Idiosyncrasies of System/360 Floating-Point

by Leonard J. Harding, Jr.

Introduction

The following review explores certain aspects of the
announced System/360 floating-point feature which have not
been adequately described elsewhere. The available knowledge
on‘computational processes and techniques indicate that this
facet of System/360 contains many anomalies. Most prominent
among these are the results produced by the add, subtract, and
compare instructions when the operands are unnormalized, and
the effects of not providing a guard digit in the long operand
additive operations and multiplication. In the Models 65 and
67 these peculiarities can be eliminated by revisions of their

ROS program and minor alterations to the control circuitry.

The University of Michigan Computing Center - August, 1966

The Floating-Point Additive Operations

Some of the most intriguing aspects of the floating-
point feature concern the add, subtract and compare
instructions. The peculiarities of these operations are
inherent in the technique used to form the so-called inter-

mediate sum. The following quotation from the Principles of

Operation (Form A22-6821-2) explains how this sum is formed.

Addition of two floating-point numbers consists
of a characteristic comparison and fraction addition.
The characteristics of the two operands are compared,
and the fraction with the smaller characteristic is
right-shifted; its characteristic is increased by one
for each hexadecimal digit of shift, until the two
characteristics agree. The fractions are then added
algebraically to form an intermediate sum ...

The short intermediate sum consists of seven
hexadecimal digits and possible carry ... The long
intermediate sum consists of 14 hexadecimal digits
and possible carry. No guard digit is retained.

It is only what happens after the formation of this inter-
mediate sum which differentiates the twenty add, subtract
and compare instructions; in fact, up to this point the

same section of the ROS program controls all of these
instructions. The following examples illustrate the for-
mation of this intermediate sum. The operand signs indicate
the effective signs, so the actual instruction is irrelevant.
These examples are based on the Model 65 microprogram and

have been checked on a Model 50.

ExamEle l
Operands After Preshift
+40 100000 000OOQ0OOQO +40 100000 0000O0O0QOCO
=3F FFFFFF FFFFFFFF -40 OFFFFF FFFFFFFF

+40 000000 00000001

If a guard digit was retained in the long intermediate
sum, the result would have been +40 000000 00000000 1, which
is 1/16 of the result obtained above. This is an extreme
example that would rarely occur in normal computation. It
does, however, force the round-off error of floating-point
addition to be expressed in a form that is incompatible with
the assumptions of most a priori error analyses, e.g.,

Wilkinson [1] and Ortega [2].

ExamEle z
Operands After Preshift
+46 000001 +46 000001
+40 123456 +46 000000 1

+46 000001 1

This short operand example illustrates two points.

First, if accuracy is to be maintained, it is mandatory that

all operands be normalized. For example, when an integer

is converted to floating-point format, it must be normalized
before it can safely be used in an additive operation. The
above situation might occur when computing a logarithm,
since normally the logarithms of the exponent and mantissa
are computed separately and then added together. Second,

if the short operand additions produced long operand results,
then in this particular case, the exact result would have
been obtained. On most large computers, floating-point
addition of single precision operands produces a double
precision result, e.g., the IBM 7090. The System/360 breaks

this tradition.

Examgle g
Operands After Preshift
+40 876543 21012348 +41 087654 32101234
-41 087654 32101234 -41 087654 32101234

+41 000000 OOOOOOOO

If the instruction was an add or subtract, a signifi-
cance exception would take place unless masked. For the
compare instructions, the condition code would be set to
reflect equality. If a guard digit was used, a significance

exception would not occur since the result would be

+41 000000 00000000 8; likewise, the compare instructions
would not give the erroneous equality indication. These
operands are easy to obtain. The first is the result of
dividing +41 10ECA8 64202469 by 2, while the second occurs
if the same number is halved using the HDR instruction.
Note that the last digit of the first operand mantissa is
ignored, and hence could be any one of the 16 possible

hexadecimal digits. This illustrates the following general

result: a floating-point operand with p leading zeros in

the mantissa compares equal to 16P other floating-point

numbers.
ExamEle i
Operands After Preshift
+4E 000000 00000000 +4E 000000 0000QOCOOOQ
+40 123456 789ABCDE +4F 000000 00000O0OQO

+4E 000000 00O0COOOQO

This particular situation is not new. The IBM 7090-8k4
systems will produce the same erroneous results given the
appropriate operands. This example illustrates the following

general result: a floating-point operand with a zero mantissa

and a characteristic of N will compare equal to any operand

with a characteristic less than or equal to N - 1h. Addition

or subtraction of two such operands causes a significance

exception. This happens because the mantissa belonging to

the larger characteristic is not inspected; zero mantissas

are not recognized. With the IBM 7090-394 systems this

problem is of little consequence since it is impossible to
produce these semi-zerosl using normalized floating-point
operations. In System/360, however, every time a significance
exception is taken one of these semi-zeros is left in the
result registerz. If the computation is resumed without
setting this register to a true zero, the entire computation

may be lost.
Further, consider the timing aspects of this problem.

+4E 123456 789ABCDE +4E 123456 789ABCDE

+40 000000 0O00O0O0OOO +4E 000000 00000000

+4E 123456 789ABCDE

There is nothing wrong with the answer, but in the Model 65
2.8 pusec will be used to preshift the zero mantissa. A true
zero is likewise not recognized as such. If a true zero is
added to +10 123456 12345678, 3.2 usec. will be used to

preshift the zero mantissa since the characteristic difference
|

A floating-point operand with a zero mantissa and non-zero

characteristic.

2If the interruption was masked-off the result register

would be set to a true zero.

is 16. The operand with the larger characteristic is taken
as the intermediate sum only when the characteristic

difference exceeds 16.

ExamEle E
Operands After Preshift
+4FE 000000 00000001 +4E 000000 00O0CGOOO1
+4]1 123456 12345678 +4FE 000000 00000001

+4E 000000 00000002

This example illustrates the same points as example 2,
but let's consider the timing. Since the characteristic
difference is 13 the preshift will require 2.6 usec. If the
result is to be normalized, an additional 2.8 usec. will be
required to finish the operation. If the first operand had
been normalized prior to the addition, no preshift or post-
normalization would have been necessary. Further, the

result would be +u4l 223456 12345678, not +41 200000 00000O0O0O0.

There are two further peculiarities of the floating-
point feature which affect the additive operations. The most
intriguing of these is the significance exception. As has
been illustrated, normalized operands are mandatory if

accuracy is to be maintained; hence, let's assume normalized

operands. Under these conditions, exactly those operations

that we know a priori involve no round-off error will cause

a significance exception. Further, if the exception is taken
a semi-zero will be placed in the result register. An
intimately related problem is caused by the fact that no
instruction was provided to set a floating-point register

to zero. Providing that core storage is not busy, a zero

may be loaded in 1.4 usec. It has been indicated by some
that it is easier and faster to subtract the appropriate
register from itself. This technique does shorten the
instruction stream, but it creates a significance exception.
If the exception is masked off the SDR instruction will
execute in 1.4 usec and the result register will be a true
zero. Otherwise, a time-consuming interruption will occur
and the result register will contain a semi-zero. Everything
considered, it would appear that normalized floating-point
arithmetic is more safely and economically performed with

the significance exception masked off.

The idiosyncrasies of the floating-point additive
operations illustrated by these examples may or may not
manifest themselves sufficiently often to be bothersome.
Their presence, however, would seem to indicate that care
will have to be exercised when programming computational
processes. The microprogram of the Model 65 could be re-

written to avoid all of these peculiarities. The salient

points of the revision for the normalized instructions

and compare should be:
(1) prenormalization of the operand with the largest
characteristic up to the characteristic difference

and simultaneous checking for a zero mantissa,

(2) checking of the operand to be preshifted for zero

mantissa,

(3) a guard digit for unlike sign additions,

(4) short operand additions produce long operand

results.

Assuming this method of operation, all of the above examples
would produce the exact result and the extraneous shifting

performed in examples 2, 4 and 5 would be eliminated.

The HALVE Instruction

The following programming note from the Principles of

Operation delineates the defects of this instruction.

The halve operation differs from the divide
operation with the number two as a divisor in the
absence of prenormalization and postnormalization
and in the absence of a zero-fraction test.

Example 3 of the first section shows that the DD instruction
and the HDR instruction will produce different results due
to the lack of postnormalization. Note, however, that the
compare instruction indicated equality in that example. The
Newton-Raphson iteration specialized to the computation of

the square root of A is

Xogy = /2 (x ot A/xn I
The HDR instruction should not be used here unless you are
willing to accept the dangers inherent in unnormalized

floating-point numbers.

It should also be taken into account that the hexa-
decimal base implies that halving and division by two are
both subject to round-off error. This is not true of most
computers, since halving can be accomplished by characteristic
manipulation. Assuming normalized operands, the result of
an HDR instruction will be unnormalized if and only if the
leading digit of the mantissa is a 1. If the HDR instruction
normalized the result, this is the only case in which no

round-off error would occur.

In the Model 65, minor revision of the ROS program
would make the HDR instruction equivalent to division by

two. For a normalized operand the execution time would be

increased by at most .4 usec.

Long Operand Multiplication

The following addition to the most recent version of

the Principles of Operation (Form A22-6821-2) describes the

problem with long operand multiplication.

Because of the truncation of intermediate
results to 14 hexadecimal fraction digits and
the introduction of a low-order zero in a
subsequent left shift, if any, the low order
digit in the result of a long-precision multi-
plication of normalized operands is not neces-
sarily significant. The truncation error affects
only the low-order fraction digit, and the effect
of the truncation is predictable.

That this programming note is limited to "normalized operands"”
is interesting since all floating-point multiplies prenormalize
the operands. In general, the low-order product digit will be
replaced by zero whenever the product of the two high-order
digits of the normalized mantissas can be expressed as one
hexadecimal digit, e.g., 1*F=F, 2%7=E, 3*5=F, u4%3=C, etc.
Assuming a random distribution of high order digits, the low-
order digit of the result is truncated about 20% of the time.
In particular, multiplication by 1 is equivalent to truncation

to thirteen hexadecimal digits, e.g.,

1. * +40 FFFFFF FFFFFFFF = +u40 FFFFFF FFFFFFFO.

= LI =

The loss of the low-order digit alsoc affects multiplication
by .5 since .5 = +40 800000 00000000 and 8x1 = 8. Specifi-
cally, multiplication by .5 is not equivalent to division

by 2 or halving by the HDR instruction. Consider the operand

used in example 3, then

/2 (DD) = +u40 876543 21012348
+41 10ECA8 64202469 #2 (HDR) = +u41 087654 32101234
#,5 (MD) = +u4g 876543 21012340

The results produced by these three operations will be the
same when the first digit of the normalized mantissa is not
1. If the first digit is a 1, both multiplication and halving

exhibit their peculiarities.

The failure to provide a multiplicative guard digit
unnecessarily increases the bound on round-off error by a
power of 16. In the Model 67 the guard digit can be obtained
by a minor revision of the ROS program. This change increases
short and long multiply times by .2 usec. Short operand times
would be increased because the ROS changes must be made at a
point in the microprogram which is common to all four multiply

instructions.

Bibliography

l. Wilkinson, J. H. Rounding Errors in Algebraic Processes,
Prentice-Hall, Englewood Cliffs, N.J., 1963.

2. Ortega, J. M. An Error Analysis of Householder's Method
for the Symmetric Eigenvalue Problem, Applied Math.
and Stat. Laboratories, Stanford University,
Tech. Rep. No. 18, 1862,

