eur PLANET 2024 Research Infrastructure

Introduction to Venus Geology

Lucia Marinangeli Univ. G. d'Annunzio Chieti-Pescara

TERRESTRIAL PLANETS Mercury, Venus, Earth and Mars

the hottest surface in the Solar System

the only internal planet with clock-wise rotation

a venusian day lasts 243 Earth days

> a venusian year lasts 225 Earth days

> > high surface pressure 92 bars

> > > NASA/Goddard Space Flight Center Scientific Visualization Studio

covered by a thick and dense atmosphere

Atmospheric composition @ surface Major: CO₂, N₂

> Atmospheric composition @ surface Minor (ppm): SO₂,Ar,H₂O

> surface unveiled by radar instruments

surface topography shows highlands called TESSERA

surface topography shows lowlands called PLANITIA

TESSERAE TERRAINS

radar brightness/relief/complex pattern

Tesserae on Venus are characterized by **pervasive tectonic** deformation including normal faults, grabens, thrust faults, and folds and are stratigraphically **oldest** units preserved on the planet.

Hansen and Lopez, Earth and Space Science, 2020

EXAMPLE OF TESSERA TERRAIN IN OVDA REGIO

Credit NASA/JPL

PLANITIAE – ~85% of the surface

radar dark/lowland/complex pattern

NASA/Goddard Space Flight Center Scientific Visualization Studio

ARTEMIS CHASMA, THE LARGE CIRCULAR THROUGH

eur PLANET 2024 Research Infrastructure

Techtonic plates
Volcanoes

SUBDUCTION ZONES?

UNIQUE VOLCANO-TECTONIC FEATURE

NASA/Goddard Space Flight Center Scientific Visualization Studio

MAXWELL MONTES, THE TALLEST MOUNTAIN RANGE IN THE SOLAR SYSTEM, 11 KM ABOVE MPR

the material responsible for the very bright radar return probably is only stable in a particular range of atmospheric conditions and therefore a particular elevation range.

Keep and Hansen, Journal of Geophysical Research, 1994

Beta Regio is a large volcanic rise with rifting zones

NASA/Goddard Space Flight Center Scientific Visualization Studio

NASA/Goddard Space Flight Center Scientific Visualization Studio

MAAT MONS, ~ 8 km height volcanically active?

WIDESPREAD VOLCANIC ACTIVITY

Radar-bright overlapping lobate flows

VENUS

volcanic "pancake" domes in Tinatin Planitia, Venus

ARACHNOID FEATURES

NASA-Magellan

THE VENUSIAN IMPACT CRATERS RECORD

- RANDOMLY DISTRIBUTED
- > ~1000 COUNTED
- NONE >3 KM SMALL BOLIDES ARE LIKELY BURNED IN THE ATMOSPHERE

THE SURFACE IS YOUNG ~ 500 My

Geologic units, stratigraphy and global correlation

Basilevsky and Head, Planet. Space Sci., 2000

Geologic time units	Time- stratigraphic units	Rock-Stratigraphic units and structures	Regime	Dominant strain	Exen- sion	Contr- action	Regional topo.
ATLIAN PERIOD	ATLIAN SYSTEM	01 12	NETWORK RIFTING-VOLCANISM REGIME	Extension (rift zones, BAT-coronae) dominates			Rifted rises continue to develop
INEVERIAN PERIOD	NEVERIAN SYSTEM	rp1 psh	GLOBAL VOLCANIC REGIME	Contraction (wrinkle ridges), dike-related graben dominate		Ø	Volcanic filling of basins; epeirogenic readjustment of global-scale topography
5	Ing	gb	tEGIME	Extension (groove belts, coronae) dominates	\Diamond		and formed; ic pattern
		pdl Pr	3AL TECTONIC F	ontraction sera ridges, ged plains) ominates, xtension (pdl)	$\left \right\rangle$	ateau-like highs ial lows (basins) scale topographi established	
FORTUNIAN PERIOD	FORTUNIAN SYSTEM		GLOE	(tess ridç dc some ei		\square	PI region global-
PRE- FORTUNIAN PERIOD	PRE- FORTUNIAN SYSTEM	?	?	?	?	?	?

eur PLANET 2024 Research Infrastructure

GLOBAL TECTONIC REGIME

GLOBAL VOLCANIC REGIME

TIME

RIFTING+ VOLCANIC REGIME

CHRONOSTRATIGRAPHY COMPARISON

eu

TOPOGRAPHY COMPARISON

surface topography is the result of endogenic and exogenic processes

COMPARATIVE HYPSOMETRIES

hypsometric curve is a graph that shows the proportion of land area that exists at various elevations by plotting relative area

Hansen, Geologic mapping of tectonic planets, Earth and Planetary Science Letters, 2000

CAN TECTONIC FEATURE BE PART OF A GEOLOGICAL UNIT OR SHOULD BE MAPPED SEPARATELY?

Idealized models of the surface evolution of a theoret-ical planet. Three arbitrary events (A, B, and C in which age of AsBsC) and four arbitrary regions (R1^R4) illustrate spatial and temporal relations of events: (a) A, B, and C are genetically linked (must be independently demonstrated), but not necessarily global synchronous; (b) the broadest of interpretations in which A, B, and C are spatially and temporally unrelated - the most conservative interpretation lacking abso- lute ages; (c) a minimum of four speci¢c absolute ages (bold boxes) could indicate that at R1^R4 A precedes B, which precedes C; (d) interpretation following the global strati- graphic method - requires at least 12 specic absolute ages (bold boxes) to document.

VENUS SURFACE COMPOSITION

Geochemical data from flows adjacent to the Venera 14 and Vega 2 landers (Barsukov et al., <u>1982</u>, <u>1986</u>) indicate **basalt**.

Filiberto (2014) used crystallization experiments on Venera 14 and Vega 2 compositions to suggest the prevalence of **olivine tholeiitic basalts** similar to mid-ocean or continental hot spots

Venera 13 geochemistry suggested the possible presence of **alkaline rock** types on Venus (Barsukov et al., <u>1982</u>) TABLE II. Measured Composition of Venus Rocks (Percentage by weight)

from Dyar et al., Geophys. Res. Letters, 2020

Element (oxide)	Venera 13 (upland)	Venera 14 (Iowland)
MgO AI ₂ O ₃ SiO ₂ K ₃ O CaO TiO ₂ MnO EeO	$\begin{array}{c} 11.4\pm6.2\\ 15.8\pm3.0\\ 45.1\pm3.0\\ 4.0\pm0.63\\ 7.1\pm0.96\\ 1.59\pm0.45\\ 0.2\pm0.1\\ 9.3\pm2.2\end{array}$	8.1 ± 3.3 17.9 ± 2.6 48.7 ± 3.6 0.2 ± 0.07 10.3 ± 1.2 1.25 ± 0.41 0.16 ± 0.08 8.8 ± 1.8
Σ	95	97

Tesserae appear more sialic in composition → differentiated crust

Gilmore et al., Space Science Review, 2023

TESSERAE TERRAINS EVIDENCES OF A 'WET' VENUS PAST

Khawja, et al. Nat Commun 11, 5789 (2020)

Paul K. Byrne et al, Geology - 2020

SEDIMENTARY DEPOSITS ON VENUS

layered terrain of sedimentary origin?

pseudo-full colour image of a portion of Tessera in the equatorial region

Carter et al., Space Science Reviews (2023)

The Venusian canali revealed by Magellan images were interpreted as formed by very fluid lava (i.e. komatiite)

or they can be the remnants of a wet Venus?

open question for future missions

VENUS SHOWS A UNIQUE GEOLOGICAL HISTORY

- VOLCANISM IS WIDESPREAD AND CHARACTERISED BY VARIOUS SETTINGS AND SHAPES
- TECTONICS HAS EXTENSIVELY MODIFIED THE SURFACE
- BOTH VOLCANISM AND TECTONICS MAY BE STILL ACTIVE
- PAST VENUS MAY HAVE BEEN RICH OF WATER

LET'S WAIT FOR FUTURE MISSIONS!

SEE ALSO THE IVAN'S PRESENTATION

