

DISTRIBUTIONAL UNCERTAINTY

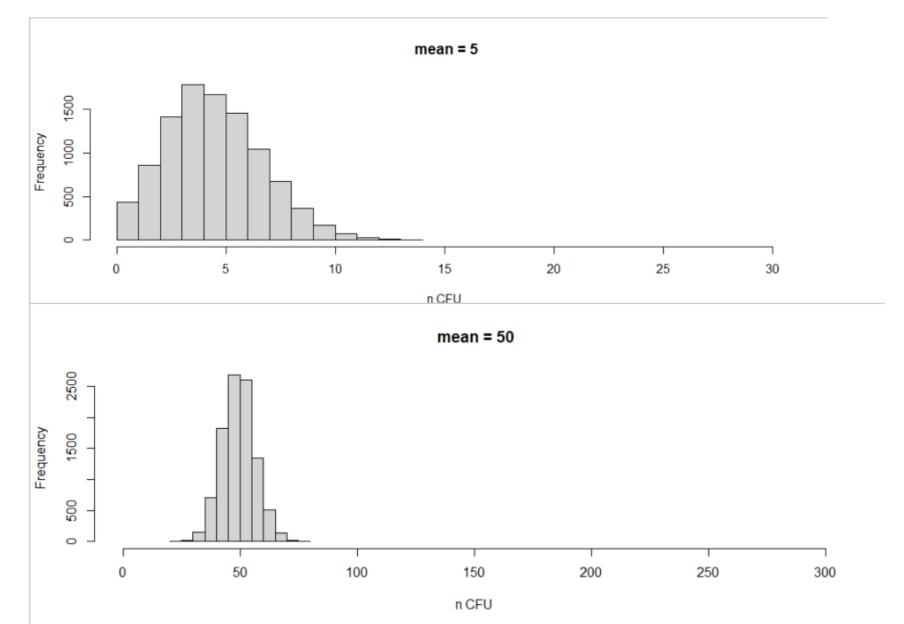
- irreducible minimum uncertainty components
 (assuming homogeneous material/perfect mixing)
- specific to individual measurement result
- can be calculated from look up tables (no practical work);
 - ISO 19036 provides details
- Formulas & tables implemented in excel tool

TYPES OF DISTRIBUTION UNCERTAINTY

- Poisson uncertainty

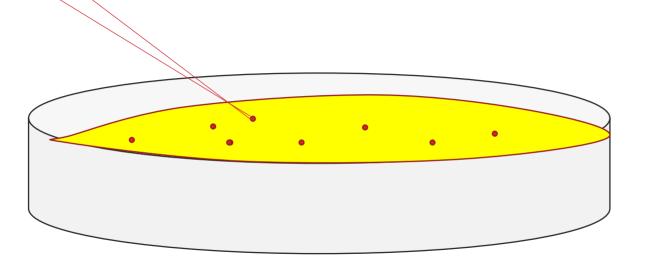
- confirmation uncertainty

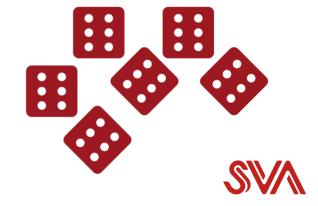
- Most Probable Number uncertainty



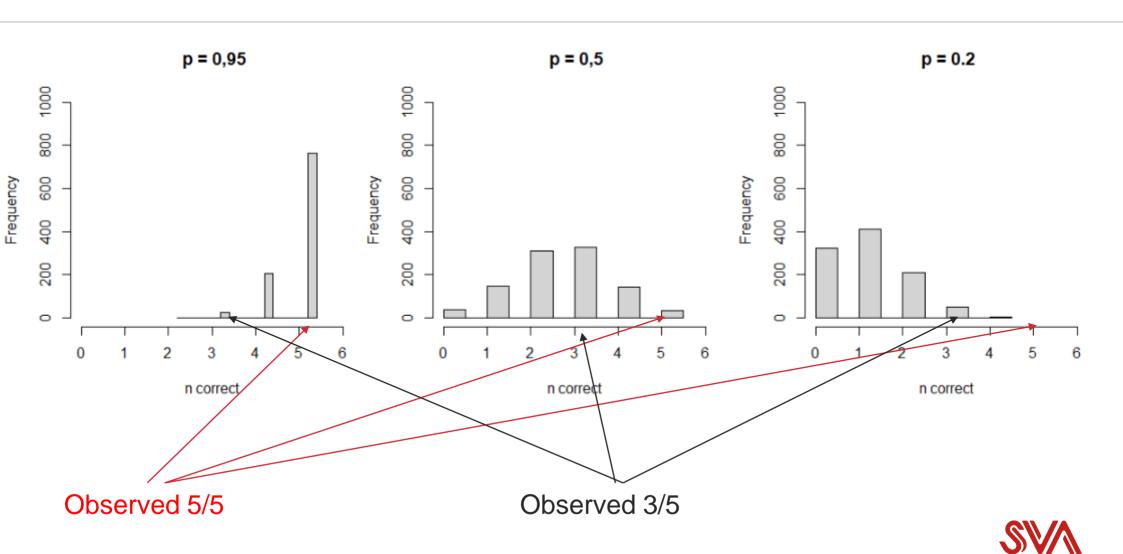
POISSON UNCERTAINTY

- Bacteria move independently
- Each may end up in pipette with same probability
- Number of CFU on a plate varies around expected value.
- High number of bacteria means smaller relative uncertainty


POISSON UNCERTAINTY


CONFIRMATION UNCERTAINTY

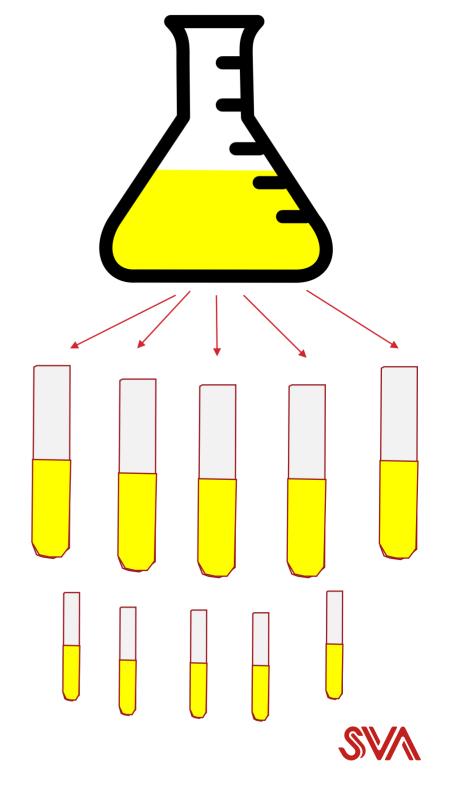
Is this Campylobacter?



If 90% of colonies are correct -> p= 0.9

If 30 % of colonies are correct -> p= 0.3

CAN I ESTIMATE P FROM 5 COLONIES?


SUMMARY CONFIRMATION UNCERTAINTY

- When calculating the CFU/ml I will correct the value using my estimate of p
- If 4/5 samples are positive, my estimate of p is 0.8
- Other values of p cannot be excluded, thus *uncertainty*
- Fewer picked colones and fewer positives means larger uncertainty

MPN UNCERTAINTY

- Concentration is estimated from serial dilutions
- Number of colonies in each tube is poisson distributed
- · Growth if more than one
- Uncertainty of mpn estimate depends on both the setup and the results
- Implemented in ISO19036 tool

ISO-19036 CALCULATION TOOL

17			3.102121291		U. I	10	U <u>U</u> U	004004		
18	ç	1	2.490086232		0.1	34	0	074481		
19	ç	1	2.639848552		0.1	48	3 0.	062685		
20	ł	1	3.178715403		0.1	16	6 0.	033708		
21	ł	1	3.05897786		0.1	12	6 0	.03869		
22	i		3.015512166		0.1	11	4 0.	040675		
23	i		3.165433191		0.1	16	1 0	034227		
24			3		0.1	11	0 0	041408		
25			3.101622115		0.1	13		036836		
26										
27										
28										
29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
	()	READ ME	Reproduci	bility	Repeatabili	ty	Combin	ed	÷	
Klar	% Tillgän	glighet: Utforsl	ka							

SVA

CALCULATIONS IN EXCEL TOOL

Calculate MU accounting for Poisson uncertainty for a laboratory sample in order to report results.

Prerequisite: You have previously obtained estimates for matrix uncertainty and technical uncertainty

EXCEL CALCULATIONS TOOL

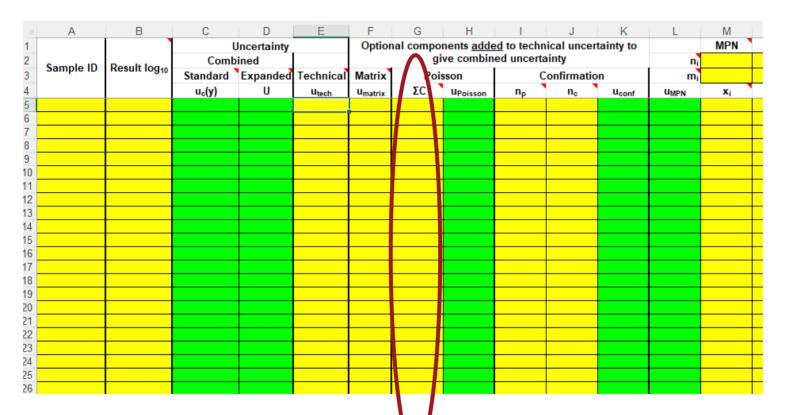
- 4rd worksheet "Combines"
 - Estimate MU
 - = to estimate the matrix uncertainty

-	~ v		0			~			2 N N N N
1	Laboratory	1				Contact person		Email address	
2	Country	F				GDPR agreement	Yes		
3	Method					Repeatability conditions for te	st portions of the same sample		Matrix tested
	Target organism	Total mesophilic aero	bic count			Operator repeatability	Yes	Category	Pet food and animal feed
	Method	ISO 4833-1:2013				Equipment repeatability	Yes	Туре	Animal feeds (fish)
-	Accreditation	Yes				Media and reagents repeatability		Matrix	Flour
	General comment on					Weight of each test portion 10 g	Yes	Additional description	
	the method or matrix								
7							\sim		\sim
3						•			
,	Sample and	conditions			Results				
0	ref_n sample_I		start_date -		dilution_1 -	volume_1 -	colony_count_dil1_plate1 ~	colony_count_dil1_plate2 ~	dilution_2 - volume_2 - colony - colony - confirm
1		1 1a	2021-10-08	09:30	-2	1.0			-3 1.0 14
2		1 1b	2021-10-08	09:30	-2	1.0			-3 1.0 8
3	_	1 1c	2021-10-08	09:30	-2	1.0			-3 1.0 19
		1 1d	2021-10-08	09:30	-2	1.0			-3 1.0 12
5		1 1e	2021-10-08	09:30	-2	1.0			-3 1.0 12
6		1 1f	2021-10-08	09:30	-2	1.0			-3 1.0 8
7	-	1 1g	2021-10-08	09:30	-2	1.0			-3 1.0 8
B	1	1 1h	2021-10-08	09:30	-2	1.0			-3 1.0 9
-	-	1 1i							
9	-		2021-10-08	09:30	-2	1.0			-3 1.0 10
0	1	1 1j	2021-10-08	09:30	-2	1.0			-3 1.0 18
1		1 1k	2021-10-08	09:30	-2	1.0	112		-3 1.0 14
2	12								
3	13								
4	14								\sim
5	15								
5	16								
7	17								
8	18								
9	19								
0	20								
1									

- Make new columns with appropriate formulae
- Calculate conc and log10conc as before
- Calculate the number of colonies used for each sample

	· · ·	•		
Op	perator repeatability	Yes	Category	Raw meat and ready-to-cook meat products (except poultry)
Eq	quipment repeatability	Yes	Туре	Fresh meats (unprocessed)
Me	ledia and reagents repeatability	Yes	Matrix	Pork meat cuts
W	/eight of each test portion 10 g	Yes	Additional description	Laboratory samples - portions cut of pork meat (300-500g),
				refrigerated, collected from retail

Results


▼ dilution_1 ▼ v	olume_1 🗾 colony_c	count_dil1_plate1 🔽 colony_count_dil1_	plate2 💌 dilution_2 💌	volume_2 🔽 colo	ony 🔽 colony	/ 💌 confirmea 💌 c	comment
-1	1.0	76	-2	1.0	6		
-1	1.0	42	-2	1.0	6		
-1	1.0	114	-2	1.0	9		
-1	1.0	66	-2	1.0	6		
-2	1.0	180	-3	1.0	15		
-2	1.0	259	-3	1.0	23		
-1	Indicate the volume	156	-2	1.0	14		
-1	inoculated (in ml) of the	113	-2	1.0	10		
-3	first dilution to use in calculation, e.g. 0.1, 1.0	65	-4	1.0	9		
-3	(or 1,0, 0,1 etc, depending	41	-4	1.0	6		
-3	on format in Excel).	99	-4	1.0	8		
-3	1.0	143	-4	1.0	17		
-3	1.0	30	-4	1.0	4		
-3	1.0	43	-4	1.0	5		
-2	1.0	154	-3	1.0	12		
-2	1.0	118	-3	1.0	8		
-2	1.0	103	-3	1.0	11		
-2	1.0	142	-3	1.0	19		
-3	1.0	99	-4	1.0	11		
-3	1.0	127	-4	1.0	12		

How would you make the formula?

ENTER DATA IN TOOL

- Enter data check README for format etc.
- Make sure that there is no formatting! (numbers are numbers, not text)
- Use technical and ,matrix uncertainty from before.

QUESTIONS

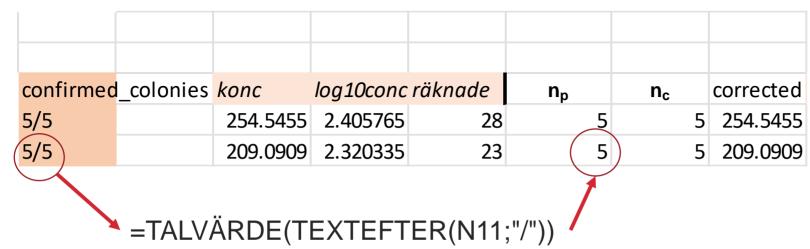
- How much larger MU will you get when considering Poisson-uncertainty compared to only using technical and matrix uncertainty.
- How big is the difference in MU between the samples with the highest count compared with the lowest.

WHEN IS POISSON DISTRIBUTION A PROBLEM

	А	В	С	D	Е	F	G	Н	I.	J	К			
			l	Uncertainty	_	Optional components added to technical uncertainty to give								
2	Sample ID	Result log ₁₀	Comb	ined		combined uncertainty								
3	Sample ID		Standard Expanded		Technical	Matrix	Poisson		Confirmation					
Ļ			u₀(y)	U	U _{tech}	Umatrix	ΣC	UPoisson	n _p	n _c	u _{conf}	u		
5	А	2.405765346	0.190743263	0.3814865	0.15	0.10953	100	0.0434294						
5	В	2.320335151	0.19562492	0.3912498	0.15	0.10553	50	0.0614185						
7	С	2.28082661	0.20195032	0 4039006	0.15	0.10953	30	0.079291						
3	D	2.356547324	0.230993604	0.4619972	0.15	0.10955	10	0.137336						
)	E	2.356547324	0.268736329	0.5374727	0.15	0.10353	5	0.1942224	ノ					
0														
1														
2														
2														

ADDING BY THE SQUARES

U tot U1 U2 U1^2 U1^2 root(U1^2 + U1^2)


CONFIRMATION UNCERTAINTY IN MU ESTIMATION

										\square
	ple and conditions	-		Results		* dilt alatat 🕞 aalaan aanat d	lile alaan a dibataa a 🗖			
rej_no • sam	ple_ID test_portion_ID					t_dil1_plate1 <a>colony_count_d			ny <u>colony</u>	
1	902 A	2021-07-21	10:00	0	1.0	25	-1	1.0	3	5/5
2	902 B	2021-07-21	10:00	0	1.0	21	-1	1.0	2	5/5
3	902 C	2021-07-21	10:00	0	1.0	19	-1	1.0	2	3/3
4	902 D	2021-07-21	10:00	0	1.0	23	-1	1.0	2	3/3
5	902 E	2021-07-21	10:00	0	1.0	24	-1	1.0	2	4/4
6	902 F	2021-07-21	10:00	0	1.0	25	-1	1.0	3	4/4
7	902 G	2021-07-21	10:00	0	1.0	27	-1	1.0	3	3/3
8	902 H	2021-07-21	10:00	0	1.0	30	-1	1.0	3	5/5
9	902	2021-07-21	10:00	0	1.0	26	Indicate the number of typical*	1.0	3	5/5
10	902 J	2021-07-21	10:00	0	1.0		colonies counted on the second	1.0	3	2/2
11	902 K	2021-07-21	10:00	0	1.0	27	plate of the first dilution.	1.0	3	3/3
12							* December of the local states			
13							* Presumptive colonies if the method includes a confirmation			\backslash

HINT

• Possible to use special functions in excel

"make numeric the text after delimitor "/"

=P11*S11/T11

confirmed	_colonies	konc	log10conc	räknade	n _p	n _c	corrected
5/5		254.5455	2.405765	28	5	5	254.5455
5/5 5/5		209.0909	2.320335	23	5	5	209.0909
							1

ENTER DATA IN TOOL

Enter data - check README for format etc.

Use technical and ,matrix uncertainty from before.

	А	В	С	D	E	F	G	Н	1		J	K	L	M
1				Incertainty		Option	nal compo	nents <u>adde</u>	ed to tech	nnica	al unce	rtainty to		MPN
2 3	Sample ID	Result log ₁₀	Comb				_	ve combin			-		ni	
3	Sample ib	Result log ₁₀	Standard	Expanded	Technical	Matrix		sson		Con	rırn ati	on	m _i	
4			u _c (y)	U	Utech	Umatrix	ΣC	UPoisson	np	1/	nc	Uconf	UMPN	xi
5														
6														
7														
8														
9										⊢				
10										⊢				
11										<u> </u>				
12										<u> </u>				
13														
14										H				
15 16														
17										-				
18														
19										╟─				
20										t				
21														
22										V				
23														
24 25														
26														

QUESTIONS

- How much larger MU will you get when considering confirmation-uncertainty compared to only using technical and matrix uncertainty.
- How much larger MU will you get when considering both poisson- and confirmation-uncertainty compared to only using technical and matrix uncertainty.
- How big is the difference in MU between the samples with the highest confirmation uncertainty compared with those with the lowest.

WHEN IS CONFIRMATION A PROBLEM?

	А	В	С	D	Е	F	G	Н	I.	J	K	L
1			U	Incertainty		Optiona						
2	Sample ID	Desult log	Combi	ned				ni				
3	Sample ID	Result log ₁₀	Standard	Expanded	Technical	Matrix	Poisson		C	onfirmatio	n	mi
4			u _c (y)	U	Utech	u _{matrix}	ΣC U _{Poisson}		n _p	II _C	Com	IIMPN
5	А	2.405765346	0.208065512	0.4161311	0.15	0.10953	28	0.0820739	5	5	0.0453681	
6	В	2.320335151	0.213393175	0.4267864	0.15	0.10953	21	0.0947708	1	5	0.0453681	
7	С	2.28082661	0.235406686	0.4708134	0.15	0.10953	10	0.137336	5	5	0.0453681	
8	D	2.356547324	0.272538946	0.5450779	0.15	0.10953	5	0.1942224	5	5	0.0453681	
9												
10	E	2.405765346		0 4198199		0.10953	28	0.0820739	4	4	0.05319	
11	F	2.43572857	0.212976262	0 4259525	0.15	0.10953	28	0.0820720	3	3	0.064233	
12	G	2.477121255	0.269570566	0.5391411	0.15	0.10953	28	0.0820739	4	2	0.1773	
13	Н	2.421005313	0.3832173	0.7664348	0.15	0.10953	28	0.0820739	4	1	0.3249962	
14												
15	К	2.43572857	0.270648637	0.5412973	0.15	0.10953	10	0.137336	3	2	0.1410413	
16												
17												

