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ABSTRACT 
The definition and identification of urban neighbourhoods in archaeological contexts remain 
complex and problematic, both theoretically and empirically. As constructs with both social 
and spatial characteristics, their detection through material culture alone remains elusive, 
especially within large settlements that are incompletely excavated or preserved. Thanks to 
its focus upon relational ties, network analysis offers a profitable path towards untangling the 
complexities of urban neighbourhoods, especially with respect to their often imprecise, fuzzy 
boundaries. Various community detection algorithms offer mathematical solutions for 
partitioning large graphs into communities, but these should not be applied without careful 
interpretation. Two of the most widely utilized community detection algorithms based on 
modularity optimization, Louvain and Leiden, contain a customizable resolution parameter 
that is often overlooked by practitioners. This controls the density of the partitioned 
communities, and therefore the number identified, but it is difficult to determine the optimal 
value for any given network. In addition, the results of community detection algorithms vary 
stochastically. Reliance upon a single iteration may mask potentially significant differences 
between runs using even a constant resolution parameter. A recently developed algorithm, 
the Convex Hull of Admissible Modularity Partitions (CHAMP), is designed to overcome these 
complications and also generates potentially useful multiscalar network community 
structures. Its applicability to neighbourhood archaeology is demonstrated within three 
networks of Pompeian housing units based on shared public fountains.  

The case study examines Pompeii’s public fountains as hubs of social interaction. Given their 
daily frequentation by nearby inhabitants, fountains represent plausible proxies for the 
centres of definable neighbourhoods. It expands upon a spatial network model that 
connected all 2000+ external doors in the city to the 40 public fountains that were likely 
functional in 79 CE. Three undirected, one-mode networks were constructed in which units 
are linked to each other by a common fountain and weighted by the number of fountains 
they share. The first network connects units by the closest fountain to any external door. 
Since many properties had side doors within reach of different water sources, these represent 
potential interconnections between communities. The second and third networks use 
incrementally larger time to fountain thresholds (30-second and one-minute walks to any 
fountain, respectively) to map potential choices, also expanding social integration. The results 
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demonstrate that innovative methods for assessing the output of community detection 
algorithms offer new modes of analysis that are applicable not just to neighbourhood 
archaeology, but any archaeological network analysis that uses graph partitioning. 

Keywords: network analysis, community detection, neighbourhoods, urban archaeology, Roman 
archaeology, Pompeii 

Introduction 

Neighbourhood archaeology (e.g. Pacifo & Truex, 2019a; Thompson et al., 2022; Haug et al., 2023) and 
network community detection (Shai et al., 2020) are two topics that have seen increasing interest in recent 
years within their respective disciplines. In general, community detection algorithms seek to identify 
clusters of nodes that are more densely connected to each other than others in the network, a process 
with many useful applications in archaeology. Studies have used them to explore the political affiliation of 
Maya polities (Scholnick et al., 2013), spatial scales of ceramic similarity networks (Peeples & Bischoff, 
2023), Neolithic household community organization (Mazzucato, 2019), and dendrochronological 
provenance patterns (Visser, 2021). Nonetheless, advances in the quality and efficiency of community 
detection algorithms, and innovative methods for assessing their outputs, offer new modes of analysis that 
have yet to be put to widespread use in archaeological network research. This paper focuses on the 
potential of community detection to identify urban neighbourhoods in Pompeii, but the methodologies 
outlined have implications for numerous applications within archaeological network analysis that use 
graph partitioning.  

Two of the most widely utilized community detection algorithms based on modularity optimization, 
Louvain and Leiden, contain a customizable resolution parameter (𝛾𝛾) that is often overlooked by 
practitioners. This controls the density of the partitioned communities, and therefore the number 
identified, but it is difficult to determine the optimal value for any given network. In addition, the results 
of community detection algorithms vary stochastically. Reliance upon a single iteration may mask 
potentially significant differences between runs using even a constant resolution parameter. A recently 
developed algorithm, the Convex Hull of Admissible Modularity Partitions (CHAMP), is designed to 
overcome these complications and also generates potentially useful multiscalar network community 
structures (Weir et al., 2017). Its applicability to neighbourhood archaeology is demonstrated within three 
one-mode networks of Pompeian housing units based on shared public fountains. 

Neighbourhoods in Pompeii based on Shared Public Fountains 

The definition and identification of urban neighbourhoods in archaeological contexts remain complex 
and problematic, both theoretically and empirically (Smith 2010; Pacifico & Truex, 2019b). Are 
neighbourhoods primarily top-down administrative units, organic bottom-up household agglomerations, 
or something in between? Is face-to-face interaction an important prerequisite or can larger districts exist 
at a more dispersed level of contact? Crucially, as constructs with both social and spatial characteristics, 
their detection through material culture alone remains elusive, especially within large settlements that are 
incompletely excavated or preserved. Nonetheless, in Pompeii, many studies have noted that public 
fountains were centres of daily social interaction for nearby inhabitants (Laurence, 2007; Notarian, 2023). 
Therefore, they can be considered plausible proxies for definable neighbourhoods. These are often defined 
by simple linear distances from fountains. Yet, thanks to its focus upon relational ties, network analysis 
offers a more profitable path towards untangling the complexities of urban neighbourhoods, especially 
with respect to their often imprecise, fuzzy boundaries (Poorthuis, 2018). It also generates quantitative 
metrics with which to explore theoretical questions regarding the nature of urban neighbourhoods.  

The excellent preservation of Pompeii’s streets and domestic units permits the creation of a detailed 
social network based on shared fountain use. This study expands upon an earlier GIS spatial network model 
that connected all 2000+ external doors in the city to the 40 public fountains that were likely functional in 
79 CE, when the city was destroyed (Notarian, 2023). Two points layers represented doors and fountains, 
respectively. A polyline along the street network connected these points, which was then subdivided into 
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3m segments. Least-cost routes to the closest fountain from every door were identified using ArcGIS’ 
Closest Facility function, but costs were derived in units of time rather than linear distance. Elevation values 
from an underlying digital elevation model were imported to each network segment endpoint to calculate 
its average slope. Various slope-based walking functions were used to estimate speed, which was then 
converted to costs in minutes. The results of this analysis revealed important points that had previously 
been overlooked. First, many housing units with multiple exterior doors are closer to different fountains 
depending upon the door exited. Second, an inhabitant’s choice of fountain often depended upon 
differences of mere seconds in walking time. In such situations it is difficult to predict which fountain a 
particular unit may have frequented. Individual agency must have determined the composition of the social 
communities tied to fountains more than previously assumed. Further, if Pompeians habitually used 
multiple fountains, the neighbourhoods formed by this activity would have been far more dynamic, fuzzy, 
and overlapping than a static division can represent.  

Methods 

To further explore these dynamics, three undirected, one-mode networks were constructed in which 
units are linked to each other by a common fountain and weighted by the number of fountains they share. 
The networks were built and analysed in Gephi (Bastian et al., 2009) and the R packages qgraph (Epskamp, 
2012) and igraph (Csárdi et al., 2023). First, ArcGIS’ Closest Facility analysis identified the 10 closest 
fountains to every external door. The door to fountain times were exported to a csv and ranked. Ranking 
by door and unit identified the quickest route from any unit entrance, which formed the basis of the first 
network. Many properties had side doors closer to different water sources – potential interconnections 
between communities. Ranking by unit alone was used to construct the other two networks. Based on 
incrementally larger time to fountain thresholds - an additional 30-seconds and one-minute of walking time 
beyond that to the closest fountain, respectively - these networks expand choice and also social 
integration. After cumulatively summing walking times to successive fountains to identify the relevant 
edges, each network was converted into an edge table and imported into Gephi as a bimodal network (unit 
to fountain), then converted to a one-mode network (unit to unit) using the multimode network 
transformation plugin. A node list imported key unit attributes, such as coordinates, so that the networks 
could be mapped spatially.  

Defining the Three Networks 

Figure 1 – The three network scenarios as applied to a single unit, the taberna at VI.10.12 (outlined 
and highlighted pink). A) The closest fountain to its external door. B) Fountains within 30 additional 
seconds to its closest fountain. C) Fountains within one additional minute to its closest fountain.  

A couple examples illustrate how the three network scenarios were formed. Taberna VI.10.12, with 
only one door, is closest to fountain 25, a walk of one and a half minutes (fig. 1a). By expanding the time 
threshold by 30 additional seconds, four other fountains are reached (fig. 1b). Extending the threshold by 
a full minute from the closest fountain connects one more (fig. 1c). In the social network, the assumption 
is that inhabitants of this shop frequented each option indiscriminately.  
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Figure 2 – The three network scenarios as applied to a single unit, the house at IX.6.5 (outlined and 
highlighted pink). A) The closest fountains to its two external doors. Also serves as its 30-second 
network. B) Fountains within one additional minute of the absolute closest fountain (n.40).  

In the case of unit IX.6.5, a mid-sized house with two external doors, there is no single closest fountain 
as the nearest in terms of walking time varied by door (fig. 2a). Expanding the threshold by 30 seconds 
from the absolute closest (fountain 40) does not connect any additional fountains, but an additional minute 
of travel time would find these inhabitants visiting five other fountains (fig. 2b).  

Following this process across all 1249 inhabited units in the city creates three different social networks 
with varying levels of interconnection. Although the larger project subjects these networks to a variety of 
global and local metrics to explore their characteristics, this paper solely focuses upon graph partitioning 
(table 1). To obtain a sense of the location and size of the neighbourhoods formed by water collection, 
each network had to be partitioned into communities. With its basis in the density of the social network, 
this should constitute a more robust approach to Pompeii’s fountain neighbourhoods than mere spatial 
distance alone, while also allowing for human agency with multiple fountain options for individual units.  

Table 1 – Global metrics of the three Pompeian fountain social networks. 
Threshold Edges Graph Density Network Diameter Average Path Length Transitivity 

Closest Fountain to Door 27,267 3.5% 15 5.6 0.908 

30 Second 50,240 6.4% 9 3.8 0.705 

One Minute 83,411 10.7% 9 3.25 0.667 

Modularity Optimization and Stochastic Results 
Many community detection methods, such as the Louvain algorithm and the newer Leiden algorithm, 

rely upon modularity (𝑄𝑄), which is a measure of the quality of cluster partitioning (Newman & Girvan, 2004): 

(1) 𝑄𝑄 = 1
2𝑚𝑚
∑ �𝐴𝐴𝑖𝑖𝑖𝑖 − 𝛾𝛾 𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗

2𝑚𝑚
� 𝛿𝛿�𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑖𝑖�𝑖𝑖,𝑗𝑗  

where 𝑚𝑚 is the total number of edges in the network, 𝐴𝐴𝑖𝑖𝑖𝑖 is the adjacency matrix for nodes 𝑖𝑖 and 𝑗𝑗, 𝑘𝑘𝑖𝑖 
and 𝑘𝑘𝑖𝑖 are the degree of nodes 𝑖𝑖 and 𝑗𝑗, respectively, 𝛾𝛾 is a resolution parameter, and 𝛿𝛿�𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑖𝑖� is the 
Kronecker delta function, which checks whether nodes 𝑖𝑖 and 𝑗𝑗 belong to the same community (a value of 
1) or not (a value of 0). Modularity compares the total weight of within community edges (𝐴𝐴𝑖𝑖𝑖𝑖 summed
over every node in the community) to the expected weight in a random null model with the same degree
distribution, the so-called configuration model (𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗

2𝑚𝑚
). The configuration model rewires the network

randomly while preserving each node’s degree. The denser the community in comparison to the null
model, the higher its modularity score, and theoretically, the better the partition. However, modularity
maximization of all but the smallest networks is NP complete if done brute force by testing every possible
network configuration, making it impossible to compute absolutely. As a result, several less
computationally demanding heuristic algorithms have been developed, Louvain and Leiden included, to
approximate optimal partitions. Nonetheless, these suffer from limitations. Most produce stochastic
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results when run multiple times. They output a range of near-optimal partitions that are close to the true 
maximum, but often vary widely in composition. Furthermore, there is no objective way to choose between 
varying solutions, which renders interpretation confusing. Modularity also has a resolution limit in which 
smaller communities are absorbed into larger ones, making it unable to detect communities smaller than 
a certain threshold depending on the size of the network.  

The Louvain algorithm is among the most popular community detection methods used in network 
science (Blondel et al., 2008). It is found in many network packages such as Gephi and R and Python igraph.1 
Importantly, Louvain utilizes an adjustable resolution parameter (𝛾𝛾) that controls the number of returned 
communities. This was intended to help users work around the resolution limit. By multiplying the null 
model against 𝛾𝛾, greater values lead to dense, small, and more numerous communities. Small 𝛾𝛾 values 
have the opposite effect, leading to fewer loose, large communities. The resolution parameter, however, 
was not always available in every package, or was hidden within user guides, leading many people to use 
the default 𝛾𝛾 value of 1. 

The Leiden algorithm improved the speed and quality of Louvain. It corrected an issue in which Louvain 
could create communities that were not internally connected (Traag et al., 2019). It also contains an 
optional alternate quality function called the Constant Potts Model (CPM) that avoids the resolution limit 
(Traag et al., 2011). In this version, the algorithm measures the quality of a partition not by comparing it 
against a null model, but by directly filtering out connections below a certain density threshold (the so-
called constant, also called 𝛾𝛾). Like Louvain, Leiden is found in many of the most popular network 
packages.2 Due to its efficiency and accuracy, even with extremely large networks, Leiden is used 
exclusively in this paper as a community detection method for archaeological networks. Other community 
detection formulas can produce equally valid results, but these remain outside the focus of this study.  

Figure 3 – The number of communities partitioned by 125,000+ runs of the Leiden algorithm on the 
closest fountain by door network. 5,000 intervals between the minimum and maximum values of 𝛾𝛾, 
with each value of 𝛾𝛾 run 25 times with 25 iterations per run. A) Constant Potts Model. B) Modularity. 

While resolution parameters were developed to give users more flexibility with which to explore their 
data, they lead to a bewildering set of choices. For any value of 𝛾𝛾 using either CPM or modularity, one can 
obtain numerous partitions. Modifying 𝛾𝛾 can produce any number of communities. But how can one 
determine which partition is the best representation of a particular set of data? 

1 https://github.com/vtraag/louvain-igraph; https://r.igraph.org/   
2 https://github.com/vtraag/leidenalg; https://r.igraph.org/; https://gephi.org/plugins/#/plugin/leiden-algorithm-
gephi-plugin 
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Partitions can be explored by iterating the algorithm at multiple values of 𝛾𝛾 and comparing the number 
of communities produced. As an example, Leiden was run 25 times, with 20 iterations per run, along 5000 
𝛾𝛾 intervals within the range that produces fewer than 40 communities – the number of fountains in the 
network (fig. 3). In the current case study, only communities containing one or more fountains are valid. 
Leiden efficiently completed these 125,000+ iterations in only a few hours. Observing a plot of the results, 
one might be tempted to view plateaus of a certain number of communities across a range of 𝛾𝛾 as evidence 
of a more robust community structure at these levels. Nonetheless, stochasticity often produces different 
numbers of communities even at the same 𝛾𝛾. This method, however, does not reveal meaningful 
information about the actual partitions produced. Although there are multiple partitions of, for example, 
36 communities, across a range of 𝛾𝛾, it does not mean that these all represent the same 36 communities. 
There could be significant differences between the results, such as communities composed of vastly 
different units, that are not apparent without further exploration. Yet, with so many solutions, it is 
impossible to directly compare them.  

The Convex Hull of Admissible Modularity Partitions (CHAMP) 
Another algorithm, the Convex Hull of Admissible Modularity Partitions (CHAMP), available as a Python 

package, offers a method to significantly narrow down a subset of partitions that are potentially dominant 
(Weir et al., 2017).3 After Leiden has identified hypothetically optimal partitions on a network, CHAMP 
calculates the modularity score for each partition using a slightly modified equation (1) across a wide range 
of 𝛾𝛾, regardless of the value at which it was originally identified. The result is a linear function of 𝛾𝛾 versus 
modularity for each partition (fig. 4). A convex hull of the intersections of these lines is used to identify the 
upper envelope boundary. This isolates the partitions that produce the greatest modularity score across a 
specific range of 𝛾𝛾, which represent the best quality partition within that span.  

Figure 4 – A graphical representation of the CHAMP algorithm applied to the Closest Fountain to Door 
network. Leiden was run with 5000 intervals between 𝛾𝛾 0 and 7 at 25 iterations each. Each solid 
orange line represents a single partition identified by Leiden (here reduced to 500 for clarity), but 
plotted as a linear function of modularity (𝑄𝑄) versus 𝛾𝛾. The convex hull of these lines (green dashed 
line) represents the upper envelope, that is, the partitions that produce the highest modularity score 
across a given range of 𝛾𝛾. The blue triangles mark the intersection of the partition lines along the 
convex hull, which are the boundaries between optimal partitions, reduced to 61 from the initial 5000 
results.  

The pruned set of partitions can then be compared with respect to the width of the 𝛾𝛾 domain in which 
it is optimal and evaluated against the entire set of unique partitions using a pairwise Adjusted Mutual 

3 https://github.com/wweir827/CHAMP 
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Information (AMI) heatmap. AMI represents the concordance of partitions to each other on scale of 0 (no 
alignment) to 1 (complete concordance). Using the heatmap, one can visually assess not only which 
partition has the widest domain of optimality, but also see how closely it relates to its neighbours in the 𝛾𝛾 
space. This presents a more manageable and powerful method of directly comparing partitions than relying 
upon the number of communities alone. Importantly, it also eliminates from consideration the vast 
majority of sub-optimal partitions that result from stochasticity and improper 𝛾𝛾 selection for a given set of 
data. 

Results and Discussion 

This section presents the results of applying CHAMP across the three Pompeian fountain 
neighbourhoods to illustrate its utility in choosing partitions. It also offers some preliminary interpretations 
as they relate to defining urban neighbourhoods in Pompeii. At the time of analysis, CHAMP was unable to 
correctly work with CPM, so modularity alone was used. As a heuristic for exploring network data, 
modularity is likely more appropriate as the null model uses the network structure to identify clusters 
rather than an arbitrary density imposed by the user. The script was also slightly modified to correct minor 
errors and meet the requirements of this study.4 CHAMP was run on each of the three networks twice - 
once with 1000 𝛾𝛾 intervals and again with 5000 intervals - to test its reproducibility. The results were far 
more consistent than a typical Leiden run, with each iteration producing the same top partitions almost 
each time. 

Closest Fountain to Door Network 

Figure 5 – Closest Fountain to Door Network. Results of CHAMP using Leiden algorithm with 
modularity. 5000 intervals between 𝛾𝛾 0 and 7 at 25 iterations each. A) Pairwise adjusted mutual 
information (AMI) of the subset of partitions identified by CHAMP. Dashed lines represent transitions 
between ranges of 𝛾𝛾. The widest domain (no. 1: 𝛾𝛾 6.04 - 6.79, 39 neighbourhoods) and second widest 
domain (no. 2: 𝛾𝛾 3.95 - 4.47, 34 neighbourhoods) are outlined in white. B) Modularity versus 𝛾𝛾. Grey 
upward triangles represent a random sampling of 2000 partitions plotted against their number of 
communities, while the solid pink stepped line shows the number of communities in the optimal 
partition for the range of 𝛾𝛾. The dashed green line is the convex hull. Blue downward triangles show 
the transition points between various ranges of 𝛾𝛾. The grey zones between the dotted lines identify 
the widest domains (no. 1: 39 neighbourhoods, no. 2: 34 neighbourhoods). 

With the network formed by the closest fountain to each unit door, CHAMP pruned 196 unique 
partitions down to 61, but this still represents a rather volatile community structure (fig. 5). The widest 𝛾𝛾 

4 Modified code and data are available online: https://zenodo.org/badge/latestdoi/686189050 
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domains are mainly found in higher 𝛾𝛾 values, with 34 or more communities. This is expected since the 
network exhibits a modular topology with few interconnections between clusters. Many partitions, 
however, are remarkably similar, as indicated by the uniformity of dark blue in the AMI matrix. In fact, all 
the optimal partitions between 𝛾𝛾 3.9 and 7 have AMI scores > 0.9. The widest domain in both CHAMP runs 
was a partition of 39 communities. This partition, however, contains three singleton communities - single 
housing units defined as whole neighbourhoods. For the purposes of this study, this partition must be 
rejected, underlining the importance of closely inspecting the output of the algorithm within the 
parameters of specific research questions.  

Figure 6 – Closest Fountain to Door Network. Partition into 34 neighbourhoods as identified by the 
second widest 𝛾𝛾 domain output by CHAMP. Colours represent neighbourhoods as partitioned by 
CHAMP. Dashed lines outline zones defined by the single closest fountain to each unit in the spatial 
network. 

The next widest 𝛾𝛾 domain is a partition into 34 neighbourhoods. Mapping this partition in topographical 
space and colouring each node by its community permits a visual inspection of the neighbourhoods’ spatial 
characteristics (fig. 6). Dotted lines indicate the boundaries of the closest fountain in the spatial network, 
that is, the single closest fountain in terms of walking time from any external door belonging to a unit, 
allowing comparison between the two. The detected neighbourhoods largely mirror the closest fountain 
to each unit in the spatial network, except for 6 communities formed by pairs of adjoining fountain users 
in the spatial network (e.g., the light blue neighbourhood near the Vesuvian gate). Interestingly, these 
neighbourhoods must share enough interconnection to constitute single communities, defying the overall 
pattern. Nonetheless, these results affirm an insular network structure in which a tiny number of units 
formed vital interconnections between small, tightly clustered neighbourhoods.  

8



30 Second Network 

Figure 7 – 30 Second Network. Results of CHAMP using Leiden algorithm with modularity. 5000 
intervals between 𝛾𝛾 0 and 5.5 at 25 iterations each. A) AMI of the subset of partitions identified by 
CHAMP. The widest domain (no. 1: 𝛾𝛾 0.62 – 1.08, 9 neighbourhoods) and third widest domain (no. 2: 
𝛾𝛾 3.0 – 3.3, 14 neighbourhoods) are outlined in white. B) Modularity versus 𝛾𝛾. Grey upward triangles 
represent a random sampling of 2000 partitions plotted against their number of communities, while 
the solid pink stepped line shows the number of communities in the optimal partition for the range 
of 𝛾𝛾. The dashed green line is the convex hull. Blue downward triangles show the transition points 
between various ranges of 𝛾𝛾. The grey zones between the dotted lines identify the widest domains 
(no. 1: 9 neighbourhoods, no. 2: 14 neighbourhoods). 

The 30 second network, with almost double the number of edges, represents a much more 
interconnected city, and this is reflected in the CHAMP results (fig. 7). The algorithm pruned more than 
2400 unique partitions down to 57. A 9-neighbourhood partition, clearly delineated in the AMI heatmap, 
was returned as the widest domain twice. However, also visible in the matrix are at least four other “scales” 
of smaller communities at larger ranges of 𝛾𝛾. These are represented by larger dark blue rectangles in the 
AMI plot that cross several dashed 𝛾𝛾 transitions. These might represent sub-divisions of the 9 
neighbourhoods, or another kind of grouping altogether, a topic further explored below. Comparing the 9-
neighbourhood map to the closest fountain divisions, we can see these communities combine users of 
several fountains, but near the interfaces some units are grouped with more distant fountains (fig. 8a). 
These internal community characteristics can be intuitively measured using belonging degree (Poorthuis, 
2018) (fig. 8b). This is the fraction of a node’s intra-community weight over its total weight. Nodes with a 
belonging degree of 1 only share ties with other community members, while those with lower values share 
ties with nodes in other neighbourhoods. Not surprisingly, nodes with the lowest belonging degree are 
found in the centre of the city, adjacent to neighbourhood boundaries. Nodes with low levels of belonging 
are likely those whose community membership might shift stochastically with each iteration of most 
community detection algorithms. The hearts of the neighbourhoods though are far more stable. 
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Figure 8 – 30 Second Network. Partition into 9 neighbourhoods as identified by the widest 𝛾𝛾 domain 
identified by CHAMP. A) Colours represent neighbourhoods as partitioned by CHAMP. Dashed lines 
outline zones defined by the single closest fountain to each unit in the spatial network. B) Colour 
ramp represents each node’s belonging degree. Dashed lines outline the neighbourhood boundaries 
as partitioned by CHAMP. 

The second widest domain returned by CHAMP, with 29 neighbourhoods, was rejected due to singleton 
communities, but the third widest consists of 14 communities. A contingency table allows us to assess 
whether these represent smaller subdivisions of the 9-neighbourhood partition (table 2). 

Table 2 – Contingency table. 30 second network. Widest domain (9 neighbourhoods, lettered) 
compared with third widest domain (14 neighbourhoods, numbered). 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 All 
A 0 129 0 0 0 0 81 0 5 0 0 0 0 15 230 
B 0 0 0 5 0 0 0 77 0 0 69 0 0 39 190 
C 0 0 125 0 0 0 0 0 4 0 0 0 59 0 188 
D 134 0 0 0 0 0 0 0 0 36 0 0 0 0 170 
E 0 0 0 0 106 0 0 0 0 37 0 0 0 0 143 
F 0 0 0 109 0 0 0 0 0 0 0 0 0 0 109 
G 0 0 0 0 0 0 0 0 66 0 0 37 0 0 103 
H 0 0 0 0 0 93 0 0 0 0 0 0 0 0 93 
I 0 0 0 0 0 0 0 0 0 0 0 23 0 0 23 

All 134 129 125 114 106 93 81 77 75 73 69 60 59 54 1249 

Some of the 14 districts are equal subdivisions of larger communities. Neighbourhoods 3 and 13 in the 
14-neighbourhood partition, for example, mostly bisect neighbourhood C in the 9-district partition.
However, other small communities cut across larger ones, taking nodes out of two or three, often those
with low belonging degrees. For instance, number 9 in the 14-neighbourhood partition draws in units from 
neighbourhoods A, C and G, while community 10 is evenly split between neighbourhoods D and E. In terms 
of Pompeian neighbourhood structures, this might suggest that at smaller scales, the composition of
communities would have cut across larger neighbourhood boundaries, rather than forming clean
subdivisions of these greater social districts.
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One Minute Network 

Figure 9 – One Minute Network. Results of CHAMP using Leiden algorithm with modularity. 5000 
intervals between 𝛾𝛾 0 and 4.5 at 25 iterations each. A) AMI of the subset of partitions identified by 
CHAMP. The widest domain (no. 1: 𝛾𝛾 0.65 – 1.06, 6 neighbourhoods) and second widest domain (no. 
2: 𝛾𝛾 1.6 – 1.94, 10 neighbourhoods) are outlined in white. B) Modularity versus 𝛾𝛾. Grey upward 
triangles represent a random sampling of 2000 partitions plotted against their number of 
communities, while the solid pink stepped line shows the number of communities in the optimal 
partition for the range of 𝛾𝛾. The dashed green line is the convex hull. Blue downward triangles show 
the transition points between various ranges of 𝛾𝛾. The grey zones between the dotted lines identify 
the widest domains (no. 1: 6 neighbourhoods, no. 2: 10 neighbourhoods). 

The one minute network is the densest and most complex of the three. This suffered from a great deal 
of stochasticity running Leiden independently, but CHAMP returned 73 partitions out of over 1800 unique 
results. The widest domain is a clearly delineated partition of 6 communities (fig. 9). One would anticipate 
a greater degree of integration across the city with the longer time threshold, and these results confirm 
that hypothesis. These 6 divisions largely reflect the topographical divide formed by the forum and the Via 
del Vesuvio / Stabiana corridor, which bisects the city north to south (fig 10a). The orange neighbourhood, 
however, constitutes an important bridge connecting east and west. In terms of belonging degree, the 
lowest scoring units are as usual found near the edges, but the centre of the city again represents the area 
with the lowest community cohesiveness (fig 10b). Nonetheless, the preponderance of blue nodes (100% 
belonging) indicates these are durable neighbourhoods in which individuals were unlikely to cross paths 
with outsiders.  

Figure 10 – One Minute Network. Partition into 6 neighbourhoods as identified by the widest 𝛾𝛾 
domain identified by CHAMP. A) Colours represent neighbourhoods as partitioned by CHAMP. 
Dashed lines outline zones defined by the single closest fountain to each unit in the spatial network. 
B) Colour ramp represents each node’s belonging degree. Dashed lines outline the neighbourhood 
boundaries as partitioned by CHAMP.
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The second widest domain identified by CHAMP is a partition of 10 communities, still representing 
rather large subdivisions of the city, but a more modular structure than the top result (table 3). 

Table 3 – Contingency table. One Minute Network. Widest domain (6 neighbourhoods, lettered) 
compared with second widest domain (10 neighbourhoods, numbered). 

1 2 3 4 5 6 7 8 9 10 All 
A 0 0 144 144 0 0 17 0 0 3 308 
B 0 43 0 0 0 119 0 0 90 0 252 
C 196 0 0 0 0 10 8 0 1 31 246 
D 0 0 0 0 130 0 88 0 0 0 218 
E 0 126 0 0 0 0 0 0 0 0 126 
F 0 0 0 0 0 0 0 99 0 0 99 

All 196 169 144 144 130 129 113 99 91 34 1249 

Comparing this against the 6-community structure, we can again see that some smaller 
neighbourhoods bisect the larger divisions. Here, number 7 in the 10-neighourhood partition is formed by 
large groups of units from two of the 6-neighbourhood partition communities (A and D), as well as 8 nodes 
from C. Numbers 3 and 4 in the 10-neighbourhood partition, on the other hand, are entirely subdivisions 
of the large neighbourhood A. This reminds us that some larger neighbourhoods remained internally 
closed, even at more individual, face-to-face, scales, while others became mixed at these smaller scales.  

Conclusion 

This brief discussion only touches upon the variety of analysis possible using community detection to 
partition archaeological neighbourhoods. By identifying multiple dominant partitions across different 
ranges of 𝛾𝛾, CHAMP offers a multiscalar approach to network community detection within single networks. 
This case study, however, already considers different network scales using time thresholds. One could also 
directly compare the top partitions in each of the three networks.  

Another useful measure of neighbourhood integration is the intra-cluster density, that is the total 
density of node ties within a community. Since ties represent units that used a common fountain, the 
greater the density, the higher the probability that inhabitants met face-to-face. Larger neighbourhoods 
have lower intra-cluster densities, meaning neighbours were far less likely to meet face-to-face at a 
fountain even though they shared more social connection in general compared to other regions of the city. 
Few neighbourhoods in the one minute network’s 6-community partition rise above 50%. In such 
communities, ties between neighbours must have been more dispersed, relying upon mutual contacts. 
Intra-cluster densities approaching 100%, however, would mean that inhabitants of almost every housing 
unit had an equal chance of rubbing shoulders at a fountain. These would be the most cohesive and 
perhaps the most bonded neighbourhoods, with almost daily direct contact between households. 28 out 
of the 34 neighbourhoods in the closest by door network achieve 100%, but not all. The remaining six range 
from 52 to 74%. 

It should be emphasized that there is no single “correct” community partition. Rather, utilizing the 
resolution parameter and examining its output in CHAMP offers a multiscalar method of assessing graph 
partitioning. The choice of scale should be determined with respect to the data and the research questions. 
CHAMP’s utility lies in its ability to narrow down the range of potential options and identify larger patterns 
across a range of 𝛾𝛾, rather than relying upon an arbitrary choice of partition returned by the default 
algorithm settings or a single iteration.  

As a tool for identifying urban neighbourhoods, this approach holds much potential. A more complex 
Pompeian network that incorporates additional variables of social integration beyond fountains, such as 
bakeries, bars, communal shrines, and baths, would constitute a more multifaceted social network. Such 
dense networks would be nearly impossible to partition using topology alone. Thankfully, the algorithms 
outlined here can efficiently handle extremely large and convoluted networks, returning manageable but 
statistically solid outputs suitable for detailed analysis and interpretation.  
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