

MU ESTIMATION FROM TECHNICAL, MATRIX AND DISTRIBUTIONAL UNCERTAINTIES MU EXPRESSION IN TEST REPORTS

EURLs Campylobacter, CPS & Lm webinar on MU 14 December 2022

Bertrand LOMBARD

Senior Project Manager, Reference activities Anses-Research and Reference Division – Strategy and Programmes Department, Maisons-Alfort bertrand.lombard@anses.fr, mobile +33 6 15 54 19 94

Combined and Expanded Standard Uncertainty

Combined standard uncertainty

- 2 options provided in ISO 19036 (8.1.3)
 - Option 1: A combination of separately estimated:
 - ✓ technical standard uncertainty
 - ✓ matrix standard uncertainty
 - ✓ distributional standard uncertainties
 - Option 2: reproducibility standard deviation alone (technical standard uncertainty)
- Recommendation of EURLs guide (2.1): to use option 1 and not option 2
 - Values of matrix uncertainty are provided

Combined standard uncertainty based on separate technical, matrix and distributional standard uncertainties (option 1) (1)

Estimate technical uncertainty as a reproducibility standard deviation

$$\circ$$
 $U_{\text{tech}} = S_R$

Estimate matrix uncertainty

$$\circ$$
 $U_{\text{matrix}} = S_r$

Combined standard uncertainty based on separate technical, matrix and distributional standard uncertainties (option 1) (2)

- Estimate any relevant distributional uncertainties from the data underlying the reported results
- Derive the combined standard uncertainty $u_c(y)$

$$u_c(y) = \sqrt{u_{tech}^2 + u_{matrix}^2 + u_{Poisson}^2 + u_{conf}^2}$$
 (example)

 For a given method, not all the terms will be included in the calculation of combined standard uncertainty

E.g., a CCT without partial confirmation:
$$u_c(y) = \sqrt{u_{tech}^2 + u_{matrix}^2 + u_{Poisson}^2}$$

Expanded uncertainty

• Calculate the expanded uncertainty U from the combined standard uncertainty $u_c(y)$, with a coverage factor k:

$$U = k \times u_c(y)$$

- In ISO 19036, k is chosen as a value of 2
 - To correspond approximately to a confidence level of 95%
 - Therefore

$$U = 2u_c(y)$$

Expression of Measurement Uncertainty in test reports

B. Lombard

Reporting Measurement Uncertainty (1)

- MU reported in same unit as test result
- Number of figures in reported MU
 - To reflect practical measurement capability
 - And the same than for the test result
 - It is recommended that expanded uncertainty be rounded to 2 significant figures

Reporting Measurement Uncertainty (2)

Three options to express MU in test report:

- Using log₁₀ scale
 - Option 1: \log_{10} result $\pm U : y \pm U \log_{10}$ cfu/g
 - Option 2: log₁₀ result with limits: y log₁₀ cfu/g [y U; y + U]
- Using natural values (anti-log)
 - Option 3: natural result value with limits : x cfu/g $[10^{y-U}; 10^{y+U}]$

Example

Result $(x) = 1,00 \times 10^5$ cfu/g, therefore $y = \log_{10}$ result (x) = 5,00, and $U = 0,31 \log_{10}$

- Report using log₁₀ scale
 - o $\log_{10} \text{ result } \pm U : y \pm U \log_{10} \text{ cfu/g}$ 5,00 +/- 0,31 $\log_{10} \text{ cfu/g}$
 - o \log_{10} result with limits : $y \log_{10}$ cfu/g [y U; y + U]

$$y - U = 5,00 - 0,31 = 4,69$$

$$y + U = 5,00 + 0,31 = 5,31$$

- Report using natural values (anti-log)
 - Natural result value with limits : x cfu/g $[10^{y-U}; 10^{y+U}]$

$$10^{y-U} = 10^{4,69} = 48977$$
 (rounded to 4,90 x 10⁴)

$$10^{y+U} = 10^{5,31} = 204173$$
 (rounded to 2,04 x 10⁵)

$$1,00 \times 10^5 \text{ cfu/g} [4,90 \times 10^4 ; 2,04 \times 10^5]$$

10

Results below Limit of Quantification (LOQ)

Can arise:

- o for a CCT, when the number of counted colonies is zero, $\Sigma C = 0$
- o for a CCT with partial confirmation, when the number of confirmed colonies is zero, $n_c = 0$
- Not covered today, see ISO 19036, clause 9.2, including examples

Reporting Measurement Uncertainty

Include in the test report an explicit statement:

- the indicated MU is an expanded uncertainty
- the confidence level (95%)
- MU has been estimated in accordance with EN ISO 19036

"The reported expanded measurement uncertainty has been estimated in accordance with ISO 19036 and is based on a standard uncertainty multiplied by a coverage factor of k = 2, providing a level of confidence of approximately 95 %."

12