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1 Introduction

One of the major problems related to super intensive

aquaculture is the generation of effluents with high organic loads.

Feeding in intensive monocultures increment the discharge

effluents with a high pollution potential, with a high

concentration of nitrogen and phosphorus (Briggs and Funge-

Smith, 1994). These problems have raised concerns in many

countries due to the likely environmental impacts of this activity

(Boyd et al., 2020).

The Integrated Multi-Trophic Aquaculture (IMTA) aims at the

integration of species with different trophic levels in the culture

system, in order to take advantage of the residues from the

production of one species for the culture of other species (Troell

et al., 2009). Even organisms that occupy the same trophic level in

the system can be produced at IMTA if they make use of different

food webs in that system (Boyd et al., 2020). This variety in the

combination of organic and inorganic extractive species gives

IMTA advantages in terms of biomitigation and economic gain,

consequently more sustainability, when compared to monocultures

(Biswas et al., 2020).

The biofloc system is another culture technology that has been

adopted in shrimp culture. This system gives a new direction for the

shrimp monoculture in regard to aquaculture sustainability. Due to

a better maintenance of water quality, this system can reduce water

use by up to 90% compared to traditional systems (Krummenauer

et al., 2014), allowing culture at high stocking densities (Wasielesky

et al., 2013), reducing the use of land (Liu et al., 2017) and

optimizing the use of artificial food (Santhana Kumar et al.,

2018). This is possible through the increase of the C: N ratio in

water, with the use of organic carbon sources and constant aeration,

stimulating the production of microorganisms that will both work

on the metabolization of nitrogenous compounds and serve as

natural food for reared animals (Krummenauer et al., 2011; Lara

et al., 2017; Khanjani et al., 2023).

Shrimp production in the biofloc system has numerous

economic advantages (Rego et al., 2017). Nevertheless, there are

still environmental constraints such as the accumulation of organic

matter during production in a system with minimal water exchange

and high densities. This accumulation produces an excess of
suspended solids, which increases the biological oxygen demand

The study was carried out at the Marine Station of Aquaculture,

Federal University of Rio Grande (EMA-FURG), Southern Brazil

(32°12’16S, 52°10’38W) in a greenhouse used for IMTA studies.

Nauplii of L. vannamei were purchased from the company

Aquatec (Aquatec®, Canguaretama; Rio Grande do Norte, Brazil),
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due to the high concentration of aerobic microorganisms present in

bioflocs (Ray et al., 2010). Therefore, it is recommended that excess

total suspended solids (TSS) in the biofloc system should be

removed trough clarification processes (Gaona et al., 2017).

Sedimentation (removal of excess biofloc particles by gravity)

efficiently removes excess solids suspended in the biofloc system

(Gaona et al., 2016) that are normally discarded as effluents.

Therefore, the rationale for integrating species in the biofloc

system is to take advantage of this excess of microbial protein in

the form of suspended solids, to feed other species and thus

transform effluent into animal protein, making the system even

more sustainable.

Tilapia (Oreochromis niloticus) presents some characteristics

that make it an ideal species for culture in an IMTA system based on
Frontiers in Marine Science 02
the biofloc system (Azim and Little, 2008; Monroy-Dosta et al.,

2013; Poli et al., 2019). This species has a high tolerance for

suspended solids, moderate dissolved oxygen, and high stocking
Pasco et al., 2018; Khanjani and Sharifinia, 2021). In addition, it is

an omnivorous species, presenting filtering structures and a

digestive system that allows it to be an organic extractive in

potential, feeding on natural productivity of the biofloc system

and removing the excess of total suspended solids. It can be used as

a bioremediation agent in IMTA systems (Azim et al., 2003; Ekasari

et al., 2014; Poli et al., 2019).

Commercial expansion of IMTA has been troublesome.

Although the biological and environmental advantages of this

practice are generally accepted by producers and society, some

economic-related issues have yet to be overcome for its adoption

(Ridler et al., 2007). Thus, pilot-scale studies aimed at integrating

superintensive production of Pacific white shrimp (Litopenaeus

vannamei) and Nile tilapia in the biofloc system are sorely

needed for the development of large-scale integrated

multitrophic cultures.

There are some studies reporting the integrated culture of

shrimp and tilapia, though in low production densities and in

clear water systems (Tendencia et al., 2004; Tendencia et al., 2006;

Muangkeow et al., 2007; Cruz et al., 2008; Yuan et al., 2010;

Muangkeow et al., 2011; Simão et al., 2013). More recently, Poli
an experimental scale, and this work represents a first step towards a

future IMTA using biofloc technology. Nevertheless, until now,

there is no work with integrated superintensive production of

shrimps and tilapia in a BFT system, on a pilot scale. The

objective of this study was to evaluate the effect of different fish

stocking densities in the integrated superintensive culture of white

shrimp L. vannamei and Nile tilapia O. niloticus reared in biofloc

system to promote the maintenance of TSS at the appropriate levels

for shrimp culture, through the consumption of the excess of biofloc

by the fish.

2 Material and methods

2.1 Experimental design

The experiment lasted 78 days and was performed in two

treatments with three replicates: 1) T35 – integrated culture of

shrimp (550 shrimp m-3) and tilapia at a stocking density of 35 fish

m -3; and 2) T65 - integrated culture of shrimp (550 shrimp m-3)

and tilapia at a stocking density of 65 fish m -3).

2.2 Culture conditions
frontiersin.org
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2.4 Water quality monitoring
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and larval development was carried out in the Carcinoculture

laboratory at EMA-FURG. The fish were purchased from a

commercial farm in the municipality of Camaquã, Rio Grande do

Sul, Brazil.

Sea water previously diluted in fresh water provided by the local

supply company was used to formulate water with salinity of 15 g L-1.
The salinity was kept at 15 with chlorinated fresh water and

of hydrated lime - Ca (OH)2 - according to (Furtado et al., 2011).

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307
neutralized with vitamin C (Roselet et al., 2013). This experiment

was approved by the Ethics and Animal Welfare Committee of the

Federal University of Rio Grande - FURG (Case number

23116.005895/2016-42).

Before the experiment starts, an inoculum of 20% of the total

volume of the shrimp tank, with mature bioflocs (with the complete

nitrification process, without detection of ammonia and nitrite, and

with detection of nitrate), was used in all treatments. The inoculum

was taken from a 60-day culture of L. vannamei with a density of

400 m−3 in 35 m3 tanks located in a greenhouse. Sugar cane

molasses, containing 37% of organic carbon, was used as a carbon

source in the initial phases of cultivation for ammonia control. The

inoculum’s initial concentration was TSS ± 400 mg L−1 and ± 65 mg

L−1 of nitrate, indicating that the nitrification process was taking

place in this matrix tank. Organic fertilization was carried out by

manipulating the C: N ratio to 15:1 (Ebeling et al., 2006; Khanjani

and Sharifinia, 2022). Th

During the study, shrimps were fed twice a day (9 a.m. and 5

p.m.) with species-specific commercial feed, containing 38% crude

protein (Poty Active 38, 1.6 mm, Guabi®, Campinas, SP, Brazil),
following the methodology described by Jory et al. (2001). Fish were 308

309

310

311

312

313
fed twice a day (9 a.m. and 5 p.m.) with Guabitech Mirim QS

commercial feed (1.0 mm) at the beginning of the experiment,

adjusting the feed for Guabitech omnivorous QS (2-3 mm/5-5 mm),

throughout the experimental period, as fish grew. Fish were

underfed to stimulate the consumption of biofloc. In the first half
of the experiment the feed was offered at a rate of 2% of the total fish
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of 150 L. A shade was installed on the greenhouse ceiling to

attenuate 70% of the luminosity to avoid phytoplankton blooms

and favor the heterotrophic nature of the system.
The temperature (°C) and dissolved oxygen (mg L-1) in the

tanks were monitored twice a day using a digital oximeter (model

HI 9146-04, Hanna® instruments), the pH was measured daily,

with a bench pH meter (Mettler Toledo, Five-Easy model). Salinity

was checked weekly with an optical refractometer (Atago).

Total ammonia (UNESCO, 1983) and nitrite (Bendschneider

and Robinson, 1952) were monitored daily. Nitrate (UNESCO,

1983), phosphate (Strickland and Parsons, 1972), alkalinity (APHA,

2017) and total suspended solids (Strickland and Parsons, 1972)

were measured weekly.

Total suspended solids (TSS) were kept at 500 mg L-1 according

to (Gaona et al., 2017). When the TSS value exceeded this limit,

physical clarification was performed in the systems by removing

suspended solids in all treatments (Gaona et al., 2011). The pH

corrections were made to keep the values above 7.2 by the addition
314

315

316

317

318
Alkalinity was corrected to maintain concentrations above 150 mg

L - 1, following the same protocol.

2.5 Growth performance

Shrimp (n = 40) and fish (n = 20) growth was monitored

through weekly and biweekly biometrics, respectively, using a

digital scale with accuracy of 0.01g (Mars - Model AD 2000).

Anesthetics were used to manipulate fish during weighing

(benzocaine hydrochloride, 50 mg L-1). At the end of the

experiment, all shrimp and fish remaining in the tanks were

counted to determine the survival and growth. The parameters

analyzed were: Survival (%) = (final shrimp number/initial shrimp

number) × 100; Final average weight (g): final weight of live animals
(g)/total number of animals; Total biomass (g): final weight of all

live animals (g); Weekly growth rate (g week−1): weight gain (g)/

319

320

321
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323

324

325

326

327

328

329

330

331

332

333
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335
biomass in each tank. This value was adjusted in the second half of

the experiment, when feed was offered at a rate of 1%. Shrimps were

stocked in the experimental tanks with an initial weight of 0.96 ±

0.1g. Tilapia, with an initial weight of 7.17 ± 3.15g, were previously

acclimated to the salinity of the experiment and later stored in the

experimental units.

2.3 Culture system

The biofloc-IMTA recirculation system includes a circular tank

of 10 m3, where shrimps were stored, and another similar tank of 4

m³ of useful volume was stocked with tilapia. The water was

pumped from the shrimp tank to the tilapia tank through PVC

pipes (40mm in diameter) using submerged pumps (SB 2700, Sarlo

better, Brazil), and returned to the shrimp tank by gravity, through

tubes (40mm) installed 20 cm from the surface of the tank. The

recirculation system operated for 24 hours, with an average flow of

965.6 ± 92.8 L h-1. Aeration was provided by a 4HP blower

connected to the air distribution system by means of
336
microperforated hoses. Each recirculation system contained a

cylindrical-conical clarifier made of fiberglass with useful volume
number of weeks; Feed conversion ratio (FCR) = offered feed (g)/

(final biomass (g) - initial biomass (g)); Productivity (kg m-3): [(final

biomass (kg) - initial biomass (kg)) x 1000]/useful tank volume (L).

The parameters analyzed for the IMTA system as a whole

(shrimp+fish) were: system productivity (Kg m-3): (FBs + FBf) -

(IBs + IBf)/Total useful volume (m³), where FBs = final shrimp

biomass; FBf = final fish biomass; IBs = Initial biomass of shrimps;

IBf = Initial biomass of fish and Total useful volume = sum of the

useful volume of the shrimp and fish tanks; FCR: (Fs + Ff)/(FBs +

FBf) - (IBs - IBf), where Fs = feed offered for shrimp and Ff = feed

offered for fish.
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2.6 Statistical analysis

0.05) between treatments. The mean values of nitrite, on the other

hand, were significantly higher (p < 0.05) in T65 (1.1 ± 1.5 mg L-1)

than T35 treatment (0.6 ± 0.6 mg L-1).

management of total suspended solids (clarification) was337
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4 Discussion

Throughout the experimental period, the physical and chemical

parameters of water quality were at suitable levels both for L.

vannamei (Samocha and Prangnell, 2019) and for tilapia growth

(Atwood et al., 2001; Azim and Little, 2008). Even with the culture

of two species, the dissolved oxygen, a limiting factor for cultured

organisms, mainly in a biofloc system, remained above 6 mg L-1,

values above those recommended for reared species (Wasielesky

et al., 2006; Tran-Duy et al., 2008).

The alkalinity showed a statistical difference between the

treatments during the experimental period, however, the average

values registered were within the recommended for L. vannamei

(Furtado et al., 2014) and for tilapia (O. niloticus) (Cavalcante et al.,

FIGURE 1

Mean alkalinity concentrations (mg L-1 of CaCO3) in the T35 and
T65 treatments over the 78 day experimental period. Data are
presented as mean ± standard deviation.
After verifying the normality and homoscedasticity of the data,

the parameters of water quality and growth performance were

submitted to the t-test for comparison of means. The survival

data were transformed (arcsine x0.5) before analysis (Zar, 2010).

3 Results

3.1 Water quality

The main water quality parameters registered in the present

study are showed in Table 1. The mean temperature was maintained

above 28°C, dissolved oxygen above 6.0 mg L-1 and the pH above

7.5 and did not present significant differences between treatments

(p > 0.05). Alkalinity (Figure 1) showed significantly higher

(p<0.05) mean values (143.6 ± 35.2 mg L-1 of CaCO3) in

treatment T35 than in treatment T65 (134.9 ± 33.2 mg L-1 of

CaCO3). Salinity values fluctuated between 13 and 15 throughout

the experiment, however, differences between treatments were non-

significant (p > 0.05).

The concentrations of total ammoniacal nitrogen, nitrate and

orthophosphate (Figure 2) did not show significant differences (p >

necessary in both treatments in order to maintain the TSS values

close to 500 mg L-1. The clarification was performed during 52 ±

18.3 h in T65 and for 32 ± 18.3h in T35, along all the experimental

period (Table 1).

3.3 Growth performance

Shrimps showed similar growth in both treatments (p > 0.05)

during the experiment, reaching a final weight of 10.1 ± 0.7 g and

11.5 ± 1.9 g in treatments T65 and T35, respectively. The results of

growth performance in terms of final mean weight, survival, daily

growth rate, feed conversion rate and productivity showed no

statistical differences (p > 0.05) between treatments (Table 2).

Fish growth was significantly higher (p < 0.05) in T35 than in

T65 treatments. The productivity was higher in the T65 treatment.

Survival and FCR, were similar in both treatments (Table 2).

For the IMTA system (shrimp + fish), the total final biomass

was statistically higher in the T65 treatment. The total productivity

of the system as a whole and the FCR showed no statistical

differences between treatments (Table 2).
3.2 TSS dynamics

The TSS concentrations and turbidity (Figure 3) did not show

statistical differences (p > 0.05) between treatments. The

TABLE 1 Water quality parameters in treatments T35 (540 shrimp m-3 +
35 fish m-3) and T65 (540 shrimp m-3 + 65 fish m-3) throughout the
experimental period (mean values ± standard deviation).

T35 T65

Temperature (°C) 28.3 ± 1.9 28.4 ± 1.8

DO (mg L-1) 6.1 ± 0.6 6.0 ± 0.6

pH 7.5 ± 0.3 7.5± 0.3

Alkalinity (mg CaCO3 L
-1) 143.6 ± 35.2a 134.9 ± 33.2b

Salinity (g L-1) 14.2 ± 1.1 14.4 ± 0.8

TSS (mg L-1) 436.6 ± 140.5 457.2 ± 135.5

Turbidity (NTU) 247.0 ± 81.5 240.1 ± 94.2

Clarification time (hours) 32.0 ± 18.3 52.0 ± 18.3

TAN (mg L-1) 0.01 ± 0.01 0.01 ± 0.01

Nitrite (mg L-1) 0.6 ± 0.6a 1.1 ± 1.5b

Nitrate (mg L-1) 68.7 ± 53.7 70.3 ± 53.5

Ortophosphate (mg L-1) 2.0 ± 1.5 2.2 ± 1.61

DO, disolved oxigen; TSS, total suspended solids; TAN, total ammonia nitrogen. Different letters
in the same line represents significant differences (p < 0.05) between treatments after t- test.
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FIGURE 3

Mean TSS (total suspended solids) concentrations (mg L-1) and
turbidity (NTU) in T35 and T65 treatments during the 78 days of
experiment. Data are presented as mean ± standard deviation.
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2009). The T65 treatment showed a lower mean alkalinity value

than T35, which in turn, presented lower mean nitrite values (0.6 ±

0.6 mg L-1) than T65 (1.1 ± 1.1 mg L-1). In T65 was registered a peak

of nitrite at 21 days of the study, reaching 4.5 ± 3.31 mg L-1 and, this

possibly happened due to the presence of fish in the system at

elevated densities, although with the addition of mature biofloc

inoculum. The influence of fish density and the imbalance in the

nitrification process are reported by Holanda et al. (2020) in a study

integrating shrimp and mullets (Mugil liza). In addition, it is

possible that the swimming of a great biomass of fish may have

altered the size and shape of bioflocs, which affects the nitrification

dynamics in the biofloc systems (Carvalho et al., 2006; Delatolla

et al., 2009).

The presence of tilapia integrated in the system did not

negatively affect the performance of the shrimp, independently of

the fish densities used. The productivity of the shrimp was high,

approximately 7.0 kg m-3, already expected in cultures in biofloc

system and above the reported productivity values observed in

studies evaluating the biofloc monoculture of L. vannamei in pilot

scale (Krummenauer et al., 2011; Gaona et al., 2017). These authors

obtained yields close to 4.1 kg m-3.

Even underfed tilapia showed zootechnical performance similar

r the 78 day experimental period in T35 and T65 treatments. Data are
560
(2020) showed an average final weight of 115 g for tilapia at a

density of 60 fish m-³ for 84 days, with an initial weight of 50 grams.

Malpartida Pasco et al. (2018), on the other hand, observed

productivity of 21 kg m-3 in tanks of 10m³ growing tilapia at the

density of 70 fish m-3 for 56 days in a biofloc system.

The FCR obtained for shrimp was similar to other studies with

monoculture of L. vannamei in biofloc systems (Lara et al., 2017;

Reis et al., 2019). In this present study, it is worth noting the low
FIGURE 2

Mean concentrations of ammonia, nitrite, nitrate and phosphate (mg L-1) o
presented as mean ± standard deviation.
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TABLE 2 Performance of L. vannamei and O. niloticus (mean values ±
standard deviation) during the experimental period.

Shrimp T35 T65

Survival (%) 75.9 ± 0.2 88.2 ± 0.02

Initial weight (g) 0.9 ± 0.1 0.9 ± 0.1
vannamei with a density of 350 shrimp m-2, with an initial weight of

Final weight (g) 11.5 ± 1.9 10.1 ± 0.7
623

624

625

626

627

628

629
Final biomas (kg) 73.1 ± 12.2 75.4 ± 2.7

WWG (g week-1) 0.95 ± 0.16 0.83 ± 0.07

FCR 1.7 ± 0.2 1.6 ± 0.03

Produtivity (kg m-3) 6.8 ± 1.3 7.0 ± 0.3
with the excess of organic matter in the water, hence increasing the

Tilapia 630

631

632

633

634

635

636
Survival (%) 99.5 ± 0.008 100 ± 0.0

Initial weight (g) 7.1 ± 3.2 7.1 ± 3.2

Final weight (g) 127.4 ± 10.9a 99.6 ± 6.5b

Final biomas (kg) 17.8 ± 1.5 25.9 ± 1.6
results were observed by Zaki et al. (2020) in a monoculture of

WWG (g week-1) 10.79 ± 0.98b 8.3 ± 0.58a 637

638

639

640

641

642

643

644

645

646
FCR 0.7 ± 0.03 0.7 ± 0.04

Produtivity (kg m-3) 4.3 ± 0.2b 6.3 ± 0.6a

System

Final biomas (kg) 55.5 ± 18.6b 67.3 ± 4.6a

Produtivity (kg m-3) 6.1 ± 1.0 6.7 ± 0.2

FCR 1.7 ± 0.3 1.6 ± 0.1

WWG, weekly weight growth; FCR, feed conversion rate. Different letters in the same line
FCR values of tilapia, which were below 1.0 in both T65 (0.7 ± 0.04)

and T35 (0.7 ± 0.03) treatments. This indicates that tilapias

consumed the natural microbiota present in bioflocs, using it as a

represent significant differences (p < 0.05) between treatments.
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IMTA system could be implemented to warrant a more sustainable

culture system.

Even with the integration of the fish in the system, it was

necessary to remove the excess of total suspended solids through

sedimentation process. The sedimentation time was different in the

two treatments, with T65 being clarified for longer time, probably

due to the high total biomass in this treatment. Gaona et al. (2016)

performed clarification during 58 ± 12.2h in a monoculture of L.
0.18 ± 0.06g for 17 weeks. These data highlight that tilapias could

contribute to the management of TSS, since the stocking density of

shrimp used in the present study were higher than the reported

previously by the authors. In the present study, the lower density of

tilapia in T35 required less clarification time (36 ± 12 h), which

corroborates that higher stocking densities of fish could contribute
TSS. In addition, the clarification time in T35 was shorter than that

reported by Gaona et al. (2016) for L. vannamei monoculture at a

lower density than the present study. In this study, it was observed

that in treatment T65, where there was a greater biomass of fish,

longer time of clarification were needed, which indicates that the

system produced more TSS compared to treatment T35. Similar
647

648
tilapia in biofloc systems, showing that the increase in biofloc

volume was directly proportional to the increase in stocking density.

Azim and Little (2008) reported a difficulty in maintaining TSS

levels at 500 mg L-1 even using a clarifier and often the level reached

exceeded 1000 mg L-1 TSS, growing tilapia from 80 to 120 grams

and density of 12 kg m-3. The consumption of bioflocs by fish

depends on the species cultivated, the feeding habits of the fish, and

the size and density of bioflocs. It is possible that the consumption

of bioflocs by fish also depends on the presence and rate of feed
added to the tank. Therefore, new studies with different biomass

ratios of shrimp and fish should be encouraged.

649

650

651
652

substantial part of their diet. A low feed rate was provided to tilapias

(1% of biomass), which favored their consumption of bioflocs

Most studies of IMTA cultures of L. vannamei and tilapia have

worked with low shrimp densities (10 to 120 shrimp m-2) (Yuan
et al., 2010; Muangkeow et al., 2011; Simão et al., 2013) and few are 653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672
without impairing their growth despite the low amount of feed

provided. A standard feed rate for tilapia in a biofloc system, with an

approximate weight of 50 grams, is 3% of wet body weight (Zaki

et al., 2020). The values obtained in the present study are not only

beneficial from an environmental point of view, but also

economically advantageous as it can decrease production costs

due to the reduction of food used (a major cost in terms of

production), producing two species at the same time.

Environmentally, using less feed implies the generation of

effluents with less polluting potential, making aquaculture

environmentally friendly and socially acceptable (Tacon and

Metian, 2008; Naylor et al., 2009). Ekasari et al. (2014) showed

the consumption of bioflocs by red tilapia, regardless of the size of

the fish. The same study also showed that the absorption capacity is

39 to 117 g of TSS/kg of fish. Poli et al. (2019) also found low FCR

values (around 0.2) for Nile tilapia in integrated cultivation with L.

vannamei, proving the tilapia’s potential to consume the excess

solids produced by the shrimp. These results indicate that tilapias

can feed on bioflocs and the integration of the two species in an
the studies of IMTA cultures in super-intensive densities. Poli et al.

(2019) observed shrimp yields of up to 4 kg m-3 in the integrated

culture of shrimp, Nile tilapia and Sarcocornia ambigua on a

laboratory scale. Our work provides useful information for

implementing biofloc cultures with shrimp and fish in integrated

farming systems, diversifying production without loss in

performance of the target species, which in the present study are

the shrimp. From the productive perspective, the data presented

here encourage the development of integrated shrimp and tilapia

harvests in a biofloc system, in tanks on land.

5 Conclusion

The results obtained in the present study lead to the conclusion

that the integrated culture of L. vannamei and O. niloticus in super-

intensive systems using biofloc is possible, allowing the reduction of

fish feeding rates without negatively influencing their growth. When

higher densities of tilapia are used (65 fish m3), there is an increase
frontiersin.org
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in the total suspended solids concentrations in the water, also

increasing the clarification time required to keep these

concentrations within the levels suitable for the species. This

study, on a pilot scale, proves that the IMTA systems of tilapia

with L. vannamei based on bioflocs diversifies production without

compromising the productivity of shrimp.
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