
 

 
Abstract—This paper presents the fundamentals of Origami 

engineering and its application in nowadays as well as future industry. 
Several main cores of mathematical approaches such as Huzita-
Hatori axioms, Maekawa and Kawasaki’s theorems are introduced 
briefly. Meanwhile flaps and circle packing by Robert Lang is 
explained to make understood the underlying principles in designing 
crease pattern. Rigid origami and its corrugation patterns which are 
potentially applicable for creating transformable or temporary spaces 
is discussed to show the transition of origami from paper to thick 
material. Moreover, some innovative applications of origami such as 
eyeglass, origami stent and high tech origami based on mentioned 
theories and principles are showcased in section III; while some 
updated origami technology such as Vacuumatics, self-folding of 
polymer sheets and programmable matter folding which could 
greatlyenhance origami structureare demonstrated in Section IV to 
offer more insight in future origami. 

 
Keywords—Origami, origami application, origami engineering, 

origami technology, rigid origami. 

I. INTRODUCTION 
RIGAMI is the art of paper folding originated from Japan 
and has been commonly practiced worldwide. It derived 

its name from the Japanese word ‘oru’ as in ‘to fold’, and 
‘kami’ as in ‘paper’. Whenever origami is mentioned, first 
thing comes in people mind might usually be ‘paper crane’ or 
even ‘children activity’. It conventionally perceived as just a 
kind of art rather than something offer practical usage. Over the 
years, origami has intrigue many artists and scientist to 
investigate and reveal its underlying principles. These 
ultimately lead to the transition of origami from art to 
mathematical world.Since then origami technique has been 
utilized in many industry applications and proven to beuseful 
in areas such as architecture and packaging design.   

II. ORIGAMI SCIENCE 

A. The Fundamentals 
Origami originated as a trial-and-error art design for making 

paper(s) to appear like real object by folding them. Later on 
several mathematical approaches were developed to understand 
the phenomena on the paper generated by the folding and also 
to estimate the outlook of the origami (folded paper).  
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Prior to the theories, there are some common notations or 
terms in origami which should be acknowledged. These have 
been standardized by scientists, to name a few, including Lang, 
Huffman, Clowes, Waltz, Takeo Kanade, and Akira Yoshizawa 
[1] & [2]. In summary, the notations being widely used in the 
Origami practice are Mountain fold (fold the paper behind), 
Valley fold (fold the paper toward you), Crease (location of an 
earlier fold, since unfolded), X-ray line (hidden edge or 
crease), and Crease pattern (all the crease lines, since 
unfolded). While the basic folding patterns in the industry are 
the Cupboard Base, Windmill Base, Waterbomb Base, and 
Preliminary Fold [1]. 

Mathematical approaches for Origami, to name a few, are 
Geometry, Topology (explained by Thomas Hull [1]), Robert 
Lang’s Tree Theorem [2] and Maekawa’s String-to-beads 
method [3].  

The mentioned mathematical approaches are surrounding 
three main fundamentals: Huzita-Hatori axioms, Maekawa and 
Kawasaki’s theorems. 

Firstly discovered by Jacques Justin in 1989, the Huzita-
Hatori axioms consist of 7 axioms were improved by 
HumiakiHuzita in 1991, and finalized by KoshiroHatori, Justin 
and Robert Lang in 2001. The axioms [4] are: 

 
1. Given two points P1 and P2, there is a unique fold that 

passes through both of them. 

2. Given two points P1 and P2, there is a unique fold that 
places P1 onto P2. 

3. Given two lines l1 and l2, there is a fold that places l1 
onto l2. 

4. Given a point P1 and a line l1, there is a fold that 
places P1 onto l2. 

5. Given two points P1 and P2 and a line l1, there is a fold 
that places P1 onto l1 and passes through P2 

6. Given two points P1 and P2, and two lines l1 and l2, 
there is a fold that places P1 onto l1 and P2 onto l2. 

7. Given one point P1 and two lines l1 and l2, there is a 
fold that places P1 onto l1 and is perpendicular to l2. 

 
 As simple as the axioms above, Maekawa’s theorem takes 

action in any origami model crease pattern as long as the paper 
folds flat. Looking at a single vertex (a point where multiple 
creases line come across) in the paper’s interior of a flat 
origami crease pattern, the difference between the number of 
mountain creases (M) and valley creases (V) must always be 2 
as shown in (1). 
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ܯ| െ ܸ| ൌ 2                                  (1) 
 
There is another famous result that relates the angles 

between the creases surrounding vertex and is named after 
Toshikazu Kawasaki. The Kawasaki Theorem has proven that 
for a given crease pattern is foldable only if all the sequences 
of angles surrounding each (interior) vertex can be summed to 
180° as given in eq. (2) and eq. (3) and represented in Fig. 1 
[5].  

 
ଵߙ െ ߙଶ ൅ ଷߙ െ ସߙ ൅ ڮെ ߙଶ௡  ൌ 0°          (2) 

 
Or another way of saying 
 
ଵߙ ൅ ߙଷ ൅ ൅ڮ ଶ௡ିଵߙ ൌ ଶߙ ൅ ସߙ ൅ڮ൅ ߙଶ௡  ൌ 180°(3) 
 

 
Fig. 1 Application of Kawasaki's Theorem in a foldable paper crane 

(figure adopted from [6]) 
 

According to Lang [2], there are 3 types of flaps: corner, 
edge and middle flaps as given in Fig. 2. The names of the flap 
come after the location of the tip of the flap falls on the square. 
Flaps are distinguished to determine the amount of material 
used in folding. Middle flap consumes the most part of a 
material as compared to corner flap which consumes the least 
amount of material. To prove this, Lang proposed that each the 
tips (of the flaps) forms the centre of a circle on a flat material.  

 

                             
Fig. 2 Types of flap 

 
 

Lang suggested that all circles surrounding the tips, may it 
be quarter-circle (for corner flap), semi-circle (for edge flap), 
or full circle (for middle flap), the radius of the circle is 
determined by the length of the flap, L. Lang commented, “The 
amount of paper consumed doesn’t depend on the angle of the 
tip of the flap, only its length and location.” Thus, circles-
packing where circles do not overlap each other, is used in 
determining the sizes of the circles – the size of the flap. This 
approach is seem to be essential in Rigid Origami, as hard 
materials in engineering applications are not capable to recover 
from the crease formed by folding.  

B. Rigid Origami 
Rigid origami applies in folding materials with thickness. 

Car airbags, large solar panel arrays for space satellites (using 
Miura-fold), paper shopping bags are amongst the studies in 
Rigid origami.  

Having thickness in the material has disabled some 
fundamentals of origami in Rigid Origami such as Huzita-
Hatori axioms. However, Kawasaki’s Theorem and Haga’s 
Theorem are still valid in real material folding [7].  

Tomohiro Tachi mentioned in his research that Rigid 
origami consists of rigid panels connected by hinges 
constrained around vertices [8]. The origami configuration is 
represented by fold angles between the adjacent panels [9]. 
Intensive Mathematical model for 3D folding was presented in 
his paper [8] and it was used in his written software 
RigidOrigami.  

Britney Gallivan has developed a loss function for origami 
folding with thick material and the function sounds like eq. 
(4). 

 
                       (4) 

 
Where L is the minimum length of the material, t is the 

thickness of the material, and n is the number of folds possible 
[9].  

It appears that there is no direct connection between Lang’s 
Tree Theorem and Tachi’sRigid Origami. However, the 
former could be used in designing the folding based on a 
desired final outlook of an origami where else the latter could 
provide calculations on the folding mechanisms with materials 
with thickness.  

III. ORIGAMI APPLICATIONS 

A. Solar Panels 
Origami concepts were used to pack and deploy a solar 

power array in the research vessel called Space Flight Unit 
(SFU) as shown in Fig. 3. The method of folding is called 
“Miura-ori” which had been introduced in last section. 

 

 
Fig. 3 Foldable Solar Panel designed by Koryo Miura 

(figure adopted from [10]) 
 

B. Space Telescope, Eyeglass 
The Eyeglass is a foldable telescopic lens designed by 

Robert Lang which can be easily packed into a space shuttle 

Corner flap 

Middle flap 

Edge flap 
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and deployed when in space by utilizing origami principals 
and techniques.  

 

 
Fig. 4 The Eyeglass can be folded from a flat disk (bottom right) to a 

small flanged cylinder (top left) (figure adoptedfrom[11]) 
 
 The origami structure shown in Fig. 4 is called the 

“Umbrella” structure after its resemblance to a collapsible 
umbrella, which was scalable and had mass-producible parts. 
In 2002, a 5-meter prototype, as shown in Fig. 4, comprising 
72 segments patterned with binary Fresnel arcs in photoresist 
was completed and shown to concentrate light as expected 
[11]. 

 It was believed that a 25-meter or larger version diffractive 
space telescope could be deployed within a decade [11] while 
the ultimate goal might be folding a 100-meter lenses into 3-
meter diameter cylinders [12]. 

C. Origami Stents for Medical Purposes 
An origami stent was developed which may be used to 

enlarge clogged arteries and veins. The design followed 
waterbomb base origami style which enables it to be collapsed 
into a smaller size while travelling in veins/arteries, and 
expanded to a larger diameter at the clot site to serve its 
purpose (Fig. 5). The patterns are made from three type of 
folds: two sets of helical folds orthogonal to each other and 
cross folds. The existence of long helical folds enables a highly 
synchronized deployment process [13].  

 

 
   a                                           b 

Fig. 5 Origami stent designed by Zhong You and Kaori Kuribayashi: 
(a) in collapse form, (b) in expended form (figure adopted from [14]) 

 

D. High Tech Origami 
Researchers from University of Illinois have developed a 

technique to fold microscopically thin slice of silicon into 
different kinds of shapes (three-dimensional) which could 
beuseful in many areas, including solar energy. They intended 
to design a spherical solar cell which claimed to be able to 
absorb solar energy more efficiently than a typical flat solar 
cell.  

 

 
Fig. 6 Water droplets direct self-assembly process (figure adoptedfrom 

[15]) 
 
As shown in Fig. 6, a two-dimensional piece of silicon was 

cut into a flower shape with a small piece of glass planted in 
the center to help retaining the eventual desired shape. It was 
followed by placing a water droplet in the center of the silicon 
flower. As the water evaporates, capillary forces pulled the 
edges of the foil together to form the sphere shape [15][16]. 

The new self-assembly process is still in its early stage; 
however it shows a completely different approach to making 
three-dimensional structures. 

E. Origami Grocery Bag 
A foldable grocery bag from steel was built by Zhong You 

and Weina Wu using origami-inspired design as shown in Fig. 
7. It allowed shopping bag built from a rigid material or an 
open-topped cardboard box could be folded flat without 
having its bottom opened. This approach could help speed up 
factory automated packaging processes. The ultimate dream of 
the designers is to make rigid building that could be 
reconfiguredin the future [17][18].  

 

 
Fig. 7 A prototype made from a number of stainless steel plate (figure 

adopted from [17]) 

IV. ADVANCEMENT OF ORIGAMI 

A. Vacuumatics 
Multi-DOF rigid foldable structures based on triangle 

panels is able to follow the change in the environment and 
human activities due to its flexibility. Vacuumatics is a 
solution to make the 3D form becomes geometrically stable by 
stiffening the dihedral hinges. The structural system is a 
negative pressured double membrane containing aggregate 
particles. It is initially plastic or viscoelastic, but by 
introducing negative pressure, the induced friction force 
between compressed particles makes the structure stiff [19]. 

World Academy of Science, Engineering and Technology
International Journal of Humanities and Social Sciences

 Vol:7, No:1, 2013 

231International Scholarly and Scientific Research & Innovation 7(1) 2013 scholar.waset.org/1307-6892/1557

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, H

um
an

iti
es

 a
nd

 S
oc

ia
l S

ci
en

ce
s 

V
ol

:7
, N

o:
1,

 2
01

3 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

15
57

http://waset.org/publication/Origami-Theory-and-Its-Applications:-A-Literature-Review/1557
http://scholar.waset.org/1307-6892/1557


Another interesting aspect of the structure is the particles can 
reconfigure themselves to be in another equilibrium state 
which therefore enables the strength of hinge to be controlled 
regarding the amount of vacuum.The example of Vacuumatics 
is demonstrated in Fig. 8. 

 

a  b  c 
Fig.  8 Hinge design: (a) Particles are placed in between panels. 
(b) Self-folding moment is induced bt the vacuum (c) The vacuum 

keeps the hinge stiff (figure adopted from [19]) 
 

B. Self-Folding of Polymer Sheets 
A technique was developed by Michael Dickey where 

polymer sheets self-fold when exposed to light as shown in 
Fig. 9. Polymer sheets were run through a desktop printer to 
get a pattern of black lines, or crease pattern in origami, and 
they automatically fold along the black lines when exposed to 
light. The concept is such that black absorbs more energy than 
other colours and thus black lines will shrink faster than other 
areas. 

 

 
Fig. 9 Polymer sheets with black lines (figure adopted from [12]) 
 

C. Programmable Matter Folding 
Robert Wood and his team at Harvard University and the 

Massachusetts Institute of Technology have combined a thin 
sheet with programmable joints which flex in response to 
electrical warming [20].The sheet is a kind of variable 
‘programmable matter’ which developed by chemists 
specialized in molecular self-assembly and by robotics 
engineers working on ‘self-reconfiguring’ robots.Above all, 
Wood’s team has to first create an algorithm for folding with a 
dictated set of creases based on the desired end shapes. Then 
the hinged ‘actuators’ were located at each crease that open 
and close on command. The hinges are made of Nitinol, a 
‘smart’ metal alloy of nickel and titanium which has the 
ability to return to its initial shape after being warmed and 
then bent. 

 

 
Fig. 10 A self-folded experimental ‘boat’ (figure adopted from [21]) 

 
Their current prototype, shown in Fig. 10, used one-way 

switch as their hinges which must be bent back by hand. The 
hinges are stapled into a sheet made from triangular panels of 
stiff fiberglass where their edges are joined by flexible silicone 
rubber. There is a magnet sit in the middle of each panel 
which holds them firmly but not irreversibly together when 
they are folded face to face. 

To initiate the on-demand folding, the team intended to 
develop removable ‘stickers’ which contain the circuitry 
specific to a particular folded shape therefore granting a given 
sheet to fold without the need of computer control over the 
hinge-heating process. 

V. CONCLUSION AND FUTURE WORKS 
This paper has presented the fundamentals of Origami 

science, Rigidorigamiand some of its applications. It is in hope 
that one could gain more insight about origami technology and 
apply it in every possible area for sustainable utilization of 
space and weight. 

ACKNOWLEDGEMENT 
The first Author is grateful to his supervisor D. Sujan for 

giving guidance and constructive support throughout the 
research.  

REFERENCES 
[1] Kanade, Takeo. "A Theory of Origami World." Artificial Intelligence, 

1980: 280-311. 
[2] Lang, Robert J. Origami Design Secrets - Mathematical Methods for an 

Ancient Art. Massachusetts: A K Peters Ltd, 2003. 
[3] Lang, Robert J. "TreeMaker User Manual." Langorigami. 2004. 

www.langorigami.com (accessed Oct 15, 2009). 
[4] Huzita-Hatori Axioms. Jan 31, 2009. 

http://en.wikipedia.org/wiki/Huzita%27s_axioms (accessed Aug 10, 
2009). 

[5] Barile, Margherita, and Margherita Barile. "Kawasaki's Theorem." From 
MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. 
http://mathworld.wolfram.com/KawasakisTheorem.html (accessed Aug 
30, 2009). 

[6] Thomas C. Hull. Revisited and extended. Western New England College 
http://courses.csail.mit.edu/ (accessed 10 September 2012) 

[7] Tachi, Tomohiro. Rigid Origami Silmulation. TT's Page Research 
Project. [Online] 2009. [Cited: Nov 5, 2009.] 
http://www.tsg.ne.jp/TT/cg/index.html#rigid_origami 

[8] Simulation of Rigid Origami. Tachi, Tomohiro. Tokyo : 4OSME, 2009. 
[9] Kevin &Bobby, Saint Joseph's College. [Online] [Cited: Nov 5, 2009.] 

www.saintjoe.edu/~karend/m111/Origami.ppt. 

World Academy of Science, Engineering and Technology
International Journal of Humanities and Social Sciences

 Vol:7, No:1, 2013 

232International Scholarly and Scientific Research & Innovation 7(1) 2013 scholar.waset.org/1307-6892/1557

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, H

um
an

iti
es

 a
nd

 S
oc

ia
l S

ci
en

ce
s 

V
ol

:7
, N

o:
1,

 2
01

3 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

15
57

http://waset.org/publication/Origami-Theory-and-Its-Applications:-A-Literature-Review/1557
http://scholar.waset.org/1307-6892/1557


[10] KTK Scientific Publishers. “Map Fold a La Miura Style, Its Physical 
Characteristics and Application to the Space Science”, in Research of 
Pattern Formation, edited by R. Takaki, pp. 77-90. 

[11] Kitty Tinsley. 2003. A Giant Leap for Space Telescopes.Lawrence 
Livermore National Laboratory https://www.llnl.gov/(accessed 10 
August 2012) 

[12] Origami-Resource-Center.com. Origami Science. 
http://www.langorigami.com/science/technology/eyeglass/eyeglass.php 
(accessed 5 August 2012) 

[13] Zhong You, and Kaori Kuribayashi. 2003. A Novel Origami Stent. 
Tulane University http://tulane.edu/ (accessed 10 August 2012) 

[14] K. Kuribayashi and Z. You. Innovative Origami Expandable Stents. 
University of Oxford http://www-civil.eng.ox.ac.uk/ (accessed 12 
August 2012) 

[15] University of Illinois at Urbana-Champaign. 2009. High-tech origami: 
Water droplets direct self-assembly process in thin-film materials. 
http://www.sciencedaily.com/releases/2009/11/091123152222.htm 
(accessed 12 August 2012) 

[16] University of Illinois at Urbana-Champaign. 2010. High-Tech Origami. 
http://www.las.illinois.edu/news/2010/solarcell/ (accessed 12 August 
2012) 

[17] Zeeya Merali. 2011. Paper, Plastic, or Steel?. 
http://news.sciencemag.org/sciencenow/2011/03/paper-plastic-or-
steel.html?ref=hp (accessed 15 August 2012) 

[18] Bob Yirka. 2011. Origami solution found for folding steel shopping 
bags. http://phys.org/news/2011-03-origami-solution-steel-bags.html 
(accessed 15 August 2012) 

[19] T. Tachi, M. Masubuchi and M. Iwamoto. 2012. Rigid Origami 
Structures with Vacuumatics: Geometric Considerations. (accessed 5 
August 2012) 

[20] Hawkes, E. et al. Proc. Natl Acad. Sci. USA advance online publication 
doi:10.1073/pnas.0914069107 (2010). 

[21] Philip Ball. 2010. Origami that folds itself. 
http://www.nature.com/news/2010/100628/full/news.2010.317.html 
(accessed 15 August 2012) 

 
 

 

 
 

World Academy of Science, Engineering and Technology
International Journal of Humanities and Social Sciences

 Vol:7, No:1, 2013 

233International Scholarly and Scientific Research & Innovation 7(1) 2013 scholar.waset.org/1307-6892/1557

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, H

um
an

iti
es

 a
nd

 S
oc

ia
l S

ci
en

ce
s 

V
ol

:7
, N

o:
1,

 2
01

3 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

15
57

http://waset.org/publication/Origami-Theory-and-Its-Applications:-A-Literature-Review/1557
http://scholar.waset.org/1307-6892/1557



