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Objective 1 (O1). Identify tipping elements (TEs) and their interactions in models and data

Specific Objective 1.1. Develop a self-consistent framework of abrupt climate changes in proxy reconstructions of past climates. This framework
should include results from a hierarchy of models, from low-order to highly detailed ones, and be supported by paleoclimate archives evidencing
abrupt climate transitions in the past.

Specific Objective 1.2. Identify and better characterize previously hypothesized TEs in the Earth system and their associated TPs in terms of critical
forcing levels. This will involve modelling and paleoclimatic reconstructions of past warm and cold climates, with particular focus on interactions
between the different TEs, along with any potentially cascading or stabilising effects these interactions may cause.
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* Objective 1 (O1). Identify tipping elements (TEs) and their interactions in models and data

 Specific Objective 1.1. Develop a self-consistent framework of abrupt climate changes in proxy reconstructions of past climates. This framework
should include results from a hierarchy of models, from low-order to highly detailed ones, and be supported by paleoclimate archives evidencing
abrupt climate transitions in the past.

 Specific Objective 1.2. Identify and better characterize previously hypothesized TEs in the Earth system and their associated TPs in terms of critical
forcing levels. This will involve modelling and paleoclimatic reconstructions of past warm and cold climates, with particular focus on interactions
between the different TEs, along with any potentially cascading or stabilising effects these interactions may cause.
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Figure 2. Figure from T180, Bagniewski, Rousseau and Ghil, 2022. Example of the KS
test applied to NGRIP 6'80 time series. A) Snapshot of the record 21-43 ka b2k. The
green and orange rectangles correspond to the sample windows of equal width (w) used
for evaluating the KS statistic, green before and orange after the potential jump. b) and
¢) show the empirical distribution functions of the two pairs of samples. The length of
the black double arrow is equal to the KS statistic Dgs
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Objective 1 (O1). Identify tipping elements (TEs) and their interactions in models and data

Specific Objective 1.1. Develop a self-consistent framework of abrupt climate changes in proxy reconstructions of past climates. This framework

should include results from a hierarchy of models, from low-order to highly detailed ones, and be supported by paleoclimate archives evidencing
abrupt climate transitions in the past.

Specific Objective 1.2. Identify and better characterize previously hypothesized TEs in the Earth system and their associated TPs in terms of critical
forcing levels. This will involve modelling and paleoclimatic reconstructions of past warm and cold climates, with particular focus on interactions
between the different TEs, along with any potentially cascading or stabilising effects these interactions may cause.
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* Objective 1 (O1). Identify tipping elements (TEs) and their interactions in models and data

 Specific Objective 1.1. Develop a self-consistent framework of abrupt climate changes in proxy reconstructions of past climates. This framework
should include results from a hierarchy of models, from low-order to highly detailed ones, and be supported by paleoclimate archives evidencing
abrupt climate transitions in the past.

 Specific Objective 1.2. Identify and better characterize previously hypothesized TEs in the Earth system and their associated TPs in terms of critical
forcing levels. This will involve modelling and paleoclimatic reconstructions of past warm and cold climates, with particular focus on interactions
between the different TEs, along with any potentially cascading or stabilising effects these interactions may cause.
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* Objective 1 (O1). Identify tipping elements (TEs) and their interactions in models and data

 Specific Objective 1.1. Develop a self-consistent framework of abrupt climate changes in proxy reconstructions of past climates. This framework
should include results from a hierarchy of models, from low-order to highly detailed ones, and be supported by paleoclimate archives evidencing
abrupt climate transitions in the past.

 Specific Objective 1.2. Identify and better characterize previously hypothesized TEs in the Earth system and their associated TPs in terms of critical
forcing levels. This will involve modelling and paleoclimatic reconstructions of past warm and cold climates, with particular focus on interactions
between the different TEs, along with any potentially cascading or stabilising effects these interactions may cause.
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* Objective 1 (O1). Identify tipping elements (TEs) and their interactions in models and data

 Specific Objective 1.1. Develop a self-consistent framework of abrupt climate changes in proxy reconstructions of past climates. This framework
should include results from a hierarchy of models, from low-order to highly detailed ones, and be supported by paleoclimate archives evidencing
abrupt climate transitions in the past.

 Specific Objective 1.2. Identify and better characterize previously hypothesized TEs in the Earth system and their associated TPs in terms of critical
forcing levels. This will involve modelling and paleoclimatic reconstructions of past warm and cold climates, with particular focus on interactions
between the different TEs, along with any potentially cascading or stabilising effects these interactions may cause.
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» Specific Objective 2.1. Develop methods to skilfully predict forthcoming TPs beyond simple statistical EWSs. This work will focus on the
interactions between different TEs and complement statistical precursors of forthcoming transitions and cascades thereof by physics-based ones.
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» Specific Objective 2.1. Develop methods to skilfully predict forthcoming TPs beyond simple statistical EWSs. This work will focus on the
interactions between different TEs and complement statistical precursors of forthcoming transitions and cascades thereof by physics-based ones.

Model with critical transition: true EWS

Model without transition: false alarms

a b
1
5
0
0
—— Stochastic TS
~11 —— Deterministic TS 2l
0 2,000 4,000 6,000 8,000 10,000 0 2,000 4,000 6,000 8,000
€ 0.0125 - T d
= Variance i Variance
° 0.0100 —-—-P<10? oy —-—= P=0.001
Q Qo
e e
£ 0.0075 2 24
s s
0.0050 0
! . ) } r . . ; |
0 8,000 10,000 0 2,000 4,000 6,000 8,000 10,000
e — f 1.00
0.98 — AC1 — AC1
—_—— P10 === P<10”®
5 0.97 O 098
< <
0.96
0.95 0.96 ) ) . |
0 2,000 4,000 6,000 8,000 10,000 0 2,000 4,000 6,000 8,000 10,000
g . T p h 0 )
-0.02 T - #
3 -3
-== P<10 —0.02 | === P<10
-0.03 2=t . i
~ cor ~ 0r
~0.04 ——- P<10? -0.04 "'f’fﬁf&W
-0.05 -0.06 J
- - T - - - —r T - i
0 2,000 4,000 6,000 8,000 10,000 0 2,000 4,000 6,000 8,000 10,000
Time Time

Boers (2021) Nature Climate Change



FPRs

TIPPING POINTS IN THE EARTH SYSTEM

Co-financed by the Connecting Europe
Facility of the Eurapean Union

» Objective 2 (02). Provide approaches for the identification and validation of early warning signals (EWSs)

» Specific Objective 2.1. Develop methods to skilfully predict forthcoming TPs beyond simple statistical EWSs. This work will focus on the
interactions between different TEs and complement statistical precursors of forthcoming transitions and cascades thereof by physics-based ones.
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* Objective 2 (02). Provide approaches for the identification and validation of early warning signals (EWSs)

» Specific Objective 2.1. Develop methods to skilfully predict forthcoming TPs beyond simple statistical EWSs. This work will focus on the
interactions between different TEs and complement statistical precursors of forthcoming transitions and cascades thereof by physics-based ones.
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Pronounced loss of Amazon rainforest resilience since the early
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Fig. 2: Changes in Amazon vegetation resilience since the 1990s and from 2003.
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Fig. 2: Changes in Amazon vegetation resilience since the 1990s and from 2003.
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Objective 3 (O3). Characterise climate response in the presence of tipping points (TPs)

Specific Objective 3.1. Develop a theory of climate response (CR) that goes beyond linear and equilibrium concepts, i.e. beyond equilibrium climate
sensitivity (ECS). This theory should deal with responses on distinct temporal and spatial scales, and relate the responses of different observables to
external forcing through appropriate response operators.

Specific Objective 3.2. Apply and evaluate this CR theory by deriving thresholds associated with both natural and anthropogenic abrupt and
irreversible transitions in both warmer and colder climates, using information from appropriate paleoclimate data and climate models.
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 Specific Objective 3.1. Develop a theory of climate response (CR) that goes beyond linear and equilibrium concepts, i.e. beyond equilibrium climate
sensitivity (ECS). This theory should deal with responses on distinct temporal and spatial scales, and relate the responses of different observables to
external forcing through appropriate response operators.
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The climate is a forced. dissipative, nonlinear, complex, and heterogeneous system that is out of
thermodynamic equilibrium. The system exhibits natural variability on many scales of motion, in time
as well as space, and it is subject to various external forcings, natural as well as anthropogenic. This
review covers the observational evidence on climate phenomena and the governing equations of
planetary-scale flow and presents the key concept of a hierarchy of models for use in the climate
sciences. Recent advances in the application of dynamical systems theory, on the one hand, and
nonequilibrium statistical physics, on the other hand, are brought together for the first time and shown
to complement each other in helping understand and predict the system’s behavior. These
complementary points of view permit a self-consistent handling of subgrid-scale phenomena as
stochastic processes, as well as a unified handling of natural climate variability and forced climate
change, along with a treatment of the crucial issues of climate sensitivity, response, and predictability.
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 Specific Objective 4.1. Estimate the safety of operating spaces in terms that are quantitatively related to well-defined notions of bifurcations and
attractors, as well as to global notions of stability for non-autonomous systems subject to time-dependent forcing.

+ Specific Objective 4.2. Develop quantitative estimates for the boundaries of safe operating spaces and the associated uncertainties in terms of critical
levels and rates of change of distinct anthropogenic forcings. Assess the likelihood of abrupt transitions in the vicinity of these boundaries, while
taking into account concepts such as noise- and rate-induced tipping.
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Objective 4 (O4). Define and identify safe operating spaces

Specific Objective 4.1. Estimate the safety of operating spaces in terms that are quantitatively related to well-defined notions of bifurcations and
attractors, as well as to global notions of stability for non-autonomous systems subject to time-dependent forcing.

Specific Objective 4.2. Develop quantitative estimates for the boundaries of safe operating spaces and the associated uncertainties in terms of critical
levels and rates of change of distinct anthropogenic forcings. Assess the likelihood of abrupt transitions in the vicinity of these boundaries, while

taking into account concepts such as noise- and rate-induced tipping.
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Specific Objective 4.1. Estimate the safety of operating spaces in terms that are quantitatively related to well-defined notions of bifurcations and
attractors, as well as to global notions of stability for non-autonomous systems subject to time-dependent forcing.

Specific Objective 4.2. Develop quantitative estimates for the boundaries of safe operating spaces and the associated uncertainties in terms of critical
levels and rates of change of distinct anthropogenic forcings. Assess the likelihood of abrupt transitions in the vicinity of these boundaries, while
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Objective 5 (O5). Bridge the gap between climate science and policy advice

Specific Objective 5.1. Develop a clear formal language (domain-specific language) to communicate concepts and connections between TP
researchers and decision makers. This includes the notions of uncertainty about the consequences of crossing specific TPs, the reliability of EWSs,
and the size and shape of safe operating spaces. The objective of the domain-specific language is to stand as a reference and to minimize ambiguity in
the communication of research outputs.

Specific Objective 5.2. Understand the impact of uncertainties on TPs for the mathematical problem of finding optimal policy mechanisms, and frame
the dialog with the decision maker for defining and communicating decision problems which determine accountable policies.
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Figure 1. Conceptual diagram of SURFER. The state variables are indicated by the boxes, interactions and sources are depicted by black

and dark orange arrows respectively. Montero et al. (2022) submitted



