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Abstract— A novel real-time approximated MPC control
policy based on deep learning is proposed to address the high
computational burden of model predictive control (MPC) for
large-scale systems and those with fast dynamics. This control
method approximates the optimal solution of the distributed
optimization problems in the ALADIN-based parallel MPC
design framework, resulting in a highly effective approach that
outperforms other well-known methods for solving the MPC
design problem. The numerical case study shows promising
results, demonstrating the potential of this approach for real-
time implementation.

I. INTRODUCTION

Model predictive control (MPC), since its origin in the
1970s, has become one of the most popular methods for
advanced process control in many industrial applications,
see [1] and references therein. Besides many advantages,
including optimal control of multiple-input multiple-outputs
(MIMO) systems concerning technological constraints, MPC
brought challenges for researchers worldwide. A relevant
challenge is using MPC for real-time control of complex
industrial systems. As the computation of optimal control
is performed iteratively in each time step, the industrial
implementation can be limited by solving the optimization
problem for a given complex system. A perspective approach
to reduce the time necessary for the real-time evaluation of
optimal control action is presented by explicit MPC [2].
However, this approach is limited, as the number of the
critical regions over which the piece-wise affine solution
map of the parametric quadratic program is defined grows
exponentially with the number of constraints [3]. Another
perspective control approach arises with [4] initiating the
implementation of distributed optimization. The introduc-
tion of distributed optimization in the framework of MPC
enables formulating the large-scale MPC problem into a
set of smaller subproblems, e.g., see [5]. Consequently, the
distributed control policy significantly reduces the overall
computational burden. These subproblems are efficiently
solved in parallel by various off-the-shelf solvers, e.g., see [6]
and references therein. Tailored solvers focused on such
distributed optimization include OSQP [7] or ALADIN-α [8],
to name a few.
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Recently, some of the most promising methods of dis-
tributed optimization include widely-used the alternating
direction method of multipliers (ADMM) [4] and the aug-
mented Lagrangian-based alternating direction inexact New-
ton method (ALADIN) [9]. These methods have been uti-
lized to solve the real-time control problem using MPC,
see [10] or [11]. The distributed optimization was success-
fully implemented into the framework of the parallel explicit
MPC in [12], [13], the robust/tube parallel MPC in [14],
and addressing the state constraints in [15]. Even though
these control methods can significantly decrease the runtimes
and/or memory consumption, the requirement to implement
the distributed MPC controllers on embedded hardware keeps
this research in high interest. The perspective approach con-
siders the application of neural networks (NNs) with offline
training to approximate the optimal control law of MPC,
see [16], [17]. Alternatively, reinforcement learning can be
employed to achieve data-driven nonlinear optimal control
without the need for a model of the system [18]. Another
widely-used concept is utilizing NNs to warm start MPC
optimizer to improve the convergence [19], or incorporating
the NNs to approximate the parts of the distributed optimiza-
tion algorithms, see [20], [21], and references therein.

The main contribution of this paper is to introduce a novel
real-time control policy based on deep-learning approxi-
mated solutions of the distributed optimization problems into
the ALADIN-based parallel MPC design framework. The
NNs are tuned to fit the distributed MPC control law close to
optimality. Compared to explicit MPC, the memory footprint
of the NNs is negligible compared to the corresponding
explicit solution maps. On the other hand, in the case of
large-scale systems, the formulation of the implicit (non-
explicit) MPC design problem increases memory demands
compared to the associated approximation based on the
NNs. Simultaneously, the real-time evaluation of NNs is
competitive.

II. PRELIMINARIES

The subsequent sections briefly outline the design process
for Model Predictive Control (MPC) and the parallel MPC,
including their advantages and limitations. These sections
also motivate the fundamental principles of a proposed novel
approach addressing the implementation challenges of the
non-distributed MPC.

A. Nominal MPC design problem

The receding horizon MPC policy is a control method that
repeatedly solves optimization problems in each sampling
period. Its primary goal is determining the optimal control



law within predefined constraints over the prediction horizon.
This approach considers the MPC formulated as a problem of
the quadratic programming (QP) with a linear time-invariant
(LTI) model and linear constraints

J = min
u,x
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s.t. ∀k ∈ {0, . . . , N − 1},
x(k + 1) = Ax(k) +Bu(k),

x(k + 1) ∈ X, u(k) ∈ U,
x(0) = xt,

(1)
where N is the length of a prediction, Q ∈ Rnx×nx is a sym-
metric positive-definite weight matrix of the system states
x(k) ∈ Rnx , R ∈ Rnu×nu is a symmetric positive-definite
weight matrix of the control inputs u(k) ∈ Rnu , P ∈ Rnx×nx

is a symmetric positive-definite weight matrix of a terminal
penalty x(N) ∈ Rnx , and it is obtained as solution of the
matrix Riccati equation. Matrix A ∈ Rnx×nx is a system
matrix and B ∈ Rnx×nu is an input matrix. This paper
assumes that the pair (A, B) is asymptotically stabilizable
for the solution to the matrix Riccati equation to exist [5].
One of the significant advantages of the MPC is its ability to
consider the technological constraints represented as set X
for state variables and U for control inputs, respectively. Sets
X, U include origin in their strict interiors.

At every time step, the current measurement of system
state variables xt ∈ Rnx is used to determine the optimal
values of control inputs and state variables. Solving the MPC
problem for a large-scale system with the length prediction
horizon can be a time-consuming task, and it might be
impossible to find a solution within a sampling time Ts).
To considerably decreases the runtime needed to achieve the
optimal solution, distributed optimization is a viable option,
particularly for block-structured optimization problems like
the MPC problem.

B. ALADIN-based parallel MPC design

ALADIN is a general method for solving distributed opti-
mization problems that generalize the augmented Lagrangian
and sequential quadratic programming (SQP) methods, as
proposed in [9]. In [15], the nominal MPC is distributed into
separate control steps within the prediction horizon. Then,
the cost function J in (1) is split into individual stage cost
functions ℓ = f(x(k), u(k)), evaluating variable pairs x(0)
and u(0), as well as a separate stage cost for the terminal
control step determined by x(N). This approach increases
the number of solving (N + 1) agents and leads to three
distinct optimization problem structures.

By introducing a simple shift in the considered decision
variables of the stage cost functions ℓ := f(x(k+1), u(k)),
it is possible lower the number of decoupled subproblems
to N solving agents. Moreover, such a distribution exhibits
symmetric structured properties of the cost function JD
across the entire prediction horizon, see Figure 1.

The MPC formulation in (1) is divided into particular

time instants k of the prediction horizon and the i-th block-
structured system states, resulting in a distribution of the
original problem in both time and space domains. As a result,
each agent ni,k in the distributed MPC problem solves a
corresponding decoupled optimization problem. In general,
these subproblems are optimized in parallel. Therefore, the
decoupled QPs are formulated as augmented Lagrangian
functions in the form

JD = min
ui,xi
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s.t. xi(k + 1) = Aix(k) +Biu(k),

xi(k + 1) ∈ X, ui(k) ∈ U,
x(k) = z(k),

uj(k) = vj(k) ,∀j ̸= i,

(2)

where the decision variables are xi(k + 1) ∈ Rnxi and
ui(k) ∈ Rnui represents state and control inputs for define
step k = 0, . . . N − 1 and state space distribution j = i =
1, . . . , S. The weight matrix Qi ∈ Rnxi

×nxi , Ri ∈ Rnui
×nui

and model matrix Ai ∈ Rnxi
×nx , Bi ∈ Rnui

×nu are
partial matrices of original Q, R, and A, B respectively.
The λi ∈ Rnxi is a Lagrangian multiplayer, also referred to
as a dual variable, and ρ > 0 is a penalty parameter. The last
step of the prediction horizon xi(k+1) = xi(N) represents
the only variation in the structure of parallel MPC. Including
a terminal set of constraints XP with the terminal penalty Pi

found by solving a matrix algebraic Riccati equation [22].
Each decoupled QP in (2) is then solved with initial

guesses of λi = [λ⊤
i (0), λ

⊤
i (1), . . . , λ

⊤
i (N)]⊤ dual variable,

as well as zi = [z⊤i (0), z⊤i (1), . . . , z⊤i (N)]⊤ and vi =
[v⊤i (0), v

⊤
i (1), . . . , v

⊤
i (N)]⊤ representing state and control

trajectories. From the initial guess, the algorithm consecu-
tively solves all the decoupled optimization problems, which
represents S · N solving agents. Followed by equality-
constrained coupled/consensus QP

min
v+,z+
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]
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∥∥2
P
,

s.t. ∀k ∈ {0, . . . , N − 1},
z+(k + 1) = Az+(k) +Bv+(k) |λ+(k),

C
[
z+(k)− x(k), v+(k)− u(k)

]⊤
= 0,

z(0)+ = x(0),
(3)

where symmetric positive definite matrix Ω ∈ RnΩ×nΩ con-
sists of weighting matrices Q and R placed on its diagonal,
∇fx ∈ Rnx and ∇fu ∈ Rnu represents gradient of the
original problem in (1) with respect to x and u respectively.
C ∈ RnA×nc is constructed as a matrix corresponding to an
active set of constraints A from all decoupled QPs (2), where
nA represents the number of inequality constraints from



Fig. 1. The distribution of MPC problem: original method in [15] (left),
proposed method (right).

original problem (1). The λ+ is a dual variable associated
with coupled equality constrain representing the model of the
controlled system. After computing the primal-dual solution
of the consensus problem algorithm updates variables z ←
z+, v ← v+ and λ← λ+, see [9].

Through iterative solution of the decoupled QP in (2)
and coupled QP in (3), with variable updates (z, v, λ), the
optimal trajectories of x⋆ and u⋆ for the original MPC design
problem in (1) are constructed.

Execution of an iterative algorithm can still require signifi-
cant computational power and time because it solves multiple
constrained QPs in each iteration. In order to reduce the
burden of real-time computation, it is possible to obtain an
explicit solution for the decoupled QPs in (2). This approach
is independent of the length of the prediction horizon, as
noted in [15]. Nevertheless, the issue of dimensionality
remains since the total number of non-distributed parameters
for nxi and nui must not exceed a specific limit to enable
the construction and real-time computation of an explicit
solution on hardware-limited memory.

III. DEEP-LEARNING-DRIVEN PARALLEL MPC

In general, a multi-parametric QP (mpQP) for decoupled
QPs in (2) is formulated as follows

U⋆
i (θi) = argmin

ui(k),xi(k+1)

JD(ui(k), xi(k + 1)), (4)

where the explicit representation U⋆
i (θ) is piece-wise

affine (PWA) function [23], [24]. Such PWA control
law is defined by the vector for parameters θi =[
z⊤(k), z⊤i (k + 1), v⊤(k), λ⊤

i (k + 1)
]⊤ ∈ Rnθi , where nθi

represents the number of all component from states and con-
trol coupling vectors, and Lagrange multipliers of coupling
constraints, respectively. The aim is to find an approximated
solution for the decoupled QPs in (4) such that holds

Ûi(θ) ≈ U⋆
i (θ), (5)

where Ûi(θ) represents a desired approximated solution.
To efficiently address the concerns raised in the preceding
section, we implement a deep-learning-based approximation
of (2).

A. Deep-learning-driven approximation of control law

Deep learning algorithms or deep neural networks (DNN)
are widely known for their capability of learning nonlinear
patterns from data [25]. Trained DNNs are general nonlinear
functions that can fit any dynamics and represent parametric
optimization problems. Various strategies have been intro-
duced in the literature on utilizing DNNs as a parametric
solution of MPC [26], [27]. Several architectural options are
available within the framework of DNNs, among others, the

recurrent neural networks well-suited for handling sequential
data [28], or autoencoders effectively reducing the dimen-
sionality [29]. Each DNN carries its own set of additional
advantages. However, not all DNN structures are well suited
to solve problems defined in Section II-B, as it is important to
compromise between structural complexity and performance
loss. A particularly suitable choice is the multi-layer neural
network due to its capacity for learning complex nonlinear
dynamics while composed of conventional neurons.

The proposed real-time control method is based on the per-
spective approach of mimicking the solution of the decoupled
QPs in (2) on the distributed layer. DNN is trained to map
the input parameters onto the approximate solution ûi value
while minimizing the perturbations subject to the optimal
reference solution u⋆

i . Results are achieved by solving the
regression optimization problem in the form of minimizing
the sum-of-squared-error-based criterion (SSE)

min
γ

M∑
m=1

(
Ym − Ŷ

)2

, s.t.: Ŷ = fDNN(θm, γ), (6)

where fDNN is fully connected neural network model, con-
sists of H neurons arranged in multiple layers L with prede-
fine activation function σ. By solving the (6), optimal weights
and biases γ of DNN are evaluated. The training dataset D =
{Ym, θm}Mm includes optimal control trajectories u⋆

m = Ym,
with define DNN inputs θm corresponding to parameters of
parametric optimization (4).

The proposed DNN represents a parametric function in the
following form

ûi(k) = fDNN(θi(k)), (7)

where ûi(k) is an output of the neural network approximating
the optimal control law. To reduce neural network complex-
ity, the state vector is not present as one of the DNN outputs.
However, by additional computation, the approximate state
vector can be obtained

x̂(k + 1) = Ax(k) +Bû(k). (8)

Combining both approximated parametric solution can be
found Ûi(θ) = [û⊤

i (k), x̂
⊤
i (k + 1)]⊤ that corresponds to

original mpQP in (4).
In various cases, methods such as mimicking dynamics

may not be adequate without a unique architecture or training
of DNNs. Nevertheless, to implement a real-time ALADIN
algorithm, the DNN model is preferred to be simple, even if
it sacrifices the accuracy of an imprecise parametric solution.
The coordination layer of the consensus problem in (3)
allows the ALADIN algorithm efficiently solve complex
optimization problems. Simultaneously, it maintains the error
between the approximate decoupled layers and the original
equality-constrained quadratic programming (QP) problem
by minimizing the difference z+i (k) − x̂i(k) and v+i (k) −
ûi(k). In other words, the coupling QP problem represents
a compensator that corrects the DNNs output in the desired
direction. However, it is essential to ensure that trained DNN
always converges in a finite number of iterations towards the
neighborhood of the optimal solution enabling the coupling
QP to provide stability by use for proposed ALADIN-NN-



based MPC. This property can be achieved by design by
providing a large number of sufficiently training datasets.

B. Implementation Details

To properly tune the training of the DNN, it is necessary
to generate training and testing datasets. This can be real-
ized, for instance, by using the parametric solution of the
decoupled QP in (2) or by repeatability solving the ALADIN
method according to Section II-B. We advise a second option
as the preferred one, as it is applicable in any circumstances.
However, many parametric solvers provide a variety of data
generations, including the Chebyshev center or equidistant
griding of feasible parametric space. However, all these
benefits of parametric solvers are restricted to having a
low number of parameters as the mentioned methods are
not scalable. For large-scale systems, the only mandatory
condition is to cover a reasonable portion of investigated
parametric space with various combinations [30].

As shown in Section II-B, nominal MPC was distributed
to N symmetric subproblems. Resulting in the two unique
parametric solutions (4) for each space distribution i =
1, . . . , S. First explicit solution of JD(ui(N − 1), xi(N))
is associated with terminal set, and second explicit solu-
tion of JD(ui(k), xi(k + 1)) is associated with the k =
{0, . . . , N − 2} steps of the prediction horizon. As the
proposed method mimics the exact parametric solution of
decoupled QP in (2), it is needed to train 2 · S different
neural networks where Ti(θ) represents a parametric solution
of JD(ui(N − 1), xi(N)) and Ri(θ) represents a parametric
solution of JD(ui(k), xi(k + 1)).

Algorithm 1 shows the proposed real-time deep-learning-
driven parallel MPC scheme utilizing the ALADIN algo-
rithm and DNN. The main difference from the original
ALADIN algorithm proposed in [9] is in a parametric
approximation of decoupled inequality-constrained QP. The
provided implementation significantly reduces overall online
computational time. Compared to the exact explicit solu-
tion in [12], utilizing approximate DNN parametrization
enables implementation for large-scale systems and low-
level hardware implementation by reducing the memory
footprint. The downside is the lost convergence guarantees
and optimality of control trajectories. As the trained DNNs
are only approximations of parametric solutions of mpQP
in (4), they can occasionally exceed constraints that are then
post-processed by saturation in Step 14. On the other hand,
if produced approximation of control action û is close to
the optimum and is inside of the constraints, it is corrected
by coupled equality constrained QP (3) ensuring feasible,
but possibly suboptimal control trajectory u. Same as in the
original algorithm number of ALADIN iterations a can be
affected by initial guesses in Step 3 in the online phase,
but it can be warm-started for a > 1 with the previous
MPC solution. As a hard-stopping criterion, one can choose
a particularly small number of amax as, in practice, well-
trained DNNs converge near the optimal, as fast as an exact
solution with the same initial guesses. However, this method
is missing rigorous guarantees. In addition, the proposed

Algorithm 1 is modified to include stabilizing LQR, i.e., the
well-known Dual Mode Control ensures stability, once the
measured states x(t) are in the terminal set XP. Moreover,
it is possible to ensure the stability of deep-learning-driven
MPC directly by introducing the principles of tube MPC,
see [31].

A 1 Algorithm: Deep-Learning-Driven Parallel MPC
Offline Phase:

1: Generate dataset D = {u⋆
m, θm}Mm by repeatability solv-

ing ALADIN (Section II-B) in closed-loop simulation
for different initial conditions x(0) = xt.

2: Train 2 · S deep neural networks ûi(k) = fDNN(θi(k))
parametrise as explicit solution of decoupled optimisa-
tion problem (2) to construct approximated control law
û(k) ≈ u⋆(k).

Online Phase:
3: Initial guesses of z ∈ Rnx×N , v ∈ Rnu×N , λ ∈ Rnx×N .
4: Set x(0)← x(t).
5: for a = 1, . . . , amax do

Solve in parallel:
6: for k = 0, . . . , N − 1 and i = 1, . . . , S do
7: Select zi(k), vi(k), λi(k).
8: θi(k)←

[
z⊤i (k), z⊤i (k + 1), v⊤i (k), λ

⊤
i (k + 1)

]⊤
.

9: if k = N − 1 then
10: Set ûi(N − 1)← Ti(θi(N − 1)).
11: else
12: Set ûi(k)← Ri(θi(k)).
13: end if
14: Saturate ûi(k) = min(umax,i,max(umin,i, ûi(k))).
15: end for

Consensus problem:
16: Set x̂(k + 1)← Ax(k) +Bû(k).
17: Solve QP in (3) for ûi(k) and x̂i(k + 1) for all i ∈

{1, . . . S} and k ∈ {0, . . . , N − 1}.
18: if ∥v(k)− v+(k)∥∞ ≤ TOL then
19: break.
20: end if
21: Set z ← z+, v ← v+, λ← λ+.
22: end for
23: Set u← v as inexact control law.
24: Apply u(0) to the real process.
25: Wait for the state measurement x(t) and go to Step 3.

IV. CASE STUDY

In this numerical study, we introduce a large-scale sys-
tem to demonstrate the capabilities of the proposed deep-
learning-driven parallel MPC and its ability to be imple-
mented in low-level hardware. To assess the algorithm’s
elapsed time and memory footprint, we perform a simula-
tion over the benchmark system and compare it to other
established methods for solving the optimization problem.
Although the investigated system can solve by nominal MPC
within the considered sampling time, it is necessary to utilize
a commercially licensed solver, e.g., Gurobi or Mosek, to



name a few. On the other hand, the runtimes of the freely
available solvers such as CVXOPT, ECOS, or Quadprog
were significantly slower or even inapplicable to solve the
MPC problem. However, the proposed deep-learning-driven
parallel MPC approach has none of the above-listed lim-
itations, as it solves simple equality-constrained quadratic
programs.

A. The reactor-separator plant
The case study was performed on the benchmark system

adopted from [32]. The process consists of three-vessel, two
continuously stirred tank reactors, and a tank separator. Two
reactions are ongoing in both reactors. The first one is the
conversion of the reactant A into the main product B. The
second reaction is the undesired conversion of the product A
into the side-product C. The reactant A enters the first reactor
in the feed stream F10. The outlet of the first reactor F1

is mixed with additional feed containing reactant A F20 to
make the inlet to the second reactor. The products of the
reactions in the second reactor are sent to the separator, from
which the vapors are condensed and recycled to the first
reactor in the stream Fr. The bottom product is then removed
in the stream F3.

For the purposes of the case study, the reactor-separator
plant is divided into three subsystems: the reactor #1, the
reactor #2, and the separator #3. For clarity, these subsystems
are referred to using subindex i ∈ {1, 2, 3}. Since the process
has one unstable and two stable steady-state values [32], the
control aims to steer the state variables: temperatures (Ti)
and concentrations of the reactant A, and products B and C:
(cA,i, cB,i, cC,i) to the optimal setpoint represented by the
unstable steady-state. In the case study, the control inputs
are the heat flows: H1, H2, and H3, representing the external
heat delivered or removed from the tanks. The steady-state
values of system state variables and control inputs for all
subsystems are adopted from [32].

The MPC is tuned with respect to the constraints[
−0.5,−1.5,−2

]⊤ ·105 ≤ u ≤
[
0.5, 1.5, 2

]⊤ ·105,−xs ≤ x,

where presented variables, exception system steady-states xs,
and constraints values are stated in the deviation form: the
state variables x contain the deviation from their steady-
states of the variables Ti, cA,i, cB,i, cC,i for all three sub-
systems. The control input u is also comprised of heat flows
(H1, H2, H3) in the deviation form subject to the corre-
sponding steady-state values. The detailed description of the
reactor-separator plant and the derivation of the mathematical
model describing the dynamics in all three devices is given
in [32].

B. Implementation and control and setup
The MPC setup is given for prediction horizon N = 15,

and sampling time Ts = 0.1 h, weighting matrices are defined
as R = diag(0.01, 0.01, 0.01), Q = diag(Q1, Q2, Q3), where
Qi = diag(3200, 1, 1, 1) · 103 for i = 1, 2, 3, and P is
computed by solving an algebraic matrix Riccati equation.

The ALADIN algorithm distributed nominal MPC into the
45 decoupled optimization problems with scaling parameter

ρ = 1 · 106. To minimize the real-time burden, the stopping
criterion was selected as amax = 1. This particular choice of
aggressive early stooping criteria is introduced to show the
fast convergence rate of the proposed algorithm that operates
near the optimal trajectories by observation. In practice, one
can choose amax > 1 to achieve desired suboptimality level,
see [13].

As a benchmark, Algorithm 1 was implemented in
Python 3.8 using the PICOS library and Gurobi solver.
Training and testing dataset D were generated by performing
closed-loop simulations with ALADIN algorithm (Section
III-B) producing M = 184 114 individual samples. The
large number of generated samples results in a notable
computational burden during the offline phase. Note, that this
paper does not incorporate the minimum sample evaluation
that retains equivalent performance to the chosen dataset.
This aspect will be addressed in future work.

The created dataset was then divided by the ratio 70 :
15 : 15 representing training, testing, and validation data,
respectively, followed by min-max normalization to scale
and improve DNN training. The found DNN-based ap-
proximation of parametric solution consisted of L = 7
hidden layers, each with H = 95 neurons and activation
function as σ = ReLU() representing the rectified linear
unit. The parameterization of the decoupled layer θi includes
22 parameters, which are also inputs to DNN. The training
procedure was performed by ADAM optimizer with the
learning rate of 6.11 · 10−6, and 3 870 epochs were found
sufficient to train DNN accurately. As the decomposition of
nominal MPC results in symmetric decoupled optimization
problems, we applied exactly the same training procedure for
each parametric solution, producing Ri(θ) and Ti(θ) neural
networks with similar accuracy for each space distribution
i = {1, . . . , 3}. The demonstrated single neural network
comprises 57 001 floating-point parameters, corresponding to
approximately 222.7 kB of hardware storage. This motivates
a practical choice for deployment in low-level hardware such
as ESP32-S3, which has a static random-access memory
(SRAM) capacity ranging from 520 kB to 8 MB with
external flash/SRAM memory.

C. Results and Discussion

To demonstrate the performance of the proposed
Algorithm 1, the closed-loop simulations were performed,
analyzing both the steady-state stabilization and disturbance
rejection control problems. The simulation starts with the
initial condition x1(0) = [−8.84,−0.12,−0.02,−0.01]⊤,
x2(0) = [−4.34, 0.01,−0.11,−0.03]⊤ and x3(0) =
[−4.83,−0.09,−0.12,−0.04]⊤, where values of
xi,1, . . . , xi,4 represent the deviation variable for the
temperature and concentrations of the reactant A and
products B and C in the i-th subsystem.

After the system reaches desired steady-state in t ≈ 1 h,
we generate external temperature disturbance δ = 15K for
t = 1 h in each process. As can be seen in Figures 2, all
control strategies perform almost identically. The nominal
MPC serves as a basis for the other two approaches, we
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Fig. 2. From the left first four columns represents the system state control trajectories of closed-loop simulation: nominal MPC (yellow), rigorous
ALADIN-based MPC (blue), proposed ALADIN-NN-based MPC (red), and steady-state reference xs (black). The last column show closed-loop control
profiles of the control inputs: nominal MPC (yellow), rigorous ALADIN-based MPC (blue), proposed ALADIN-NN-based MPC (red), and constraints
(black).
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Fig. 3. Computational complexity of evaluated MPC design methods in
closed-loop simulation: (i) upper plot: overall runtime, (ii) bottom plot:
parallel elapsed time of the decoupled subproblems.

TABLE I
OVERALL RESULTS OF CLOSED-LOOP SIMULATION.

Method ttot [s] t [ms] tmax [ms] tc [ms] J̃ [%]

MPC 19.95 99 110 20 0.0

ALADIN 11.49 57 72 1 + 4 1.18

ALADIN–NN 9.72 49 55 1 1.18

observe suboptimal behavior from both controllers, mainly
during the disturbance rejection where t > 100. To measure

the rate of suboptimality, we use the following formula

J̃ =

200∑
τ=1

(
Jτ (x, u)− Jτ (x

⋆, u⋆)

Jτ (x⋆, u⋆)

)
· 100%

200
, (9)

where Jτ represents objective function (1) after the solution
is found, τ stands for step of the closed-loop.Here, x⋆

and u⋆ denote optimal state and control trajectories from
nominal MPC, x and u, respectively, represent approximate
state and control trajectories generated from the ALADIN
algorithm and proposed Algorithm 1. Table I summarizes
the overall simulation results. As J̃ indicates, both ALADIN-
based MPC design methods provide control profiles close to
optimum. The numbers differ after the five decimal points,
which is negligible. The main difference between compared
methods is the computational burden. As the upper graph
of Figure 3 indicates, the worst-case runtime across all
steps of closed-loop simulation has naturally nominal MPC
(Figure 3, green). The ALADIN algorithm (blue line) shows
that time and space distribution reduced the optimization
complexity leading to the decreased total elapsed time ttot.
Furthermore, through the approximate parameterization of
parallel MPC (Figure 3, red), we attained the best outcome
regarding computational complexity. Table I presents a de-
tailed time domain analysis, encompassing the mean t, total
ttot, and worst case tmax elapsed times. These values are
calculated by averaging the results obtained from ten runs
of the same simulation. The statistical data supports the
assertion that adopting a deep-learning-driven parametriza-
tion of the decoupled optimization problem (Algorithm 1)
results in equivalent accuracy to original ALADIN methods
with improved computational performance. The elapsed time



difference can be observed in the lower graph of Figure 3,
with almost 50% time reduction. The hidden advantage of
the proposed method is that we only construct a coupled
optimization problem in each iteration, and the decoupled
optimization is solved with the aid of DNN. Table I displays
the average construction time tc for each method. However,
this variable is specific to the used programming language
(Python 3.8) and the optimization constructor (PICOS).
Based on the results provided, we can conclude that the
proposed method has a construction time tc that is reduced
by a factor of 20 compared to the nominal MPC and is in
4ms faster than the original ALADIN algorithm.

V. CONCLUSION

The paper presented an advanced process control using
a novel real-time control policy based on a deep-learning
approximation of the distributed optimization solution of the
ALADIN-based parallel MPC design framework. Results of
the numerical study presented on a benchmark system prove
the suitability of the proposed algorithm for real-time control
even for more complex systems. A comparison of the elapsed
time in the closed-loop simulation showed almost 50 % time
reduction with the deep-learning-based approach compared
to the nominal MPC. Furthermore, the proposed algorithm is
suitable for execution on low-level hardware with ease, and
it has the potential for great scaling with both the prediction
horizon and the state space dimension.

Since the algorithm presented in this paper is based on
the ALADIN method designed for solving nonlinear MPC
problems [5], future research will include an investigation of
the possibility of implementing the proposed control policy
towards nonlinear real-time parallel MPC design.
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