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Abstract—The use of renewable energy sources in the grid’s
energy mix has recently gained popularity. Especially as solar
photovoltaic (PV) generation production has almost zero emis-
sions during its operations, they are preferred over fuel-based
electricity production. However, expanding PV generation in grid
capacity increases the chance of PV curtailment occurrence.
Not to mention that microgrids supported with large-scale PV
generation almost certainly create PV curtailment regularly. As
the forecast of PV production is one of the electricity grid oper-
ation cornerstones, the prediction model should be as accurate
as possible. The latest trend is utilizing machine learning (ML)
models to predict PV output, thanks to their excellent learning
and regression capabilities. However, its performance can be
highly influenced by measurements used during the model design.
Unfortunately, only some of the research on this topic deals with
the PV curtailment problem resulting in underperforming ML
models. This paper proposes a novel approach to identify and
replace curtailed PV measurements. The methodology includes
the physical model as a baseline of truly producable energy, which
is then investigated and corrected as a piecewise linear system
using Pearson correlation and weather measurements. Through
real-life comparative scenarios, the suggested data reconstruction
method provides increased accuracy of supervised ML-based
solar power prediction.

Index Terms—Photovoltaic curtailment, Solar energy predic-
tion, Physical model, Pearson correlation, Machine learning

I. INTRODUCTION

In recent years the world has changed its leaning towards
renewable sources, especially solar energy emerges as one of
the leading clean and cheap power production. This change in
the energy mix is essential as it establishes a sustainable and
ecological electrical system [1]. However, the operating grid
can not rely on pure renewable production as its generation is
volatile and can not be directly shifted towards the electricity
load demand [2]. This burden requires power generation main-
tainers to predict their production most accurately. Based on
this generation’s forecasts, microgrid customers can schedule
load demand, buy electricity on the short-term market or utilize
their model predictive control to optimize the operation of the
microgrid [3]. On the other hand, large grid operators can
prepare other resources to provide electricity when needed
[4]. Hence, the quality of the provided photovoltaic (PV)
production predictions is crucial, as many decision-making
actions depend on it.

Many approaches exist to designing PV forecasters, with
different prediction horizons and steps considering their use.
The bases in microgrid control or real-time grid scheduling are
day-ahead forecasts with quarter-hourly or hourly steps. The
direct solar energy predictions can be categorized as physical,
statistical, and machine learning (ML) [5], [6] approaches. The
most widely used are ML-based prediction especially deep-
learning techniques, thanks to its excellent regression perfor-
mance through its capability of learning hidden patterns. The
bottleneck of this method are data used to train and generate
forecasts. To accurately predict future PV production and its
fluctuation, it is necessary to correctly identify and predict
weather conditions acting on the PV system. In this field, it
is standard to use various data preprocessing techniques, as
shown in [7], to improve prediction capabilities [8]. However,
most of them focus on removing outliers, filtering signals,
replacing missing data, and finding the correct feature inputs
to the ML models. A few of them solve the problem of
the PV curtailment [9], which directly affects solar power
measurements see [10], [11]. The critical step to finding the
most accurate ML model is to consider all possible influences
that can act on the PV system. If the data used contain curtailed
PV production model will underperform as it is trained to
provide false (lower) PV prediction for specific inputs.

This paper’s main contribution and purpose is to improve
any ML-based PV power forecasts of the systems where PV
curtailment occurs. Proposed data reconstruction algorithm
utilizes the physical model of the PV system, the Pearson
correlation coefficient, and a wide range of weather measure-
ments. The capability of used data reconstruction method is
tested on a real large-scale system with five different scenarios.
To demonstrate the benefits of this approach, multiple ML-
based models are trained (using the reconstructed and curtailed
data) and tested to produce a day-ahead prediction.

II. PRELIMINARIES

A. System and Data Description

In general solar plants consist of multiple assets. The
main two are photovoltaic generators that directly produce
electricity from sunlight and power converters that transform
direct current (DC) to alternating current (AC).



The power plant is capable of functioning in three distinct
modes. The first mode is referred to as the off-the-grid system,
which operates independently of any national or local electric-
ity distribution network. The remaining two setups, known as
the hybrid and grid-connected, are connected to the primary
power grid. Both the hybrid and off-the-grid modes allow the
utilization of excess energy through battery storage, although
the battery’s capacity is typically undersized. In addition,
the grid connection for the hybrid and grid-connected setups
enables the exportation of excess electricity to the primary grid
or importing of electricity during any shortages.

Measurement of this solar power plant generation can
be done through inverters or smart electricity meters. The
negative of this system from the data perspective is that the
measurement collection is limited only to the exact energy
production. When the current possible power generation on the
solar panels is greater than the load’s consumption, naturally,
the load will consume only the necessary power. The extra
energy is lost (curtailed), as the information about it. If the
power plant includes batteries, this behavior is only shifted
in time as the capacity of the batteries reaches its maximum
and can no longer store energy, so the power production is
curtailed. Such behavior occurs mainly in an off-grid system,
as others can export excessive electric energy. However, grid
contestants must meet agreed deals as it can destabilize the
whole grid operation. This concluded in the same situation that
PV production is curtailed as the load consumption decrees.

B. Physical Model
The PV system’s output relies on multiple factors, catego-

rized as weather conditions and mechanical properties. The
more significant factor is the corresponding meteorological
state, which behaves as a multi-variable non-linear system,
including solar irradiance, temperature, humidity, wind speed,
pressure, visibility, and many more. Not all the mentioned
parameters are essential to developing a good estimator of
accessible power production. The most important is solar
irradiance, which directly transforms into electrical energy and
temperature, influencing PV panel efficiency.

In general, total solar irradiance Gt can be modeled as a sum
of three components, surface absorbed irradiance Gs, diffused
irradiance Gd, and ground reflected irradiance Gg

Gt(k) = Gs(k) +Gd(k) +Gg(k). (1)

By direct measurement of GDHI(k) diffuse horizontal irra-
diance and GDNI(k) direct normal irradiance at each time
step k is possible to determine each component separately,
concerning αSTA and αSAA PV surface tiled and azimuth
angle respectively. The final output power production can
be calculated as energy produced from total solar irradiance
affected by current PV panel efficiency

Pt(k) = Pmax
Gt(k)

Gstc
Np

(
1 + κ

(
Tc(k)− TSTC

))
, (2)

where the left part of the brackets represents total irradiation
(1) transformed at defined time step k at standard test con-
ditions (STC) GSTC = 1000 W/m2, TSTC = 25 ◦C, Pmax is

a maximal (peak) power production for specific PV panel at
STC and Np is a number of installed panels. The right side of
the brackets defines the effect of PV panel efficiency linked to
the cell temperature Tc(k), and κ is the temperature coefficient
of Pmax. As the PV cell temperature is hard to measure in real-
time, it can be calculated as follows

Tc(k) = T (k) +
Gd(k)

GTC
(TNOCT − TTC) , (3)

where TNOCT is nominal operating cell temperature (NOCT)
obtained at test condition (TC) GTC = 800 W/m2, TSTC =
20 ◦C and T (k) is measured ambient temperature. It follows
from the (2) that if the Tc(k) is higher, then TSTC efficiency
of the PV panel decrease by the coefficient κ.

Defined STC, TC, NOCT, Pmax, κ can be obtained from
PV manufacturer. The number of PV panels, surface tiled,
and azimuth angles are unique for each solar power plant
installation. This section provides a brief overview of the
model used. For more details, see [12].

C. Pearson Correlation Coefficient

Purpose of the correlation coefficients is to find and inter-
prets how strong a relationship is between the investigated
variables [13]. Pearson correlation coefficient is one of the
most popular tools in the field of feature extraction for machine
learning inputs with a large number of available variables.
This coefficient represents a linear correlation between two
continuous variables (x, y), and it is formulated as follows

rxy =

M∑
i=1

(xi − x)

M∑
i=1

(yi − y)√√√√ M∑
i=1

(xi − x)
2

√√√√ M∑
i=1

(yi − y)
2

(4)

where rxy represents correlation coefficient, x denotes mean
of x and y denotes mean of variable y across all samples M .
Value form (4) can come from a variance of rxy ∈ [−1, 1].
The closer the coefficient gets to the 1, the higher the positive
correlation is between x and y. Conversely, suppose the
coefficient gets closer to the −1. In that case, variables have a
higher negative correlation, and if the rxy is close to 0, there
is no direct linear correlation between x and y.

III. PROBLEM STATEMENT

As described in Section II-A, power production can be
curtailed by many factors despite solar power plant oper-
ation modes. The consequence of such a behavior is that
the measured information from the smart devices provides
incomplete information as other grid parts influence it. This
creates unwanted data corruption, which is hard to identify and
process before syntheses of the forecasting model. If data are
not processed correctly model trained with such data provides
underestimated PV production. It affects the utilization of solar
power generation as its forecasts are used in model predictive
control (MPC), which benefits from knowing the most accurate



predictions. Likewise, various design-making processes are
dependent on the best PV forecasts.

This work suggests a novel curtailed data reconstruction
approach for supervised machine learning modeling of PV
panels production. Utilizing the solar panel physical model and
Pearson correlation coefficient to identify and replace curtailed
power production with estimated values of a maximal possible
generation.

IV. PREDICTION OF ACHIEVABLE ENERGY

In general, the designed PV energy forecasting model
includes weather forecasts as input producing the one-step
prediction in the following form

y(k) = fP(x(k)), k = 0, . . . , N, (5)

where y is prediction of generated power, x represents input
features to the predictive model fP for define time step k.

In the field of ML-based solar power prediction, the adopted
methodology consists of standard procedures, including:

1) Data collection and pre-processing.
2) Identification and feature extraction.
3) Model selection (type, structure).
4) Model training and validation using weather measure-

ments and historical PV production.
5) Testing procedure using weather forecasts and historical

PV production to select best performance model.
The following section extends the pre-processing as it

aims to avoid biased predictions and model underperforming.
The training data are reconstructed to replace curtailed PV
production with estimated achievable production.

A. Data Reconstruction

Assume we have acquired a representative sample of histor-
ical weather measurements W ∈ RM×nw , where nw represents
the number of unique variables w ∈ RM and power production
measurements Y ∈ RM which includes corrupted information.

The first step in PV data reconstruction is to find the
physical model (2) and identify its parameters. Using historical
weather measurements and the designed model, we can con-
struct dataset YPt ∈ RM , which corresponds to the measured
one. This data represents a naive guideline of achievable
power generation, which is unaware of grid limitations. The
curtailment of power production indicates that only interesting
information from the modeled dataset YPt is that which is
greater than measured information from Y . Using this fact
created dataset is modified as follows

YPt(m) = yp, yp =

{
YPt(m), if Y (m) < YPt(m)

Y (m), otherwise
, (6)

where m = 1, . . . ,M represents an index of the single value
of the vector. In this way, it is possible to keep original
measurements intact and separate potentially corrupted ones.

To correctly identify curtailed power production, it is nec-
essary to investigate modeled data. Whether the mismatching
between YPt and Y is caused by effects of the connected grid

or exogenous influences of the weather conditions, which are
not included in the model (2). Calculating the difference

∆Y = YPt − Y, (7)

and using it in Pearson guided correlation from Section II-C it
is possible to determine if the weather measurements w from
W significantly impact modelled and measured data mismatch
(7). If the premise given is correct, it should be reflected in
reconstructed data. Otherwise, we can assume that there was
a curtailment in PV-produced energy.

The compensation of weather variables that are not modeled
is based on the simple linear model in which coefficients are
found as follows

min
a,b

J =

M∑
m=1

(
∆Y (m)− (S(m)a> + b)

)2
, (8a)

s.t. S(m)a> + b ≤ ∆Y (m), (8b)

where a ∈ Rns , b ∈ R represents coefficient of linear equation
and S ∈ RM×ns includes only dependent variables from W
(ns ≤ nw). The weather measurements are selected based on
a simple rule. If the investigated weather variable w(i) where
i = 1, . . . , nw, has a greater correlation coefficient (4), then
the variables from the model (2) (GDHI, GDNI, T ) it is included
in S. After the linear model is found, the final formulation of
the resulting preprocess data is provided as

Yf(m) = YPt(m)− (S(m)a> + b), m = 1, . . . ,M (9)

where Yf represents reconstructed data, YPt represents modeled
data, and Sa> + b is a compensation of exogenous weather
influences acting on the PV system.

However, as mentioned in Section II-B, the meteorological
impact on PV power production is highly non-linear. This
means that a simple linear model provides unsatisfying results
for a large number of historical samples M containing the dif-
ferent weather conditions (rainy, warm, cold days or changing
seasons, etc.). Also, Pearson correlation is a measure of linear
dependency between two datasets creating the same problem.

The key step is to investigate a small portion of the time
series data M ⇒ {M1, . . . ,Mn} at the time. This solution
helps to decompose time series data as a piecewise linear
process providing the desired results.

B. Implementation Details

The condition on lines (13, 16) can be interpreted as follows.
Suppose the correlation of the exogenous weather variable
w(i) with ∆Y for the defined portion of data is smaller
than the modeled variables (GDHI, GDNI, T ). In that case, it
is possible to assume that external weather influences did not
create the difference ∆Y . Otherwise, the linear model (9) will
compensate their influence. This condition can be modified by
tuning coefficient pr ≥ 0, which for non-zero values allows
passing less dependant weather variables.

The range of the investigated data ∆t should be selected
based on the sampling time of the measured data W,Y and
weather conditions of the PV panel’s location. Chosen time



A 1 Algorithm: Data Reconstruction
Input: W,Y
Output: Yf

Initialization:
1: Set ∆t← R ∈ (1,M), pr ← 0.

Initial Calculation:
2: Set YPt ← Pt(W ).

Power Saturation :
3: for m = 1 : M do
4: if (YPt(m) < Y (m)) then
5: Set YPt(m)← Y (m).
6: end if
7: end for
8: Set ∆Y ← Y − YPt .

Main Loop:
9: for j = 1 : ∆t : M −∆t do

10: Set δ ← ∆Y (j : j + ∆t), φ ← YPt(j : j + ∆t) and
ω ←W (j : j + ∆t).
Calculate Correlation for Modeled Variables :

11: Set rDHI
xy ← f(GDHI, δ), rDNI

xy ← f(GDNI, δ) and rT
xy ←

f(T, δ).
12: for i = 1 : mw do
13: if

(
ω(i) 6= {GDHI, GDNI, T}

)
then

14: Set rωxy ← f(ω(i), δ).
15: end if

16: if

(∣∣∣rωxy

∣∣∣ < {∣∣∣rDHI
xy

∣∣∣ ,∣∣∣rDNI
xy

∣∣∣ ,∣∣∣rT
xy

∣∣∣}− pr

)
then

17: Append S ← ω(i).
18: end if
19: end for

Calculate Reconstructed Data with Compensation :
20: Find a, b← argmin J(δ, S).
21: Set σ ← φ−

(
Sa> + b

)
.

22: Append Yf ← σ.
23: end for

range of investigated data is crucial as it is directly linked to
linear models. Using a too large portion of the dataset at once
(week, month, year) will lead to inaccurate correlations as the
modeled variables are often the most dependent and directly
affect power production. Consequences are such that algorithm
will never or very rarely compensate possible exogenous
effects, and if so, it will be inaccurate. On the contrary,
selecting a too small portion of the dataset compared to the
sampling time of the measurement will lead to too much
compensation of modeled data, and we will end up with an
underestimation of power production. It is worth mentioning
that the range of the reconstructed data ∆t may be different in
each iteration. The proposed algorithm does not restrict that.
If the data indicates it, it is even a recommended step. Another
point is that provided physical model from Section II-B can
take any complexity, form, or additional variables. The only
difference will be that the S will be a smaller subset of W as
the number of the exogenous variables will decrease with the
modeled variables increase.

V. CASE STUDY

This work presents a real large-scale PV system on which
we test the proposed algorithm and provide its reliability for
any case of PV setup. Investigated PV installation is located
in Romania and includes 11680 individual solar panels of
the same efficiency and peak power Pmax. The system con-
tains three master slave inverter control, each containing four
separate inverters whit individual smart meters. The primary
inverter controls the other three, which are connecting and
disconnecting based on the power production. The system

TABLE I: Solar panel model specification under the standard
test condition: GSTC = 1000 W/m2, TSTC = 25 ◦C and test
conditions: GTC = 800 W/m2, TTC = 20 ◦C.

αSTA [◦] αSAA [◦] Pmax [W] κ [%/◦C] TNOCT [◦C]

19.5 0 250 −0.44 20

is directly connected to the main grid without local power
consumption, so it does not show frequent power curtailment.
This makes it a perfect example as a proposed algorithm
can be tested against true power production. Excluding power
inverters data one by one from the aggregated dataset, we can
simulate PV power curtailment, which is then reconstructed
based on the Algorithm 1 shown in the previous section.

VI. RESULTS AND DISCUSSION

The data included in this work represents the total PV
productions, weather measurements, and forecasts within 230
days with one hour sampling time Ts = 1 h. Weather
measurements and forecasts for defined location are imported
from third-party open-source API Tomorrow.io, providing 20
different weather variables, including possible 430h prediction.

The total PV production is used in five different showcase
simulations to provide representative results across a wide
range of solar power curtailment. In the presented results, we
apply the following scenario scheme:

TABLE II: Utilized data of process grope across all scenarios.

Grope Case 1 Case 2 Case 3 Case 4 Case 5

1 100% 72.2% 72.2% 53.0% 72.2%

2 84.0% 100% 84.0% 100% 72.5%

3 100% 100% 100% 83.5% 72.1%

From now on, we will refer to the aggregated (the sum
of all gropes) information of curtailed production, achievable
production (without curtailment), and reconstructed data (cur-
tailed data that have undergone a reconstruction process).

Each case is individually processed, as it contains unique
curtailed PV measurements Y , which are then transformed to
reconstructed dataset Yf representing maximal possible power
generation for a defined time. The range of the investigating
data is chosen as ∆t = 24 h. By comparing these datasets Y, Yf
with achievable production YR, we generate results shown in
Fig. 1 and Tab. III. The presented Fig. 1a shows a detailed
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(a) Statistical results of reconstructed data compare to achievable and
curtailed PV production for each hour of the daily active generation.
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(b) Reconstructed data for 24 h of the day.

Fig. 1: Visualization of data reconstruction procedure (case 2).

TABLE III: Statistic results for reconstructed data Yf compare
to the curtailed Y and achievable YR PV power generation
[kW/h] across all cases.

Case Pmiss [%]
Mean Variance ·104

YR Y Yf YR Y Yf

1 5.3 498.7 472.1 504.8 53.5 46.2 49.5

2 9.2 498.7 453.0 499.8 53.5 44.7 49.8

3 14.5 498.7 427.4 483.9 53.5 38.3 45.8

4 21.1 498.7 395.7 474.1 53.5 32.9 44.3

5 27.8 498.7 363.4 461.5 53.5 28.9 43.0

statistical comparison across all measurements (case 2) for
each hour of the active PV production (from 17 pm to 4 am is
negligible power generation). As we can see, the mean of the
reconstructed data is shifted toward the mean of the achievable
PV production. As well as, the variance of reconstructed data
is stretched compared to curtailed PV measurements, leading
to better correlation with achievable power within every hour
of the day. As the results suggest, the reconstruction procedure
succeeded in mimicking the real measurements (achievable
power), as we can see in the example Fig. 1b. The difference
between reconstructed and achievable PV production is caused
by a one-time change in the weather conditions, which are
not captured as significant by Pearson correlation (4), so in
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Fig. 2: Day-ahead PV forecast, using LSTM trained with
reconstructed Pf and curtailed P PV data compared to achiev-
able historical PV production (case 2).

conclusion, they are ignored by the reconstruction procedure.
In Tab. III, we can see statistic results for the whole

dataset across all cases. Naturally, increases in the missing
total produced power Pmiss decrease the overall accuracy of
the proposed algorithm. Looking at the mean and variance
of the reconstructed data, we can observe a slower decline
compared to curtailed PV production, which decreases at a
much greater rate. Showing that the reconstruction procedure
provides beneficial results as it scales with higher power
curtailment.

To show the advantages of reconstructed data in PV power
prediction, we design pair of the long-short term memory
(LSTM see [14]) for every case from Tab. II. Each scenario
is then represented by LSTM trained using curtailed PV
measurement, and LSTM trained with reconstructed data to
predict PV power P, Pf notated subsequently. We divide our
datasets into three groups. First, the training dataset includes
measurements within 138 days, and it is used to estimate
the trainable parameters of the LSTMs. The second group
represents validation data (23 days) for the model validation.
Finally, the last group includes 69 days of measurements on
which we perform accuracy analysis presented in Tab. IV and
Fig. 2. The structure of the LSTM networks is selected as
follows. Weather feature inputs are chosen using provided
Algorithm 1 by including all modeled variables and those
which were used in model compensation (9). In summary,
inputs include (direct normal irradiance, diffuse horizontal ir-
radiance, outside temperature, cloud base, dew point, humidity,
precipitation intensity, wind speed, and wind direction). Ideal
hyperparasites of the ML model are found using Bayesian
optimization, the number of LSTM units is 543, the learning
rate is selected as 3.715·10−4. The 2900 epochs of minimizing
the sum of squared errors were sufficient in order to find
optimal weights and basis of the LSTM units with ADAM
optimizer. The inputs to the LSTM are not changing, and
outputs are not so much different in provided scenarios, so
we fix these parameters for all ten recurrent neural networks.

In Fig. 2, we can see a day-ahead forecast (prediction for
24 h from the midnight of the previous day) comparison of



TABLE IV: Overall accuracy results for day-ahead forecasting
of PV power generation [MW/h].

Case Ptot
Maximal MSE Surplus Deficit

∆P ∆Pf P Pf P Pf P Pf

1 372.5 4.4 2.0 220 86 10.6 19.1 42.6 18.7

2 372.5 4.4 2.1 238 91 9.0 17.3 47.1 21.9

3 372.5 4.6 2.6 329 135 6.3 12.1 60.8 33.5

4 372.5 4.9 3.2 612 201 4.3 11.4 92.3 44.3

5 372.5 5.1 3.4 716 243 3.1 10.6 101.1 49.7

constructed models with historical values for case 2. As shown,
LSTM trained with reconstructed data is more reliable on
days with higher power generation. For the days with lower
production, both LSTMs provide similar results as the training
data are not often curtailed in such small production. More
detailed results can be found in Tab. IV. Where Ptot represents
the total power produced without curtailment from our testing
dataset, which is the same across all scenarios. From the
mean squared error (MSE), we can declare that LSTM trained
with reconstructed data provide superior results. The maximal
absolute error between aggregated true daily production and
the day-ahead forecast is shown in the third column. As we
can see, LSTM trained with curtailed power production has
almost twice larger maximal error 2∆P ≈ ∆Pf. We chose
the sum of daily aggregated surplus and deficit as the last
indicator across all daily samples. As it already been pointed
out, LSTM trained with reconstructed data naturally provides
a larger surplus (overestimated PV prediction) competed to
LSTM trained with achievable PV measurements, which on
the contrary, provides a more significant deficit (underesti-
mated PV prediction). However, as we can see, the sum of the
deficit and surplus for both of the LSTM models compared to
Ptot are proportionally different on a large scale showing the
benefits of the proposed data reconstruction.

VII. CONCLUSION

This paper proposes a novel approach to photovoltaic (PV)
power production measurement reconstruction for systems
where PV generation occasionally exceeds load consumption.
The methodology is based on constructing the physical model
of a real PV system providing the baseline of maximal
production. Investigating the curtailed PV measurements as
a piecewise linear system, we were able to utilize the Pearson
correlation coefficient and linear model of weather measure-
ments. Both tools are used to compensate the difference be-
tween the modeled and curtailed PV power production. Using
this approach, we reconstruct historical PV measurements and
preserve the behavior of a non-linear system. The provided
algorithm was tested on a real large-scale PV system, including
11680 individual panels. To investigate the performance of
our scheme, we have simulated various levels of curtailment
by artificially excluding information from a subset of PV
inverters. In all scenarios algorithm successfully reconstruct
corrupted (curtailed PV) measurements with some degree of
accuracy, which is linked to the size of power curtailment.

The direct benefit of the proposed approach is improved
machine learning (ML) based photovoltaic power production
forecasts. Our study involves generating and comparing day-
ahead predictions using ML models for a defined system, both
with and without data reconstruction. From the investigation
of different scenarios, we conclude that LSTM trained with
reconstructed data provide superior results. Not only maximal
error between the historical values and its predictions is almost
twice lower. We also provide a good trade-off between the
prediction deficit and surplus by possible tuning of the data
reconstruction algorithm.
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