Modifications of System/360 Floating-Point

by

Leonard J. Harding Jr.

The University of Michigan Computing Center - August 1966

Introduction

The architectual changes advocated by this report are
limited to those which correct defects that programming cannot
avoid without severe degradation of the System/360. Since the
computational capabilities of the larger models are currently
constrained by strict compatibility, it would appear that this
is an overriding consideration and hence, these changes are

requested in all models.

Long Operand Addition, Subtraction and Compare

The long intermediate sum must be extended to 15 hexadecimal
digits and possible carry, i.e., a guard digit must be incor-

porated.

Long Operand Multiplication

The long intermediate product fraction must not be truncated
before postnormalization. This amounts to provision for a 15

hexadecimal digit intermediate product.

Halve Instruction

Both the short and long operand HALVE instructions must

provide for postnormalization of up to one hexadecimal digit

= T =
followed by truncation to the appropriate length. Note that

this requires that both instructions retain a guard digit.

Underflow and Overflow Interruptions

When an underflow interruption is taken, the result
register must contain the correct sign and mantissa and a
characteristic 128 larger than the true value. When an over-
flow interruption occurs, the result register must contain the
correct sign and mantissa and a characteristic 128 smaller

than its true value.

Since the internal structure and microprogram of the
Models 65/67 have been made available to the University of
Michigan, some attempt has been made to indicate the magnitude
of these changes for these two systems. This is not meant to,
nor should it be taken as implying that the proposed changes

be restricted to these two models.

- 3 -

Long Operand Addition, Subtraction and Compare

The proposed extension of the long operand intermediate
sum to 15 hexadecimal digits and possible carry only elimin-
ates the occurrence of anomalous results when normalized long
operands are used. To eliminate the idiosyncrasies that arise

from the use of unnormalized operands would require either

(1) prenormalization of the operand with the larger
characteristic up to the characteristic difference, or
(2) an intermediate sum consisting of 28 hexadecimal digits

and possible carry.

Because the first alternative would require that the micro-
programs for the normalized and unnormalized operations be
separated, and because of the infrequent use of unnormalized
operands, the first of these must be rejected on the basis of
inefficiency.* The second alternative would probably require
too much additional hardware, especially in the smaller models,
and would also be inefficient for normalized operands. It is
only reasonable therefore, to attempt to obtain the minimal
change that suffices for normalized operands. In any case, the
dangers inherent in the use of unnormalized operands can be

alleviated by appropriate education of the programming community.

In this respect, the current inaccuracies of the long operand

£
On the Model 67, checking to determine whether prenormalization
is necessary would increase long operand addition time by
roughly 25%.

-4 -
additive operations differ from the problems involved in
using unnormalized operands, since they are effectively

beyond the control of the programmer.

What is the effect of providing a guard digit? For like
sign additions of normalized operands, the guard digit cannot
affect the value of the computed sum since postnormalization
(to the left) is never required. For unlike sign additions
which require no preshifting to align the hexadecimal points,
the guard digit will be zero and hence, cannot affect the
result. For unlike sign additions which require preshifting,
however, a single guard digit is at the same time vital and
sufficient. When a guard digit is retained the relative error
is independent of the operands and bounded by 16"13, whereas
currently the relative error is directly dependent on the
operands and need not be low. According to the results of a
study of floating-point addition presented by Sweeney*, it is
reasonable to expect that 22.66% of the additive operations
performed will result in unlike sign additions with non-trivial
preshifting. Further, approximately 1/5 of these operations
will require postnormalization and hence, will materially
benefit from the retention of a guard digit. Thus, roughly
4% of the additive operations would be affected in anywhere

from the first through fourteenth digits of the result. The

important point, however, is that the retention of a single

2
Sweeney, D. W.3; "An Analysis of Floating-Point Addition",
IBM Systems Journal 4, No. 1, 31-42, 1965.

- 5 -

guard digit guarantees that the relative error in every
addition is independent of the operands. The original
question may thus be rephrased in terms of the importance

of this guarantee.

Concisely stated, the incorporation of a guard digit
will increase the range of problems solvable in System/360
long operand arithmetic. By implication then, there are some
problems which are not solvable to the required degree of
accuracy due solely to the current hardware anomalies. Although
one may question the significance of this statement, it is
certainly true. Unfortunately, it would appear that only
experience with the current System/360 will show whether these
anomalies manifest themselves sufficiently often to be bother-
some. This of course, assuming that the programmer will be
able to separate the hardware generated problems from those
caused by the particular method or data that he is using. 1In
consideration of the difficulties involved in tracing inaccuracies
to the hardware, however, this assumption is optimistic. Further,
since the errors which arise from the current facility are
directly dependent upon the operands, the accuracy which a
given program achieves in its results will become even more
data dependent than at present. These burdensome considerations
should not be placed upon the programmer, and are more properly

within the scope of hardware design.

In the Model 67, the incorporation of a guard digit need

- 6 -
not affect the timing of the floating-point additive operations
except when both recomplementation and postnormalization are
necessary. Thus, these changes will increase the execution
time only when the retention of the guard digit is significant.
This rather favorable situation may not be true in the smaller
models because of the drastic reduction in adder width and
the difference in shifting techniques. Additional hardware
would, of course, be preferable from the point of view of
timing; however, it would appear that in the case of the Model
67, a guard digit may be made available solely through changes

in the microprogram.

Long Operand Multiplication

The anomalous results currently produced by long operand
multiplications result from truncation of the intermediate
product to 14 hexadecimal digits before postnormalization.
This means that when postnormalization is necessary, the low

order digit of the result will always be zero. Specifically,

if
A= .a ...a x 18°% a # 0,
1 14 1
B=.b ...b x 16° b # 0,
1 14 1
and
C=AxB = .c vouc ¢ ...c x 16%1E
14 15 28
then
_1
F1(AxB) = .c ...c 0x 16%*B c =0
2 14 1
or
F1(AxB) = .c ...c c x 16%7F c #0
1 13 14 1

where fl(AxB) denotes the result produced by System/360. The
operands A and B may be assumed normalized, since floating-point
multiplication always prenormalizes the operands. The first

question to ask is: What is the frequency of postnormalization?

Ignoring the possibility of carries, the digit c1 is

essentially determined by the product a1 x bl. Assuming that

-8 -
a, and b1 are uniformly distributed among the 15 possible
hexadecimal digits, we might expect postnormalization 20% of
the time. There is empirical and theoretical evidence, however,
that the first significant digit is not uniformly distributed.
For example, consider the set of all products of hexadecimal
fractions of the form .Z x .Y, e.g., .1 x .2 = .02, .4 x .3 = .0C,
.D x .F = .C3. The distribution of the leading digit of these

225 products is given in the following table.

FIRST DIGIT of 1| 2 3| u{ &S| 6| 7| 8| 9(A|B|C|D|E|F
BEFORE NORMALIZATION | 45(36(27|25|19|15|15(11(10(7(5(u|3|2(1(0

AFTER NORMALIZATION | --|371(29|27|22|17|18|13|14|10|9|6|9 (4|54

The skewness of this distribution is apparent. Indeed, after
normalization the first three digits account for 41.33% of the
products, while the first six account for 67.11%. Further, these
lower order digits tend to reproduce themselves. Consideration
of the set of 80 products of the form .Z x .Y, where Z = 1,...,6
and Y = 1,...,F, shows that 86.25% of them will have a first

significance digit less than or equal to 6 after normalization.

Some theoretical basis for this skew distribution is
*
presented in Hamming and the references given there. On the

basis of the empirical and theoretical evidence, it appears that

£
Hamming, R. W.; "Numerical Methods for Scientists and Engineers",
McGraw-Hill Book Company, Inc., New York, 1962.

- 9 -
postnormalization may be expected in roughly 50% of the

multiplications.

Though the frequency of postnormalization does influence
the accuracy that may be expected in solving a given problem,
it does not belie the anomalies that arise in long operand
multiplication. Perhaps the most dramatic effect is illustrated
by the equation 1 x X # X, which is true whenever the 1lith
hexadecimal digit of X is non-zero. Further, there exist
operands B>C>0 and A>0 such that

AxB < AxC,

which is a mathematical contradiction. Alternatively, there
exist E>0 and A>0 so that

(1-E)xA > (1+E)xA > 1xA

Rather than dwell on these "contradictions", however, it
is instructive to consider the graph of the function fl(AxZ),
where A is fixed. As Z varies over the full range of possible
operands the mantissas of fl(AxZ) are clearly seen to be
periodic of period lSXlBIB, so that we may restrict Z to the

range .1000 0000 0000 00 to .FFFF FFFF FFFF FF.

For descriptive purposes, it is convenient to assume that
A also lies in the above range. Having fixed A, there exists
a unique largest ZL such that AXZL < .1000 0000 0COO 00. For

all 7z < Z postnormalization of the product is necessary.

- 10 -

Accordingly, the fraction of fl(AxZ) consists of the first

13 significant digits of the product, the 1li4th digit always
being zero. Hence, in this range multiplication is monotonic,

i.e., if Z1 < Z then fl(Ale) < fl(AxZZ). Unless A is

2
.1000 0000 0000 00 or .1000 0000 0000 01, there exists a
unique smallest Zy such that AxZ, > .1000 0000 0000 00. For
all Z > Zy postnormalization is not necessary so that the
function f1(AxZ) consists of the first 14 significant digits
of the product. Hence, multiplication is also monotonic in

this range. Now for all Z such that Z, < Z < ZH we clearly have

L
fl(ZLXA) < f1(ZxA) < fl(ZHXA),

so that multiplication is monotonic over the entire range under

consideration. The contradiction of monotonicity referred to

above must therefore arise at the endpoints of this range.

Indeed, take A = .al...a1“ x 16“(“) and allow Z to assume
only the seventeen values W_l = .FFFF FFFF FFFF FFXIGB or
N B+1 -
wrl = .1000 0000 0000 Onx1lb 5 B2 Ognsaegfe TheEn
FI(AxW) = .a ...a (a -1) 16°*8, a 2 0
-1 1 13 14 14
or
FI(AXW) = .a ...(a -1)Fx16%*®, a2 =0
-1 1 13 14
while
F1(AxW) = .a ...(a + b)0x16°"®, b b =na+a .
n 1 13 1 2 1 14

E3
Must assume that A # .10000000000000x16%. Under these circum-
stances f1(AxZ) is always Z truncated to 13 significant digits,
so that fl1(AxZ) is monotonic over the entire machine range.

- 11 -
If alq is 0 or 1 then multiplication is monotonic across the
endpoints, although for all+ = 1 it obtains erroneously that

f1(AxW 1) = fl(Awa). For a 3 2 have
- 14

FLAXW_) > £1(Ax)

for all n such that na1 + alk < 16. Thus, for about 87.5% of
the possible choices of A, multiplication will exhibit non-

monotonic behavior,

.Pigure 1 illustrates the typical behavior of f1(AxZ), denoted
in this graph by the heavy horizontal lines. The small circles
denote the result that would be obtained if postnormalization
preceded truncation. The graph was constructed so as to contain
both ZL and ZH’ since the behavior of f1(AxZ) to the left of ZL
and to the right of ZH differ radically. The important point,
however, is that to the left of ZL division and multiplication
are incompatible. Indeed, the small circles also denote the
result obtained by dividing the numbers on the vertical axis by

.200...000. This incompatibility is a direct result of the

current implementation of multiplication.

For the Model 67, the proposed change must be regarded as
a minor alteration. Three ROS words in the existing microprogranm
must be changed, one new ROS word inserted, and the TX-trigger
must be rewired so that its status may be retained through

CPU clock ecycles under microprogram control. The details of

= 17 -
the wiring necessary are well-known to IBM, since the same
rewiring is necessary when extended precision is added. Since
this section of the ROS program is common to both the short and
long operand multiplies, the execution time of all four floating-
point multiplies will be increased by 200ns. This represents
about a 5% increase for the ME and MER, and less than 3% for

the MD and MDR instructions.

.100...000x160 |

.FFF...FFOx16-1

.FFF...FEOx16~ %

f1(AxZ)

-1
FFF...FDOX16 ™ 4

- 13

FIGURE 1

PART OF THE GRAPH OF f1(.200...000 x Z)

6]
(B —
o}
o]

& - i i

¥ I | v

ZL ZH

[e¢] [ee] [e¢]

Fuy o —

A [P o o
B = o

e o o

o~ (o0} [ee]

«1FE...FHS8

The Halve Instructions

These instructions will remain virtually useless unless
postnormalization followed by truncation is incorporated. Use
of the unnormalized results produced by these instructions is
well known to be unwise, and this situation will not be
alleviated by the proposed changes for the long operand additive
operations. By the same token, however, it seems reasonable
that only one cycle of postnormalization be provided since this
suffices if the operand is normalized. The requirement that
postnormalization precede truncation is necessary for the same
reason as in long operand multiplication. Indeed, if this facet
of the proposal is not accepted, the incorporation of postnormal-
ization could scarcely be justified since normalization of the

truncated result can be easily, though inefficiently, programmed.

Because postnormalization implies the possibility of
underflow and truncation is to follow postnormalization, it
would appear that the easiest course to follow would be to
terminate the halve instructions exactly as if a multiplication
had been performed. In the Model 67 this would require changes
in the hardware and microprogram. The hardware changes would
be minimal, since they involve only the setting of triggers to
control the result sign in conformity with multiplication. Three
ROS words would have to be changed, and three ROS words currently
in use would be freed. The execution time of both instructions

would be 1.4 usec.

= 15 =

Floating-Point Overflow and Underflow

Floating-point spills are a programming problem and the

programmer should be able to specify any remedial action

appropriate to his particular problem. Since resumption of the
computation with a scaled result is often desirable, the correct
sign, mantissa and a uniformly scaled characteristic must be

made available. If this information is not placed in the

result register at the time of the spill, it will be irretrievably
lost. In the context of System/360,the reconstruction of the

lost operand will be all but impossible. The hardware should

not impose restrictions on the possible courses of action that

the programmer may wish to adopt.

Further, the various models of the System/360 are not
compatible in this respect. On any given model the result
register is entirely predictable; however, different models
yield different results given the same operands. It would
appear that the area of incompatibility is restricted to over-

flows, since all models apparently yield a true zero result for

underflows whether the interrupt is taken or not.

The best information available for the Model 67 indicates
that all spills yield a true zero in the result register. This
anomaly of the Model 67 is caused by the fact that the micro-

program can only detect that a spill has occurred. No provision

- 16 -
has been made to allow the microprogram to distinguish between
an underflow and an overflow, and in the case of an underflow,
whether the interrupt will be taken. On the other hand, when
a significance exception is detected, the Model 67 microprogram

can interrogate the significance interrupt mask bit in the PSW.

It seems relevant also to consider what is contained in
the result register prior to its being reset after the spill
has been detected. For addition, subtraction and multiplication
the result register is set to the result requested by this
resolution prior to the detection of the spill. For division,
the spill is detected before the quotient is computed. If the
spill test is moved farther down in the division microprogram,
the requested result would be available. At the present time,
the result register contains the dividend when the spill is
detected. The necessary changes in the Model 67 should prove

to be minimal.

In the Model 50, overflow does not yield a zero result
for addition, subtraction and multiplication. The result
register appears to consist of the correct mantissa and an 8
bit characteristic. Accordingly, the sign position is always
1l since it contains the characteristic overflow. In the Model
67, the correct sign overrides the presence of the overflow
bit when writing into the floating-point registers. Similar

behavior of the Model 50 should not therefore be difficult.

dh

