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pth moment exponential stability of stochastic
recurrent neural networks with distributed delays

Zixin Liu, Jianjun Jiao Wanping Bai

Abstract—In this paper, the issue of pth moment exponential
stability of stochastic recurrent neural network with distributed time
delays is investigated. By using the method of variation parameters,
inequality techniques, and stochastic analysis, some sufficient con-
ditions ensuring pth moment exponential stability are obtained. The
method used in this paper does not resort to any Lyapunov function,
and the results derived in this paper generalize some earlier criteria
reported in the literature. One numerical example is given to illustrate
the main results.

Keywords—Stochastic recurrent neural networks, pth moment ex-
ponential stability, distributed time delays.

I. INTRODUCTION

URING the past few decades, recurrent neural networks

(RNNs) such as Hopfield neural networks (HNNS),
cellular neural networks (CNNs) and other networks have
been well investigated since they play an important role in
classification of patterns, associative memories, optimization,
etc [1,3—8,11,21,23—-25]. It should be pointed out that time
delays are commonly encountered in real systems due to the
finite switching speed of neurons and amplifiers, and they
are one of the important source of oscillation and instability.
Hence, it is necessary and important to discuss the delayed
RNNs models. Up to now, many results on stability of neural
networks with constant delays (see [1,3,5,21]) or time-varying
delays (see [4,6,8,23—25,29]) have been developed. However,
a real system is usually affected by external perturbations
which in many cases are of great uncertainty and hence may
be treated as random. As pointed out by Haykin [10] that
in real nervous systems, synaptic transmission is a noisy
process brought on by random fluctuations form the release
of neurotransmitters and other probabilistic causes, therefore,
stochastic effects should be taken into account. In [13,14], Liao
and Mao investigated the mean square exponential stability
and instability problem of CNNs. In [2], the authors continued
their research to discuss almost sure exponential stability for a
class of stochastic CNNs with discrete delays by using the non-
negative semi-martingale convergence theorem. In [17], sev-
eral Razumikihin-type theorems on exponential stability were
established for stochastic functional differential equations. In
[18], Mao investigated robustness of exponential stability of
stochastic system with small time lag. In [15], the problem
of exponential stability of stochastic delayed interval systems
was considered via Razumikihin-type theorems. In [22], Wan
and Sun investigated mean square exponential stability of a
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class of stochastic delayed HNNs via the method of variation
parameters and inequality techniques. The method used in
[22] does not resort to any Lyapunov function, the activation
functions are not required to be differentiable or monotonic,
and the connection matrices are not to be symmetric.

Motivated by the method used in [22], the main aim of
this paper is to further investigate the pth moment exponential
stability problem of a class of stochastic RNNs with distributed
time delays. Similar to the method used in [22], several
sufficient conditions are derived to guarantee pth moment ex-
ponential stability. The results obtained in this paper generalize
some previous results obtained in the literature cited therein,
and which will be shown by the one numerical example
provided later.

The rest of the paper is arranged as follows. In Section 2, a
class of stochastic distributed time delayed RNNs models are
presented, then some necessary notations and assumptions and
several lemmas to be used will be given later. The pth moment
exponential stability condition, several useful extensions are
given in Section 3. One numerical example is provided in
Section 4 to demonstrate the validity of the main results. The
conclusions are given in Section 5.

II. PRELIMINARIES

Notations. The notations are used in our paper except where
otherwise specified. For A,B € R", A < B(A > B)means
that each pair of corresponding elements of A and B satisfies
the inequality <, (>). In particular, A is called a nonnegative
matrix if A > 0; E(.) stands for the mathematical expectation
operator; T represents the transpose of the matrix; |- | denotes
the Euclidean norm; || - || denotes a vector or a matrix norm;
The notation || - ||P is used to denote a vector norm defined
by || [P = >, |=;|P; T denotes the identity matrix and p(-)
denotes the spectral radius of a square matrix.

In [22], Wan and Sun investigated the following stochastic
HNNs model

dZEZ(t) = [—cixi(t) + Z Q5 [ kij(t — S)
n 1
< L (s)dslat + Y o () (t)

j=1

xi(t) = mi(t),t <0.

In this paper, a generalized stochastically perturbed neural
network model with distributed time delays will be considered,
which is defined by the following state equations
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doi(t) = [~eiat) + Yy [ Byt = 5)s(5)ds

n t
+) b / kij(t — s)g;(z;j(s — 75))ds]dt s
j=1 o

+ Z 0ij(x;(t — 75))dw; (t)

or

dz(t) = [-Cx(t) + A[ K(t—s)f(z(s))ds
+ B/jK(t —5)g(z(s —T))ds]dt + o(z(t — T))dw(t),(3)

where x(t) = (z1(t), x2(t),...,zn(t))T € R™ is the state
vector associated with the neurons; C' = diag(¢;) > 0,
c¢; > 0 represents the rate with which the ith unit will
reset its potential to the resting state in isolation when
disconnected from the network and the external stochastic
perturbations; A = (a;j)nxn and B = (Dbij)nxn Trepre-
sent the connection weight matrix and delayed connection
weight matrix, respectively; f; and g; are activation functions,
F@®) = (@), fal@a().... fulea®)T € R,
9(z(t)) = (g1(z1(t — 71)),92(22(t — 72)),..., gnl@nlt —
7)) € R™, where 7; > 0 is transmission delay. Moreover,
w(t) = (wi(t)),wa(t)),...,wn(t))T is a n-dimensional stan-
dard Brown motion defined on a complete probability space
(Q, F, P) with a natural filtration Fi>o(.e..F} = of{w(x) :
—o00 < s<t})and o : RT X R" — R™" 0 = (0;j)nxn
is the diffusion coefficient matrix. The initial conditions for
system (3) are given in the form

z(t) = ¢(t), —o0 <t <0, )

where ¢ € LY, ([-00,0], R), here L% ([-00,0],R) is
the family of all Fy measurable C([—o0,0], R™)—valued
random variable satisfying that sup_. <o Elop(t)|P <
00, O([—00,0], R") denotes the family of all continuous
R™—valued functions ¢(t) on [—o0, 0] with the norm ||¢||? =
SUD_ o <4< |@(t)[P. Throughout this paper, the following stan-
dard hypothesis are needed

(H1) Both f;(z) and g;(x) satisfy the Lipschitz condition.
That is, for each ¢ = 1,2,...,n, there exist constants «; >
0, 8; > 0, such that

|fi(x)=fi(y)| < ailz—yl, |9i(2)—gi(y)| < Bilr—yl,Vx,y € R",

where «;, 3; are Lipschitz constants, respectively.
(Hs3) 0;(t, ) satisfies the Lipschitz condition, and there are
nonnegative constants L;; such that

|03 (t, x) — 0ij(t,y)| < Lijle —yl|,Va,y € R"

(H3) Assume that f(0) = 0,¢(0) =0,0(¢,0) = 0.
(H4) The kernels k;; fori,j = 1,2, ..., n,are real-valued non-
negative continuous functions defined on [0, 00) and satisfies
[e°]
0

/ kij(t)dt = 1,/ eﬂtki].(t)dt = Eij < 00.
0
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for some positive constant f.

It follows from [9,20] that under the hypothesis (H;), (Hz)
and (H3), system (3) has one unique global solution. Clearly,
system (3) admits the trivial solution x(¢,0) = 0.

Definition 2.1 (Mao [16,19]). The trivial solution of system
(2), or system (3) is said to be pth moment exponentially stable
if there exists a pair of positive constants A and C' such that

Eliz(t,to,9)|” < CE||g||Pe 1) ¢ > t,

holds for any ¢y and ¢ € L’}to([—oo,O] : R™). Especially
when p = 2, it is called to be exponentially stable in mean
square.

In this paper, we always set g = 0. In what follows, we
need introduce several lemmas which will be used in section
3.

Lemma 2.1 (Holder inequality).Assume that there exist two
continuous functions f(z), g(x) and a set Q,p and q satisfying
1/q+1/p = 1,for any p > 0,q > 0,if p > 1,then the following
inequality holds.

[ 1f@g@lds < ([ 1f@Pan ([ oo
Q Q Jo
Lemma 2.2[29] Assume that there exist constants ajp >

0,k =1,2,...,n,p and q satisfying 1/q+ 1/p = 1,for any
p> 0,9 > 0,if p > 1, then the following inequality holds.

(Z ap)? < nP1 Z al.
k=1 k=1
Lemma 2.3[22] Set w(t) = (w1 (t)),w2(t)), ..., wn ()T is

a n-dimensional standard Brown motion defined on a complete
probability space (0, F, P), then the following formula holds

B[ n(s) [ H6)as(s) = B [ H05wr)..

where (wi,wj>s = 0;5t,is cross-variations, 0;; is correlation
coefficient.

Lemma 2.4 (Horn[12]).If M > 0 and p(M) < 1, then
(I — M)~™Y > 0, where I denotes the identity matrix and
p(M) denotes the spectral radius of a square matrix M.

For convenience, in this paper, we always set p > 2 when

discuss the pth moment exponential stability of system (2) or
system(3), and denotes 7 = max{7;,1 <i <n}.

ITII. MAIN RESULTS
For system (2), by the method of variation parameter, for
allt>0,2=1,2,...,n, we have

zi(t) = /t e i) i 0ij(5, (s — 75))dw; (s) + e~ 24(0)
0 =
t n s
+ /0 e ity aij/_ kij(s —v) f5(z;(v)dv)ds

+ /Ot e_ci(t_s)(; bij ./joo kij(s —v) fi(x;(v — 75)dv)ds

= T+ I + I3 + Lus Q)
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From lemma2.2, when n=4, the following inequality holds
i (8)[P < 4P| Lul? + [ L2al? + 357 + | L P)
this means that for all ¢ > 0,
M Elai (6P < NPT E(Lul? + [Laal” + Tl + [ 1 ]7).

Denote G;(t) = sup_, _g<; Elz;[Pe?” where A <
min{c; },7 = 1,2,...,n. In order to get the pth moment ex-
ponential stable theorem, we first established some important
results as follows.

Lemma 3.1 For Iy, the following inequality holds

MBI P < P71 (26) 5 (¢ — 1)

ZL

Proof. By lemma 2.3, it yields that

€>\t E |Ili‘p

ot n
M E| / IS gy (s, (s — 7)) dws ()}
j=1

n t
BN [ o (s = m)dws (9}
j=1"0

n t
< MBIY| [ e sy s - )y (9]}
j=1 70
n t
<y / e 0y (s, 25(s — 75))dw; (s)]”
j=1 70
n t
< Mty E{/ e g (s,w(s — 7)) dw; (5)}
j=1 0
n t
= SB[ o (s, - )l ()
j=1 70
6)\t’l’Lp71 ZE{/ —2c; (t— s) 2 (S IJ(S . )ds}p/Q
=1 0
<

e)\tnp—l ZLZE{[/ e—2ci(t—s)ds]p/2—1
i=1 0
" oaei(i—s)
<[ eIy (s - s
0

_ )\f nP~ 1ZL”E{ ]p/2 1
Jj=1
t
x| / 2 (5 — )P ds]} ©)
0
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IA

A 1,1 2—1 = 2 ¢ —2¢;(t—s
eMn? (To)p/ SNLLE{| e z(s — ) [Pds}
7 =1 0

n t
_1(%);,/2_1 ZLZE{/ o(A=2¢0)(4=5) AT A= 7))
C; - 0
Jj=1

|2 (s — Tj)|pd8}

X

n”(

IN

Ly S B s (s - )P
Jj=1

y / A=2e0)(1=9) g AT

0

AT -1 1 2— A(s—T.

< e'nP (20 p/ § L? E{ sup e< J>|a: (s—1)F
_ A2

« 1—e¢ }

261'*)\

IN

1 IR
At _p—1, + \p/2—-1_ L L2
en (261') QCZ' - A ; 4

x B{swp eyl - 7))
0<s<t
1 n
< AT _p—1 p/2—1 L2
=en (261) cif)z I

j=1
E{ sup 7 |a;(s — )"}

0<s<t
n
1 2
72 L%
Ci— A4
j=1

X

GXTnp—l(L)p/Q—l

IN

x B{ sup  *T|z;(s — )"}
—o0<s<t
1 IR
AT —1 2—-1 2 Py
= T T S IR s M ()}
i =1 —oco<O<t—T;

1
AT _p—1, 1 \p/2—-1
e’ 'n (201-)

IN

1 N ) »
ﬁZL”E{,i@qu |5 (0)]”}

Z L3;G5(t), )

= P (2e)' 3 (ci =A™

which complete the proof.
Lemma 3.2 For Iy;, the following inequality holds

n

103 kiG

2
At T q
E\I;P <c¢; °

e | 2Z| Cz ci )\[

Proof. By lemma 2.1 and lemma 2.2, it yields that

Bl

- AfE|/ et S)(Za”/ kij(s —
e)‘tE{/ Telts S)(Z \a”|/ kij(s —

_ ME{/ c(t 5) c(t s) ik’w‘
| kit = ol @)ldw)asy

t » t s n
e“E{[/ e‘cl'(t‘s)ds]a[/ e I3 Jay| ®)
70 j=1

0

®

v) f3(;(v))dv)ds|®

IN

)| fi (z;(v))|dv)ds}?

X

IN
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X

/ " k(s — )13 () dv)?ds])

J —oo

A 1—e “t.p ¢ —ci(t—s =
= MB{[———]s[[ eI Jayl
0 =1

Ci

X

| kst = ollfs(as ey as])

M) i By / <><g a5

/ iy (s — v) | £, (5 (v)) | dv)? ds}

6)‘t(Ci)_%E{/ e I ailoy|
0 j=1

[ Fis (s — v) | (v) dv)?ds}

f, n
A -k —ci(t—s q q\ B
(e qE{/ e IS Jag| oy ) s
0 =1

IA

X

IN

X

IN

X

S / Kis (s — 0) |25 (0)|dv)?ds}

j=1 /=0
n t

= M) layl gD FE( [ e
j=1 0

S kgl = )le)doyds)

n

t

A -z 2 —ci(t—s

= M(e) () Iaij\q\ajlq)qE{/ e 1)
0

=1

x Z(K K2 (s — )2 (s — 0|5 (0)]dv)Pds)

IN

eM (e -4 Y aij|* o] H tefcrz(tﬂ)

(ci) (;' %] |) E{/o

X E ’ kij(s —v)d H
11{[/00 o= o)) [/

n t
= M) HY Jaullag [ EB{ [ e
j=1 0

s

kij(s —v)|x;(v)[Pdv] }ds}
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IN

()"0 (Y laigl s |") @

j=1

n t
< S B(Ry sw_ Mol [ eI Tag)
=1 —oco<v<t 0

()73 laij| ;1) %

Jj=1

"~ B O it s
X E{k;; sup e ’|z;(0)|P|[———
S EEs s MmO

_Pp
q
¢

IN

1 ~ P —
po— /\[Z laij| "oy 70 > ki Gy(t). ©
g j=1 j=1

This completes the proof.
Lemma 3.3 For I3;, the following inequality holds

v 1 n B no
eME|I|P < e, B )\[E |bi;|71351%] « E kijGj(t).
¢ j=1 j=1

Proof. Similar to the proof of the lemma3.2, we can obtain
e” E |131‘|p
t n
_ 6>\tE|/ e*Ci(t*S)(z bi;
0 =1
x [ s = 0)gs(as(0 = m))do)dsP
_p t n
e TB([ IS bulla
0 =1
[ hsts = ey m)ldoyds)

_Pr b e e 2
eMe, E{/ e IS by |7]8517) @
0 j=1

IN

X

IN

X

S/ ko= laso - m)lavpds)

2 B A
= e (Y bl [ e
j=1 0

x Z[/ kij(s — v)|x; (v)[Pdv]ds} x Z[/ kij(s — v)|z; (v — 75)|dv]”ds}
J=177° j=177
n t _r D t i (t—s
= e laig oy |) 7 B / e (e (t=9) = Mo, T by |18:]) 7 EY / el
=1 0 Jj=1
n s ~ g 1 1 »
x Z[/ e MEij(s — v)e™ |z (v)[Pdv]ds} X Y[ kig(s =v) Tkig(s — 0) 7 [a; (v — 75)|dv]"ds}
j=1 7= =177
n t -z P b s
= (@) H (L la gD B [ Ve < e (Y Il [ e
= 0 j=1 0
n s n s » s
x Z[/ T kig(s — v)e™ |z (v)[Pdv)ds} X [/ kij(s—v)dv}‘*[/ kij(s — v)la; (v — 75)|"dv]ds}
j=1+7—0o0 j=1 v 7 —o0
p 7 t
) — t T q b —ci(t—s
< (Ci)_%(2|aij|q|aj|q)%E{/ e (cimN)(t=s) = extci q(z ‘bif|q\ﬁj\q)qE{/0 e ci(t=s)
= Jo j=1
X Z[ sup 6M|l"j(v)|p/ T k(s — v)do)ds} X [Z/ kij(s = v)|z; (v — 75)|Pdv]ds}
— . —oo<v<s —o0 =17 -0
Jj=1 ==
n t -2 -~ p ¢ —C;— —s
= ()77 (X lai|*lay]*) 7 B / e~ (EmN=2) = ¢, (3 Ibigl?18;1%) ¥ BY / elmem ) (10)
j=1 0 Jj=1
x Y [k sup €|z (v)[Flds}
=1 —oco<v<s
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n

% [Z / A(s—v)k (s — ,U)eA(’U—Tj)‘xj(,U _ Tj)|p€7—j dv]ds}
G=1"

P n

Q]

| /\

AT ci—A s
bis |35 e E{/ (—ei=N)(t=2)

x Y[ sup T a0 — )l
J=1 —oco<v<s
X T ki (s — v)dv)ds}
-2 & = AT ci—A s
= e "0 [bi || e E{ e
Jj=1
< Sy sup gy — )|
ij p e |z (v — 75)[ds}
—oco<v<s
=1
P
AT
<c q(z‘bw‘ 1851 )qe ZE{kw
X sup AT a0 — )P ( / Rl )
—oco<v<t 0
PN
= q(z‘bw‘ 1Bi")2e ZE{kw
) 11—t
x sup eV |$j(U—Tj)\p'(f>\)}
—oco<v<t Cq
_» PR _
=c; *O Ibis|"B;1Y e Bk
j=1 j=1
16 1— €>\7€i
X i) (———
swp M @F ()

—oco<v<t—7;

_p PR _
< e T b8 1€ Y Bk
j=1 j=1

V) 1— eA—ci
x sup ez (0)|° - (————
s Pl @) ()
e P -
<, (O Ibisl B 1 Bk
i=1 j=1
1
X sup ew\xj(9)|p’(f)\)}
—oco<v<t Ci

—[Z 163116517 4 Z G(t). (1)
This complete the proof.

Theorem 3.1 If p(C~'(D1D;K + D1D3K + D4L)) < 1
and C~Y(DyDyK + Dy D3K + DyL) > 0, then system (2) is
pth moment exponentially stable, where

K= (Eij)anaL = (ng)nxm

Dl = diag(dl7d27 s 7dn)7 D2 = dia’g(ala azg; ..., an)7
D3 = diag(by,ba, ..., b,), Dy = diag(mi,ma,...,my),
and a; = [Zg 1 laij| e |? ] A= 4Tl T

P
2

bi = [y [bis|?18;17] 7 ms = 4P~ 0P =1 (2¢;) 175,

Proof. From lemma3.1, lemma3.2, and lemma3.3, the fol-
lowing inequality holds for all ¢ > 0

International Scholarly and Scientific Research & Innovation 4(7) 2010

M E |z ()P

< AP Bz (0)]" + X n” 1(20) RICEE
_p p
XZL?jGi(t)+Ci qﬁ[2|aij|q|a1| EZ ki G;(t
j=1 ¢ J j=1
T - 1
+ e, [Z|bw| 18,174 ZkuG (1)} (12)

Jj=1

This means that for all £ > 0

G; (b) <4p71{E\xi(0)|p+ean 1(20 )177(0 —>\)7

x ZL Gi(t) + ¢ 7ﬁ[2|aia‘|q|%‘|q]5ZEijGj(t)
+ Z Ibi3171651%) 52 (13)
Namely,
Gi(t) < 4P Bz (0)|” + {CIE[Z |ai;|*|a;|] e
e ”[Zw 18,14 } Z
+ P (2e) 8 Z L4G;(1)} (14)
Thus, we have
G(t) < 4P71E|2(0)[P 4+ (C — XI)" (D1 Do K
+ e D1 DsK 4 e D4L)G(t), (15)
where
G(t) = (G1(t),Ga(t), ..., G ()T,

Elz(0)F = (Elz1(0)|7, Elz2(0)[", ..., Elza (0)[)".
Since
p(C~ (D1 D3K + D1DsK + DyL)) < 1,
C™Y(D1DsK + D1DsK + D4L) > 0,
by using lemma2.4, it yields that
(I = C~YD1DyK + Dy DsK + DyL)) ™ > 0.

Hence, there exists a sufficiently small positive constant o < A
such that

(I—-(C—al)”

Set (I—(C—al)~!
M(a) , we have

"(D1D3K 4 €*"D1D3K +€*"DyL)) ™t > 0
(Dlsz-F€QTD1D3F+€M—D4L))_1 =

Elz(t)|P < 4P~ M (a)E|z(0)[Pe .

Therefore, for all : = 1,2, ..., n we have

Elay(t)]? < 477'e ™y Mij(a) Y Ela; (0)
i=1

j=1
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Namely,

@) Y Bl (0)”

n
D Ela(t)P < arleM
=1

Q2

That is

Elz(t)|P <47~ ii

This complete the proof.

Notice that p(A) < ||A|l for any A € R™ "™, in which
|| - || is an arbitrary matrix norm. Moreover, for any matrix
norm and any nonsingular matrix S, a matrix norm | Al/s
can be given by ||A|ls = ||[S1AS||. For the convenience of
calculation, in general, taking S = diag{s1,...,s,} > O.
Therefore, corresponding to the matrix norm widely applied
as the row norm, column norm and Frobenius norm, one
can obtain the following sufficient conditions to guarantee
|Al|s < 1, respectively.

Corollary 3.1. The system(2) is pth moment exponentially

stable if there exists positive constants &1,&o, . .., &, such that
one of following inequalities holds

Wy

ey
Zc’ &l

) Elz(0)[Pe™".

T(a; + bi)kij + miLij) <477, 1 <i<n. (16)

E(ai +bi)kij +miLij] <47 1< <n. (17)

Corollary 3.2. Under hypothesis (H) (Hs), if
p(c_l(D1D2F+D1D3F+D4L)) < 1land C_l(DlDQF‘F
D{D;K + DyL) > 0, then system(2) is exponentially stable
in mean square, where Dy, Dy, D3, D4 are defined as the
same in theorem3.1.

IV. NUMERICAL EXAMPLE

Consider the following stochastic neural network with con-
tinuously distributed delays.

t

day () = [~221 (£) + 0.01 / & f1 (1 (1))

—o0

*g1(z1(t — 7))

+001/f * fa(z2(t)) — 0.01 /et

—0.01 /t e
+ (L@ (t)dwi (t) + Lioma(t)dwa (t))

dmg(t) = [—21’2(t) +001 /_t €t78f1($1 (t))

g2(w2(t — 72))]dt

+0.01 /etisfg(zg(t)) +0.01 /etisg1 (z1(t — 1))

—o0 —o0

t
+ 0.0l/ e " ga(za(t — )))dt

+ (Lzll‘l(t)dwl (t) + L22$2 (t)dUJQ (t))

18)
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e=(t) _g—z(t)
where f( ()) = arctanx(t) ( (t)) = m Set

= 3, one can easily check that this equation satisfies
Assumptlons (Hy) — (Hg). Set A = 0.5, we have

o-[3 $)a- (18 3] -

2 2 .
K:{2 2},%:@-:1,1:1,2.

For this example, the criteria obtained in [22, 29] can not be
used to determine the stability, but the criteria obtained in this paper

2 0
0 2

0.01 0.01
0.01 0.01

—0.01
0.01

—0.01
0.01 ’

are valid. Set L = 888} 888% , one can obtain D =
4 0 B ~ [ (0.002)2 0 B
0 4}’D2 = Ds = { 0 (0.002)% | P =
32

0 302 ] . Hence C~Y(D1D3K + D1 D3K + DyL) =

8 x (0.002)2 +0.016 8 x (0.002)2 + 0.016
8 x (0.002)2 +0.016 8 x (0.002)2 + 0.016

Since A; > 0,7 = 1,2, where A, is the principal minor of the
above matrix, then C~1(D; Dy K +D;DsK +Dy,L) > 0, and
one can easily get the eigenvalue \; = 0, Ay = 16 (0.002)%+
0.032 < 1, thus, p(C~1(D1D2K + D1D3K + DyL)) < 1. It
follows from Theorem 3.1 that system (18) is exponentially
stable in 3th moment.

V. CONCLUSIONS

By using the method of variation parameter, inequality
technique, and stochastic analysis, the problem on pth moment
exponential stability of a class of stochastic neural networks
with distributed time delays is investigated. Without assuming
the bounded, monotonicity and differentiability of the output
functions, some sufficient conditions to guarantee the pth mo-
ment exponential stability are derived. The results established
in this paper generalize some previous criteria obtained in
the literature cited therein. Numerical example shows that the
criteria obtained in paper are valid.
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