

IF MATRIX UNCERTAINTY IS NOT IN DATABASE FOR YOUR MATRIX

- Estimate the *within-laboratory-sample repeatability* standard deviation s_r
- Perform exeriment using specified setup
- Calculate repeatability standard deviation s_r
- Matrix standard uncertainty: $u_{\text{matrix}} = s_r$

REPEATABILITY EXPERIMENT

- Repeat design for each laboratory sample
 - do not homogenise
 - do not artificially contaminate
- Matrix uncertainty is regarded as independent of target microorganism and test method used
 - chose target microorganisms for which naturally contaminated samples are likely to be found (e.g. TVC)

REPEATABILITY EXPERIMENT

- take at least two test portions from each laboratory sample
- total number of test portions = at least 10 or more than the number of laboratory samples, i.e.
 - 1 laboratory sample
 - at least 11 results (all in same batch)
 - 10 or more laboratory samples (from same matrix)
 - at least 2 results each (replicates in same batch)

ISO-19036 CALCULATION TOOL

- Excel tool implementing the calculations of ISO 19036 (2019)
 - Developed by Campden BRI (UK)
 - Verified by WG 2 of ISO/TC 34/SC 9
 - Freely available on line at <u>https://committee.iso.org/sites/tc34sc9/home/general-standards/content-left-area/culture-media/iso-19036-estimation-of-measurem.html</u>

EXCEL CALCULATIONS TOOL

- 2nd worksheet "Reproducibility"
 - Calculates the intralaboratory reproducibility standard deviation (s_{IR})
 - = 1st option to estimate the technical uncertainty
- 3rd worksheet "Repeatability"
 - Calculates the repeatability standard deviation
 to estimate the matrix uncertainty
- 4rd worksheet "Combines"
 - Estimate MU
 - = to estimate the measurement uncertainty

1.1	<u> </u>	0	<u> </u>	0	L.		0				n		
1	Laboratory						Contact person		Email address		_		
2	Country						GDPR agreement	Yes					
3		Method					Repeatability conditions for t	est portions of the same sample	Matrix tested				
4	Target organ	nism	Total mesophilic aero	bic count			Operator repeatability	Yes	Category	Pet food and ar	nimal feed		
5	Method		ISO 4833-1:2013				Equipment repeatability	Yes	Туре	Animal feeds (f	ish)		
6	Accreditati	on	Yes				Media and reagents repeatabili	b Yes	Matrix	Flour			
	General cor	mment on					Weight of each test portion 10	Yes	Additional description				
	the method	l or matrix											
7													
8									•				
9	s	ample and o	onditions			Results							
10	ref_n - s	ample_IL ~	test_portion_ID 🔄	start_date 🕤	start_time 😁	dilution_1 ~	volume_1	colony_count_dil1_plate1 ~	colony_count_dil1_plate2	dilution_2	volume_2 ~ c	olony 🕋 co	olony - confirme -
11	1	1	1a	2021-10-08	09:30	-2	1.0) 109		-3	1.0	14	
12	2	1	1b	2021-10-08	09:30	-2	1.0	87		-3	1.0	8	
13	3	1	1c	2021-10-08	09:30	-2	1.0) 143		-3	1.0	19	
14	4 4	1	1d	2021-10-08	09:30	-2	1.0) 99		-3	1.0	12	
15	5	1	1e	2021-10-08	09:30	-2	1.0	130		-3	1.0	12	
16	6	1	1f	2021-10-08	09:30	-2	1.0) 86		-3	1.0	8	
17	7	1	1g	2021-10-08	09:30	-2	1.0) 99		-3	1.0	8	
18	8	1	1h	2021-10-08	09:30	-2	1.0) 102		-3	1.0	9	
19	9	1	1i	2021-10-08	09:30	-2	1.0) 111		-3	1.0	10	
20	10	1	1j	2021-10-08	09:30	-2	1.0	138		-3	1.0	18	
21	11	1	1k	2021-10-08	09:30	-2	1.0) 112		-3	1.0	14	
22	2 12												
23	13												
24	14												
25	15												
26	16												
27	17												
28	18												
29	19												
30	20												

CALCULATE CONC AND LOG10CONC

Make new columns with appropriate formulae

Operator repeatability	Yes	Category	Raw meat and ready-to-cook meat products (except poultry)				
Equipment repeatability	Yes	Туре	Fresh meats (unprocessed)				
Media and reagents repeatability	Yes	Matrix	Pork meat cuts				
Weight of each test portion 10 g	Yes	Additional description	Laboratory samples - portions cut of pork meat (300-500g),				
			refrigerated, collected from retail				

Results

•	dilution_1	volume_1	ony_count_dil1_plate1 🔽 colony_count_dil.	1_plate2 💌 dilution_2 💌 volun	ne_2 🔻 colony 💌	colony 🔻 confirmea 💌	comment	▼ konc	log10conc r
	-1	1.0	76	-2	1.0 6				
	-1	1.0	42	-2	1.0 6				
	-1	1.0	114	-2	1.0 9				
	-1	1.0	66	-2	1.0 6				
	-2	1.0	180	-3	1.0 15				
	-2	1.0	259	-3	1.0 23				
	-1	Indicate the volume	156	-2	1.0 14				
	-1	inoculated (in ml) of	the 113	-2	1.0 10				
	-3	first dilution to use in	65	-4	1.0 9				
	-3	(or 1.0, 0.1 etc. depen	41	-4	1.0 6				
	-3	on format in Excel).	99	-4	1.0 8				
	-3	1.0	143	-4	1.0 17				
	-3	1.0	30	-4	1.0 4				
	-3	1.0	43	-4	1.0 5				
	-2	1.0	154	-3	1.0 12				
	-2	1.0	118	-3	1.0 8				
	-2	1.0	103	-3	1.0 11				
	-2	1.0	142	-3	1.0 19				
	-3	1.0	99	-4	1.0 11				
	-3	1.0	127	-4	1.0 12				

• How would you make the formula?

ENTER DATA IN TOOL "REPEATABILITY"

Enter data - check README for format etc.

Ignore the optional columns (poisson etc)

Descrip Too few Rest Standard uncertainty	tion of data: ults s _r							
Too few Rest Standard uncertainty	ults s _r		0.0					
Standard uncertainty	Sr		Optional;	cted from				
Standard uncertainty					ni			
Standard uncertainty	S _{r:corr}		Poisson		C	mi		
Laboratory Sample ID	Result log ₁₀		ΣC	UPoisson	n _p	nc	Uconf	UMPN

ENTER DATA IN TOOL "REPEATABILITY"

OBS: Repeated test portions from same sample should have the same Sample ID (make sure to document)

Could also be 10+ test portions from one sample!

WHAT ABOUT THE REST OF THE COLUMNS?

Leave empty!

Possible to calculate but we don't

When >30 colonies counted U_{poisson} is ínsignificant

 When 5/5 colonies are
 confirmed U_{confirm} is ínsignificant

Matrix uncertainty is calculated using organisms that does not need confirmation

		А	В	С	D	E	F	G	Н	I.	J	
tı	1 Description of data:											
l	2	2				Optional	; uncertaint	y compone	ents subtra	cted from		
	3		S	0.12095			Sr	to give s _{rc}	orr		ni	
ľ	4	Standard uncertainty	Sr:corr	0.12095		Po	isson	Confirmation		n	m	
	5	Laboratory Sample ID	Result log ₁₀			ΣC	UPoisson	n _p	n _c	Utonf	U _{MPN}	
I	6	Α	2.872421167									
st	7	А	2.639848552									
<(8	b	3.048512426									
	9	b	2.815939811									
l	10	С	3.248641926									
	11	C	3.408856423									
	12	d	3.189056236									
	13	d	3.048512426									
l	14	е	2.827839035									
¢t	15	е	2.630705173									
l	16	f	2.987991093									
Î	17	f	3.162727297									
l	18	g	2.490086232									
	19	g	2.639848552									
÷	20	h	3.178715403									
Ľ	21	h	3.05897786									
n	22	i	3.015512166									
l	23	i	3.165433191									
	24	j	3									
1	25	j	3.101622115									
7	26											
Л	27											
1	28											
	29											
	30											

CAN YOU CALCULATE MANUALLY?

THANK YOU FOR YOUR ATTENTION

Do not forget to report new estimtes of matrix uncertainty to NRL or EURL!

CALCULATE MU OF A NEW RESULT (SHEET "COMBINED")

Matrix U from database or own study

1	А	В	С	D	E	F	G	н	1	J	K	L		
1			Uncertainty Combined		_	Optiona	nty to give							
2	Commis ID	Desulties					combined uncertainty							
3	Sample ID	Result log ₁₀	Result log ₁₀	Standard	Expanded	Technical	Matrix	Matrix Poi		sson Confirmation		on	r	
4			u _c (y)	U	Utech	matrix	ΣC	UPoisson	np	n _c	Uconf	UMPN		
5	1 a	2.872421167	0.23372687	0.4674537	0.1	0.12095	y							
6	10	2.000048552	0.23372687	0.4674537	0.2	U. 12095								
7	2a	3.048512426	0.23372687	0.4674537	0.2	0.12095								
8	2b	2.815939811	0.23372687	0.4674537	0.2	0.12095								
9	3a	3.248641926	0.23372687	0.4674537	0.2	0.12095								
10	3b	3.408856423	0.23372687	0.4674537	0.2	0.12095								
11	4a	3.189056236	0.23372687	4674537	0.2	0.12095								
12	4b	3.048512426	0.23372687	0.4674537	0.2	0.12095								
13	5a	2.827839035	0.23372687	0.4674537	0.2	0.12095								
14	5b	2.630705173	0.23372687	0.4674537	0.2	0.12095								

Sample ID and log-concentration from

Beware that matrix uncertainty may be copied automatically from sheet "repeatability" (but not in my hands...)

