
A software package for MPC design and tuning: MPT+
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Abstract—The industrial implementation of the model
predictive control (MPC) is driven by the necessity to design,
tune, and validate the constructed control policy. We present
a novel software toolbox for advanced model predictive con-
trol (MPC) design extending the Multi-Parametric toolbox
(MPT). Particularly, MPTplus introduces several advanced MPC
controller design methods, including memory-efficient explicit
tube MPC design, tube MPC controller with the limited
rate of control actions, and a polynomial approximation of
the 1−, ∞−norm-based explicit control law. The benefits of
the proposed toolbox are demonstrated using both, numerical
simulations and laboratory implementation on the device with
fast dynamics.

I. Introduction

Although model predictive control (MPC) [1], [2] pro-
vides an optimal control policy under various physical
and performance constraints, its industrial implementa-
tion is still under significant relevance [3]. Introducing
multi-parametric programming into MPC design frame-
work [4] gained its potential by reducing the runtimes
and requirements on the advanced software, pushed the
MPC implementation towards the industrial embedded
hardware, see [5]. Moreover, the construction of the
explicit solution map in the form of the piece-wise affine
(PWA) function enables rigorous certification of the
control law. Although MPC has been intensively studied
in the past three decades, there are still challenges worth
addressing to spread its industrial implementation. Such
a development is highly dependent on tailored validation
tools. The MPC design problem is addressed in plenty
of well-developed software tools. Most of the packages
provide dedicated built-in solvers, and the other delegate
the optimization problem to third-party solvers.

Following is a brief review of the MPC design software
limited just for the tools offering an interface for the
MATLAB1 programming environment. We refer the reader
to [6], [7], [8], and the references therein, for the review
on the tailored solvers and tools supporting MPC design
and its evaluation using also other programming environ-
ments, e.g., Python2, Julia 3, etc. Such packages include
QP-solvers qpDUNES [9], QPALM [10], CVXGEN [11], and
tools that introduce distributed optimization OSQP [12],
ALADIN-α [13], to name a few.

Commercial MPC Toolbox [14] for MATLAB addresses
various classes of the MPC design problems, including
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the construction of the adaptive, explicit, gain-scheduled,
and non-linear MPC controllers. This toolbox provides
several built-in solvers and also a dedicated user interface
MPC Designer App for the controller tuning. The non-
linear MPC design problems are efficiently solved using
the ACADO Toolkit [15]. The non-convex optimization
problem is solved by the sequential quadratic program-
ming (SQP) approach. ACADO Toolkit evaluates the
library-dependent C/C++ code and provides an interface
for MATLAB. CasADi [16] represents another toolbox suit-
able for the non-linear MPC design. This open-source
package also provides interfaces for MATLAB and Python.
The non-linear MPC can be designed also using the
open-source toolbox MATMPC [17]. YALMIP [18] toolbox is
a widely-used modeling parser focused on the various
classes of optimization problems, including non-convex
optimization. YALMIP provides also support for the MPC
design problems. Similar to YALMIP toolbox, the CVX [19]
is focused on the modeling of various classes of convex
optimization problems suitable for MPC controller de-
sign.

The Multi-Parametric Toolbox (MPT) [20] for MAT-

LAB represents a widely-used software package for the
implicit (non-explicit) and explicit MPC design, multi-
parametric optimization, and operations over convex
sets. MPT integrates many tools enabling efficient con-
struction, tuning, and validation of the advanced MPC
controllers.

The industrial implementation of the MPC is limited
by the runtime effort and advanced hardware/software
requirements, especially in the case of the implicit MPC,
and memory consumption, limiting the implementation
of explicit MPC on the industrial embedded hardware.
Therefore, the complexity reduction methods are of high
interest. MPT module LowCom [21] introduces the set of
methods reducing the complexity of the explicit solution
maps associated with the MPC controllers to minimize
the runtimes and memory footprints. In this framework,
the polynomial-based approximation of the explicit so-
lution maps introduced in [22] represents a perspective
technique to minimize the memory footprint, however, it
is not widely available in some user-friendly way, yet.

In both, implicit and explicit MPC design problems,
the tube MPC represents a natural step toward the
stochastic and non-linear MPC design. Finally, due to
the ability to handle the quantized control variables, tube
MPC is also a necessary tool in a highly relevant field of
the encrypted MPC design using the cloud-computing
services, e.g., see [23] and the related works.



This paper presents the MATLAB toolbox MPTplus [24]
augmenting the features of the original MPT toolbox by
the notable methods introducing: (i) the framework for
the memory-efficient explicit tube MPC design, (ii) limits
on a rate of control actions for implicit/explicit tube
MPC design, and (iii) the polynomial approximation of
any explicit MPC controller according to [22]. To demon-
strate the benefits of the proposed MPTplus for real-
world applications, we analyze the results of an extensive
case study considering the implementation of designed
MPC controllers on the laboratory device having a fast-
dynamics called Flexy2 [25].

II. Theoretical backgrounds

This section briefly reviews the main theoretical back-
grounds of the currently implemented methods: (i) orig-
inal (rigid) tube MPC design approach proposed in [26]
and its formulation considering multi-parametric opti-
mization, (ii) limited rates on the control actions, and
(iii) polynomial approximation of explicit control law.

A. Tube MPC design

Given an uncertain linear time-invariant (LTI) system
defined as follows:

x(t+ Ts) = Ax(t) +Bu(t) + Ed(t), (1)

where t is the time sample of the discrete-time domain
defined using a sampling time Ts. A ∈ Rnx×nx is system
matrix, B ∈ Rnx×nu is input matrix, such that the matrix
pair (A,B) is stabilizable. E ∈ Rnx×nd is disturbance
matrix, x ∈ Rnx is the vector of the system states, u ∈
Rnu is control action, d ∈ D ⊂ Rnd is bounded additive
disturbance such that D is compact set containing the
origin. For the disturbance in (1) holds:

w = E d, w ∈ W, W = {w ∈ Rnx : ∥w∥∞ ≤ wmax} , (2)

where wmax = ∥E d∥∞ is an upper bound for ∀d ∈ D
satisfying W ⊇ E D is the minimum volume hyper-box
such that ∥w∥∞ = wmax.

Consider, the uncertain LTI system in (1) is con-
strained by

x(t) ∈ X, u(t) ∈ U, ∀t ≥ 0, (3)

where X ∈ Rnx and U ∈ Rnu are polytopes containing
origin in their strict interiors.

The convex set denoted as a “tube” T ⊂ Rnx is
constructed as an invariant approximation of the min-
imal robust positively invariant set using an algorithm
described in [27].

The conventional (rigid) tube MPC design problem has

the form [26]:

min
û0,...,ûN−1,x̂0,...,x̂N

∥x̂N∥2P +

N−1∑
k=0

(
∥x̂k∥2Q + ∥ûk∥2R

)
(4a)

s.t. : x(t)− x̂0 ∈ T, (4b)

x̂k+1 = Ax̂k +Bûk, (4c)

x̂k ∈ X⊖ T, (4d)

x̂N ∈ XN, (4e)

ûk ∈ U⊖K T, (4f)

for ∀k = 0, . . . , N−1, ∀l = 1, . . . , N−1, and for prediction
horizon N . Vectors ûk and x̂k are decision variables
optimized w.r.t. the nominal LTI system in (4c), without
any perturbations of the disturbance w. The squared
2−norm objective function in (4a) is minimized for the
symmetric positive definite penalty factors Q ∈ Rnx×nx ,
R ∈ Rnu×nu , P ∈ Rnx×nx . K represents the LQR gain.
The stability and recursive feasibility of the tube MPC
design problem in (4) has been proved in [26].
Finally, the control action u(t) to be implemented to

the uncertain LTI system in (1) is given by the control
law κ : XF → U

κ(x(t)) = û⋆
0 +K (x(t)− x̂⋆

0) , (5)

where symbol ⋆ in the optimal solution of the MPC
design problem in (4) and the feasibility set XF ⊆ Rnx

of the optimized initial condition x̂0 of (4) represents its
domain.

The actuators of the physical systems are often under
limited rates on the control actions formulated by:

∆u(t) = u(t)− u(t−) ∈ U∆, (6)

where ∆u(t) = u(t)− u(t−) is the rate of control action
and U∆ ∈ Rnu is the corresponding convex set bounding
the rates. Then, the tube MPC design problem in (4) is
extended by the linear constraint having the form:

ûk +K(x(t)− x̂0)− u(t−) ∈ U∆, (7)

leading to the augmented vector of parameters
[x(t)⊤, u(t−)

⊤]⊤ ∈ Rnx+nu , in case of the multi-
parametric solution of (4).

B. Explicit tube MPC

The main benefit of explicit MPC is its ability to
significantly speed up the real-time evaluation of the op-
timal control action by pre-computing the optimization
problem in advance, see [4]. Simultaneously, the explicit
solution provides the possibility for rigorous analysis,
verification, and certification of the designed control law.

The QP in (4) can be reformulated into the explicit
MPC design framework by evaluating the initial condi-
tion in (4b) exploring the set of admissible initial condi-
tions: Θ = X ⊖ T. Then, the solution of corresponding
multi-parametric QP (mpQP) returns also the convex set



of feasible system states XF ⊆ Θ defined as the explicit
solution map:

XF =

nr⋃
i

Pi, (8)

where Pi are polytopes, i.e., critical regions, and nr is
the total number of critical regions.

As the consequence, for x(t) ∈ Pi denoting ith critical
region, holds control law in (5) given in a form of
piece-wise affine (PWA) functions corresponding to the
particular decision variables:

x̂⋆(x(t)) = Fx,i x(t) + gx,i if x(t) ∈ Pi, (9a)

û⋆(x(t)) = Fu,i x(t) + gu,i if x(t) ∈ Pi, (9b)

where Fx,i, Fu,i, gx,i, gu,i have appropriate dimensions.
For further technical details see [4]. Analogous to [28],
we re-formulate the control law of the explicit tube MPC
in (9) into the compact form:

κ(x(k)) = (K −KFx,i + Fu,i)︸ ︷︷ ︸
Fi

x(k) + (gu,i −Kgx,i)︸ ︷︷ ︸
gi

. (10)

We point out, that such a compact formulation signifi-
cantly reduces the associated memory footprint necessary
to store the PWA functions compared to the conventional
explicit formulation in (9). To be specific, the feedback
law in (10) saves 3nx double precision numbers per each
critical region compared to the original form (9a).

C. Polynomial approximation of explicit MPC

This section briefly recalls the theoretical backgrounds
of the polynomial approximation of explicit MPC [29].
This approach provides a technique suitable for control
applications where low computational effort is necessary
while stabilizing the system and satisfying the con-
straints. On the other hand, the polynomial approxima-
tion of the control law is suboptimal.

Let us consider the MPC optimization problem in the
following form:

min
u0,...,uN−1

N−1∑
k=0

(
∥xk∥pQ + ∥uk∥pR

)
(11a)

s.t. : x0 = x(t), (11b)

xk+1 = Axk +Buk, (11c)

xk ∈ X, (11d)

uk ∈ U, (11e)

where the properties of the parameters are adopted from
the optimization problem in (4). The norm is considered
as p ∈ {1,∞}, i.e., the problem in (11) can be formulated
as a Linear Program (LP). Then, by multi-parametric
solving for all feasible x0 ∈ XF, the PWA explicit
feedback control law is obtained in the form:

κ(x(t)) = Fi x(t) + gi if x(t) ∈ Pi. (12)

The aim of this complexity reduction approach is to
approximate the PWA control law in (12) with a poly-
nomial:

κ̃(x(t)) = a1 x(t) + a2x(t)
2 + · · ·+ adx(t)

n, (13)

where a = {a1, . . . , ad} are the coefficients of the poly-
nomial, and n is the polynomial degree which is fixed
and given in advance by the control engineer. Note,
the polynomial degree n directly dictates the memory
footprint of the approximated control law in (13) and at
the same time affects the performance loss. Therefore, n
is the main tuning parameter of the method that trades
off the performance and the complexity reduction of (13).

Let us presume that there exists a PWA Lyapunov
function L for the considered closed-loop system fCL, i.e.
controlled system (1) subject to the control law in (12),
such that L(fCL) ≤ γL(x), L(0) = 0 for γ ∈ [0, 1) and x
is within the feasible set XF, i.e., x ∈ XF. Considering the
controlled LTI system, Lyapunov function L and fixed
γ, the stabilizing “tube” can be constructed according
to [30]:

T (L, γ) :=

{
[x⊤, u⊤]⊤ : u ∈ U, x ∈ XF, Ax+Bu ∈ XF

L(fCL) ≤ γL(x)

}
,

consisting of i = 1, . . . , nr polytopes:

Ti :=
{
[x⊤, u⊤]⊤ : [T x

i , T
u
i ][x

⊤, u⊤]⊤ ≤ T 0
i

}
. (14)

If such a stabilizing Lyapunov function exists and a
stability “tube” is constructed, then the polynomial co-
efficients a are obtained by solving a Polya-filter-based
linear program minimizing the suboptimality level of (13)
from its optimal counterpart (12), i.e., min(∥κ̃(x(t)) −
κ(x(t))∥p). For a more detailed overview of the approxi-
mation procedure see [29].

III. The software package MPT+

The MPTplus toolbox extends the functionality of
the MPT toolbox [20]. In this section, we introduce the
novel features, including (i) efficient explicit tube MPC
controller construction, (ii) introducing incremental con-
straints into the tube MPC design, and (iii) the general
polynomial approximation of the PWA control law.

A. Installation

The MPTplus toolbox is freely available on GitHub4.
We recommend to install the package via tbxManager5

by typing:

tbxmanager install mptplus

Alternatively, install the MPTplus by setting the corre-
sponding path in MATLAB.

4MPTplus: https://github.com/holaza/mptplus
5tbxManager: https://www.tbxmanager.com



B. Explicit tube MPC design

In this section, we will show how one can easily derive
an explicit tube MPC policy. For demonstrative rea-
sons, we will assume a double integrator model adopted
from [26]:

x(t+ Ts) =

[
1 1
0 1

]
x(t) +

[
0.5
0

]
u(t) +

[
1 0
0 1

]
d(t), (15)

that is subjected to state and control input constraints
as follows:

[−200,−2]⊤ ⪯ x(t) ⪯ [200, 2]⊤, (16a)

−1 ≤ u(t) ≤ 1, (16b)

and the disturbance is constrained in a following way:

[−0.1,−0.1]⊤ ⪯ x(t) ⪯ [0.1, 0.1]⊤. (17)

First, assume the implicit tube MPC design. We de-
fined “model”, i.e., the object that contains prediction
model (15) as in (4c), constraints (16) transformed
into (4d)-(4f), penalty matrices, the appertain LQR ter-
minal penalty and terminal set as in (4a) and (4e),
respectively. Finally, using the MPTplus, we may simply
construct and evaluate the implicit tube MPC controller
by typing:

model=ULTISystem(’A’, [1, 1; 0, 1],...

’B’, [0.5; 1],...

’E’, [1, 0; 0, 1])

model.d.min = [-0.1; -0.1]

model.d.max = [ 0.1; 0.1]

model.x.min = [-200; -2]

model.x.max = [ 200; 2]

model.u.min = [-1]

model.u.max = [ 1]

% Penalty functions

model.x.penalty=QuadFunction([1,0;0,1])

model.u.penalty=QuadFunction(0.01)

% Prediction horizon

N = 9;

option={’solType’,1,’LQRstability’,1}

TMPC = TMPCController(model,N,option)

% TMPC evaluation

x0 = [-5; 2]

u = TMPC.evaluate(x0)

leading to the optimal control action u⋆
0 = 1 for the given

initial state x(t) = [−5, 2]⊤. It is worth noting that the
terminal set and terminal penalty are enforced through
the options parameter LQRstability, while the second
parameter solType = 1 specifies the type of the returned
optimized variables to be as in (5), i.e., that are fed
directly to the controlled system in (1).

To design the associated explicit MPC policy we can
evoke:

ETMPC = TMPC.toExplicit

what constructs the explicit feedback law ETMPC as
in (10) that is defined over nr = 520 critical regions in
nx = 2 dimensional space.

The evaluation of the exact decision variables û⋆
0 =

0.7026, x̂⋆
0 = [−5.0516,−1.7500]⊤ in (5), i.e., the optimiz-

ers
[
û⋆⊤
0 , x̂⋆⊤

0

]⊤
in (4), we need to change the solType

parameter to zero and revoke the MPC syntheses via:

option={’LQRstability’,1, ’solType’,0}

TMPC = TMPCController(model,N,option)

ux = TMPC.optimizer(x0)

The resulting MPC policy TMPC preserves all of the
computed/employed information inside of its structure.
To respectively access and depict them, if possible, K =
[−0.6609,−1.3261] in (5), T employed in (4), X ⊖ T
in (4d), U⊖K T in (4e) use:

K = TMPC.TMPCparams.K

Tube = TMPC.TMPCparams.Tube

figure, Tube.plot()

XT = TMPC.TMPCparams.Xset

figure, XT.plot()

UKT = TMPC.TMPCparams.Uset

figure, UKT.plot()

To graphically analyze our explicit controller, we can
type:

figure; ETMPC.partition.plot()

figure; ETMPC.feedback.fplot()

figure; ETMPC.cost.fplot()

to plot the polytopic partition (8), the PWA feedback
law (10), and the PWQ value function as defined in (4a),
respectively.6

To perform a closed-loop simulation of a computed
explicit tube MPC controller one can define an object:

loop = ClosedLoop(ETMPC,model)

where model can contain even a modified version of (15),
i.e., the controlled system can be different from the
prediction model used to design the explicit policy ETMPC.
Subsequently, we can execute the closed-loop simulation
by:

Nsim = 10

data = loop.simulate(x0, Nsim)

with x0 denoting the initial condition and Nsim number
of the closed-loop simulation steps. The generated data

structure contains all important information, e.g., the
closed-loop profiles of control inputs data.U, applied
disturbances data.D, states data.X, and the cost of (4a)
at each time step, to name a few. Alternatively, one
can create a customized loop, where the control input
of ETMPC can be obtained by typing:

6We note that while both, the PWA feedback law and the
PWQ value function, are given as solution to (4) the solution (9)
was posterior transformed into (10), however, the value function
preserves its form of (4a).



u = ETMPC.evaluate(x)

for any given feasible state vector x ∈ XF.
The complexity reduction using the polynomial ap-

proximation significantly reduces the memory footprint
by replacing the whole explicit solution map by coeffi-
cients of the polynomials [22]. The real-time runtimes are
also decreased as the point location problem is replaced
by the polynomial evaluation, see Section II-C. This
approach is called, depicted, and evaluated by:

EMPCsim = PolynomialMPC(EMPC,options)

EMPCsim.plot

u = EMPCsim.evaluate(x0)

where parameter options provides the user additional
options for the approximation such as the degree of the
polynomial n, decay of the Lyapunov function γ, and
many more.7

Finally, if only a pure visual analysis of the closed-loop
simulation is required then we encourage users to use

ETMPC.clicksim()

where initial state conditions are defined by the mouse.

C. Tube MPC design for rate constraints

Another contribution of this paper is the inclusion of
the so-called rate constraints that are defined in (6).

Implementation of these constraints in MPTplus is
straightforward. User has to include

model.u.with(’deltaMin’)

model.u.with(’deltaMax’)

model.u.deltaMin = -0.5

model.u.deltaMax = 0.5

to the original LTI system definition, see section III-B.
Then we can evoke the construction of the implicit tube
MPC policy via:

N = 2

option={’solType’,1,’LQRstability’,1}

TMPC = TMPCController(model,N,option)

to design TMPC instance that considers (6) in (4).
Subsequently, the construction of the explicit MPC

feedback law can be triggered by typing:

ETMPC = TMPC.toExplicit;

that, for our specific case considered in this section,
is defined over a polyhedral partition consisting of 520
critical regions. Finally, evaluation of these controllers for
an initial state x(t) = [−1, 1]⊤ can be done by executing
following commands:

x0 = [1; -1]

u_prev = 0;

[u_0, feasible] = TMPC.evaluate(x0,...

7For the complete list of available options, call help Polyno-
mialMPC in MATLAB. We note that if a parameter is not provided,
then the algorithm uses its default value.

’u.previous’, u_prev)

[u_0, feasible] = ETMPC.evaluate(x0,...

’u.previous’, u_prev)

that lead to the same closed-loop control action u0 =
[0.3678]. Notice that the evaluation requires an additional
parameter u_prev, i.e. control action from the previous
sampling period u(t−) as in (6).

IV. Case Studies

Fig. 1. Tube MPC with rate constraints: trajectory of the con-
trolled variable.

Fig. 2. Tube MPC with rate constraints: trajectory of the manip-
ulated variable.

This section addresses the experimental implementa-
tion of the two presented control methods, i.e., the tube
explicit MPC with rate constraints, and the polynomial
approximation of an explicit MPC controller. To provide
experimental results presenting the proposed methods,
the case study was realized on a dynamical SISO device
Flexy2 [31], see Figure 3. The actuator is a fan that
propels an air column in an upward vertical direction.



Fig. 3. Flexy2 device [31].

The power of the airflow is measured by a flexible sensor
placed in the air column. The sensor changes its electrical
resistance according to the bend caused by the push of
the air. Therefore, the flex sensor bend b(t) in percentage
is assumed as the controlled variable, and the fan speed
v(t) in percentage is a manipulated variable.

Flexy2 is a system with non-linear dynamics, as the
sensitivity of the flex bend decreases when increasing fan
speed. Moreover, the oscillations are minor at higher fan
speeds. Lastly, the measurement noise is also present.
These challenges make this device a suitable candidate
for the implementation of tube MPC. As the system is
naturally very fast and requires low sampling time with a
fast evaluation of the control inputs, the explicit solution
of tube MPC is considered. In this paper, the goal was to
control the flex sensor bend b(t) to a steady-state value
bs and reject the effect of a disturbance.

The model of the system was obtained through ex-
perimental identification based on several step responses.
The matrices of the nominal state-space system, trans-
formed into the discrete-time domain using sampling
time Ts = 0.01 s are:

A =
[
0.966

]
, B =

[
0.101

]
. (18)

As the controlled as well as the manipulated variable
were set in percentage, their values were constrained from
bmin = vmin = 0% to bmax = vmax = 100%. Considering
the steady-state values where the model was linearized,
i.e., vs = 40% and bs = 68%, the constraints were set in
both presented control methods as follows:

−40% ≤ u(t) ≤ 60%, −68% ≤ x(t) ≤ 32%. (19)

The rest of the two explicit MPC setups are described
in the follow-up sections, according to the specific control
approach, as the controllers differ in their structures
and tuning parameters. Both explicit MPC feedback
laws (10) were constructed in MATLAB 2020b program-
ming environment, using toolboxes MPT 3.2.1, MPTplus,
YALMIP R20210331, and solver Gurobi 9.1.1. The ex-
plicit MPCs were executed on CPU AMD Ryzen 7 PRO

4750U, 1.7GHz with 16GB RAM. We would like to note
that, due to the paper limitations, all MPTplus commands

are here omitted.8

A. Tube explicit MPC with rate constraints

In this section, the implementation of tube explicit
MPC with rate constraints is described. Let us consider
the system model in (18) and constraints stated in (21).
As the uncertainties in the model were considered, the
additive disturbance was considered in the MPC design
as well and was constrained as:

−1% ≤ w(t) ≤ 1%. (20)

Moreover, the change of the input variable was set to
validate the control method implemented in the toolbox:

−55% ≤ ∆u ≤ 55%. (21)

By systematic tuning, the penalty matrices Q, R of the
optimization problem in (4), and the terminal penalty P
given by the LQR penalty, were respectively assigned as:

Q = 10, R = 1, P = 95.3852 . (22)

Furthermore, the terminal set was constructed as the
LQR set and was defined by the following inequality:[

−1
1

]
x ≤

[
31.8694
21.2463

]
. (23)

The prediction horizon N was set to 30 steps. After
the construction of the tube explicit model predictive
controller, the disturbance rejection control problem was
investigated. The control results can be seen in Figure 1
for the controlled variable, i.e., the flex sensor bend b(t).
In Figure 2, the corresponding trajectory of manipulated
variable is depicted, i.e., the trajectory of fan speed v(t).
The aim was to drive the flex sensor bend to the steady
state bs = 68%, while rejecting the effect of the two
disturbances occurring at times 5 s and 10 s.

When observing Figures 1, 2, it can be seen that the
goal of the control was achieved. The effects of both dis-
turbances were rejected, with respect to the constraints
on the manipulated and controlled variables. Moreover,
the constraints on the change of the manipulated variable
were satisfied as well.

From the viewpoint of computational complexity, the
average time to evaluate the control input was 1 milisec-
ond, which is suitable for the considered sampling time
Ts = 0.01 s.

B. Polynomial approximation of explicit MPC

The following case study focuses on the second con-
tribution of this paper, i.e., the implementation of the
explicit control law approximated by a polynomial func-
tion as in (13). In this section we have assumed MPC
setup as in (11) with one-norm p = 1, prediction horizon
N = 10, model (18), state and input constraints (19).
The weighting matrices were set to Q = 10 and R = 1.

8Interested readers are referred to https://github.com/holaza/
mptplus/wiki for more detailed guidance on how to use MPTplus
framework.



The resulting explicit feedback law (10) was defined over
a polyhedral partition consisting of 17 critical regions.

Next, the polynomial controller (13) was created based
on the optimal one. The degree of the polynomial was set
to n = 3 and all other optional parameters were kept to
their default values. The approximation of the optimal
control law can be seen in Figure 4.

The comparison of the control results can be seen in
Figure 5 for the controlled variable and in Figure 6 for
the manipulated input. In both graphs, two trajectories
are depicted - for the original optimal controller with
subscript “o” and its polynomial approximation with
subscript “p”. Analogously to the first case study, the
aim was to drive the flex sensor bend to the steady
state bs = 68%, while rejecting the effect of the two
disturbances occurring at times 5 s and 10 s.

It can be seen in Figure 5, that both disturbances
were successfully rejected. Compared to the optimal
controller, the approximated one was less oscillating in
terms of manipulated variable, see Figure 6. With more
cautious control inputs, the effect of the disturbance on
the trajectory of the controlled variable is more signifi-
cant. The reason for less oscillating control inputs can be
seen in Figure 4. The original PWA control law is steeper
around the origin, while the polynomial approximation
is quite moderate. The approximation can be further
tuned by setting the polynomial order, which, obviously,
directly affects the control performance.

From the viewpoint of computational complexity, the
average time to evaluate the optimal control input was
9× 10−4 s, which is suitable for the considered sampling
time Ts = 0.01 s. The average control input evaluation
corresponding to the polynomial controller took even
less, i.e., 3× 10−5 s.

Fig. 4. Approximation of the optimal explicit MPC. The blue line
represents the optimal control law, the yellow area is the stability
tube, and the red line represents the polynomial approximation of
the optimal control law.

V. Conclusions

The paper presented a detailed tutorial for package
MPTplus extending the original MPT toolbox. Among
other relevant features, the release introduces the full
framework for the memory-efficient explicit tube MPC
design taking into account also the limited rate of control
action. MPT toolbox also enables the construction of light-
weight polynomial-approximation-based controllers. The
possibilities of construction, tuning, and validation of the
various MPC controllers were analyzed by the laboratory
implementation on the device with fast dynamics. The
measured control profiles confirmed the ease of MPC tun-
ing and the benefits of the user-friendly environment of
MPTplus pushing the designed MPC controllers towards
their industrial implementation.

Fig. 5. Comparison of optimal explicit MPC and its polynomial
approximation: trajectory of the controlled variable.

Fig. 6. Comparison of optimal explicit MPC and its polynomial
approximation: trajectory of the manipulated variable.
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device Flexy2 in the teaching of experimental identication,” in
Proceedings of the 22nd International Conference on Process
Control, M. Fikar and M. Kvasnica, Eds., Slovak University
of Technology in Bratislava. Štrbské Pleso, Slovakia: Slovak
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