

Abstract—We have defined two suites of metrics, which cover

static and dynamic aspects of component assembly. The static
metrics measure complexity and criticality of component assembly,
wherein complexity is measured using Component Packing Density
and Component Interaction Density metrics. Further, four criticality
conditions namely, Link, Bridge, Inheritance and Size criticalities
have been identified and quantified. The complexity and criticality
metrics are combined to form a Triangular Metric, which can be used
to classify the type and nature of applications. Dynamic metrics are
collected during the runtime of a complete application. Dynamic
metrics are useful to identify super-component and to evaluate the
degree of utilisation of various components. In this paper both static
and dynamic metrics are evaluated using Weyuker’s set of properties.
The result shows that the metrics provide a valid means to measure
issues in component assembly. We relate our metrics suite with
McCall’s Quality Model and illustrate their impact on product
quality and to the management of component-based product
development.

Keywords—Component Assembly, Component Based Software
Engineering, CORBA Component Model, Software Component
Metrics.

I. INTRODUCTION

OMPONENT-BASED Software Engineering (CBSE) has
played a very important role for building larger software

systems. Cost reduced [3,24] and shorter development time
gives a good prospect for this type of development.
Components are connected by assembling, adapting and
wiring into a complete application. Although there is no
IEEE/ISO standard definition that we know of, one of the
leading exponents in this area, Szyperski [24], defines a
software component as follows:

“A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third
parties”.
The definition allows assembling many components into a

complete application; however we need a Standard way to
make components work together. Some well-known Standards

Manuscript received September 22, 2005.
The authors are with the Faculty of Electrical Engineering and Computer

Science, The University of Newcastle, NSW 2308, Australia (phone: +614921
6953; e-mail: lakshmi.narasimhan@newcastle.edu.au; url:
http://www.cs.newcastle.edu.au/~narasimhan).

are Sun’s Java, Microsoft .NET and Object Management
Groups’ (OMG) Corba Component Model (CCM). CCM uses
the syntax of Component Interface Definition Language
(CIDL)[30] for component integration and XML description
for component assembly. However problems in using
Standards still exist as described in [1,2,5,6,16].

Traditional metrics has to be redefined or enhanced to
comply with component-based software development
[1,13,15,22]. This research is an attempt to build a suite of
software metrics, with particular emphasis on software
component assembly. The suite accommodates static and
dynamic aspects of component assembly. The static metrics
measure the complexity and criticality of component
assembly, while the dynamic metrics characterize the dynamic
behaviour of a software application by recognizing component
activities during run-time.

The suite can be used at different phase of development life
cycle, particularly at the design, implementation and testing
stages and the metrics can be used as indicators of activities at
these stages. We expect the suite to aim software project
managers to: 1) identify potential risks, and 2) uncover
problem areas before they become harder to handle, so that
software project managers can adjust the workflow or tasks in
their projects.

The paper is organized as follows: section II presents the
need for component integration metrics, while section III
discusses the definition of the metrics and their description.
The metrics are evaluated using the nine Weyuker properties
in section IV. A discussion about the evaluation and how the
metrics could be used over software projects is provided in
sections V. Our conclusions of the research are described in
section VI.

II. RESEARCH PROBLEM

Component based metrics have been proposed by several
researches. For example, Dolado [9] validates the use of Lines
Of Code (LOC) in counting the size of software, while Verner
and Tate [26] estimate the number of LOC early in the
software life-cycle. But since the use of LOC depends on the
language of implementation, it is hard to predict the size of the
software prior to implementing. This is more so for software
components, which do not have information on their source
code. Most other metrics on CBSE have aimed at the
reusability of components [12, 20, 27, 28], while [10, 21]
focus on the process and measurement framework in

Theoretical Considerations for
Software Component Metrics

V. Lakshmi Narasimhan, and Bayu Hendradjaya

C

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

3230International Scholarly and Scientific Research & Innovation 1(10) 2007 scholar.waset.org/1307-6892/2023

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
10

, 2
00

7
w

as
et

.o
rg

/P
ub

lic
at

io
n/

20
23

http://waset.org/publication/Theoretical-Considerations-for-Software-Component-Metrics/2023
http://scholar.waset.org/1307-6892/2023

developing software components. Ebert [11] suggests some
classification techniques to identify critical items in software
project, which can be applied for a CBSE project, but he does
not tackle the criticality aspects of component integration.

Specific issues on integration are discussed by Sedigh-Ali
et al. [21], where the complexity of interfaces and their
integration is interpreted as quality metrics. Cho et. al. [8]
define metrics for complexity, customisability and reusability.
They calculate the complexity of metrics by using the
combination of the number of classes, interfaces and
relationship among classes. They combine the calculation of
cyclometric complexity with the sum of classes and interfaces,
which need information from the source code. This is a
shortcoming of their metrics, which is usable only when the
developer has access to the source code.

We propose static metrics and dynamic metrics for
component assembly1. Static metrics cover the complexity and
the criticality within an integrated component. Static metrics
are collected from static analysis of component assembly,
while dynamic metrics are gathered during execution of
complete application. The complexity and criticality metrics
are intended to be used early during the design stage, while
dynamic metrics are meant to be used at later stages. We
consolidate our work and validate the metrics suite through
Weyuker’s evaluation criteria [29]. Furthermore, the suite
integrates existing metrics available in the literature as an
integrated package.

III. COMPONENT METRICS

The proposed metrics use graph connectivity as a medium
to represent a system of integrated components. Each node
and link represent a component and their relationship with
other components respectively. Interactions happen through
interfaces and events arising or arriving in. If a component ‘X’
requires an interface that is provided by another component
‘Y’, then ‘Y’ will be the incoming interaction for ‘X’. If a
component ‘X’ publishes an event which is consumed by
component ‘Y’, then ‘X’ is said to raise an outgoing
interaction to ‘Y’. OMG [30] defines a provided interface as a
‘facet’, a required interface as a ‘receptacle’, a published
event as an ‘event source’ and a consumed event as an ‘event
sink’.

Fig. 1 shows a link between two components of system P
and system Q where one could consider component B to be
more complex than components A, D or X, because it has
more links than the others. Therefore in one sense, B can be
termed as a critical component. On the other hand,
component X may not be complex, but it is critical for the
correct operation of the integrated system. Here, component
X functions as a bridge between two systems P and Q. The
definition for criticality does not stop here and it has other

1 In this paper, we differentiate the terms Component Assembly and
Component Integration as follows: A ‘Component Assembly’ refers to system
in which components have been integrated, whereas ‘Component Integration’
refers to the process of integrating components.

dimensions (see more in section III, subsection B).
Similarly the complexity of a system depends on packaging

density of components. For example, vertically connected
components can be easily integrated as compared to multiply
connected components2. In addition, facets of components
also have roles in connectivity and quality metrics. Further,
dynamic characteristics of components along with their
constraints can aid the design of new type of metrics for
quality, management and reliability measures. In order to
compute the value for criticality and complexity, we have
identified several conceptual views of the components and
systems, based on the analysis of the static and dynamic
characteristics of integrated components.

The proposed static metrics are Complexity Metrics,
Criticality Metrics and Triangular Metric. Their descriptions
are given in Table I. Table II shows the dynamic metrics
descriptions. Dynamic metrics are collected during the
execution of a complete application. Even though they cannot
be used during the design phase, the results are still useful for
testing and maintenance purposes. Gathering data for dynamic
metrics is possible by instrumenting the source code, prior to
compilation.

Fig. 1 Interacting systems and components

The three metrics, namely, CPD, CAID and CRITall have
different points of view. While Component Packing Density
(CPD) is calculated from the density in the integrated
components, Average Interaction Density (CAID) is derived
from density of interaction within an integrated component.
Both metrics, however, represent the complexity of the
system. The last metric (CRITall) is based on the criticality of
the component.

In order to get a better view of the complexity metrics, we
can combine CPD and CAID into a two-axes diagram. By
examining their value, we deduce the characteristic of
software as follows (see illustration in Fig. 2):
Case 1: A low CPD value and a low CAID value: This
condition might happen within a system, having low data
processing and low computation, such as a simple transaction
processing system.
Case 2: A low CPD value and a high CAID value. This
condition might happen within a system, having low data

2 Vertically connected components are linked consecutively so that every

component has a maximum of two components linked. A component, which
links to more than two other components is called multiply connected
component.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

3231International Scholarly and Scientific Research & Innovation 1(10) 2007 scholar.waset.org/1307-6892/2023

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
10

, 2
00

7
w

as
et

.o
rg

/P
ub

lic
at

io
n/

20
23

http://waset.org/publication/Theoretical-Considerations-for-Software-Component-Metrics/2023
http://scholar.waset.org/1307-6892/2023

processing and high computation, such as a compute-intensive
real time system.
Case 3: A high CPD value and a low CAID value. This might
suggest a transaction processing system, which is
characterised by high volume of data processing with many
components, but has low interaction among components.
Case 4: A high CPD value and a high CAID value. This
condition represents a very complex system, which might has
many classes or constituents within its components and high
interactions among components.

Fig. 2 Four possible values of CPD and CID

By combining information from the two axes diagram with
new axis of criticality (CRITall), we can further characterize a
system as shown in Fig. 3. A real-time system usually has
higher criticality compared to a transaction-based system. A
business application tends to have more components to access
data, than a real time application. A list of application types
can be found in [17], while distinguishing characteristics
between business type applications and real-time systems can
be found in [4]. Our results concur with these observations for
transaction and real-time system. Two detailed examples
developed can be obtained from the authors.

Fig. 3 Three axes of component complexity and criticality

IV. VALIDATING THE METRICS USING WEYUKER PROPERTIES

Weyuker has proposed an axiomatic framework for
evaluating complexity measures [29]. The properties are not
without critique and these have been discussed in [12] and
[14]. The properties, however, have been used to validate the
C-K metrics by Chidamber & Kemerer[7] and, as a
consequence, we will employ the same framework for
compatibility’s sake. We show the properties below, which
are the modified definitions as provided by [12]; the original
definitions are available at [29]. The properties are:

Property 1: There are programs P and Q for which M(P)
≠ M(Q)
Property 2: If c is non-negative number, then there are
only finitely many programs P for which M(P)=c
Property 3: There are distinct programs P and Q for
which M(P)=M(Q)
Property 4: There are functionally equivalent programs
P and Q for which M(P) ≠ M(Q)
Property 5: For any program bodies P and Q, we have
M(P) ≤ M(P;Q) and M(Q) ≤ M(P;Q)
Property 6: There exist program bodies P, Q and R such
that M(P)=M(Q) and M(P;R) ≠ M(Q;R)
Property 7: There are program bodies P and Q such that
Q is formed by permuting the order of statements of P
and M(P) ≠ M(Q)
Property 8: If P is a renaming of Q, then M(P) = M(Q)
Property 9: There exist program bodies P and Q such
that M(P)+M(Q) < M(P;Q)

Property 1: There are programs P and Q for which M(P) ≠
M(Q)

• An integrated component comprises various components having
different constituents and different value of criticalities. As a
consequence, the Component Packing Density (CPD) metric,

TABLE I
STATIC METRICS DESCRIPTIONS

Name Formulae Description
Component Packing
Density Metric components#

tconstituen#CPD type_tconstituen
><

=

#<constituent_type> is one of the following: LOC, object/classes,
operations, classes and/or modules in the related components.

Component Interaction
Density Metric maxI#

I#CID =

#I is the number of actual interactions and #Imax is the number of
maximum available interactions.

Component Incoming
Interaction Density in

in
axIm#

I#
CIID =

where, #IIN is the number of incoming interactions used and #ImaxIN is
the number of incoming interactions available.

Component Outgoing
Interaction Density out

out
axIm#

I#
COID =

#IOUT is the number of outgoing interactions used and #ImaxOUT is the
number of outgoing interactions available.

Component Average
Interaction Density components#

CIDn
CAID n∑

=

ΣnCIDn is the sum of interactions density of n component and
#components is the number of the existing component

Bridge Criticality Metrics CRITbridge=#bridge_component #bridgecomponent is the number of bridge components.
Inheritance Criticality Metrics CRITinheritance=#root_component #root_component is the number of root components which has

inheritance.
Inheritance Criticality Metrics CRITinheritance=#root_component

#root_component is the number of root components which has
inheritance.

Size Criticality Metrics CRITsize=#size_component

#size_component is the number of component which exceeds a given
critical value.

#Criticality Metrics CRITall= CRITlink+CRITbridge
+CRITinheritance+CRITsize

<see above>

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

3232International Scholarly and Scientific Research & Innovation 1(10) 2007 scholar.waset.org/1307-6892/2023

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
10

, 2
00

7
w

as
et

.o
rg

/P
ub

lic
at

io
n/

20
23

http://waset.org/publication/Theoretical-Considerations-for-Software-Component-Metrics/2023
http://scholar.waset.org/1307-6892/2023

Interaction Density Metric(IDM) and Criticality Metrics (CM)
satisfy property 1.

• The use of CPD, CAID and CM in Triangular Metric (TM) yields
different values for each component assembly, therefore TM
satisfy property 1.

• During run time of various applications, we can always find
different number of cycles, so the Number of Cycle metric (NC)
satisfies property 1.

• Any executions of various component assemblies yield different
number of active components at a time. Thus Active Component
(AC) metrics satisfy property 1.

Property 2: If c is non-negative number, then there are only
finitely many programs P for which M(P)=c

• For every application, there are a finite number of components with
a finite number of constituents, a finite number of interactions
within a component. So this property is met by the CPD and IDM
metrics.

• Every component has its own criticality. With a given criticality
number, there is only a finite number of components, thus property
2 is satisfied.

• The TM satisfies property 2, as there are only a finite number of
components in component assembly.

• The same NC value can be found from different executions of
various component assemblies. Therefore property 2 is satisfied.

• We can always find different applications with the same AC
metrics value, thus property 2 is satisfied.

Property 3: There are distinct programs P and Q for which
M(P)=M(Q)

• It is always possible to create a minimum of two combinations of
components with their constituents and the metric value of CPD is
the same. Therefore CPD metric satisfies this property.

• For IDM metrics, we can configure different interactions in more
than one component that results in the same value, thus satisfying
property 3.

• In integrated components, we can always find configuration of
components, which have the same CM value and therefore property
3 is satisfied. Along the same logic property 3 is satisfied by TM.

• Various component assemblies can yield the same measurement for
the NC and AC metrics. Therefore property 3 is satisfied by both
metrics.

Property 4: There are functionally equivalent programs P and
Q for which M(P) ≠ M(Q)

• If there are two integrated components, which perform the same
functions, this does not imply that the CPD metric value will be the

same. A given function can be built by several components and
with different constituents. So the CPD metric satisfies this
property. By the same logic, IDM also satisfies property 4.

• This property is satisfied by CM, since the same functionality for a
given implementation can have different criticality.

• A given function of component assembly can be built using several
types of components. Thus the TM and all dynamic metrics (NC
and AC) also satisfy property 4.

Property 5: For any program bodies P and Q, we have M(P)
≤ M(P;Q) and M(Q) ≤ M(P;Q)

Let X and Y be two component assemblies such that Y consists of X
and another component assembly.

• CPD value of X is no more complex than CPD value of Y.
Therefore CPD metric satisfies property 5.

• For IDM, Y has the same or more interactions than X. So the IDM
metrics satisfy property 5.

• The Combination of components yield equal or higher criticality
for Y than X. Thus property 5 is satisfied by CM.

• It is implied that TM satisfies property 5, since property 5 is
satisfied by CPD, IDM and CM.

• Execution of Y yields more cycles than X as the number of active
components is higher. Therefore NC and AC satisfy property 5.

Property 6: There exist program bodies P, Q and R such that
M(P)=M(Q) and M(P;R) ≠ M(Q;R)

• Let the component assemblies P,Q and R have respective CPD
values of a/b, c/d and e/f, where a, c & e represent the number of
constituents and b, d & f represent the number of components
respectively. If the measurement on P is equal to Q, then ad = bc.
Integration of (P;R) and (Q;R)yields (a+e)/(b+f) and (c+e)/(d+f),
respectively. By working through the equation, we can conclude
that (P;R) and (Q;R) will not have the same value, except when a =
b = c = d = e = f = 1. This means that more than one component
exists in the component assembly, which has more than one
constituent. Therefore property 6 is satisfied.

• Using the above logic, one can note that the IDM metrics also
satisfy property 6.

• Adding more components increases the probability of increase in
the criticality value. Therefore property 6 is satisfied by CM.

• TM satisfies property 5, since property 5 is satisfied by CPD, IDM
and CM.

• Adding more components increases the probability of more number
of cycles and the number of active components at run-time.
Therefore, Dynamic metrics (NC & AC) satisfy property 6.

Property 7: There are program bodies P and Q such that Q is

TABLE II
DYNAMIC METRICS DESCRIPTIONS

Name Formulae Description
Number of Cycle (NC) NC = # cycles Where, #cycles is the number of cycles within the graph
Average Number of
Active Components eT

onentsactivecomp#ANAC =

#activecomponents is the number of active component and Te is time to
execute the application (in seconds)

Active Component
Density (ACD) components#

onentactivecomp#ACD =

#activecomponent is the number of active components and #component is
the number of available components.

Average Active
Component Density

e
n n

T

ACD
AACD ∑

=

ΣnACDn is the sum of ACD and Te is time to execute the application (in
seconds). Execution time can be any of execution of a function, between
functions or execution of the entire program.

Peak Number of Active
Components

AC∆t = max { AC1,..,ACn} #ACn is the number of active component at time n and ∆t is the time
interval in seconds.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

3233International Scholarly and Scientific Research & Innovation 1(10) 2007 scholar.waset.org/1307-6892/2023

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
10

, 2
00

7
w

as
et

.o
rg

/P
ub

lic
at

io
n/

20
23

http://waset.org/publication/Theoretical-Considerations-for-Software-Component-Metrics/2023
http://scholar.waset.org/1307-6892/2023

formed by permuting the order of statements of P and M(P) ≠
M(Q)

Permutation on component assembly does not affect on the metric
values statically and dynamically. Therefore all proposed metrics
satisfy property 7.

Property 8: If P is a renaming of Q, then M(P) = M(Q)

Renaming the components does not affect on all the metrics
proposed, since the measurement only concerns the number of
components and their constituents and the number of interactions. So
all proposed metrics satisfy property 8.

Property 9: There exist program bodies P and Q such that
M(P)+M(Q) < M(P;Q)

• If we have two component assemblies having x1 constituents and
y1 components and another configuration with x2 constituents and
y1 components, then we can compute CPD1=x1/y1 and
CPD2=x2/y2 and we can integrate both configurations. The
resultant CPD3=(x1+x2)/(y1+y2). The value of CPD1+CPD2 will
always be lesser than CPD3. Therefore property 9 is not satisfied.

• The same logic can be used for the IDM metrics, hence they do not
satisfy property 9.

• For the CM metrics, combining more components will always add
more links, bridges, size or possibly inheritance. So the resultant
value of each types of criticality will increase the probability of the
previous value. Therefore CM satisfies property 9.

• For TM, let two different component assemblies P and Q, have
triangular metrics of (x1,y1, z1) and (x2, y2, z2) respectively.
Combining P and Q into one component assembly with (x3, y3, z3)
as its metrics value, we cannot always have x1+x2<x3, y1+y2<y3
or z1+z2<z3. Therefore triangular metrics does not satisfy property
9.

• Let P and Q be two different component assemblies with certain
number of cycles Combining P and Q into one component
assembly do not always increase the number of cycle possible.
Therefore property 9 is not satisfied by NC metric.

• The above logic holds good for active component metrics also. The
combination of component assemblies will increase the number of
active components and therefore the AC metrics satisfy property 9.

V. DISCUSSION

We summarize the results of the paper through Table III,
which shows that all the proposed metrics satisfy property 1-6
and 8, but fail to satisfy property 7. Property 9 is satisfied by
Criticality and Active Component metrics only.

Property 7 requires that permutation should affect the value
of complexity. But in the component integration process,
component ordering is not significant and therefore, this issue
is not highly relevant.

 Property 9 is not satisfied by CPD, interaction density and
triangular metrics. Chidamber and Kermerer metrics [8] do
not satisfy property 9 either and they suspect that this property
is not suitable at the design level. We believe that for the same
reason CPD, CID, CIID, COID and AID metrics do not satisfy
property 9. In fact the proposed metrics can be used both at
the design level and at the implementation level. For the
number of cycle metric, property 9 requires an increase in
measurement value if we combine two component assemblies.

But this metric relates to the behavior within each assemblies,
which is not always affected when components are combined.
Finding a new super-component with NC metrics has close
relation to the design process and this conclusion is consistent
with the results presented by Cho et al. [8].

TABLE III
SUMMARY OF METRIC PROPERTIES

Property Metrics
1 2 3 4 5 6 7 8 9

CPD Y Y Y Y Y Y N Y N
IDM Y Y Y Y Y Y N Y N
CM Y Y Y Y Y Y N Y Y
TM Y Y Y Y Y Y N Y N
NC Y Y Y Y Y Y N Y N
ANAC Y Y Y Y Y Y N Y Y
ACD Y Y Y Y Y Y N Y Y
AACD Y Y Y Y Y Y N Y Y
PNAC Y Y Y Y Y Y N Y Y

An important issue in software development is the overall

quality of the software end-product. A set of quality factors
for software component assembly can be inferred from the
given software metrics. Fig. 4 shows the relationship between
some of our metrics using the various quality factors defined
in the McCall’s quality model [12]. Thus, the CPD metrics
provide an indication of the I/O volume, I/O Rate, Storage
Efficiency, Error Tolerance and Simplicity3. The CID metrics
provide an indication of the efficiency of executing an
application, the size of I/O interactions, the Error tolerance
and simplicity of the application. In other words, the CID
metrics are useful towards measuring, the Usability factors,
Efficiency, Reliability, Maintainability and Testability. The
CM metrics provide an indication of the criticality of I/O
Volume and Rate. They also indicate the impacts on Error
Tolerance and Simplicity. Thus, the CM metrics impacts on
the Usability, Reliability, Maintainability, and Testability
quality factors. The NC metric facilitates the identification of
super-components, hence it greatly influences the Reusability
factor. Other factors that are influenced by the NC metric are
Efficiency, Maintainability, Testability, Flexibility and
Portability. Typically an application has to be instrumented in
order to collect the NC and AC metrics, which leads to the
development of good Instrumentation criteria and consequent
impact on various Testability factors. The AC metrics also
have an effect on the Usability and Efficiency quality factors.

3 The criterion for simplicity illustrates the nature of the component

assembly. For example, a simple component assembly can limit the
propagation of faults and ease the inspection and maintenance processes.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

3234International Scholarly and Scientific Research & Innovation 1(10) 2007 scholar.waset.org/1307-6892/2023

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
10

, 2
00

7
w

as
et

.o
rg

/P
ub

lic
at

io
n/

20
23

http://waset.org/publication/Theoretical-Considerations-for-Software-Component-Metrics/2023
http://scholar.waset.org/1307-6892/2023

I/O Volume

I/O Rate

Storage Efficiency

Execution Efficiency

Error Tolerance

Simplicity

Instrumentation

Expandability

Generality

Modularity

Usability

Efficiency

Reliability

Maintainability

Testability

Flexibility

Reusability

Interoperability

Portability

CPD

CID

CM

NC

AC

METRICS CRITERIAS QUALITY FACTORS

CPD : Component Packing Density
CID : Component Interaction Density
CM : Criticality Metrics
NC : Number of Cycle Metrics
AC : Active Component Metrics (ACD, AACD, PNAC)

Fig. 4 The Suite of Metrics v Quality Factors

The suite of metrics should be applicable for some stages in

software development life cycle, such as design,
implementation and testing phase. At design phase, a software
designer focuses on development of software structure.
Knowing the complexity and criticality of the component
structure in advance will help the designer builds better design
with better risk analysis. At implementation phase,
programmers can use information about complexity and
criticality from design stage to accomplish their task carefully
at some particular items considered complex and/or critical.
At testing phase, software tester can instrument the code and
run dynamic metrics suite to get information on how extensive
components has been used. Information on the number of
cycle can point to a Super-component, which is most useful
for software designer.

VI. CONCLUSIONS

This paper proposes a set of static and dynamic metrics.
The static metrics characterize the complexity and criticality
of component integration and would help a developer in
reasoning how complex a system is and locating critical areas
in a component assembly. The Triangular metric has been
generated by combining the complexity and criticality metrics
and it is useful in classifying the type of application from a
given component assembly. Dynamic metrics use information
from the number of cycles in the executed application in order
to identify new super-components, which offer better and
more functionality. In particular, the active-component
metrics show components that have high extent of use; a more
frequently used component has a higher reusability. This
paper also shows that the metrics are based on measurement
theory and they have been validated using Weyuker’s
properties. Most metrics fulfill the Weyuker’s property
criteria, while a few do not. The impact of our metrics in the
context of McCall’s Quality Model has also been explained in
this paper. We therefore contend that these metrics help
component-based developers (and integrators) to identify
complexity and criticality in an integrated system.

The parsing of metrics from the assembly description
makes it possible to visualize various components in the

system and their associations; a special tool is being
developed to visualize and display the metrics. A project
manager can view the component relationships so as to have a
better knowledge on their complexity and criticality values.
Complex and/or critical components assembly would
potentially take longer time to develop and test than a simple
one. A better prediction can be established as a consequence
of the use of the proposed metrics.

The metrics suite can also be incorporated in a CASE
(Computer Aided Software Engineering) tool. Object
Constraint Language (OCL) [30] is another related standard,
which describes constraints in the analysis and design phases
through the Unified Modelling Language (UML) based
description. OCL can be embedded on the component model
as an added constraint to system building. Adding the
constraint in the proposed metrics could yield another method
of measuring CBSE software development. The incorporation
of metrics into a CASE tool will aid the software project
manager in understanding the component based development
cycle better. We intend to gather field data for validating the
metrics empirically. A further study of complexity and
criticality on software component metric would help provide a
basis for significant future progress in this area.

REFERENCES
[1] A. Arsanjani, Developing and Integrating Enterprise Components and

Services, Communication of the ACM, Vol. 45, No. 10, October 2002,
pp. 31-34.

[2] F. Berzal, I. Blanco, J. Cubero, N. Marin, Component-based Data
Mining Frameworks, Communications of the ACM, Vol. 45, No. 12,
December 2002, pp. 97-100.

[3] L. D. Blak, A. Kedia, PPT: A COTS Integration Case Study, Proceeding
of 22th International Conference on Software Engineering (ICSE),
Orlando, 2002, pp. 41-48.

[4] B. Boehm, C. Abts, A. W. Brown, S. Chulani, B. Clark, E. Horowitz, R.
Madachy, D. Reifer and B.Steece, Software Cost Estimation with
COCOMO II, Prentice Hall, 2000.

[5] A.W. Brown, Large-Scale, Component-Based Development, Prentice
Hall PTR, 2000.

[6] L. Brownsword, T. Obendorf, C.A. Sledge, Developing New Processes
for COTS-Based Systems, IEEE Software, July/August 2000, pp. 48-55.

[7] S. R. Chidamber and C. F. Kemerer. A Metrics Suite for Object-oriented
Design, IEEE Transaction on Software Engineering, Vol. 20 No. 6, June
1994, pp. 476-493.

[8] E. S. Cho, M.S. Kim, S.D. Kim, Component Metrics to Measure
Component Quality, The 8th Asia-Pacific Software Engineering
Conference (APSEC), Macau, 2001, pp. 419-426.

[9] J. J. Dolado, A Validation of the Component-Based Method for
Software Size Estimation, IEEE Transactions on Software Engineering,
Vol. 26, No. 10, October 2000, pp. 1006-1021.

[10] R.R. Dumke, A.S. Winkler, Managing the Component-Based Software
Engineering with Metrics, Proceeding of the 5th International
Symposium on Assessment of Software Tools, Pittsburgh, June 1997,
pp. 104-110.

Ref [11-30] can be obtained from the authors.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

3235International Scholarly and Scientific Research & Innovation 1(10) 2007 scholar.waset.org/1307-6892/2023

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
10

, 2
00

7
w

as
et

.o
rg

/P
ub

lic
at

io
n/

20
23

http://waset.org/publication/Theoretical-Considerations-for-Software-Component-Metrics/2023
http://scholar.waset.org/1307-6892/2023

