

# INTRODUCTION TO THE STANDARD EN ISO 19036 AND THE EURLS GUIDE

EURLs Campylobacter, CPS & Lm webinar on MU 14 December 2022

#### **Bertrand LOMBARD**

Senior Project Manager, Reference activities Anses-Research and Reference Division – Strategy and Programmes Department, Maisons-Alfort bertrand.lombard@anses.fr, mobile +33 6 15 54 19 94



## Introduction





## Why to estimate measurement uncertainty? (1)

- Significance of microbiological analysis of food
  - = direct hazard for the consumers' health
- Quantitative methods in food microbiology
  - = highly variable results (0,1-1  $log_{10}$ )
  - → need to quantify this variability

## Why to estimate measurement uncertainty? (2)

- Needed for accredited laboratories
- What are the main requirements of ISO 17025 (2017)?
  - See clause 7.6:
    - To identify contributions to measurement uncertainty (MU)
    - To evaluate MU of test results
    - > To take into account the main contributions to MU
    - If the test method precludes "rigorous" MU evaluation
    - MU estimation can be based on understanding of theoretical principles or practical experience of method performance (= case for food microbiology)

### Why to estimate measurement uncertainty? (3)

 MU values may be used to interpret analytical results in terms of conformity to a legal limit in Reg. 2073/2005

Different <u>cases are shown below</u> (adapted from EURACHEM / CITAC Guide CG 4)



 In particular where the result, including MU, approaches the limit (iii) or just exceeds to the limit (ii), such results are questionable



# Introduction to the Standard EN ISO 19036

# INTERNATIONAL STANDARD

#### ISO 19036

First edition 2019-10

Microbiology of the food chain — Estimation of measurement uncertainty for quantitative determinations

- Published by ISO in October 2019 and adopted by CEN as European Standard
- Prepared by WG 2 « Statistics »
  of Sub-Committee 9 « Microbiology »
  of ISO Technical Committee 34 « Food products »
  (ISO/TC 34/SC 9)
- Co-Project Leaders: Basil JARVIS, Keith JEWEL, Paul IN'T VELD
- Revision of ISO Technical Specification 19036 (2006, amended in 2009)
  - ✓ Took into account feedback from the users of the first version
  - ✓ Converted into a full ISO Standard
  - ✓ Partly harmonised with water microbiology (ISO 29201)
  - Presentation support available on ISO/TC 34/SC 9 website:

https://committee.iso.org/sites/tc34sc9/home/general-standards/content-left-area/culture-media/iso-19036-estimation-of-measurem.html

#### Approach adopted in food microbiology

- « Half-global » approach, 3 main MU components: 1. Technical uncertainty
  - •Major component ← global approach
  - •Experimental reproducibility standard-deviation on the final measurement result
  - Advantages/GUM decomposition
    - ✓ Less risk to under-estimate MU
      - ✓ type of matrix, sub-sampling of test portion taken into account
    - ✓ No need to estimate each MU component ✓ A priori less heavy to implement
- 2. Matrix uncertainty
- © Distribution of bacteria in the sample matrix
- 3. Distribution uncertainties
- 1 Depending on the principle of the method used

14 December 2022

#### Sampling uncertainty

Error associated with the drawing of the laboratory sample from a lot under investigation

- can contribute significantly to the overall error, but
- is not considered as part of the uncertainty linked to the laboratory test results
- > Sampling uncertainty not included in ISO 19036

#### Bias

- Estimate of a systematic measurement error
- For quantitative methods in food chain microbiology, no "true" value exists which is independent of the method used
  - assigned values or reference material values are not available for all routine test results
  - o so cannot reliably estimate bias for a routine test result
- ➤ Bias not included in MU estimation according to ISO 19036

#### **Calculations**

- Excel tool implementing the calculations of ISO 19036 (2019)
  - Developed by Campden BRI (UK)
  - Verified by WG 2 of ISO/TC 34/SC 9
  - Freely available on line at <a href="https://committee.iso.org/sites/tc34sc9/home/general-standards/content-left-area/culture-media/iso-19036-estimation-of-measurem.html">https://committee.iso.org/sites/tc34sc9/home/general-standards/content-left-area/culture-media/iso-19036-estimation-of-measurem.html</a>
- Refer to the 1<sup>st</sup> worksheet "Read me" for the instructions



# Introduction to the EURLs MU guide

#### Presentation of the guide (1)

- Guide on the implementation of the Standard EN ISO 19036:2019 for the estimation of measurement uncertainty associated with the enumeration of Campylobacter, coagulase positive staphylococci and Listeria monocytogenes in the food chain
- Version 1, 23/06/2022, available on the web-site of the 3 EURLs
  - *Campylobacter*: <a href="https://www.sva.se/en/about-us/eurl-campylobacter/laboratory-procedures/measurement-uncertainty-for-the-enumeration-of-microorganisms/">https://www.sva.se/en/about-us/eurl-campylobacter/laboratory-procedures/measurement-uncertainty-for-the-enumeration-of-microorganisms/</a>
  - *Lm*: https://sitesv2.anses.fr/en/minisite/listeria-monocytogenes/measurement-uncertainty
  - CPS: https://sitesv2.anses.fr/en/minisite/staphylococci/measurement-uncertainty
- Drafted by Working group of
  - EURL Campylobacter: Helena Höök, Elina Lahti and Hanna Skarin
  - o EURL Coagulase Positive Staphylococci: Abakabir-Mahamat Abdelrahim
  - o EURL Listeria monocytogenes: Adrien Asséré, Léna Barre and Ludivine Bonanno

Expert: Bertrand Lombard

#### Presentation of the guide (2)

- Draft submitted for comments to the 3 NRLs networks, October-November 2021
- Comments taken into account to prepare the final draft endorsed by the Standing Committee on Plants, Animals, Food and Feed (PAFF), 3 June 2022

#### Content of the guide (1)

- Introduction & scope
  - Guidance to NRLs and official labs for Campylobacter, Lm and CPS on
  - 1. How to implement EN ISO 19036 (2019) for MU estimation associated with
    - ✓ The enumeration of these 3 bacteria
      - + may also apply to the enumeration of any target bacteria
    - ✓ In samples from the food chain, except water (ISO 29201)
    - ✓ No rephrasing of the standard but clarifications and details on certain aspects, choice of certain options
      - ➤ Harmonised implementation of the standard by the 3 EURLs, NRLs networks and official labs
  - 2. How to assess that acceptable MU values are obtained
  - Based and replaced EURL Lm guide (2009)

#### Content of the guide (2)

- MU definition (clause 1)
- MU estimation (clause 2)
  - General aspects: to use EN ISO 19036 (2019) with some recommended choices, see later
    - ✓ To be noted: clause 8.2.2 of the EC Guidance Document on official controls, under Regulation (EC) No 882/2004, concerning microbiological sampling and testing of foodstuffs (2006) refers to ISO/TS 19036 (2006)
      - → reference needs to be updated to EN ISO 19036 (2019)
  - Technical, matrix and distributional uncertainties
- Acceptable MU values (clause 3)

#### Content of the guide (3)

- MU interpretation (clause 4)
  - How to take MU into account when interpreting an enumeration result/conformity to a limit of a microbiological criterion?
  - Not dealt in this guide but in clause 8.2 of the EC Guidance Document on official controls, under Regulation (EC) No 882/2004, concerning microbiological sampling and testing of foodstuffs, 2006
  - Clause 8.2 expected to be modified in the frame of the ongoing revision of this EC guidance document
    - Replacement of ISO/TS 19036 by the Standard EN ISO 19036:2019

Change in practices