
 

 

  
Abstract—We have defined two suites of metrics, which cover 

static and dynamic aspects of component assembly. The static 
metrics measure complexity and criticality of component assembly, 
wherein complexity is measured using Component Packing Density 
and Component Interaction Density metrics. Further, four criticality 
conditions namely, Link, Bridge, Inheritance and Size criticalities 
have been identified and quantified. The complexity and criticality 
metrics are combined to form a Triangular Metric, which can be used 
to classify the type and nature of applications. Dynamic metrics are 
collected during the runtime of a complete application. Dynamic 
metrics are useful to identify super-component and to evaluate the 
degree of utilisation of various components. In this paper both static 
and dynamic metrics are evaluated using Weyuker’s set of properties. 
The result shows that the metrics provide a valid means to measure 
issues in component assembly. We relate our metrics suite with 
McCall’s Quality Model and illustrate their impact on product 
quality and to the management of component-based product 
development. 
 

Keywords—Component Assembly, Component Based Software 
Engineering, CORBA Component Model, Software Component 
Metrics. 

I. INTRODUCTION 

OMPONENT-BASED Software Engineering (CBSE) has 
played a very important role for building larger software 

systems. Cost reduced [3,24] and shorter development time 
gives a good prospect for this type of development. 
Components are connected by assembling, adapting and 
wiring into a complete application. Although there is no 
IEEE/ISO standard definition that we know of, one of the 
leading exponents in this area, Szyperski [24], defines a 
software component as follows: 

“A software component is a unit of composition with 
contractually specified interfaces and explicit context 
dependencies only. A software component can be deployed 
independently and is subject to composition by third 
parties”. 
The definition allows assembling many components into a 

complete application; however we need a Standard way to 
make components work together. Some well-known Standards 
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are Sun’s Java, Microsoft .NET and Object Management 
Groups’ (OMG) Corba Component Model (CCM). CCM uses 
the syntax of Component Interface Definition Language 
(CIDL)[30] for component integration and XML description 
for component assembly. However problems in using 
Standards still exist as described in [1,2,5,6,16].  

Traditional metrics has to be redefined or enhanced to 
comply with component-based software development 
[1,13,15,22]. This research is an attempt to build a suite of 
software metrics, with particular emphasis on software 
component assembly. The suite accommodates static and 
dynamic aspects of component assembly. The static metrics 
measure the complexity and criticality of component 
assembly, while the dynamic metrics characterize the dynamic 
behaviour of a software application by recognizing component 
activities during run-time. 

The suite can be used at different phase of development life 
cycle, particularly at the design, implementation and testing 
stages and the metrics can be used as indicators of activities at 
these stages. We expect the suite to aim software project 
managers to: 1) identify potential risks, and 2) uncover 
problem areas before they become harder to handle, so that 
software project managers can adjust the workflow or tasks in 
their projects. 

The paper is organized as follows: section II presents the 
need for component integration metrics, while section III 
discusses the definition of the metrics and their description. 
The metrics are evaluated using the nine Weyuker properties 
in section IV. A discussion about the evaluation and how the 
metrics could be used over software projects is provided in 
sections V. Our conclusions of the research are described in 
section VI.  

II. RESEARCH PROBLEM 

Component based metrics have been proposed by several 
researches. For example, Dolado [9] validates the use of Lines 
Of Code (LOC) in counting the size of software, while Verner 
and Tate [26] estimate the number of LOC early in the 
software life-cycle. But since the use of LOC depends on the 
language of implementation, it is hard to predict the size of the 
software prior to implementing. This is more so for software 
components, which do not have information on their source 
code.  Most other metrics on CBSE have aimed at the 
reusability of components [12, 20, 27, 28], while [10, 21] 
focus on the process and measurement framework in 
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developing software components. Ebert [11] suggests some 
classification techniques to identify critical items in software 
project, which can be applied for a CBSE project, but he does 
not tackle the criticality aspects of component integration. 

Specific issues on integration are discussed by Sedigh-Ali 
et al. [21], where the complexity of interfaces and their 
integration is interpreted as quality metrics.  Cho et. al. [8] 
define metrics for complexity, customisability and reusability. 
They calculate the complexity of metrics by using the 
combination of the number of classes, interfaces and 
relationship among classes. They combine the calculation of 
cyclometric complexity with the sum of classes and interfaces, 
which need information from the source code. This is a 
shortcoming of their metrics, which is usable only when the 
developer has access to the source code. 

We propose static metrics and dynamic metrics for 
component assembly1. Static metrics cover the complexity and 
the criticality within an integrated component. Static metrics 
are collected from static analysis of component assembly, 
while dynamic metrics are gathered during execution of 
complete application. The complexity and criticality metrics 
are intended to be used early during the design stage, while 
dynamic metrics are meant to be used at later stages. We 
consolidate our work and validate the metrics suite through 
Weyuker’s evaluation criteria [29].  Furthermore, the suite 
integrates existing metrics available in the literature as an 
integrated package. 

III. COMPONENT METRICS 

The proposed metrics use graph connectivity as a medium 
to represent a system of integrated components. Each node 
and link represent a component and their relationship with 
other components respectively.  Interactions happen through 
interfaces and events arising or arriving in. If a component ‘X’ 
requires an interface that is provided by another component 
‘Y’, then ‘Y’ will be the incoming interaction for ‘X’. If a 
component ‘X’ publishes an event which is consumed by 
component ‘Y’, then ‘X’ is said to raise an outgoing 
interaction to ‘Y’. OMG [30] defines a provided interface as a 
‘facet’, a required interface as a ‘receptacle’, a published 
event as an ‘event source’ and a consumed event as an ‘event 
sink’. 

Fig. 1 shows a link between two components of system P 
and system Q where one could consider component B to be 
more complex than components A, D or X, because it has 
more links than the others. Therefore in one sense, B can be 
termed as a critical component.  On the other hand, 
component X may not be complex, but it is critical for the 
correct operation of the integrated system.  Here, component 
X functions as a bridge between two systems P and Q. The 
definition for criticality does not stop here and it has other 
 

1 In this paper, we differentiate the terms Component Assembly and 
Component Integration as follows: A ‘Component Assembly’ refers to system 
in which  components have been integrated, whereas ‘Component Integration’ 
refers to the process of integrating components.  

dimensions (see more in section III, subsection B).   
Similarly the complexity of a system depends on packaging 

density of components.  For example, vertically connected 
components can be easily integrated as compared to multiply 
connected components2.  In addition, facets of components 
also have roles in connectivity and quality metrics.  Further, 
dynamic characteristics of components along with their 
constraints can aid the design of new type of metrics for 
quality, management and reliability measures.  In order to 
compute the value for criticality and complexity, we have 
identified several conceptual views of the components and 
systems, based on the analysis of the static and dynamic 
characteristics of integrated components. 

The proposed static metrics are Complexity Metrics, 
Criticality Metrics and Triangular Metric. Their descriptions 
are given in Table I. Table II shows the dynamic metrics 
descriptions. Dynamic metrics are collected during the 
execution of a complete application. Even though they cannot 
be used during the design phase, the results are still useful for 
testing and maintenance purposes. Gathering data for dynamic 
metrics is possible by instrumenting the source code, prior to 
compilation. 

 
Fig. 1 Interacting systems and components 

The three metrics, namely, CPD, CAID and CRITall have 
different points of view. While Component Packing Density 
(CPD) is calculated from the density in the integrated 
components, Average Interaction Density (CAID) is derived 
from density of interaction within an integrated component. 
Both metrics, however, represent the complexity of the 
system.  The last metric (CRITall) is based on the criticality of 
the component.  

In order to get a better view of the complexity metrics, we 
can combine CPD and CAID into a two-axes diagram. By 
examining their value, we deduce the characteristic of 
software as follows (see illustration in Fig. 2): 
Case 1:  A low CPD value and a low CAID value: This 
condition might happen within a system, having low data 
processing and low computation, such as a simple transaction 
processing system. 
Case 2:  A low CPD value and a high CAID value.  This 
condition might happen within a system, having low data 

 
2 Vertically connected components are linked consecutively so that every 

component has a maximum of two components linked. A component, which 
links to more than two other components is called multiply connected 
component.  
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processing and high computation, such as a compute-intensive 
real time system. 
Case 3:  A high CPD value and a low CAID value. This might 
suggest a transaction processing system, which is 
characterised by high volume of data processing with many 
components, but has low interaction among components.  
Case 4:  A high CPD value and a high CAID value. This 
condition represents a very complex system, which might has 
many classes or constituents within its components and high 
interactions among components.  

 
Fig. 2 Four possible values of CPD and CID 

By combining information from the two axes diagram with 
new axis of criticality (CRITall), we can further characterize a 
system as shown in Fig. 3. A real-time system usually has 
higher criticality compared to a transaction-based system.  A 
business application tends to have more components to access 
data, than a real time application. A list of application types 
can be found in [17], while distinguishing characteristics 
between business type applications and real-time systems can 
be found in [4]. Our results concur with these observations for 
transaction and real-time system. Two detailed examples 
developed can be obtained from the authors. 

 
Fig. 3 Three axes of component complexity and criticality 

IV. VALIDATING THE METRICS USING WEYUKER PROPERTIES  

Weyuker has proposed an axiomatic framework for 
evaluating complexity measures [29]. The properties are not 
without critique and these have been discussed in [12] and 
[14]. The properties, however, have been used to validate the 
C-K metrics by Chidamber & Kemerer[7] and, as a 
consequence, we will employ the same framework for 
compatibility’s sake. We show the properties below, which 
are the modified definitions as provided by [12]; the original 
definitions are available at [29].  The properties are: 

Property 1: There are programs P and Q for which M(P) 
≠ M(Q) 
Property 2: If c is non-negative number, then there are 
only finitely many programs P for which M(P)=c 
Property 3: There are distinct programs P and Q for 
which M(P)=M(Q) 
Property 4: There are functionally equivalent programs 
P and Q for which M(P) ≠ M(Q) 
Property 5: For any program bodies P and Q, we have 
M(P) ≤ M(P;Q) and M(Q) ≤ M(P;Q) 
Property 6: There exist program bodies P, Q and R such 
that M(P)=M(Q) and M(P;R) ≠ M(Q;R) 
Property 7: There are program bodies P and Q such that 
Q is formed by permuting the order of statements of P 
and M(P) ≠ M(Q) 
Property 8: If P is a renaming of Q, then M(P) = M(Q) 
Property 9: There exist program bodies P and Q such 
that M(P)+M(Q) < M(P;Q) 

Property 1: There are programs P and Q for which M(P) ≠ 
M(Q) 

• An integrated component comprises various components having 
different constituents and different value of criticalities. As a 
consequence, the Component Packing Density (CPD) metric, 

TABLE I 
STATIC METRICS DESCRIPTIONS 

Name Formulae Description 
Component Packing  
Density Metric components#

tconstituen#CPD type_tconstituen
><

=
 

#<constituent_type> is one of the following: LOC, object/classes, 
operations, classes and/or modules in the related components. 

Component Interaction 
Density Metric maxI#

I#CID =
 

#I is the number of actual interactions and #Imax is the number of 
maximum available interactions. 

Component Incoming 
Interaction Density in

in
axIm#

I#
CIID =

 

where,  #IIN is the number of incoming interactions used and #ImaxIN is 
the number of incoming interactions available. 

Component Outgoing 
Interaction Density out

out
axIm#

I#
COID =

 
#IOUT is the number of outgoing interactions used and #ImaxOUT is the 
number of outgoing interactions available. 

Component Average 
Interaction Density components#

CIDn
CAID n∑

=
 

ΣnCIDn is the sum of interactions density of n component and 
#components is the number of the existing component  

Bridge Criticality Metrics CRITbridge=#bridge_component #bridgecomponent is the number of bridge components. 
Inheritance Criticality Metrics CRITinheritance=#root_component #root_component is the number of root components which has 

inheritance. 
Inheritance Criticality Metrics CRITinheritance=#root_component 

 
#root_component is the number of root components which has 
inheritance. 

Size Criticality Metrics CRITsize=#size_component 
 

#size_component is the number of component which exceeds a given 
critical value. 

#Criticality Metrics CRITall= CRITlink+CRITbridge 
+CRITinheritance+CRITsize 

<see above> 
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Interaction Density Metric(IDM) and Criticality Metrics (CM) 
satisfy property 1. 

• The use of CPD, CAID and CM in Triangular Metric (TM) yields 
different values for each component assembly, therefore TM 
satisfy property 1. 

• During run time of various applications, we can always find 
different number of cycles, so the Number of Cycle metric  (NC) 
satisfies property 1. 

• Any executions of various component assemblies yield different 
number of active components at a time. Thus Active Component 
(AC) metrics satisfy property 1. 

Property 2: If c is non-negative number, then there are only 
finitely many programs P for which M(P)=c 

• For every application, there are a finite number of components with 
a finite number of constituents, a finite number of interactions 
within a component. So this property is met by the CPD and IDM 
metrics.  

• Every component has its own criticality. With a given criticality 
number, there is only a finite number of components, thus property 
2 is satisfied. 

• The TM satisfies property 2, as there are only a finite number of 
components in component assembly. 

• The same NC value can be found from different executions of 
various component assemblies. Therefore property 2 is satisfied. 

• We can always find different applications with the same AC 
metrics value, thus property 2 is satisfied. 

Property 3: There are distinct programs P and Q for which 
M(P)=M(Q) 

• It is always possible to create a minimum of two combinations of 
components with their constituents and the metric value of CPD is 
the same. Therefore CPD metric satisfies this property.  

• For IDM metrics, we can configure different interactions in more 
than one component that results in the same value, thus satisfying 
property 3.  

• In integrated components, we can always find configuration of 
components, which have the same CM value and therefore property 
3 is satisfied. Along the same logic property 3 is satisfied by TM. 

• Various component assemblies can yield the same measurement for 
the NC and AC metrics. Therefore property 3 is satisfied by both 
metrics. 

Property 4: There are functionally equivalent programs P and 
Q for which M(P) ≠ M(Q) 

• If there are two integrated components, which perform the same 
functions, this does not imply that the CPD metric value will be the 

same. A given function can be built by several components and 
with different constituents. So the CPD metric satisfies this 
property. By the same logic, IDM also satisfies property 4. 

• This property is satisfied by CM, since the same functionality for a 
given implementation can have different criticality.  

• A given function of component assembly can be built using several 
types of components. Thus the TM and all dynamic metrics (NC 
and AC) also satisfy property 4. 

Property 5: For any program bodies P and Q, we have M(P) 
≤ M(P;Q) and M(Q) ≤ M(P;Q) 

Let X and Y be two component assemblies such that Y consists of X 
and another component assembly. 

• CPD value of X is no more complex than CPD value of Y. 
Therefore CPD metric satisfies property 5. 

• For IDM, Y has the same or more interactions than X. So the IDM 
metrics satisfy property 5. 

• The Combination of components yield equal or higher criticality 
for  Y than X. Thus property 5 is satisfied by CM. 

• It is implied that TM satisfies property 5, since property 5 is 
satisfied by CPD, IDM and CM. 

• Execution of Y yields more cycles than X as the number of active 
components is higher. Therefore NC and AC satisfy property 5. 

Property 6: There exist program bodies P, Q and R such that 
M(P)=M(Q) and M(P;R) ≠ M(Q;R) 

• Let the component assemblies P,Q and R have respective CPD 
values of a/b, c/d and e/f, where a, c & e represent the number of 
constituents and b, d & f  represent the number of components 
respectively. If the measurement on P is equal to Q, then ad = bc. 
Integration of (P;R) and (Q;R)yields (a+e)/(b+f) and (c+e)/(d+f), 
respectively. By working through the equation, we can conclude 
that (P;R) and (Q;R) will not have the same value, except when a = 
b = c = d = e = f = 1. This means that more than one component 
exists in the component assembly, which has more than one 
constituent. Therefore property 6 is satisfied. 

• Using the above logic, one can note that the IDM metrics also 
satisfy property 6. 

• Adding more components increases the probability of increase in 
the criticality value. Therefore property 6 is satisfied by CM. 

• TM satisfies property 5, since property 5 is satisfied by CPD, IDM 
and CM. 

• Adding more components increases the probability of more number 
of cycles and the number of active components at run-time. 
Therefore, Dynamic metrics (NC & AC) satisfy property 6. 

Property 7: There are program bodies P and Q such that Q is 

TABLE II 
DYNAMIC METRICS DESCRIPTIONS 

Name Formulae Description 
Number of Cycle (NC) NC = # cycles Where, #cycles is the number of cycles within the graph 
Average Number of 
Active Components eT

onentsactivecomp#ANAC =
 

#activecomponents is the number of active component and Te is time to 
execute the application (in seconds) 

Active Component 
Density (ACD) components#

onentactivecomp#ACD =
 

#activecomponent is the number of active components and #component is 
the number of available components. 

Average Active 
Component Density 

e
n n

T

ACD
AACD ∑

=
 

ΣnACDn is the sum of ACD and Te is time to execute the application (in 
seconds). Execution time can be any of execution of a function, between 
functions or execution of the entire program. 

Peak Number of Active 
Components 

AC∆t = max { AC1,..,ACn} #ACn  is the number of active component at time n and ∆t is the time 
interval in seconds. 
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formed by permuting the order of statements of P and M(P) ≠ 
M(Q) 

Permutation on component assembly does not affect on the metric 
values statically and dynamically. Therefore all proposed metrics 
satisfy property 7. 

Property 8: If P is a renaming of Q, then M(P) = M(Q) 

Renaming the components does not affect on all the metrics 
proposed, since the measurement only concerns the number of 
components and their constituents and the number of interactions. So 
all proposed metrics satisfy property 8. 

Property 9: There exist program bodies P and Q such that 
M(P)+M(Q) < M(P;Q) 

• If we have two component assemblies having x1 constituents and 
y1 components and another configuration with x2 constituents and 
y1 components, then we can compute CPD1=x1/y1 and 
CPD2=x2/y2 and we can integrate both configurations. The 
resultant CPD3=(x1+x2)/(y1+y2). The value of CPD1+CPD2 will 
always be lesser than CPD3. Therefore property 9 is not satisfied. 

• The same logic can be used for the IDM metrics, hence they do not 
satisfy property 9. 

• For the CM metrics, combining more components will always add 
more links, bridges, size or possibly inheritance. So the resultant 
value of each types of criticality will increase the probability of the 
previous value. Therefore CM satisfies property 9. 

• For TM, let two different component assemblies P and Q, have 
triangular metrics of (x1,y1, z1) and (x2, y2, z2)  respectively. 
Combining P and Q into one component assembly with (x3, y3, z3) 
as its metrics value, we cannot always have x1+x2<x3, y1+y2<y3 
or z1+z2<z3. Therefore triangular metrics does not satisfy property 
9. 

• Let P and Q be two different component assemblies with certain 
number of cycles Combining P and Q into one component 
assembly do not always increase the number of cycle possible. 
Therefore property 9 is not satisfied by NC metric. 

• The above logic holds good for active component metrics also. The 
combination of component assemblies will increase the number of 
active components and therefore the AC metrics satisfy property 9.  

V. DISCUSSION 

We summarize the results of the paper through Table III, 
which shows that all the proposed metrics satisfy property 1-6 
and 8, but fail to satisfy property 7. Property 9 is satisfied by 
Criticality and Active Component metrics only. 

Property 7 requires that permutation should affect the value 
of complexity. But in the component integration process, 
component ordering is not significant and therefore, this issue 
is not highly relevant. 

 Property 9 is not satisfied by CPD, interaction density and 
triangular metrics. Chidamber and Kermerer metrics [8] do 
not satisfy property 9 either and they suspect that this property 
is not suitable at the design level. We believe that for the same 
reason CPD, CID, CIID, COID and AID metrics do not satisfy 
property 9. In fact the proposed metrics can be used both at 
the design level and at the implementation level. For the 
number of cycle metric, property 9 requires an increase in 
measurement value if we combine two component assemblies. 

But this metric relates to the behavior within each assemblies, 
which is not always affected when components are combined. 
Finding a new super-component with NC metrics has close 
relation to the design process and this conclusion is consistent 
with the results presented by Cho et al. [8]. 

TABLE III 
SUMMARY OF METRIC PROPERTIES 

Property Metrics 
1 2 3 4 5 6 7 8 9 

CPD Y Y Y Y Y Y N Y N 
IDM  Y Y Y Y Y Y N Y N 
CM Y Y Y Y Y Y N Y Y 
TM Y Y Y Y Y Y N Y N 
NC Y Y Y Y Y Y N Y N 
ANAC Y Y Y Y Y Y N Y Y 
ACD Y Y Y Y Y Y N Y Y 
AACD Y Y Y Y Y Y N Y Y 
PNAC Y Y Y Y Y Y N Y Y 
 
An important issue in software development is the overall 

quality of the software end-product. A set of quality factors 
for software component assembly can be inferred from the 
given software metrics.  Fig. 4 shows the relationship between 
some of our metrics using the various quality factors defined 
in the McCall’s quality model [12].  Thus, the CPD metrics 
provide an indication of the I/O volume, I/O Rate, Storage 
Efficiency, Error Tolerance and Simplicity3. The CID metrics 
provide an indication of the efficiency of executing an 
application, the size of I/O interactions, the Error tolerance 
and simplicity of the application. In other words, the CID 
metrics are useful towards measuring, the Usability factors, 
Efficiency, Reliability, Maintainability and Testability.  The 
CM metrics provide an indication of the criticality of I/O 
Volume and Rate. They also indicate the impacts on Error 
Tolerance and Simplicity.  Thus, the CM metrics impacts on 
the Usability, Reliability, Maintainability, and Testability 
quality factors.  The NC metric facilitates the identification of 
super-components, hence it greatly influences the Reusability 
factor. Other factors that are influenced by the NC metric are 
Efficiency, Maintainability, Testability, Flexibility and 
Portability. Typically an application has to be instrumented in 
order to collect the NC and AC metrics, which leads to the 
development of good Instrumentation criteria and consequent 
impact on various Testability factors.  The AC metrics also 
have an effect on the Usability and Efficiency quality factors.  

 
3 The criterion for simplicity illustrates the nature of the component 

assembly. For example, a simple component assembly can limit the 
propagation of faults and ease the inspection and maintenance processes. 
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I/O Volume

I/O Rate

Storage Efficiency

Execution Efficiency

Error Tolerance

Simplicity

Instrumentation

Expandability

Generality

Modularity

Usability

Efficiency

Reliability

Maintainability

Testability

Flexibility

Reusability

Interoperability

Portability

CPD

CID

CM
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The suite of metrics should be applicable for some stages in 

software development life cycle, such as design, 
implementation and testing phase. At design phase, a software 
designer focuses on development of software structure. 
Knowing the complexity and criticality of the component 
structure in advance will help the designer builds better design 
with better risk analysis. At implementation phase, 
programmers can use information about complexity and 
criticality from design stage to accomplish their task carefully 
at some particular items considered complex and/or critical.  
At testing phase, software tester can instrument the code and 
run dynamic metrics suite to get information on how extensive 
components has been used.  Information on the number of 
cycle can point to a Super-component, which is most useful 
for software designer.  

VI. CONCLUSIONS 

This paper proposes a set of static and dynamic metrics. 
The static metrics characterize the complexity and criticality 
of component integration and would help a developer in 
reasoning how complex a system is and locating critical areas 
in a component assembly. The Triangular metric has been 
generated by combining the complexity and criticality metrics 
and it is useful in classifying the type of application from a 
given component assembly. Dynamic metrics use information 
from the number of cycles in the executed application in order 
to identify new super-components, which offer better and 
more functionality.  In particular, the active-component 
metrics show components that have high extent of use; a more 
frequently used component has a higher reusability. This 
paper also shows that the metrics are based on measurement 
theory and they have been validated using Weyuker’s 
properties. Most metrics fulfill the Weyuker’s property 
criteria, while a few do not. The impact of our metrics in the 
context of McCall’s Quality Model has also been explained in 
this paper.  We therefore contend that these metrics help 
component-based developers (and integrators) to identify 
complexity and criticality in an integrated system.   

The parsing of metrics from the assembly description 
makes it possible to visualize various components in the 

system and their associations; a special tool is being 
developed to visualize and display the metrics. A project 
manager can view the component relationships so as to have a 
better knowledge on their complexity and criticality values. 
Complex and/or critical components assembly would 
potentially take longer time to develop and test than a simple 
one. A better prediction can be established as a consequence 
of the use of the proposed metrics. 

The metrics suite can also be incorporated in a CASE 
(Computer Aided Software Engineering) tool. Object 
Constraint Language (OCL) [30] is another related standard, 
which describes constraints in the analysis and design phases 
through the Unified Modelling Language (UML) based 
description. OCL can be embedded on the component model 
as an added constraint to system building. Adding the 
constraint in the proposed metrics could yield another method 
of measuring CBSE software development. The incorporation 
of metrics into a CASE tool will aid the software project 
manager in understanding the component based development 
cycle better. We intend to gather field data for validating the 
metrics empirically. A further study of complexity and 
criticality on software component metric would help provide a 
basis for significant future progress in this area. 
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