a set of sensors, connected to a 162 

Programming Logic Controller (PLC) and a Supervisory Control and Data Acquisition (SCADA) 163 

system. On the contrary, data coming from laboratory analysis as described in the previous section, 164 

were collected once a day. Given the big amount of data available, it was necessary to perform a 165 

prior data analysis following a procedure inspired by the “Cross Industry Standard Process Alliance 166 
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for Data Mining” (CRISP-DM) approach (Ncr and Clinton, 1999). This methodology is one of the 167 

most used among data mining problems and it is composed of six main steps: (i) Business 168 

understanding, (ii) Data understanding, (iii) Data preparation, (iv) Modelling, (v) Evaluation, and (vi) 169 

Deployment. In this research, the first five steps have been developed as briefly described below:  170 

I. Business understanding: the objective is to develop a model that can describe the evolution 171 

of microalgae-bacteria populations in wastewater-related systems. The aim is to develop a 172 

tool that allows the simulation of the variation of biomass and nutrient concentration with time 173 

as a function of environmental and process parameters. 174 

II. Data understanding: data have been collected as described in the previous section, studied, 175 

and analysed.  176 

III. Data preparation: Datasets have been ordered, cleaned, and prepared for the modelling step. 177 

IV. Modelling: the biological system has been modelled as described in the next sections. 178 

Stepping back to data preparation is often necessary. A part of the experimental data set has 179 

been used for the identification of the calibration parameters.  180 

V. Evaluation: the developed model has been validated with long-term outdoor dataset. If the 181 

quality of the model was not enough to reach the defined objective, the data preparation and 182 

modelling part has been reviewed. 183 

VI.  Deployment: this step was not addressed in this research. However, a web interface for 184 

model utilization will be developed in future works.  185 

3. Model development  186 

3.1. Model concept  187 

This work considers three microbial groups: microalgae, heterotrophic bacteria and nitrifying bacteria 188 

as they are the main actors in the nutrient uptake and the O2/CO2 fluxes (Figure 1). During the day, 189 

microalgae perform photosynthesis consuming the inorganic carbon and fixing nitrogen and 190 

phosphorus while producing O2. The preferred nitrogen form for microalgae growth is NH4
+, which is 191 

highly present in urban wastewater. Microalgae compete with nitrifying bacteria for the uptake of this 192 

compound since they use it to transform it into NO3
- during the nitrification. The nitrification process 193 
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involved the oxidation of NH4
+ to NO2

- by AOB and then NOB transform NO2
- into NO3

-. For this 194 

study, it is considered that the nitrification is complete because it was not registered a significant 195 

concentration of NO2
- in the culture (consistently below 5 g•m-3). Moreover, microalgae can use NO3

- 196 

as a form of nitrogen, but its consumption takes place only when ammonium is found below a given 197 

threshold (prior experimental analysis have estimated it as 80 g•m-3). Heterotrophic bacteria are 198 

considered the leading bacteria group as they are the main ones responsible for the degradation of 199 

organic matter. For the present work, the COD has been fractionated as proposed by Pasztor I. et 200 

al., 2009. Briefly, the total COD can be divided into two main fractions: the biodegradable (readily 201 

and slowly) and the non-biodegradable (soluble and particulate). Heterotrophic bacteria can 202 

consume only the readily biodegradable organic matter estimated as 22% of the total COD and it 203 

will be called BSMO (biodegradable soluble organic matter), as proposed by the same authors. 204 

Summarizing, the BSMO concentration is decreased in the culture due to the heterotroph's activity 205 

and it can be increased due to the cellular death and decay of the microorganisms present in the 206 

culture. Regarding the gas fluxes, the inorganic carbon necessary for microalgae growth is partially 207 

provided by the on-demand injection of CO2 for pH control and the natural release of CO2 given by 208 

bacteria during respiration. This study assumes that microalgae are never limited by inorganic 209 

carbon concentration, as CO2 injection always ensures enough carbon availability for microalgal 210 

growth, as already demonstrated by previous studies (Posadas et al., 2015). Additionally, 211 

experimental data performed into the system indicate that the liquid bulk alkalinity into the medium 212 

is never exhausted, preventing the loss of injected CO2 used for pH control. On the contrary, the O2 213 

is produced during photosynthesis by microalgae and used by bacteria for their respiration, and it is 214 

partially removed from the culture broth due to mass transfer phenomena, mainly aeration into the 215 

sump installed on the reactor. 216 

Main changes implemented from ABACO model 217 

Despite the ABACO model served as the starting point for the development of ABACO-2, significant 218 

modifications have been implemented to enhance prediction accuracy and process understanding. 219 

Indeed, the ABACO model proposed by Sánchez‐zurano et al., 2021, can be considered a 220 
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preliminary study, conducted with a limited expertise regarding microalgae cultivation phenomena. 221 

Furthermore, this model was developed using a restricted dataset and calibrated using data from 222 

laboratory-scale experiments conducted under controlled conditions. In contrast, with ABACO-2, the 223 

intention is to calibrate parameters under industrial conditions, utilizing a more extensive dataset that 224 

encompasses diverse operational and climatic scenarios. 225 

The foremost modification involved the integration of models to account for cell death and respiration, 226 

coupled with the variation in BSMO content within the culture, subsequently reduced by heterotrophic 227 

bacterial activity. This refinement also led to a reduction in the number of parameters necessitating 228 

calibration. As an additional parameter reduction strategy, it was assumed that phosphate 229 

consumption by bacteria is minimal and primarily relevant for microalgae. Consequently, phosphate 230 

consumption yields for these microorganisms were excluded from the calibration set. Regarding 231 

nutrient yields, equations were introduced to describe the dynamics of nutrient uptake by algae as a 232 

function of their concentration in the medium. In this context, process rates were adjusted to consider 233 

that NO3 consumption by algae is significant only when NH4 levels are substantially reduced. 234 

Furthermore, in relation to nutrients, a correction parameter was incorporated into the Monod 235 

equations to account for nutrient accumulation by microalgae, preventing zero growth in such 236 

scenarios. In the context of refining the calibration process, parameters associated with nutrient 237 

consumption by bacteria (originally calibrated) were set and adopted from the Activated Sludge 238 

Models (ASM), and an oxygen balance was introduced. The O2 concentration is a continuous 239 

measuremet within the reactor and it significantly facilitated parameter recognition during the 240 

calibration process. Finally, the parameters of the cardinal temperature equations were adjusted 241 

using those proposed by Casagli et al., 2021, as they are more representative, having been 242 

calibrated while considering winter seasons. 243 

3.2. Model components  244 

This section summarizes the main model components: 245 

• SNH4 [gNH4•m-3]: ammonium. It is present in the influent, and it is consumed especially by 246 

microalgae and nitrifying bacteria and in a lower amount by heterotrophic bacteria.  247 
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• SNO3 [gNO3•m-3]: nitrate. This form of nitrogen is generally null in the influent, but it is generated by 248 

the nitrifying bacteria during the nitrification process. Nitrate is consumed by microalgae when 249 

ammonium concentration in the medium is low.  250 

• SPO4 [gPO4•m-3]: phosphate. Phosphorus is present as a dissolved component in the water inlet. 251 

Its consumption is mainly due to the activity of microalgae, while the uptake from bacteria is 252 

considered negligible.  253 

• SBSMO [gBSMO•m-3]: biodegradable soluble organic matter. This is a fraction of the total COD, 254 

assumed as 22%. It is consumed by heterotrophic bacteria and generated during the cellular 255 

decay of both microalgae and bacteria.  256 

• SO2 [gO2•m-3]: dissolved oxygen. Oxygen is produced by microalgae during photosynthesis and 257 

consumed by microalgal respiration and by the activity of both bacterial populations. Moreover, 258 

the dissolved oxygen can be stripped to the atmosphere by bubbling air into the reactor sump.  259 

• Xalg [galg•m-3]: microalgae biomass. Microalgae proliferate starting from an initial inoculum, thus 260 

microalgae biomass is produced by fixing nitrogen and phosphorus, also consuming CO2 while 261 

producing oxygen. Microalgae concentration in the inlet wastewater is considered negligible, 262 

while a given amount is harvested every day. Moreover, their growth decreases due to cellular 263 

death.  264 

• Xnit [gnit•m-3]: nitrifying bacteria biomass. Nitrifying bacteria proliferate starting from an initial 265 

inoculum by consuming nitrogen in the form of ammonium and releasing nitrate. It is assumed 266 

that their concentration entering the system is negligible, while a given concentration is exiting 267 

during the harvesting. Moreover, their growth decreases due to cellular death. 268 

• Xhet [ghet•m-3]: heterotrophic bacteria biomass. Heterotrophic bacteria proliferate starting from an 269 

initial inoculum by consuming the BSMO and nitrogen in the form of ammonium. It is assumed 270 

that their concentration entering the system is negligible, while a given concentration is exiting 271 

during the harvesting. Moreover, their growth decreases due to cellular death.  272 

3.3. Boundary conditions  273 



11 
 

Concentrations must be always positive or equal to zero. This boundary condition can be expressed 274 

as in equation (1): when a concentration is approaching zero (assuming 𝜀 in the order of 10-8), its 275 

derivative has to be equal or more than zero, meaning that it cannot generate negative matters.  276 

𝑖𝑓   𝑋𝑖 ≤ 𝜀   →     �̇�𝑖|
𝑋𝑖=0

 ≥ 0      (1) 277 

As a result, all the balances implemented for this model have been implemented according to 278 

equation (2), guaranteeing the boundary conditions to be satisfied.  279 

�̇� = 𝑓(𝑥, 𝑦) ∙  
𝑋

𝑋 + 𝜀
            (2) 280 

3.4. Biological processes 281 

Table 1 summarizes the processes taken into consideration of the microalgae and the bacterial 282 

growth, while Table 2 is the relative matrix of the stoichiometric parameters. The mass balances for 283 

the microorganism’s growth have been built according to equation (3): 284 

𝐼𝑛𝑙𝑒𝑡 − 𝑂𝑢𝑡𝑙𝑒𝑡 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 =  𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛   (3) 285 

where the Inlet and Outlet are the flowrates in [m-3•s-1] in and out of the system, generically defined 286 

as (4) and (5):  287 

𝐼𝑛𝑙𝑒𝑡 = 𝑄𝑑𝑋𝑖𝑛     (4) 288 

𝑂𝑢𝑡𝑙𝑒𝑡 = 𝑄ℎ𝑋𝑜𝑢𝑡    (5) 289 

where Qd is the dilution flow rate in [m-3•s-1], Qh is the harvesting flow rate in [m-3•s-1], Xin/ Xout (or Si/ 290 

Sout) is the concentration of component inlet or outlet in [g•m-3].  291 

The reaction (ri, [g•m-3•day-1]) term can be obtained by summing the product of the yield coefficients, 292 

vi (Tables 2 and 5) and the process rate, ρj, as described in (6) (Henze et al., 2000)  293 

𝑟𝑖 = ∑ 𝜈𝑖,𝑗𝜌𝑗     (6)

𝑖

 294 

In summary, the processes considered in the ABACO-2 model are: 295 
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• ρ1: microalgae growth in NH4
+. Microalgae grow photosynthetically using NH4

+ as a nutrient 296 

source, and contemporarily consuming PO4
3+ and CO2 while producing O2. 297 

• ρ2: microalgae growth in NO3
-. Microalgae grow photosynthetically using NO3

- as a nutrient 298 

source, and contemporarily consuming PO4
3+ and CO2 while producing O2. The growth in this 299 

nitrogen source is activated only once the medium is decreasing in NH4
+ concentration.  300 

• ρ3: microalgae decay. This process includes both the algal biomass loss (decay), increasing the 301 

BSMO concentration in the medium, and the algal respiration that leads to a consumption of 302 

oxygen all over the entire process.   303 

• ρ4: nitrifying bacteria growth. Nitrifying bacteria growth consumes NH4
+ and O2 and produces 304 

NO3
-. 305 

• ρ5: nitrifying bacteria decay. Bacterial biomass loss due to their decay; it leads to an increase in 306 

the BSMO concentration.  307 

• ρ6: heterotrophic bacteria growth. Heterotrophic bacteria growth consuming the BSMO, O2 and 308 

NH4
+. 309 

• ρ7: heterotrophic decay. Bacterial biomass loss due to their decay (it leads to an increase in the 310 

BSMO concentration).  311 

3.4.1. Photosynthesis and respiration  312 

The growth rate as a function of light was modelled using the equation proposed by Molina (Grima 313 

et al., 1994), as described in equation (7), where Ik in [µE•m-2•s-1] is the irradiance constant that 314 

represents the equivalent irradiance necessary to reach half of the maximal growth rate, n is the 315 

shape constant and Iav is the average light inside the reactor in [µE•m-2•s-1].  316 

𝜇(𝐼𝑎𝑣) =  
 𝐼𝑎𝑣

𝑛

 𝐼𝑘
𝑛 +  𝐼𝑎𝑣

𝑛      (7) 317 

The average light inside the culture was expressed following equation (8), and it depends on the 318 

incident light I0 [µE•m-2•s-1], the extinction coefficient Ka [m2•g-1], the algal biomass concentration 319 

(Xalg) in [g•m-3] and the culture depth h [m].  320 
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𝐼𝑎𝑣 =  
𝐼0

𝐾𝑎𝑋𝑎𝑙𝑔ℎ
(1 − exp(−𝐾𝑎𝑋𝑎𝑙𝑔ℎ))    (8) 321 

Moreover, the average light was used to express the microalgal endogenous respiration as given by 322 

equation (9); where mmax and mmin are the maximum and the minimum respiration in [day-1], Ikr is the 323 

irradiance necessary to stop photosynthesis and let begin the respiration and nr is the shape form 324 

for respiration.  325 

𝑚𝑎𝑙𝑔 = 𝑚𝑚𝑖𝑛 +  
𝑚𝑚𝑎𝑥  𝐼𝑎𝑣

𝑛𝑟

𝐼𝑘𝑟
𝑛𝑟 + 𝐼𝑎𝑣

𝑛𝑟
    (9) 326 

Finally, bacterial decay has been taken into consideration as a constant effect during the cultivation 327 

process. mnit and mhet [day-1] have been modelled as a percentage of the maximum growth rate (as 328 

summarized in Table 4) corrected by a coefficient dependent on the temperature 𝜃, as described in 329 

equation (10).  330 

𝜃 =  𝜃𝑖(𝑇 − 20°𝐶)    (10) 331 

Where 𝜃𝑖 are specific parameters that depend on the bacterial population considered (Table 3). 332 

3.4.2. Influence of pH, temperature, dissolved oxygen and nutrients  333 

As described in Table 1, for each microorganism, the growth rate depends on a maximum specific 334 

growth rate µ value multiplied by a series of normalized factors that depends on the culture conditions 335 

of temperature, pH, O2 and nutrient concentration. The growth rates of microalgae exhibit a bell-336 

shaped function in response to temperature and pH. Initially, as temperature (or pH) increases from 337 

low values, the growth rate rapidly increases until it reaches its maximum, corresponding to the 338 

optimal parameter value. However, beyond the optimum, the growth rate decreases sharply with 339 

further increases in temperature (or pH). The pH parameters, minimum, maximum, and optimal 340 

values, were determined through laboratory measurements using the photo-respirometric method 341 

(Sánchez Zurano et al., 2021); Notably, bacterial parameters vary from those of microalgae, as their 342 

growth is favoured by higher values of pH (Table 4). In contrast, temperature parameters were 343 
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derived from previous modeling studies (Casagli et al., 2021), with the optimal temperature aligning 344 

closely with that of microalgae. 345 

The growth dependence can be described through a cardinal equation with inflexion, developed for 346 

the first time by Bernard et alt. (Bernard and Rémond, 2012) (11). Similarly, the model proposed by 347 

Ippoliti et al. was used to describe the pH dependence (Ippoliti et al., 2016) (12). 348 

𝜇 (𝑇)̅̅ ̅̅ ̅̅ ̅ =  
(𝑇 − 𝑇𝑚𝑎𝑥)(𝑇 − 𝑇𝑚𝑖𝑛)2

(𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛)[(𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛)(𝑇 − 𝑇𝑜𝑝𝑡) − (𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑎𝑥)(𝑇𝑜𝑝𝑡 + 𝑇𝑚𝑖𝑛 − 2𝑇)]
    (11) 349 

𝜇(𝑝𝐻)̅̅ ̅̅ ̅̅ ̅̅ =
(𝑝𝐻 − 𝑝𝐻𝑚𝑖𝑛)(𝑝𝐻 − 𝑝𝐻𝑚𝑎𝑥)2

(𝑝𝐻𝑜𝑝𝑡 − 𝑝𝐻𝑚𝑖𝑛)[(𝑝𝐻𝑜𝑝𝑡 − 𝑝𝐻𝑚𝑖𝑛)(𝑝𝐻 − 𝑝𝐻𝑜𝑝𝑡) − (𝑝𝐻𝑜𝑝𝑡 − 𝑝𝐻𝑚𝑎𝑥)(𝑝𝐻𝑜𝑝𝑡 + 𝑝𝐻𝑚𝑖𝑛 − 2𝑝𝐻)]
   (12) 350 

Regarding the effect of dissolved oxygen, it is known that high concentrations are inhibitory for 351 

microalgal photosynthesis. According to previous studies on Scenedemsus sp., the growth rate can 352 

be reduced by 25% when the concentration is increased up to 150% Sat, while below 250% Sat the 353 

photosynthesis is completely stopped. This effect was modelled using the equation proposed by 354 

Costache et al., 2013 and reported in equation (13). On the contrary, oxygen has been modelled as 355 

a nutrient source for bacteria growth, as described below.  356 

𝜇(𝑂2)𝑎𝑙𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 1 − (

𝑆𝑂2

𝑆𝑂2 ,𝑚𝑎𝑥
)

𝑧

    (13) 357 

Finally, the influence of nutrient concentration on the growth rate was taken into account. As 358 

mentioned, nitrogen is a fundamental macronutrient that must be provided to microalgae to ensure 359 

their growth. The inorganic nitrogen can be assimilated into acids for the protein formations in many 360 

forms, such as NH+
4, NO-

2 and NO-
3. However, in this study, the main nitrogen form present in 361 

wastewater was ammonium, while nitrate was formed only after the complete nitrification process. 362 

Ammonium is the favoured nitrogen form for microalgae as it requires less energy to be assimilated. 363 

Only after a given concentration threshold do microalgae begin to consume NO3, which will be 364 

transformed into NH4 to be assimilated into the cells. Phosphate is another fundamental 365 

macronutrient for microalgal growth, as it is necessary for the synthesis of RNA into the nucleotides, 366 

while it is assumed that this component is not consumed by bacteria. The growth rate as a function 367 
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of the substrate concentration, has been modelled using the Monod equation, as described in (14),  368 

(Monod, 1949) 369 

𝜇(𝑆𝑖)̅̅ ̅̅ ̅̅ ̅ =  
𝑆𝑖

𝑆𝑖 + 𝐾𝑠
  (14) 370 

The Monod equations for the nitrogen and the phosphorus for the process n.1 and 2 in Table 1 have 371 

been modified by the inclusion of a correction factor. With this modification, zero-growth when no 372 

longer nitrogen/phosphate are present in the medium was avoided. Indeed, it is already known that 373 

microalgae can store nutrients in cells guaranteeing their survival and growth even when the medium 374 

is limited in nutrients. This fact can be represented by more complex models such as the Droop 375 

model (Droop, 1970), which considers the cells quota of the limiting element. However, quotas are 376 

difficult to be estimated as they required specific laboratory techniques. For this reason, in this work, 377 

a simplified description of this phenomenon was chosen by correcting the concentrations in the 378 

Monod equation as the sum of the component available in the medium and the one present in the 379 

algal biomass (equal to 10% in nitrogen and 2% in phosphorus, multiplied by the “assimilation” factor 380 

α) (14), (15).  381 

𝑆𝑁 = 𝑆𝑁,𝑚𝑒𝑑𝑖𝑢𝑚 + 𝑋𝑎𝑙𝑔 ∗ 0.1 ∗ 𝛼   (15) 382 

𝑆𝑃 = 𝑆𝑃,𝑚𝑒𝑑𝑖𝑢𝑚 + 𝑋𝑎𝑙𝑔 ∗ 0.02 ∗ 𝛼   (16) 383 

The kinetic parameters used for the Monod equation are summarized in Table 3.    384 

3.4.3. Nutrient yields 385 

Nutrient yield can be defined as the amount of nutrients consumed from the medium per gram of 386 

biomass produced. In the literature, it can be found that the nutrient yield for algae is not constant, 387 

but changes depending on the nutrient amount present in the medium. More specifically, it was found 388 

that the nutrient uptake rate is higher at lower nutrient concentrations until it is reached a maximum. 389 

This can be explained by some biological mechanisms like the “luxury uptake” (Solovchenko et al., 390 

2019): microalgae store a larger amount of nutrients than the ones necessary for immediate growth. 391 

It is possible to suppose that nutrients yield not only depends on the nutrient concentrations in the 392 
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medium but even on environmental conditions and process parameters. However, modelling this 393 

phenomenon is complex, and in the literature can be found different results that mainly depend on 394 

the strain used and the type of experiment performed. The equations developed by Zurano et al., 395 

2021 were taken as a good approximation of ammonium and phosphorus consumption rates by 396 

microalgae, as described in equation (17), where S is the substrate consumed by microalgae (NH4
+, 397 

NO3
- or PO4

-3). This was developed as a combination between and hyperbolic and a cardinal 398 

equation. The hyperbolic equation, typically employed for describing microbial growth kinetics, helps 399 

explain the increase in nitrogen and phosphorous coefficient yields with higher nitrogen or 400 

phosphorous concentrations in the medium. Furthermore, to account for the observed peaks in both 401 

nitrogen and phosphorous coefficient yields, the cardinal equation has been applied within 402 

predefined minimum and maximum ranges. The cardinal model enables the definition of maximum, 403 

minimum, and optimal conditions for any variable, and it characterizes the influence of these 404 

variables on the biological system's performance as a Gaussian function. All the parameters values 405 

are summarized in Table 5.  406 

𝑌𝑠,𝑎𝑙𝑔 = [
𝑌𝑚𝑎𝑥  𝑆

𝑡𝑆

𝑆𝑁
𝑡𝑠  𝐾𝑠,𝑌𝑠

𝑡𝑆
] + [

(𝑆 − 𝑆𝑚𝑎𝑥) (𝑆 − 𝑆𝑚𝑖𝑛)2

(𝑆𝑜𝑝𝑡 − 𝑆𝑚𝑖𝑛) (((𝑆𝑜𝑝𝑡 − 𝑆𝑚𝑖𝑛)(𝑆𝑁 − 𝑆𝑜𝑝𝑡 )) − ((𝑆𝑜𝑝𝑡 − 𝑆𝑚𝑎𝑥)(𝑆𝑜𝑝𝑡 + 𝑆𝑚𝑖𝑛 − 2𝑆)))
]  (17) 407 

Regarding the nutrient yield of bacteria, the ones proposed by the ASM models (Henze et al., 2000) 408 

were considered a good approximation, and they are summarized in Table 3.  409 

3.4.4. Dissolved oxygen  410 

During the day, microalgae produce oxygen through photosynthesis, which is partially consumed for 411 

algal and bacteria respiration. At the same time, dissolved oxygen can be desorbed to the 412 

atmosphere according to two different phenomena: (i) natural mass transfer from the culture to the 413 

atmosphere in the reactor channels and paddlewheel; (ii) oxygen release and consecutive reduction 414 

of the culture dissolved oxygen thanks to the bubbling of air in the reactor sump. The two phenomena 415 

are represented by two different mass transfer coefficients Kla (equal to 1.0 and 110 h-1 respectively) 416 

and Henry law as described in (18):  417 
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𝑚𝑂2
= 𝐾𝑙𝑎𝑖(𝐻𝑂2

𝑃𝑂2
− 𝑆𝑂2

)  (18) 418 

4. Model parameters 419 

4.1. Calibration procedure  420 

Figure 2 represents the calibration strategy adopted. The experimental dataset used to calibrate the 421 

model parameters was selected to include data from different seasons, such as summer, winter, and 422 

intermediate seasons (28/04-15/05, 9/08-15/08, 1/11-15/11). In total, the calibration days chosen 423 

were 41 (20% of the total amount of data). In this way, it was possible to address the parameters by 424 

accounting for various climatic conditions. The final set of parameters was chosen once the objective 425 

function described in (19) was minimized.  426 

𝑂𝑏𝑗 =  ∑
∑(𝑦𝑠𝑖𝑚 − 𝑦𝑒𝑥𝑝)2

𝜎𝑒𝑥𝑝
  (19) 427 

where ysim is the model output, yexp the experimental data and σexp is the experimental data standard 428 

deviation. The experimental data used for the model calibration regarded Xtot, SNH4, SPO4, SNO3, SBSMO, 429 

SO2 where Xtot was defined as the sum of Xalg, Xnit and Xhet and evaluated experimentally as the total 430 

dry weight. The model calibration was carried out using Scipy library in Python and “Nelder-Mead” 431 

algorithm which is a robust algorithm mainly used for solving unconstrained optimization problems 432 

(Gao and Han, 2012). The list of calibrated parameters with their corresponding values is presented 433 

in  434 

Table 6.  435 

4.2. Sensitivity analysis  436 

Table 7 presents the findings of a sensitivity analysis that examined all biological and process 437 

parameters together with the associated standard deviation. In this analysis, each parameter was 438 

individually variated by +/-20% from its nominal value, and the percentage error (20) between the 439 

nominal parameter value (ynom) and the variated parameter value (yvar) was evaluated.  440 

% 𝑒𝑟𝑟 =  
∑|𝑦𝑛𝑜𝑚 − 𝑦𝑣𝑎𝑟|

∑ 𝑦𝑣𝑎𝑟
∗ 100   (20) 441 
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Results indicate that the most sensible parameters are the ones for microalgae growth rate as a 442 

function of light (Iav, Ka, n), the maximum growth rates of all the organisms (µmax,alg, µmax,nit, µmax,het) 443 

and the nutrient yield of NH4
+ and NO3

- (YNH4,alg, YNO3,nit, YNH4,nit). Additionally, the cardinal parameters 444 

(Tmax, Tmin, Topt) of temperature and pH (pHmax, pHmin, pHopt) show to be highly sensitive. Given their 445 

significant impact on the final prediction, these parameters should be carefully selected based on 446 

the biological system analysed and the climatic conditions. Notably, only a few of the nutrient yields 447 

were deemed relevant to model error.  448 

4.3. Parameters uncertainty and error propagation  449 

Once the most sensible parameters have been identified, it was possible to calculate the model 450 

variance and the confidence interval (Denis Dochain, 2001). From the sensitivity analysis, it was 451 

possible to define a sensitivity matrix as (21), which collects the functions of the given output y by 452 

variating the parameter pj.  453 

𝑆 = [
𝛿𝑦

𝛿𝑝1
 ;  

𝛿𝑦

𝛿𝑝2
 ;  … ;   

𝛿𝑦

𝛿𝑝𝑗
 ]   (21) 454 

The standard deviation of the parameter can be calculated as (22), where Cjj is the covariance matrix 455 

and pj is the associated parameter:  456 

𝜗𝑗
2 = 𝑝𝑗√𝐶𝑗,𝑗     (22) 457 

The covariance matrix is the inverse of the Fisher information matrix (23), defined as the variance of 458 

the score function (Fujita et al., n.d.).  459 

𝐹 = 𝐶−1   (23) 460 

And it can be calculated starting from the sensitivity analysis according to (24):  461 

𝐹 = 𝑆𝑇𝑄−1𝑆  (24) 462 

where Q is the array of the measured standard deviation.  463 
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Once the covariance of the parameter has been evaluated, it was possible to estimate the model 464 

error propagation of the output variable y at the given instant time t as (25): 465 

𝜎𝑦(𝑡) =  √∑ 𝑆𝑖(𝑡)2 𝜗𝑝𝑗
2

𝑚

𝑖=1

     (25) 466 

The model confidence interval at 95% has been calculated on the model output as (26):  467 

[𝑦𝑖 − 1.95𝜎𝑦 ;   𝑦𝑖 + 1.95𝜎𝑦]     (26) 468 

5. Model validation  469 

The model prediction accuracy has been evaluated by calculating the normalized squared root error 470 

(NRMSE) and Theil’s inequality coefficient (TIC) (H. Theil. et al., 1959), as described in (26), (27). 471 

Results are reported in Table 8, it is important to note that when the TIC is lower than 0.3, it is 472 

possible to consider a good agreement between the experimental data and the model predictions. 473 

Additionally, Figure 3 to Figure 5 represent the model estimation and the respective experimental 474 

data, as described in the next session.  475 

𝑁𝑅𝑀𝑆𝐸 =  
√∑(𝑦𝑠𝑖𝑚 − 𝑦𝑒𝑥𝑝)

2

(𝑦𝑒𝑥𝑝,𝑚𝑎𝑥 − 𝑦𝑒𝑥𝑝,𝑚𝑖𝑛)
     (26) 476 

𝑇𝐼𝐶 =

√∑(𝑦𝑠𝑖𝑚 − 𝑦𝑒𝑥𝑝)
2

∑ 𝑦𝑠𝑖𝑚
2 + ∑ 𝑦𝑒𝑥𝑝

2     (27) 477 

Overall, it is possible to affirm that the model can accurately reproduce the biological system. The 478 

ABACO-2 model is remarkably accurate for describing the total biomass concentration and the 479 

nutrient concentration evolution (NRMSE between 0.14 and 0.23, TIC between 0.16 and 0.24). 480 

Additionally, the model accurately can trace the dissolved oxygen in the culture (NRMSE= 0.14, 481 

TIC=0.21).  482 

6. Discussion  483 

6.1. Simulation results 484 
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Although microalgae-bacteria consortia are considered a promising technology for wastewater 485 

treatment, they still address several challenges. An accurate microalgae-bacteria model is a powerful 486 

tool to overcome the bottlenecks of this technology (Aparicio et al., 2023). The ABACO-2 model aims 487 

to act as a tool for robust and accurate prediction of the evolution of biomass concentration in a 488 

microalgae-bacteria system, and, therefore, to differentiate between the evolution of both 489 

populations in the face of operational and environmental conditions. Figure 3A represents the 490 

evolution of the total biomass concentration from 15th May to 15th November. The dots represent the 491 

experimental data while the model is shown with a solid line, and the shading is the model confidence 492 

interval at 95%. Total biomass is mean the sum of the contributions of algae and bacteria that can 493 

be approximated to the biomass experimentally evaluated through the dry weight method. The 494 

results showed that the model reproduces the trend of the experimental data, with a NRMSE=0.21 495 

and TIC=0.16 (Table 8). The concentration of heterotrophic and nitrifying bacteria over the study 496 

period is shown in Figure 3B. According to the simulations, heterotrophic bacteria exhibit higher 497 

concentrations than nitrifying bacteria as they vary between 0 and 80 ghet•m-3, whereas nitrifying 498 

bacteria range from 0 to 10 gnit•m-3. Regarding heterotrophic bacteria, the strong fluctuations 499 

observed could be explained by the large variability in the COD concentration in the influent (100 – 500 

600 gO2•m-3). This variability arises from the use of two different types of water sources, one from 501 

the University and the other from the city, with the latter typically containing a higher organic matter 502 

content.The concentration over the months of the nitrifying bacteria was lower, considering their 503 

slower maximum growth rate compared to the one of heterotrophic bacteria. Results show that the 504 

concentration of nitrifying bacteria increased from October to November. This increase may be due 505 

to a reduction in the aeration rate in this specific period, which decreased from 200 L•min-1 (set-point 506 

in normal operations) to 50 L•min-1. During that months, the dissolved oxygen concentration 507 

increased in the culture, as the aeration was insufficient to remove it efficiently. Previous studies 508 

have shown that dissolved oxygen concentration strongly influences the growth of microalgae, as it 509 

has an inhibitory effect on photosynthetic activity (Rossi et al., 2020a). Thus, by decreasing the 510 

concentration of microalgae, nitrifying activity is favoured, as both populations compete for the N-511 

NH4
+ present in the medium. Previous authors suggested that competition for N-NH4

+ is the most 512 
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frequently negative interaction between microalgae and AOB (Aparicio et al., 2022b). The microalgal 513 

biomass concentration is represented in Figure 3C. Algal productivity is primarily influenced by 514 

variations in light and temperature throughout the seasons (Muñoz and Bernard, 2021). During 515 

spring, the biomass concentration is approximately 0.7 galg•L-1, while in summer it can reach higher 516 

values of up to 1.5 galg•L-1. However, during the colder seasons, it decreases to 0.3 galg•L-1. Overall, 517 

the model effectively captures the evolution of biomass concentration, highlighting the prevalence of 518 

algae biomass compared to bacterial biomass within the culture. Although there is a lack of 519 

experimental data on bacterial concentration, this outcome remains reasonable, supported by 520 

analysis conducted in previous studies on similar systems (Sánchez Zurano et al., 2020).  521 

Figure 4 represents the PO4
3- NO3

-,  BSMO and NH4
+  concentration in g•m-3 respectively. In Figure 522 

4A it is shown that the phosphate concentration in the culture can vary between 10 and 60 gPO4•m-3. 523 

The uptake of this component depends only on the activity of microalgae, given that the influence of 524 

bacteria can be considered negligible. In previous studies, it has been demonstrated that the 525 

consumption of phosphate is efficient, but not sufficient to lower it to a concentration below the 526 

minimum required for the waster discharge (Nordio et al., 2023). Figure 4B represents the NO3
- 527 

concentration, that remained constant from May to October, however, from October to November, it 528 

was observed an increase in the NO3
- concentration, mainly generated during the nitrification process 529 

by nitrifiers. The concentration of this compound can vary greatly (between 0 and 300 gNO3•m-3) 530 

depending on the activity of the nitrifying bacteria, which, as already explained, was enhanced at the 531 

end of the study. Nitrate increase and accumulation in the system can be considered one of the main 532 

challenges in microalgae-bacteria-based systems. A decrease in microalgae activity leads to an 533 

increase in nitrifying activity, which results in the accumulation of nitrate in the medium. The nitrate 534 

generated must be consumed by the microalgae. However, as long as ammonium is available in the 535 

medium, it will not be consumed or will be consumed slowly, in breach of discharge regulations. 536 

Therefore, ensuring correct microalgae activity is essential to achieve treated water at the end of the 537 

process. Regarding the organic matter, its degradation is due to the activity of the heterotrophic 538 

bacteria and it can be present with a concentration of up to 250  gO2•m-3 in the culture (Figure 4C).  539 

Finally, in Figure 4D there is the evolution of the ammonium concentration. It is possible to observe 540 
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that, despite the high NH4
+ concentration entering the system with the wastewater, in the outlet its 541 

concentration is mostly lower than 60 gNH4•m-3, meaning that microalgae and nitrifiers can uptake 542 

this nutrient with a high efficiency. The peak generated by the simulation is mainly due to the high 543 

concentration of this compound entering the system during the dilution/harvesting process at a 544 

specific time of the day. 545 

Concluding, Figure 5 represents the simulation of the dissolved oxygen in the culture. Specifically, 546 

Figure 5A shows the experimental and simulated values of dissolved oxygen concentration along 547 

the entire study period, while Figure 5B shows the representation of the dissolved oxygen 548 

concentration in a shorter period. The concentration of dissolved oxygen can reach a high 549 

concentration during the day due to the microalgal photosynthesis (up to 25 mgO2•L-1), while it 550 

decreases to anoxic conditions during the night due to the couple effect the algae and bacteria 551 

respiration.  552 

The results obtained show that the evolution of nutrients in the system together with the simulated 553 

biomass concentration agree with those obtained in the experimental data, demonstrating the 554 

usefulness of ABACO-2 in microalgae-based systems for wastewater treatment, and its potential on 555 

an industrial scale. 556 

6.2. Case study: evaluating microalgae-bacteria consortia as function of the operational 557 

conditions 558 

Studying the populations living in wastewater systems treated with microalgae poses a significant 559 

challenge, primarily because there are no fully validated protocols to effectively differentiate between 560 

bacterial and microalgal communities. The primary method for assessing biomass in raceway 561 

reactors is dry weight, encompassing contributions from both algae and bacteria. Separating them 562 

remains challenging yet significant, as their ratios impact various process outcomes, such as 563 

biomass quality and water remediation efficiency. Some methods, like successive filtrations based 564 

on cell size differences, have been explored, though they often result in a notable presence of 565 

bacteria clinging to microalgae due to cell aggregation (Sánchez-Zurano et al., 2020). Alternative 566 

methods, including flow cytometry techniques (FCM), prove valuable in assessing the relative 567 
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composition of mixed microorganism populations, encompassing both prokaryotes and eukaryotes. 568 

This approach discriminates between groups by analyzing intrinsic characteristics of individual cells, 569 

such as size, complexity, and autofluorescence. Additionally, molecular identification techniques like 570 

amplification of 16S and 18S rDNA sequences serve to evaluate microbial community structure 571 

(Barreiro-Vescovo et al., 2021). Alongside these methods, photo-respirometry, based on traditional 572 

respirometry, has been employed to discern population differences (Rossi et al., 2018). However, 573 

these methods lack a direct correlation in biomass concentration (g·L-1), which is more 574 

straightforward to interpret. 575 

In this context, mathematical models offer a useful tool of indirectly study how the balance between 576 

populations evolves. Operational conditions, notably cultivation height, dilution/harvesting strategy, 577 

and oxygen removal capacity, exibihit a substantial influence. This section presents a case study 578 

employing the ABACO-2 model to assess how the proportion between algae and bacteria shifts 579 

based on the operational conditions. Simulations have been carried out using the same solar 580 

radiation and temperature registered for the validation of the model. On the contrary, the inlet values 581 

of nutrient concentration have been maintained constant (as a average values measured in the 582 

wastewater medium) in order to avoid their influence in the evaluation of the process conditions (180 583 

mg·L-1 NH4
+, 30 mg·L-1 PO4

3-, 80 mg·L-1  BSMO, 3.4 mg·L-1  NO3
-).  584 

6.2.1. Culture height 585 

The cultivation height is one of the fundamental parameters to consider when operating raceway-586 

type reactors as it significantly influences the penetrative capacity of light within the cultivation. It has 587 

been demonstrated that light reaches the cells only in the first three centimeters of culture, while the 588 

rest remains in a state of darkness due to an effect of autoshading, and, therefore, photosynthetically 589 

inactive. Furthermore, light penetration depends on other factors, such as the extinction coefficient 590 

(Ka), which can vary from cultivation to cultivation and depends on the property of microalgae to 591 

scatter the received light (Barceló-Villalobos et al., 2019). 592 

In general, facilities that aim to treat large quantities of water prefer to operate at a rather high culture 593 

height, around 30 cm. However, this could be a disadvantage in terms of producing high-quality 594 
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biomass, as the dark zone favors the growth of bacterial populations over phototrophic ones. Figure 595 

6 A,B and C show the populations varying with cultivation height among the seasons (summer, 596 

spring and autumn). As expected, at 8 cm, the algal productivity is favored at the expense of the 597 

amount of treated water, with the maximum concentration reached in spring as it is the period when 598 

the maximum irradiance is reached (Figure 6A). The possibility of being able to increase productivity 599 

by reducing the culture height has already been studied through the development of new reactors 600 

called "thin layers" that operate at around 2 cm; they have also been tested for treating wastewater 601 

in previous studies (Morillas-España et al., 2021a). On the contrary, microalgal concentration 602 

decreases as much as the culture height increases, mitigating the effects related to the different 603 

seasons, in favour of the proliferation of the bacterial population (Figure 6B,C). This is particularly 604 

evident in the case of nitrifiers. An increased water depth and greater availability of ammonium, 605 

owing to a reduced uptake capacity by microalgae, enable an increase in their activity. Previous 606 

works demonstrated that the depth of the culture has a striking effect on the composition of the 607 

microalgae-bacteria consortia, specially in relative abundance of nitrifiers (Figure 6C). Remarkably, 608 

at an 8 cm depth where algae activity is more significant, ammonium consumption mainly occurs 609 

within the algae population, resulting in minimal involvement of nitrifying bacteria. Conversely, 610 

variations in cultivation height appear to have little effect on the concentration of heterotrophic 611 

bacteria (Figure 6B). This is because they do not compete with microalgae for nutrient uptake like 612 

nitrifying bacteria; their primary substrate is organic carbon. 613 

In conclusion, the choice of the optimal culture height is of relevance and its regulation mainly depend 614 

on the specific goals of the remediation process. These goals may involve achieving high-quality, 615 

productive biomass or ensuring efficient water treatment on a larger scale. While a lower culture 616 

height is generally recommended to facilitate light penetration, further studies should be carried to 617 

avoid heat accumulation and the cellular death. Moreover, it's essential to recognize that significantly 618 

increasing the culture depth could enhance the activity of nitrifying bacteria and lead to the 619 

accumulation of NO3
- within the reactor.  Based on the outcomes of this simulation study, a culture 620 

height of 15 cm appears as a good compromise between treated water quantity, productivity, and 621 

balance between algal and bacterial populations. 622 
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6.2.2. Dilution/harvesting rate 623 

The harvesting/dilution factor is defined as the reverse of the hydraulic retention time (in day-1) and 624 

it plays a crucial role in microalgae industrial production. When deciding on the best approach to 625 

adopt, key considerations include the optimal dilution rate and its application method - whether 626 

through continuous or semi-continuous mode. In the first case, dilution occurs gradually over the 12 627 

hours of daylight, while in the latter, both dilution and harvesting take place at specific moments of 628 

the day. Figure 6 D, E and F illustrate how varying the dilution rate can impact the productivity and 629 

composition of algal-bacterial populations, assuming to operate the reactor in a semi-continous 630 

mode. The optimal dilution rates for algae range between 0.15 to 0.2 day -1, exceeding these rates 631 

leads to a significant decrease in productivity (Figure 6D). This finding is consistent with previous 632 

research in similar raceway reactors, which suggested a fixed optimal dilution rate of 0.2 day -1 633 

throughout the year (Morillas-España et al., 2020). Concerning the bacterial population, it is evident 634 

that nitrifying activity decreases significantly beyond a dilution rate of 0.2 day -1. This phenomenon, 635 

known as "culture washout," indicates that the growth rate of nitrifying bacteria lags behind the 636 

dilution rate, potentially affecting process effectiveness (Figure 6F). Conversely, a contrasting 637 

positive impact is observed on heterotrophic bacteria with increased dilution rates (Figure 6E). This 638 

could be attributed to their rapid growth rate and the enhanced organic matter influx, promoting 639 

proliferation. 640 

In summary, the simulations presented in this study underscore the critical importance of selecting 641 

the optimal dilution factor for the efficient operation of raceway reactors. Traditionally, dilution factors 642 

are determined experimentally through batchs, which establish the maximum growth rate and 643 

consequently the dilution rate. Alternatively, some studies have suggested comparing reactors at 644 

different dilutions operated in parallel. While these methods are effective, they can be laborious and 645 

time-consuming. Furthermore, conventional laboratory techniques primarily evaluate productivity in 646 

terms of dry weight without delving into the dynamics of the populations involved. Therefore, our 647 

research demonstrates that a simulation-based approach offers a viable alternative for identifying 648 

the most effective dilution and harvesting strategies. 649 
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6.2.3. Air desorption  650 

The concentration of oxygen in a microalgae culture is crucial in biological systems. When oxygen 651 

levels surpass air saturation, they can induce inhibitory effects due to the diffusion of dissolved 652 

oxygen through microalgae membranes, resulting in oxidative stress on the cells. This inhibitory 653 

impact becomes more pronounced with prolonged exposure to elevated oxygen levels (Antonino 654 

Baez and Joseph Shiloach, 2014). Microalgae, as photosynthetic organisms, generate oxygen while 655 

consuming carbon dioxide, leading to its accumulation in the culture. Studies, such as the one 656 

conducted by Rossi et al. in 2020, have shown that excessive oxygen accumulation in cultures can 657 

hinder microalgal cell growth (Rossi et al., 2020b). However, there is a scarcity of research assessing 658 

how oxygen levels actually influence productivity on a large scale. The prevailing assumption is that 659 

oxygen is naturally removed through channels or within the paddlewheel zone. Nonetheless, our 660 

experimental data presented herein emphasize the necessity of air injection to reduce oxygen levels 661 

in the reactor. 662 

Figure 6G, H, and I illustrate the simulation results in scenarios both without air injection and with a 663 

Kla equal to 110 h-1. Once again, it is evident that forced air input is advantageous in promoting algal 664 

population production compared to bacterial populations (Figure 6G). Specifically, when air is not 665 

removed, microalgal concentration drastically decreases by 65%, underscoring the significance of 666 

air injection in the reactor to lower dissolved oxygen levels. Concerning the bacteria, it's notable that 667 

air injection predominantly affects nitrifying population, with heterotrophic ones being less affected. 668 

Heterotrophic batteries exhibit a slight decrease in concentration when air isn't injected. Conversely, 669 

nitrifying batteries show significant growth when oxygen isn't removed from the reactor using 670 

compressed air. These results align with the model validation discussed earlier and may offer an 671 

explanation for occasional NO-
3 accumulations in cultures. As previously explained, validation data 672 

indicated increased nitrification activity when air injection was reduced from 200 L min -1 to 50 L min-673 

1, unfavoring algal growth but favoring nitrification. These simulations confirm this trend, although 674 

further experimental studies are needed for confirmation. 675 
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In conclusion, these simulations reaffirm the critical significance of oxygen removal from the reactor, 676 

not only for enhancing productivity but also for ensuring effective water remediation. 677 

Conclusions  678 

ABACO-2 is a comprehensive model for microalgae-bacteria consortia in wastewater systems. The 679 

model was calibrated and validated in a pilot-scale wastewater treatment reactor, exposed to 680 

environmental changes and fed with real urban wastewater (with daily changes in the concentration 681 

of nitrogen, phosphorus and organic matter), over a long period (May-November). The model 682 

allowed to predict the biomass, dissolved oxygen and nutrient concentration evolution with high 683 

accuracy. Overall, the use of the ABACO-2 model's relative simplicity allows for good predictions 684 

while offering advantages in terms of understanding, practicality, efficiency, and versatility. 685 

Concluding, the ABACO-2 model can be considered a useful biological model for the description of 686 

algae-bacteria in wastewater systems. In order to increase the robusteness, in the future it will be 687 

necessary to carry out additional validation studies in several data set (accounting for different 688 

climatologies and wastewater types)  and in higher industrial scales. 689 
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Tables 857 

Table 1.- ABACO-2 model process rates 858 

n. Process  Process rate [g•m-3•day-1]  

1 Microalgae growth on NH4  

2 Microalgae growth on NO3  

3 Microalgae decay  

4 Nitrifying bacteria growth   

5 Nitrifying bacteria decay  

6 Heterotrophic bacteria growth  

7 Heterotrophic bacteria decay  

 859 

Table 2.- ABACO-2 yields matrix 860 

 Component i SNH4 

  
SNO3 

 

SPO4  SBSMO  SO2   Xalg  Xnit  Xhet  

j Process [gNH4•m-3] [gNO3•m-3] [gPO4•m-3] [gBSMO•m-3]  [gO2•m-3] [galg•m-3] [gnit •m-

3] 
[ghet •m-3] 

1 Microalgae growth on 
NH4 

−𝑌𝑁𝐻4,𝑎𝑙𝑔  −𝑌𝑃𝑂4,𝑎𝑙𝑔  +𝑌𝑂2,𝑎𝑙𝑔 1   

2 Microalgae growth on 
NO3 

 −𝑌𝑁𝑂3,𝑎𝑙𝑔 −𝑌𝑃𝑂4,𝑎𝑙𝑔  +𝑌𝑂2,𝑎𝑙𝑔 1   

3 Microalgae decay     1 − 𝑓𝑎𝑙𝑔  −𝑌𝑂2,𝑎𝑙𝑔 -1   

4 Nitrifying bacteria 
growth 

−𝑌𝑁𝐻4,𝑛𝑖𝑡 +𝑌𝑁𝑂3,𝑛𝑖𝑡   −𝑌𝑂2,𝑛𝑖𝑡  1  

5 Nitrifying bacteria 
decay 

   1 − 𝑓𝑏𝑎𝑐   -1  

6 Heterotrophic 
bacteria growth 

−𝑌𝑁𝐻4,ℎ𝑒𝑡   −𝑌𝐵𝑆𝑀𝑂 −𝑌𝑂2,ℎ𝑒𝑡   1 

7 Heterotrophic 
bacteria decay 

 
 

  1 − 𝑓𝑏𝑎𝑐    -1 

 861 

 862 

Table 3.- Stoichiometric coefficients. 863 

Parameter Value Units Source  

𝑌𝑁𝐻4,𝑛𝑖𝑡 7.9 𝑔𝑁𝐻4
∙ 𝑔𝑛𝑖𝑡

−1 (Henze et al., 2000) 

𝑌𝑁𝑂3,𝑛𝑖𝑡 26.7 𝑔𝑁𝑂3
∙ 𝑔𝑛𝑖𝑡

−1 (Henze et al., 2000) 

𝑌𝑁𝐻4,ℎ𝑒𝑡 0.16 𝑔𝑁𝐻4
∙ 𝑔ℎ𝑒𝑡

−1 (Henze et al., 2000) 

𝑌𝐵𝑆𝑀𝑂 2.3 𝑔𝐵𝑆𝑀𝑂 ∙ 𝑔ℎ𝑒𝑡
−1 (Henze et al., 2000) 

𝜇𝑚𝑎𝑥,𝑎𝑙𝑔 ⋅ 𝜇(𝐼𝑎𝑣) ⋅ 𝜇(𝑇) ⋅̅̅ ̅̅ ̅̅ ̅̅ 𝜇(𝑝𝐻)̅̅ ̅̅ ̅̅ ̅̅ ⋅ 𝜇(𝑂2)𝑎𝑙𝑔 ⋅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝜇(𝑁 − 𝑁𝐻4) ⋅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝜇(𝑃 − 𝑃𝑂4)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⋅ 𝑋𝑎𝑙𝑔  

 𝑚 ⋅ 𝑋𝑎𝑙𝑔  

𝜇𝑚𝑎𝑥,𝑛𝑖𝑡 ⋅ 𝜇𝑛𝑖𝑡(𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅ ⋅ 𝜇𝑛𝑖𝑡(𝑝𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⋅ 𝜇𝑛𝑖𝑡(𝑂2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⋅ 𝜇𝑛𝑖𝑡(𝑁 − 𝑁𝐻4)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⋅ 𝑋𝑛𝑖𝑡  

 𝜃𝑛𝑖𝑡 ⋅  𝑚𝑛𝑖𝑡 ⋅ 𝑋𝑛𝑖𝑡  

𝜇𝑚𝑎𝑥,ℎ𝑒𝑡 ⋅ 𝜇ℎ𝑒𝑡(𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⋅ 𝜇ℎ𝑒𝑡(𝑝𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⋅ 𝜇ℎ𝑒𝑡(𝑂2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⋅ 𝜇ℎ𝑒𝑡(𝑁 − 𝑁𝐻4)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⋅ 𝜇ℎ𝑒𝑡(𝐵𝑆𝑀𝑂)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⋅ 𝑋ℎ𝑒𝑡  

𝜃ℎ𝑒𝑡 ⋅ 𝑚ℎ𝑒𝑡 ⋅ 𝑋ℎ𝑒𝑡  

 

 

→ 

↓ 

𝜇𝑚𝑎𝑥,𝑎𝑙𝑔 ⋅ 𝜇(𝐼𝑎𝑣) ⋅ 𝜇(𝑇) ⋅̅̅ ̅̅ ̅̅ ̅̅ 𝜇(𝑝𝐻)̅̅ ̅̅ ̅̅ ̅̅ ⋅ 𝜇(𝑂2)𝑎𝑙𝑔 ⋅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝜇(𝑁 − 𝑁𝑂3 ) ⋅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝜇(𝑃 − 𝑃𝑂4)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⋅ (1 − 𝜇(𝑁 − 𝑁𝐻4)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ⋅ 𝑋𝑎𝑙𝑔  



33 
 

𝑌𝑂2,𝑎𝑙𝑔 1.33 𝑔𝑂2
∙ 𝑔𝑎𝑙𝑔

−1  

𝑌𝑂2,𝑛𝑖𝑡 12.44 𝑔𝑂2
∙ 𝑔𝑛𝑖𝑡

−1 (Henze et al., 2000) 

𝑌𝑂2,ℎ𝑒𝑡 0.4 𝑔𝑂2
∙ 𝑔ℎ𝑒𝑡

−1 (Henze et al., 2000) 

𝑓𝑎𝑙𝑔 0.1 − (Solimeno et al., 2019) 

𝑓𝑏𝑎𝑐 0.1 − (Solimeno et al., 2019) 

𝜃ℎ𝑒𝑡  1.07 °𝐶 (Casagli et al., 2021) 

𝜃𝑛𝑖𝑡 1.1 °𝐶 (Casagli et al., 2021) 

 864 

Table 4.- Microalgae kinetic parameters. 865 

Parameter Value Units Source  

Microalgae kinetic parameters 

𝐼𝐾 168 𝜇𝐸 ∙ 𝑚−2 ∙ 𝑠−1 (Sánchez Zurano et al., 2021) 

𝑛 1.7 − (Sánchez Zurano et al., 2021) 

𝐾𝑎  0.08 𝑚2𝑔−1 This study 

𝐼𝐾𝑟
 134  𝜇𝐸 ∙ 𝑚−2 ∙ 𝑠−1 (Sánchez Zurano et al., 2021) 

𝑛𝑟 1.4 − (Sánchez Zurano et al., 2021) 

𝑇𝑚𝑖𝑛,𝑎𝑙𝑔 -10 °𝐶 (Casagli et al., 2021) 

𝑇𝑚𝑎𝑥,𝑎𝑙𝑔 38 °𝐶 (Casagli et al., 2021) 

𝑇𝑜𝑝𝑡,𝑎𝑙𝑔 20 °𝐶 (Casagli et al., 2021) 

𝑝𝐻𝑚𝑖𝑛,𝑎𝑙𝑔 1.8 − (Sánchez Zurano et al., 2021) 

𝑝𝐻𝑚𝑎𝑥,𝑎𝑙𝑔 12.9 − (Sánchez Zurano et al., 2021) 

𝑝𝐻𝑜𝑝𝑡,𝑎𝑙𝑔 8.5 − (Sánchez Zurano et al., 2021) 

𝑆𝑂2,𝑚𝑎𝑥 22.68 𝑔𝑂2
∙ 𝑚−3 (Sánchez Zurano et al., 2021) 

𝑧 4.15 − (Sánchez Zurano et al., 2021) 

𝐾𝑆,𝑁𝐻4,𝑎𝑙𝑔 1.98 𝑔𝑁𝐻4
∙ 𝑚−3 (Zurano et al., 2021) 

𝐾𝑖,𝑁𝐻4,𝑎𝑙𝑔 734 𝑔𝑁𝐻4
∙ 𝑚−3 (Zurano et al., 2021) 

𝑛𝑁𝐻4,𝑎𝑙𝑔 2 - (Zurano et al., 2021) 
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𝐾𝑠,𝑁𝑂3,𝑎𝑙𝑔 12.26 𝑔𝑁𝑂3
∙ 𝑚−3 (Zurano et al., 2021) 

𝐾𝑖,𝑁𝑂3,𝑎𝑙𝑔 1713 𝑔𝑁𝑂3
∙ 𝑚−3 (Zurano et al., 2021) 

𝑛𝑁𝑂3,𝑎𝑙𝑔 2 − (Zurano et al., 2021) 

𝐾𝑆,𝑃𝑂4,𝑎𝑙𝑔 1.31 𝑔𝑃𝑂4
∙ 𝑚−3 (Zurano et al., 2021) 

Heterotropic bacteria kinetic parameters 

𝑇𝑚𝑖𝑛,ℎ𝑒𝑡  -3 °𝐶 (Casagli et al., 2021) 

𝑇𝑚𝑎𝑥,ℎ𝑒𝑡  42 °𝐶 (Casagli et al., 2021) 

𝑇𝑜𝑝𝑡,ℎ𝑒𝑡  25 °𝐶 (Casagli et al., 2021) 

𝑝𝐻𝑚𝑖𝑛,ℎ𝑒𝑡  6 − (Sánchez Zurano et al., 2021) 

𝑝𝐻𝑚𝑎𝑥,ℎ𝑒𝑡  12 − (Sánchez Zurano et al., 2021) 

𝑝𝐻𝑜𝑝𝑡,ℎ𝑒𝑡  9 − (Sánchez Zurano et al., 2021) 

𝐾𝑠,𝑂2,ℎ𝑒𝑡 1.98 𝑔𝑂2
∙ 𝑚−3 (Sánchez Zurano et al., 2021) 

𝐾𝑆,𝑁𝐻4,ℎ𝑒𝑡  0.64 𝑔𝑁𝐻4
∙ 𝑚−3 (Henze et al., 2000) 

𝐾𝑆,𝐵𝑆𝑀𝑂,ℎ𝑒𝑡  0.299 𝑔𝐵𝑀𝑆𝑂 ∙ 𝑚−3 (Henze et al., 2000) 

Nitrifying bacteria kinetic parameters 

𝑇𝑚𝑖𝑛,𝑛𝑖𝑡  -8 °𝐶 (Casagli et al., 2021) 

𝑇𝑚𝑎𝑥,𝑛𝑖𝑡 38 °𝐶 (Casagli et al., 2021) 

𝑇𝑜𝑝𝑡,𝑛𝑖𝑡 20 °𝐶 (Casagli et al., 2021) 

𝑝𝐻𝑚𝑖𝑛,𝑛𝑖𝑡  2 − (Sánchez Zurano et al., 2021) 

𝑝𝐻𝑚𝑎𝑥,𝑛𝑖𝑡  13.4 − (Sánchez Zurano et al., 2021) 

𝑝𝐻𝑜𝑝𝑡,𝑛𝑖𝑡  9 − (Sánchez Zurano et al., 2021) 

𝐾𝑠,𝑂2,𝑛𝑖𝑡  1.080 𝑔𝑂2
∙ 𝑚−3 (Henze et al., 2000) 

𝐾𝑠,𝑂2,𝑛𝑖𝑡  104.9 𝑔𝑂2
∙ 𝑚−3 (Henze et al., 2000) 

𝐾𝑆,𝑁𝐻4,𝑛𝑖𝑡  1.28 𝑔𝑁𝐻4
∙ 𝑚−3 (Henze et al., 2000) 

  866 
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Table 5.- Microalgae nutrient yield parameters. 867 

 868 

 869 

Table 6.- List of calibrated parameters and their corresponding values 870 

Parameter Description   Value Units  

𝜇𝑚𝑎𝑥,𝑎𝑙𝑔 Maximum algal growth rate 1.5 𝑑𝑎𝑦−1 

𝑚𝑚𝑖𝑛 Minimum algal respiration rate 0.1 𝑑𝑎𝑦−1 

𝑚𝑚𝑎𝑥 Maximum algal respiration rate 0.008 𝑑𝑎𝑦−1 

𝜇𝑚𝑎𝑥,𝑛𝑖𝑡 Maximum nitrifying bacteria growth rate 0.75 𝑑𝑎𝑦−1 

𝑚𝑛𝑖𝑡 Nitrifying bacteria decay 0.05 𝜇𝑚𝑎𝑥,𝑛𝑖𝑡 𝑑𝑎𝑦−1 

𝜇𝑚𝑎𝑥,ℎ𝑒𝑡  Maximum heterotrophic bacteria growth rate 3.4 𝑑𝑎𝑦−1 

𝑚ℎ𝑒𝑡  Heterotrophic bacteria decay 0.2 𝜇𝑚𝑎𝑥,ℎ𝑒𝑡 𝑑𝑎𝑦−1 

𝑌𝑁𝐻4 ,𝑚𝑎𝑥 NH4
+ microalage nutrient yield max 0.6 𝑔𝑁𝐻4

∙ 𝑔𝑎𝑙𝑔
−1 

𝑌𝑁𝑂3 ,𝑚𝑎𝑥  NO3
- microalage nutrient yield max 0.1 𝑔𝑁𝑂3

∙ 𝑔𝑎𝑙𝑔
−1 

𝑌𝑃𝑂4,𝑚𝑎𝑥  PO4
3- microalage nutrient yield max 0.004 𝑔𝑃𝑂4

∙ 𝑔𝑎𝑙𝑔
−1 

𝐾𝑙𝑎 O2 natural mass transfer  0.1 ℎ−1 

𝛼 Nutrient assimilation coefficient 1 − 

Parameter Value Units Source Parameter Value Units Source Parameter Value Units Source 

𝑌𝑁𝐻4,𝑚𝑎𝑥 0.77 𝑔𝑁𝐻4
∙ 𝑔𝑎𝑙𝑔 Calibrated 𝑌𝑁𝑂3,𝑚𝑎𝑥 0.44 𝑔𝑁𝑂3

∙ 𝑔𝑎𝑙𝑔 Calibrated 𝑌𝑃𝑂4,𝑚𝑎𝑥 0.001 𝑔𝑃𝑂4

∙ 𝑔𝑎𝑙𝑔 

Calibrated 

𝐾𝑆,𝑁𝐻4
 32 𝑔𝑁𝐻4

∙ 𝑚−3  

 

(Zuran

o et al., 

2021) 

𝐾𝑆,𝑁𝑜3 141 𝑔𝑁𝑂3
∙ 𝑚−3

  

 

(Zurano 

et al., 

2021) 

𝐾𝑆,𝑃𝑂4, 10 𝑔𝑃𝑂4

∙ 𝑚−3 

 

 

(Zurano 

et al., 

2021) 

 

𝑡𝑁𝐻4
 2 - 𝑡𝑁𝑂3  2 - 𝑡𝑃𝑃𝑂4, 2.14 - 

𝑁𝐻4𝑚𝑎𝑥
 102 𝑔𝑁𝐻4

∙ 𝑚−3 𝑁𝑂3𝑚𝑎𝑥  102 𝑔𝑁𝑂3
∙ 𝑚−3

 𝑃𝑂4𝑚𝑎𝑥
 69 𝑔𝑃𝑂4

∙ 𝑚−3 

𝑁𝐻4𝑚𝑖𝑛
 12 𝑔𝑁𝐻4

∙ 𝑚−3 𝑁𝑂3𝑚𝑖𝑛 12 𝑔𝑁𝑂3
∙ 𝑚−3

 𝑃𝑂4𝑚𝑖𝑛
 6 𝑔𝑃𝑂4

∙ 𝑚−3 

𝑁𝐻4𝑜𝑝𝑡
 71 𝑔𝑁𝐻4

∙ 𝑚−3 𝑁𝑂3𝑜𝑝𝑡 71 𝑔𝑁𝑂3
∙ 𝑚−3

 𝑃𝑂4𝑜𝑝𝑡
 47 𝑔𝑃𝑂4

∙ 𝑚−3 
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 871 

Table 7.- List of most sensible parameters 872 

Parameter Units Nominal 

value 

Standard 

deviation  

Most affected parameters 

𝐼𝑘 𝜇𝐸 ∙ 𝑚−2 ∙ 𝑠−1 168 0.02 𝑋𝑎𝑙𝑔 , 𝑋ℎ𝑒𝑡 , 𝑋𝑛𝑖𝑡 , 𝑆𝑁𝐻4
, 𝑆𝑁𝑂3

, 𝑆𝑃𝑂4
, 𝑆𝐵𝑆𝑀𝑂 , 𝑆𝑂2

 

𝐾𝑎 𝑚2𝑔−1 0.08 1.4E-5 𝑋𝑎𝑙𝑔 , 𝑋ℎ𝑒𝑡 , 𝑋𝑛𝑖𝑡 , 𝑆𝑁𝐻4
, 𝑆𝑁𝑂3

, 𝑆𝑃𝑂4
, 𝑆𝐵𝑆𝑀𝑂 , 𝑆𝑂2

 

𝑛 − 1.7 1.6E-4 𝑋𝑎𝑙𝑔 , 𝑋ℎ𝑒𝑡 , 𝑋𝑛𝑖𝑡 , 𝑆𝑁𝑂3
, 𝑆𝑃𝑂4

, 𝑆𝑂2
 

𝜇𝑚𝑎𝑥,𝑎𝑙𝑔 𝑑𝑎𝑦−1 1.5 5.38E-4 𝑋𝑎𝑙𝑔 , 𝑋ℎ𝑒𝑡 , 𝑋𝑛𝑖𝑡 , 𝑆𝑁𝐻4
, 𝑆𝑁𝑂3

, 𝑆𝑃𝑂4
, 𝑆𝐵𝑆𝑀𝑂 , 𝑆𝑂2

 

𝜇𝑚𝑎𝑥,ℎ𝑒𝑡 𝑑𝑎𝑦−1 3.4 0.0016 𝑋ℎ𝑒𝑡 , 𝑆𝐵𝑆𝑀𝑂  

𝜇𝑚𝑎𝑥,𝑛𝑖𝑡 𝑑𝑎𝑦−1 0.75 0.0004 𝑋𝑛𝑖𝑡 , 𝑆𝑁𝑂3,𝑆𝑁𝐻4
 

𝑚𝑚𝑖𝑛 𝑑𝑎𝑦−1 0.1 8E-6 𝑋𝑎𝑙𝑔 , 𝑋ℎ𝑒𝑡 , 𝑋𝑛𝑖𝑡 , 𝑆𝑁𝑂3
, 𝑆𝐵𝑆𝑀𝑂 , 𝑆𝑂2

 

𝑚𝑛𝑖𝑡 𝑑𝑎𝑦−1 0.05 𝜇𝑚𝑎𝑥,𝑛𝑖𝑡 8.34E-5 𝑋ℎ𝑒𝑡 , 𝑋𝑛𝑖𝑡 , 𝑆𝑁𝑂3𝑆𝐵𝑆𝑀𝑂, 

𝑚ℎ𝑒𝑡 𝑑𝑎𝑦−1 0.2 𝜇𝑚𝑎𝑥,ℎ𝑒𝑡 6.8E-5 𝑋ℎ𝑒𝑡 , 𝑋𝑛𝑖𝑡 , 𝑆𝑁𝑂3𝑆𝐵𝑆𝑀𝑂, 

𝑂2,𝑚𝑎𝑥 𝑚𝑔𝑂2
∙ 𝑙−1 22.68 0.0011 𝑋𝑎𝑙𝑔 , 𝑋ℎ𝑒𝑡 , 𝑋𝑛𝑖𝑡 , 𝑆𝑁𝑂3

, 𝑆𝑃𝑂4
, 𝑆𝐵𝑆𝑀𝑂 , 𝑆𝑂2

 

𝑌𝑁𝐻4,𝑚𝑎𝑥  − 0.6 0.001 𝑋ℎ𝑒𝑡 ,  𝑋𝑛𝑖𝑡   𝑆𝑁𝐻4
, 𝑆𝑁𝑂3

 

𝑌𝑁𝐻4𝑛𝑖𝑡 − 0.4 0.016  𝑋𝑛𝑖𝑡  , 𝑆𝑁𝐻4
 

𝑌𝑁𝑂3,𝑛𝑖𝑡 − 26.76 0.11 𝑆𝑁𝑂3
 

Cardinal 

parameters 

Units Opt, max, 

min 

Standard 

deviation 

Most affected parameters 

𝑇𝑎𝑙𝑔 °𝐶 38,20,-10 0.0026 𝑋𝑎𝑙𝑔 , 𝑋ℎ𝑒𝑡 , 𝑋𝑛𝑖𝑡 , 𝑆𝑁𝐻4
, 𝑆𝑁𝑂3

, 𝑆𝑃𝑂4
, 𝑆𝐵𝑆𝑀𝑂 , 𝑆𝑂2

 

𝑝𝐻𝑎𝑙𝑔 − 8.5, 12.9, 1.8 0.0032 𝑋𝑎𝑙𝑔 , 𝑋ℎ𝑒𝑡 , 𝑋𝑛𝑖𝑡 , 𝑆𝑁𝐻4
, 𝑆𝑁𝑂3

, 𝑆𝑃𝑂4
, 𝑆𝐵𝑆𝑀𝑂 , 𝑆𝑂2

 

𝑇𝑛𝑖𝑡 °𝐶 20,38,-8 0.04 𝑋ℎ𝑒𝑡 ,  𝑋𝑛𝑖𝑡   𝑆𝑁𝐻4
, 𝑆𝑁𝑂3

, 𝑆𝐵𝑆𝑀𝑂 

𝑝𝐻𝑛𝑖𝑡 − 9, 13.4, 2 0.024 𝑋ℎ𝑒𝑡 ,  𝑋𝑛𝑖𝑡   𝑆𝑁𝐻4
, 𝑆𝑁𝑂3

, 𝑆𝐵𝑆𝑀𝑂 

𝑇ℎ𝑒𝑡 °𝐶 25,42,-3 0.034 𝑋ℎ𝑒𝑡 ,  𝑋𝑛𝑖𝑡 , 𝑆𝑁𝑂3
, 𝑆𝐵𝑆𝑀𝑂 

𝑝𝐻ℎ𝑒𝑡 − 9, 12, 6 0.0026 𝑋ℎ𝑒𝑡 ,  𝑋𝑛𝑖𝑡 , 𝑆𝑁𝑂3
, 𝑆𝐵𝑆𝑀𝑂 

 873 

  874 
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Table 8.- Validation errors of the ABACO-2 model. 875 

Parameter NRMSE TIC 

𝑋𝑡𝑜𝑡  [𝑔 ∙ 𝑚−3] 0.21 0.16 

𝑆𝑁𝐻4
 [𝑔 ∙ 𝑚−3] 0.22 0.55 

𝑆𝑁𝑂3
 [𝑔 ∙ 𝑚−3] 0.15 0.21 

𝑆𝑃𝑂4
 [𝑔 ∙ 𝑚−3] 0.23 0.24 

𝑆𝐵𝑆𝑀𝑂  [𝑔 ∙ 𝑚−3] 0.21 0.2 

𝑆𝑂2
 [𝑔 ∙ 𝑚−3] 0.14 0.21 

 876 

Figures 877 

 878 

Figure 1.- Schematic description of the biological mechanisms taking in place in microalgae-bacteria 879 

wastewater systems. 880 

  881 
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 882 

Figure 2.- Calibration methodology used in the present work. 883 

  884 
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 885 

Figure 3.- Biomass concentration evolution. A) Total biomass concentration (sum of algae and bacteria, 886 

simulated (continuous line) and experimental (scatter plot); B) Nitrifying and heterotropic concentration; C) 887 

Algae concentration. The model shade is the model confidence interval at 95%. 888 

889 
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 890 

Figure 4.- Variation of culture nutrients A) PO4
3-, B) NO3

-, C) NH4
+ and D) BSMO concentration, in g•m-3 891 

respectively (experimental, scatter plot; model prediction, continuous line). 892 
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 894 

Figure 5.- Simulation of the dissolved oxygen in the culture. A) Experimental and simulated dissolved 895 

oxygen along the entire study period, B) Representation of the oxygen in a shorter period. 896 

 897 

A) 
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 898 

Figure 6: Application of ABACO-2 model in a case-study. Algae, heterotropic and nitrifying bacteria 899 

concentration eveolution depending on: A), B), C) culture height; D), E), F) Dilution rate; G), H), I) with or 900 

without ijecting air into the system  901 

 902 

 903 


