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Abstract

Wrinkling, creasing and folding are frequent phenomena encountered in biological and man-made bi-
layers made by thin films bonded to thicker and softer substrates often containing fibers. Paradigmatic
examples of the latter are the skin, the brain, and arterial walls, for which wiggly cross-sections are de-
tected. Although experimental investigations on corrugation of these and analog bilayers would greatly
benefit from scaling laws for prompt comparison of the wrinkling features, neither are they available nor
have systematic approaches yielding to such laws ever been provided before.

This gap is filled in this paper, where a uniaxially compressed bilayer formed by a thin elastic film
bonded on a hyperelastic fiber-reinforced substrate is considered. The force balance at the film-substrate
interface is here analytically and numerically investigated for highly mismatched film-substrates. The on-
set of wrinkling is then characterized in terms of both the critical strain and its corresponding wavenum-
ber. Inspired by the asymptotic laws available for neo-Hookean bilayers, the paper then provides a
systematic way to achieve novel scaling laws for the wrinkling features for fiber-reinforced highly mis-
matched hyperelastic bilayers. Such novel scaling laws shed light on the key contributions defining the
response of the bilayer, as it is characterized by a fiber-induced complex anisotropy. Results are compared
with Finite Element Analyses and also with outcomes of both existing linear models and available ad-
hoc scalings. Furthermore, the amplitude, the global maximum and minimum of ruga occurring under
increasing compression spanning the wrinkling, period doubling and folding regimes are also obtained.

1 Introduction

Corrugation is a very common geometrical feature in Nature. This is indeed the case for skin, blood
vessel walls, the brain, etc. (see e.g. Budday et al. (2017), Genzer and Groenewold (2006), Hohlfeld and
Mahadevan (2011), and Holland et al. (2020) among many others).
For instance, as pointed out in Nguyen et al. (2020), a wide number of papers regarding wrinkling, period
doubling and quadrupling, creasing, and folding in biological systems, including tissues such as ant’s
eyes (see Figure 1), have been produced in the last two decades (see e.g. Alawiye et al. (2019, 2020),
Balbi et al. (2015), Ben Amar and Jia (2013), Y. Chen et al. (2021), Ciarletta and Ben Amar (2012), Ciarletta
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Figure 1: An original example of wrinkling in biological tissues is displayed in the images above. LEFT: A
full-scale black-and-white SEM (HITACHI TM 4000 PLUS) image of the Ant’s eye is reported. CENTER:
A red-framed zoomed-in area from the left image is blown-up at the center of the figure: at the resolution
reported in that frame, radial wrinkles are visible around each unit forming the eye’s compound. Images
are all original and taken by the coauthors of this paper affiliated at the LIMITS Laboratory, within the University
of Napoli "Federico II". RIGHT: Nonlinear FE simulation. The top right of the figure displays the projection
onto the X-Z plane of the resulting displacement field representing the zoom of the blue-framed inset
taken from the center of this figure: details simulated at this level of observation reveal a few azimuthal
wrinkled crowns separating the central undisturbed zone from the radial wrinkles observed before at a
coarser resolution. The bottom right of the figure displays a 3D image of the vertical displacement resulting
from the FE analysis, thereby reliably reproducing the experimental observation reported above.

et al. (2014), Genzer and Groenewold (2006), Goriely (2017), Kai (2022), Mostafavi Yazdi and Baqersad
(2022), Mottahedi and Han (2016), and Nath et al. (2020) and references cited therein). Furthermore,
important results regarding various thin man-made mechanical systems exhibiting corrugation have been
largely investigated in parallel (see e.g. Biot (1963), Cerda and Mahadevan (2003), Cutolo et al. (2020), and
Pocivavsek et al. (2008) and references cited therein, among many others).
Most of the investigations mentioned above have dealt with homogeneous (hyper-) elastic bilayers, per-
fectly bonded to one another. Those studies have been performed primarily under either an applied
prestretch or compressive in-plane external tractions. Occasionally, thermal actions or growth (with refer-
ence to biological systems), have also been analyzed as a source of possible instability through corrugation,
although not so extensively. For the given action, the aforementioned literature shows that the enabling
features for wrinkling are (i) the extreme thinness of one of such layers relative to the thickness of the
whole system, and (ii) the mismatch of the elastic moduli of such layers.
Unlike other phenomena, though, very few scaling laws connecting the geometrical features of the exhibited
corrugations and the mechanical properties of the bilayers described above are available. In particular, in
Allen (1969) (Sect. 8.2) a slightly modified version of the scaling laws (24) and (25), displayed in the sequel,
governing the critical strain and the wavenumber at the onset of wrinkling, were obtained in a fairly simple
and clever way for an elastic strut bonded to an isotropic elastic core. Such laws have been revisited in
more recent times by Sun et al. (2011), where those relationships have been obtained (without showing the
actual derivation) as asymptotic expansions of the analytic solutions of the wrinkling problem for isotropic
hyperelastic bilayers. With regard to a completely different situation, such as free-standing thin polymeric
sheets under tension, a new set of scaling laws has been provided in Cerda and Mahadevan (2003),
and analytically validated (with a slight change) in Puntel et al. (2011). More recently, in Goriely and
Mihai (2021), generalizations of (24) and (25) were obtained for bilayers made of liquid crystal elastomers
(with certain given initial orientations of the domains) bonded with a homogeneous and hyperelastic neo-
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Hookean material, both in the case in which the thin layer is neo-Hookean and the substrate is made of
the liquid crystal elastomer and vice versa.
Primarily due to the presence of fibers, scaling laws for wrinkling occurring in biological tissues are not yet
available in the literature. Nonetheless, an ad-hoc equation has been recently provided in Nguyen et al.
(2020) for the critical strain at the onset of the instability, although it did not come from any mathematical
justification.
Among other issues, the main problem of soft biological tissues is certainly heterogeneity. This can influ-
ence the mechanical response of the tissue in terms of inhomogeneity of its pointwise elastic properties
and, depending on the shape and functionality of the tissue, its residual stresses (see e.g. Hayn et al.
(2020) and Taber and Humphrey (2001), and references cited therein). Nevertheless, averaging and ho-
mogenization methods yielding effective mechanical properties for biological tissues have been developed
over the last two decades (for a more detailed discussion see e.g. Braeu et al. (2017), Cyron et al. (2016),
and Robertson and Watton (2013)). This leads to overall characterizations of the constitutive behavior of
such complex systems (see e.g. Bellini et al. (2013), Gasser et al. (2005), and Humphrey and Rajagopal
(2002) and ref.s cited therein) for which the degree of approximation can, of course, vary significantly (see
e.g. Robertson and Watton (2013) for a detailed discussion of this aspect). The most utilized approach
for such tissues, with particular regard to arterial walls, is certainly the one introduced in Holzapfel et al.
(2000) (called OGH in the sequel). Such a constitutive equation has been utilized in Nguyen et al. (2020)
and it will also be employed in the sequel together with the Standard Reinforcing Model (called SRM in the
sequel). The latter has been studied since the eighties (see e.g. Kurashige (1981) and Triantafyllidis and
Abeyaratne (1983)), although it was later in Qiu and Pence (1997) that the impact of such a constitutive
law on the deformation modes exhibited by this material was investigated. More recently in Melnik et al.
(2015) and Sen (2022) the SRM law has also been exploited in relation to the dispersion of the fibers.
The present paper is the first step towards finding a rigorous procedure enabling one to systematically
find scaling laws for corrugation starting from the equations governing such a phenomenon. In particular,
the work here is organized as follows. In Sect. 2 the approach undertaken in Nguyen et al. (2020) for the
study of wrinkling in bilayers formed by a three-dimensional stiff thin film adhering on top of an OGH
(and then SRM) fiber-reinforced, and much softer and thicker, substrate is revisited through a simplified
approach. Here, instead of treating the top layer as a three-dimensional solid, a dimensionally reduced
formulation (like the plate model in Shield et al. (1994)) is assumed, and the simplified constitutive SRM
law for the fiber-reinforced substrate is considered.
In Sect. 3, a comparison of the outcomes of choosing SRM instead of the more complex OGH law is
performed. Indeed, such a comparison is produced for the analytic results for both the critical strain and
the wavenumber at the onset of wrinkling coming from the OGH constitutive law both by considering the
top layer as (i) a three-dimensional solid and (ii) as a plate, and (iii) the SRM law for such a dimensionally
reduced approach.
Furthermore, asymptotic expansions for both the wrinkling strain and the corresponding wave number
have been provided for high-contrast elastic mismatches between the thin layer and the substrate in the
presence of the reinforcing fibers. This starts from the outcome of the analytic procedure performed
to seek the (a) minimum critical strain with respect to the wavenumber among the ones solving the
eigenvalue problem characterizing the balance of forces at the interface between film and substrate, and
(b) the corresponding wavenumber. The latter is then processed through a suitable sequence of Taylor’s
expansions yielding (19), a novel scaling law for the wavenumber itself formed by a product of two terms, a
basal one and an amplifying factor. The former term turns out to coincide with (25), namely the asymptotic
law for the wavenumber of a purely neo-Hookean bilayer reported in Cao and Hutchinson (2012) and Sun
et al. (2011). In the cases of either the absence of the fibers or their perfect randomness, the amplifying
factor goes to one, thereby letting the novel scaling law for the wavenumber degenerate to (25). There,
the wavenumber scales like the cubic root of the elastic mismatch of the two layers forming the system
in that case. Full novelty is instead in the amplifying factor (26) due to the presence of load-bearing
distributed fibers within the matrix of the substrate. That factor turns out to scale with the sixth root of
a sum of terms. The latter turns out to be even in the spatial dispersion of the fibers (up to the fourth
power of that parameter), and modulated by suitable powers of the modified stiffness ratio between fibers
and matrix (accounting for the volume concentration of the former), and on the square of the sin of four
times the relative orientation of the fibers themselves. With an analog procedure, the novel scaling law
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(23) for the critical strain at the onset of wrinkling is also obtained. Not surprisingly, this retrieves (25) (see
Cao and Hutchinson (2012) and Sun et al. (2011)) for isotropic neo-Hookean bilayers, either when fibers
are absent or whenever they are randomly distributed. In all of the other cases, the modulating function
arising in (23) depends on the presence of the fibers and it is nothing but the square of the amplifying
factor previously obtained for the wavenumber. In this same section, diagrams showing the comparisons
between the obtained scalings, the analytic results obtained in the previous section, and numerical results
performed by using ABAQUS for Finite Element Methods (FEM) simulations have been displayed. Such
figures relate to results for high elastic contrast between the top thin layer and the substrate and given sets
of parameters, carefully discussed in Sect. 3.
Finally, in Sect. 4 a re-interpretation of the obtained asymptotic expansions for both the critical strain
and the associated wavenumber is proposed in terms of the resulting properties of the linearized system
about the underformed state obtained in Nguyen et al. (2020). It is worth recalling that the result of such
a linearization yields an actual orthotropic material response for the substrate. This innovative way of
looking at the newly derived scaling laws illustrates how the modulating function mentioned above is
essentially related to the orthotropy of the linearized solid. Indeed, the modulating factor introduced
above goes with the sixth root of a term governed by the ratio of the Young moduli evaluated in the
principal system of the resulting linearized orthotropic medium, while still depending on the square of
the sin of four times the relative angle between the family of the reinforcing fibers.

2 A simplified model

In Nguyen et al. (2020) an approach to computing the critical strain for which a thin membrane adhering
to a soft substrate experiences wrinkling is presented. In that paper, the computation of such a strain
is performed by considering the system as composed of two three-dimensional solids and then writing
appropriate plane strain balance equations. However, this approach has the computational disadvantage
of solving a highly non-linear system. In order to circumvent this drawback, the geometry and the physics
of the problem suggest key simplifying assumptions leading, in a much simpler way, to almost the same
results obtained from the fully three-dimensional model cited above.

A more efficient approach can be undertaken by focusing the present analysis on:

(a) bilayers for which the mismatch between the elastic moduli of the layer and of the substrate is very
high (i.e. between 104 ÷ 106);

(b) the layer being considered as very thin compared to the substrate (which, in mathematical terms, is
in fact assumed infinitely deep).

Item (b) allows for considering thin plate behavior for the top layer, and this inspired many studies on fully
isotropic, homogeneous and elastic bilayers already present in the literature (see e.g. Cao and Hutchinson
(2012) and Sun et al. (2011) and ref.s cited therein). In the present analysis, a thin plate theory to model
the thin film bonded to the fiber-reinforced substrate is adopted. As previously mentioned, the latter here
is modeled through the OGH constitutive equation. Such a material has a strain energy that is additively
composed of two terms. The first one is due to the classical neo-Hookean matrix. The second term is due
to the presence of fibers, organized in families, dispersed in the matrix, and reciprocally oriented with one
another at a certain angle 2θ (Figure 2). Finally, the total strain energy density of the substrate Ws is given
by the sum of those two contributions, i.e.

Ws,OGH = Ws,matrix + Ws,fibers,
with Ws,matrix = µM(I1 − 3), I1 := tr (C) ,

C := FTF, Ws,fibers =
k1

2k2
∑N

m=1
[
exp

(
k2E2

m
)
− 1
]
,

(1)

where N is the number of families of fibers in the matrix and F is the deformation gradient. The term
2µM stands for the shear stiffness of the matrix, k1 is a parameter related to the stiffness of the fibers and
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Figure 2: Schematics of the plane strain bilayer system. The substrate is composed by two families of
fibers with relative angle 2θ embedded in a neo-Hookean matrix. In (a) the bilayer is undeformed, with
thickness h and length L0. This configuration is assumed to be the reference one, with the material
coordinates system X1 − X2, with a substrate much deeper than the layer (h/H → 0). In (b) the deformed
configuration is shown. There uL is an imposed contractile displacement, ϵL = uL/L0 is the corresponding
strain, λ1 = 1+ ϵL is the resulting stretch and, hence, the bilayer’s deformed length is λ1L0. This geometry
remains valid for higher values of the stretch λ1 ≥ λcr

1 , where λcr
1 is the longitudinal stretch at the onset

of wrinkling (see Eqn. (13)), spanning the whole wrinkling regime until period-doubling starts (see Fig.
8 in Sect. 3). During deformation the angle between the two families of fibers takes the form θ∗ =

1/2 cos−1((Fl1 · Fl2)/(|Fl1||Fl2|)), where lm, m = 1, 2 are defined below (2). The upper left corner displays a
magnification of the reactive tractions arising in the bilayer due to the imposed displacement (the tractions
between the layer and the substrate are not shown to scale relative to one another).

k2 is a non-dimensional parameter determined experimentally. The term I1 is the first invariant, i.e. the
trace of any of the two Cauchy-Green tensors. The argument of the exponential defined above, besides k2
is given by

Em = κ(I1 − 3) + (1 − 3κ)(I4m − 1),
I4m = lm · (Clm)

(2)

where lm = (cos θ, sin θ, 0)T is the unit vector representing the m-th fibers family with respect to the
horizontal axis. It is worth noting that I4m is the magnitude (squared) of the extension/contraction of the
fibers.

The outcomes of a dimensionally reduced theory for the top layer, such as the plate one adopted here,
and its interactions with an OGH infinite layer have not yet been explored in the literature. Indeed, in the
aforementioned recent paper by Nguyen et al. (2020), both the layer and the OGH substrate were treated as
fully three-dimensional bodies under plane-strain conditions. No matter the constitutive response of both
layers nor how the film is modeled, the balance of tractions at the interface between film and substrate
governs the configurations of the bilayer.

Here the configurational changes of such an interface are analyzed through a small-on-large approach,
consistent with the existing literature on compressed bilayers formed by stiff films on non fiber-reinforced
soft substrates (see e.g. Cao and Hutchinson (2012), Hutchinson (2013), Jiang et al. (2007), and Wang
et al. (2023) and references cited therein, among many others). To this aim, following Nguyen et al.
(2020), Eqn. (4) (see e.g. also Shield et al. (1994), Eqn. (3) for the sole displacement field, and Sun et al.
(2011), Eqn.s (2.1)÷(2.3)) a sinusoidal perturbation (of amplitude δ ≪ 1) is given to a homogeneous plane-
strain, volume-preserving finite deformation of the substrate induced through a longitudinal shortening
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(imposed in the direction 1, as specified below), i.e.

x1 = λ1X1 − δ αλ2
1λ sin(kX1)eαkX2

x2 = λ2X2 + δ λ cos(kX1)eαkX2

p = p0 + δ p1 cos(kX1)eαkX2 .

(3)

It is worth noting that λ2 = 1/λ1, p is the hydrostatic pressure needed to maintain incompressibility
(namely the reactive action needed to keep isochoricity of the substrate), whereas p0, p1 and α are constants
(to be determined through boundary conditions). Of course, in (3) the pairs (x1, x2) and (X1, X2) give the
coordinates of a generic point in the deformed and in the reference configuration, respectively. As the
wrinkling of the interface occurs, the corrugation will be characterized by a space wavelength λ, or by its
corresponding wavenumber k, linked by the relation k = 2π/λ. The deformation and pressure fields (3)
satisfy some basic considerations about the nature of the problem. Along the direction X2, the perturbation
must fade at a great distance from the interface, and horizontally the motion must be periodic. Moreover,
as shown further, the fields are solutions of the equilibrium of the substrate, for a suitable choice of α and
p1.
The incompressibility condition det F = 1 is satisfied at the first order, i.e. λ−2

1 ∂ ũ1/∂ X1 + ∂ ũ2/∂ X2 = 0
(see e.g. Pence and Song (1991) and Yue et al. (1994)). This last equation is identically satisfied by (3) if
ũi = xi − λiXi (i = 1, 2) is assumed.
Finally, as shown in Figure 6(e) the bifurcation is characterized by a sinusoidal profile and, by observing
Figure 8, this extends up to ten times the strain at the onset of the wrinkling. Tractions acting on the film
coming from the substrate must be evaluated in order to characterize which superimposed deformations
are admissible for the bilayer. To do this, the first Piola-Kirchhoff stress tensor for the substrate Ps can be
computed as follows:

Ps =
∂Ws,OGH

∂F
− pF−T . (4)

When the wrinkling has not yet occurred, the constant p0 can be obtained noting that the normal traction
at the interface Ps

22(δ = 0) vanishes. By letting δ = 0 the following expression for p0 is determined, leading
to

p0 =
2µM

λ1
2 +

4k1ek2r2
r(κ − 3 κ sin2 θ + sin2 θ)

λ1
2 ,

where r =
κ(λ1

2 − 1)
2

λ1
2 +

(3κ − 1)(λ1
2 − 1)(λ1

2 sin2 θ − λ1
2 + sin2 θ)

λ1
2 ,

(5)

which, introduced into (3) and then into (4), allows us to write the equilibrium equations for the substrate

Ps
ij,j = 0, i, j = 1, 2 (6)

where (•),j indicates ∂(•)/∂Xj and the repeated index means summation. It is worth noting that a full
analytic proof of the fact that (3) is a representation formula for the solution of the boundary value problem
at hand for purely neo-Hookean bilayers (with no fibers) formed by stiff films on softer substrates could
be provided by generalizing the approaches utilized in Pence and Song (1991), Qiu and Pence (1997), and
Wang et al. (2023) to account for the presence of the fibers reinforcing the substrate. Of course, unlike
the case of neo-Hookean materials, for fiber-reinforced substrates the constants α and k characterizing the
eigenmodes are expected to be influenced both by the fiber and by the matrix parameters.

In particular, solving equation (6) for the systems under consideration yields four different pairs of
solutions (α, p1(α)). Note that the solution of α is formed by two complex conjugate pairs, which differ
from one another with the sign of their positive part. Nevertheless, only two of those pairs (α, p1) can
be used, more precisely the ones that have an α with a strictly non-negative part, as the perturbation
effects must vanish at long distances from the interface (it is worth noting that going inward deep into
the substrate entails negative values for X2, see fig.(2)). After labeling α1 and α2 the values satisfying
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equations (6), the resulting quantities in the reference configuration are given by a linear combination of
the respective eigenfunctions, i.e.

x̃1 = C1x1

∣∣∣
α=α1

+ C2x1

∣∣∣
α=α2

+ o(δ2), x̃2 = C1x2

∣∣∣
α=α1

+ C2x2

∣∣∣
α=α2

+ o(δ2),

p̃ = C1 p
∣∣∣
α=α1,p1=p1(α1)

+ C2 p
∣∣∣
α=α2,p1=p1(α2)

+ o(δ2),

P̃s = C1Ps
∣∣∣
α=α1,p1=p1(α1)

+ C2Ps
∣∣∣
α=α2,p1=p1(α2)

+ o(δ2).

(7)

In the case that the stiffness of the fibers approaches zero, it is worth noting that (5) and (6) give the same
results found in Sun et al. (2011) (note that Q used in Sun et al. (2011) is equal to 2µM), namely:

p0 =
2µM

λ2
1

,

(α2, p1(α2)) = (1, 0),

(α1, p1(α1)) =

(
1

λ2
1

,
4πµM(1 − λ4

1)

λ3
1

)
.

(8)

It is worthy of mention that the approach followed by Eqn. (3) to Eqn. (8) is analogous to the one
introduced in Nguyen et al. (2020). The assumption (b) introduced above, i.e. the layer is assumed to
be very thin compared to the substrate, is now useful. In this case it appears reasonable to assume that
the layer starts to wrinkle with a wavelength that is large compared to the thickness of the upper layer.
Henceforth, a plate behavior with a single bending axis which lies on a semi-infinite space can be assumed
(see e.g. (Shield et al., 1994)). Upon utilizing the balance equation at the interface between the top layer
and the substrate (in the reference configuration) the following expressions are obtained (see Shield et al.
(1994) and Sun et al. (2011))

ELh
1 − ν2

L

(
h2

3
∂4ũ2(X1, 0)

∂X4
1

− h
2

∂3ũ1(X1, 0)
∂X3

1
+ εL ∂2ũ2(X1, 0)

∂X2
1

)
+ P̃s

22(X1, 0) = 0

ELh
1 − ν2

L

(
∂2ũ1(X1, 0)

∂X2
1

− h
2

∂3ũ2(X1, 0)
∂X3

1

)
− P̃s

12(X1, 0) = 0,

(9)

where

εL = 1 − λ1 =
PL

1 − ν2
L
=

uL

L0
(10)

is the longitudinal strain in the absence of prestretch, PL is the corresponding longitudinal stress arising
across the layer (Shield et al., 1994), and EL and νL are the Young modulus and Poisson ratio of the layer,
respectively. Furthermore, P̃s

ij and ũi = x̃i − λiXi, (i, j = 1, 2), are the stresses exchanged between the
substrate and the layer and the displacements at the interface (hence evaluated at X2 = 0 and obtained
from Eqn. (7)), respectively.
In order to facilitate the reader, the following notation is utilized in the sequel: M stands for "matrix", F
for "fibers" and L for "layer". In addition, the order reflects the position of the shear modulus of a given
system within the ratio: for example, ρML means stiffness of the matrix (M) forming the substrate over the
one of the layer (L).
Recalling that λ = 2π/k denotes the spatial wavelength of periodic wrinkles, and by introducing kh =
2πh/λ, namely its corresponding non-dimensional wavenumber, by setting ρFM = k1/µM the ratio between
stiffness information about both the fibers and the matrix, and by noting that ρML = 6µM/EL is the
stiffness ratio between the substrate and the layer, the substitution of expressions (7) into (9) leads to the
following homogeneous linear system in the amplitudes C1 and C2 appearing in (7):

M(kh, λ1, ρFM, ρML, κ, θ, k2, εL)

(
C1
C2

)
= 0, (11)
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where M is the resulting coefficients matrix and the pair C1, C2 characterize the wrinkling eigenmodes.
For the sake of brevity, the explicit form of M is omitted, although available upon request. Of course,
the amplitude modes C1 and C2 are associated with the values of ε for which a bifurcation of equilibrium
occurs, i.e. such that

εcr

∣∣∣det
(
M(kh, λ1, ρFM, ρML, κ, θ, k2, εL)

)
= 0 =⇒ εcr = ε̂(kh,cr, λcr

1 , ρFM, ρML, κ, θ, k2), (12)

where
λcr

1 = 1 − εcr. (13)

It is worth noting that εL appears only in the first row of M, hence its determinant is linear, as well.
Following the findings of Pence and Song (1991) and Yue et al. (1994) (see e.g. Fig. (4) in both papers),
and employed later by Sun et al. (2011), among the possible values satisfying Eqn. (12), only the ones
corresponding to the smallest wavenumber are of interest. This leads to writing the following optimality
conditions, namely the ones governing both the minimum strain at which the onset of wrinkling occurs
and the corresponding wavenumber:εcr = ε̂(kh,cr, λcr

1 , ρFM, ρML, κ, θ, k2)
∂εcr

∂kh,cr
= 0.

(14)

Indeed, in full analogy with Sun et al. (2011), the conditions above can be shown to deliver the critical
stretch and the corresponding non-dimensional wavenumber at which wrinkling occurs.
Due to the complexity of the OGH model, it is worthy of mention that the amount of calculations required
to solve (14) significantly increases relative to the case of neo-Hookean bilayers. Hence, a simpler model
than OGH would be especially useful if it would deliver comparable results to its associated optimality
conditions.
To this end, the OGH constitutive equation here is replaced by the Standard Reinforcing Model, SRM,
mentioned above (for details see e.g. (Kurashige, 1981; Qiu & Pence, 1997; Triantafyllidis & Abeyaratne,
1983)). The SRM energy density reads as follows:

Wfiber,SRM =
γ

2

2

∑
m=1

E2
m, (15)

where γ has the dimension of an elastic modulus. Of course, (15) must be added to the neo-Hookean term,
accounting for the hyperelasticity of the matrix. It should be noted that, as the parameter k2 approaches
zero, the derivative of Wfiber,OGH with respect to the strain invariant Em coincides with the one of Wfiber,SRM
when γ = k1 .
Solutions of (14) obtained by utilizing the SRM strain density energy are shown in Figure 3. From there,
it is manifest that the critical strains are practically the same by using either constitutive equation, thereby
suggesting that the assumption of a simpler constitutive law, such as the SRM, leads indeed to comparable
results. This outcome is related to the independence of SRM from the parameter k2. As a confirmation of
this circumstance, Nguyen et al. (2020) illustrated that the OGH law does not depend on k2 in the small
strain regime: in the sequel, (see Figures 3÷ 6) the magnitude of the arising strains are shown to be small
enough.
A comparison between the outcomes of (i) the dimensionally reduced model coupled with SRM for the
substrate and (ii) the solid one developed by Nguyen et al. (2020), is shown in Figure 3. There, the critical
strains and non-dimensional wavenumbers are displayed as functions of the angle formed by the two
families of fibers (displayed in Figure 2) and for different stiffness ratio ρFM. This has been done by
setting, as in Nguyen et al. (2020), k2 = 0.8393 and κ = 0. Moreover, νL = 0.5 has been imposed for
the incompressibility of the layer and a stiffness ratio ρML = 10−4 between the matrix and the layer has
been assumed. The diagrams show that the results are essentially the same as the original model for
exceptionally small stiffness ratios. Furthermore, a symmetric behavior for both the critical strain and the
corresponding wavenumber about θ = 45◦ is detected in the assumed range 10−6 ÷ 10−4 for ρML, for the
considered values of ρFM and κ, namely the modified stiffness ratio between fibers and matrix (accounting
for the volume concentration of the former) and the spatial dispersion of the fibers themselves.

8



Figure 3: Comparison between the critical strain and the non-dimensional wavenumber between the plate
model (dots) and the 3D-solid one (solid line) with respect to the angle θ and for three different values
of ρFM. The considered ratio ρML = 10−5 is in the middle of the range of interest. The diamonds are the
critical strains obtained from the Standard Reinforcing Model (15).

3 A new asymptotic law for fiber-reinforced bilayers

The solution given by the system (14) is not generally available in a simple form and, for a given set of the
model parameters, it is therefore necessary to solve it numerically. However, it is still possible to simplify
its expression under the following assumptions:

(a) the upper layer is considerably stiffer than the substrate, namely ρML = 6µM/EL ≤ 10−4;

(b) the fibers ratio ρFM = k1/µM assumes values between 0 and 10. This hypothesis, although it may
appear limiting as it would bring back to what has been already obtained through the neo-Hookean
model, produces reliable results when (a) is fulfilled;

(c) the critical strain is very small (εcr ≤ 10−3, see e.g. Sun et al. (2011) in the absence of fibers) and
therefore, as εcr = 1 − λcr

1 , λcr
1 ≈ 1. Because no prestretch is considered, the eigensolutions given by

(7) are linearized around λcr
1 = 1. In this way, the resulting quantities, namely the critical strain and

non-dimensional wavenumber, will have no dependence on the stretch;
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(d) the critical strain and non-dimensional wavenumber are approximately constant when k2 changes
(at least for ρML = 10−4), as remarked in the previous section. It is thereby possible to replace
the contribution of fibers given by the OGH constitutive law (1) with the SRM (15), removing the
variable k2 and the whole exponential part associated to that;

(e) the Poisson ratio of the layer is νL = 1/2.

By analogy with Allen (1969) and Sun et al. (2011), as pointed out in the previous section, explicit solutions
to the optimality problem are sought. In other words, reliable asymptotic expansions for (i) the minimum
of the critical strain yielding the onset of wrinkling and (ii) its corresponding wavenumber are the targets
of this section.
In order to do so, one can start by taking advantage of the assumption (a), i.e. ρML ≈ 0. Henceforth, a
Taylor expansion of (∂ εcr)/(∂ kh,cr) (the second equation appearing in (14)) with respect to ρML around
zero can be considered. Upon equating the obtained expression to zero, it is not difficult to check that
a closed-form solution of an algebraic third-order equation in kh,cr can be obtained. The only possible
physically admissible root of such an equation reads as follows:

kh,cr = k̂h,cr(ρML, ρFM, θ, κ) =
(

k̂h,cr(ρML, ρFM, θ, κ)3
)1/3

≈
(

g1(ρFM, θ, κ)ρML

)1/3
, (16)

where g1 =

(
∂k3

h,cr

∂ρML

)∣∣∣∣
ρML=0

.

It is worth noting that the zero-order term of the expansion (16) vanishes. From the physical viewpoint,
this can be interpreted as the substrate becoming extremely soft relative to the thin top layer, when the
matrix-to-film stiffness ratio ρML → 0. Hence, the buckling strain of such layer (for a finite depth of one
unit length) of thickness h turns out to be ϵcr ∼ (h/L0)

2, as the wavelength tends to the physical length of
the film. The thinness of the latter implies h/L0 → 0, hence both the critical strain and the corresponding
dimensionless wave number, kh,cr

∣∣
ρML→0 ∼ h/L0, tend to zero. It is worth noting that g1 depends upon

ρFM = k1/µM, relating the stiffness of the fibers, weighted against their volume concentration, and the
shear modulus of the substrate. For low densities of fiber reinforcements ρFM tend to zero. Therefore, g1
can be replaced by a suitable expansion obtained as follows:

g1(ρFM, θ, κ) =
√

g2
1(ρFM, θ, κ) ≈

(
h10(θ, κ) + ρFMh11(θ, κ) +

ρ2
FM
2

h12(θ, κ)

)1/2

,

where h10 = g2
1

∣∣∣∣
ρFM=0

, h11 =

(
∂g2

1
∂ρFM

)∣∣∣∣
ρFM=0

, h12 =

(
∂2g2

1
∂ρ2

FM

)∣∣∣∣
ρFM=0

(17)

where h1j(θ, κ), j = 0, 1, 2 are the terms of the expansions. Note that such expressions are valid only
if gi are positive functions for every value of ρFM and for 0 ≤ θ ≤ π/2. This is reasonable since the
wavenumber is a positive quantity. Finally, carrying out the computations of the previous expressions,
one has

h10 = 9, h11 = 9(1 − 3κ)2, h12 =
9 sin2(4θ)

2
(1 − 3κ)4. (18)

Henceforth, the resulting critical (non-dimensional) wavenumber takes the following form:

kh,cr ≈ 3
√

3ρML
6

√
1 + ρFM(1 − 3κ)2 +

ρ2
FM sin2(4θ)

4
(1 − 3κ)4 (19)

and, as was previously pointed out, this value is unique.
A corresponding asymptotic expansion for the wrinkling strain can also be obtained. Indeed, by substitut-
ing (19) in the first equation of (14), and by computing the Taylor expansion of the resulting expressions
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up to second order, the following form for εcr is achieved:

εcr =
(

ε̂cr(ρFM, ρML, θ, κ)3
)1/3

≈
(

t2(ρFM, θ, κ)
ρ2

ML
2

)1/3

,

where t2 =

(
∂2ε3

cr

∂ρ2
ML

)∣∣∣∣
ρML=0

.

(20)

Similarly to the previous case, the zero-order term in the Taylor expansion for the argument in (20) is zero
and, furthermore, in this specific case, even the first-order one identically vanishes. In particular, the zero-
order term corresponds to εcr

∣∣
ρML=0, which is again consistent with having a compressed free-standing

(because ρML = 0 would essentially mean to have a substrate with zero stiffness relative to the top layer)
infinitely thin film with a finite length.
Furthermore, in order to achieve an irreducible representation for the critical strain, a Taylor expansion of
t2 can be provided. By expanding that with respect to ρFM around 0, the following expression follows:

t2(ρFM, θ, κ) ≈ q20(θ, κ) + ρFMq21(θ, κ) +
ρ2

FM
2

q22(θ, κ),

where q20 = t2
2

∣∣∣∣
ρFM=0

, q21 =

(
∂t2

2
∂ρFM

)∣∣∣∣
ρFM=0

, q22 =

(
∂2t2

2
∂ρ2

FM

)∣∣∣∣
ρFM=0

.
(21)

Furthermore, by carrying out the computations for q2i, i = 0, 1, 2, their values read as follows:

q20 =
9

32
, q21 =

9
32

(1 − 3κ)2, q22 =
9 sin2(4θ)

64
(1 − 3κ)4. (22)

Upon substituting (22) into (21), and the obtained result into (20), the following asymptotic expression for
the critical strain is delivered:

εcr ≈
3
√
(3ρML)

2

4
3

√
1 + ρFM(1 − 3κ)2 +

sin2(4θ)

4
(1 − 3κ)4. (23)

For the sake of consistency, (19) and (23) are explored for the simpler case of neo-Hookean bilayers. As
expected, those expressions reduce to what already found in Sun et al. (2011) and Cao and Hutchinson
(2012) by assuming νL = 1/2, i.e.

kh,nh = 3
√

3ρML (24)

εcr,nh =

3
√
(3ρML)

2

4
. (25)

It is evident by inspections of (19) and (23) that the presence of the fibers turns out to significantly influence
both the wrinkling strain and the corresponding wavenumber. Indeed, the asymptotic expressions above
involve the following modulating factor:

ζ(ρFM, θ, κ) =
6

√
1 + ρFM(1 − 3κ)2 +

ρ2
FM sin2(4θ)

4
(1 − 3κ)4. (26)

Henceforth, the quantities mentioned above can be written as

kh,cr = kh,nh ζ(ρFM, κ, θ) (27)

εcr = εcr,nh ζ2(ρFM, κ, θ) (28)

where ζ(ρFM, κ, θ) (see Figure 4) is defined by the expressions above and its square has the meaning of
amplitude factors for the neo-Hookean values of kh and εcr, respectively. It is just as simple to verify that
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Figure 4: The amplitude function ζ(ρFM, κ, θ) varying ρFM and θ, assuming κ = 0 (perfect alignment). In
particular, two projections are shown: the first one, within the plane ρFM − ζ shows the amplification for
a fixed angle, namely θ = 70◦. The second one, in the plane θ − ζ represents the sinusoidal amplification
by setting ρFM = 8. Note that when the dispersion factor κ approaches zero the function is an horizontal
plane with ζ = 1.

the modulating factor is really an amplification function. This reduces to 1 in both cases in the absence of
fibers, as shown in Figure 4, and when κ approaches to 1/3. This demonstrates that in the case of a total
dispersion of fibers within the matrix these give no contribution to the critical dimensionless wavenumber and strain.
Using expressions (27) and (28), and the results achieved in (14), the plots displayed in Figures 5 ÷ 7 for
different angles, stiffness ratio ρML, ρFM and dispersion factors are obtained. It is worth noting that Eqn.s
(27) and (28) work particularly well for small ρML ratios: this can be achieved even for stiff fibers, provided
that their concentration per unit volume is adequately low. Another aspect is related to the behavior of
the curves: for small ρML, the trends of both critical strain and wavenumber are symmetrical with respect
to π/4.
The same plots display the results coming from the utilized FEM. The numerical simulations have been
performed by means of the commercial software ABAQUS/Standard (Lic. n. LKO2211177).
The substrate is modeled as a three-dimensional hyperelastic body under plane strain conditions. In
particular, within the plane of interest, a rectangle of length equal to ten times the wavelength λ = 2πh/kh
(provided by the asymptotic expansion (27)) is considered. For the sake of computation, the depth of the
substrate is taken as the maximum between one hundred times the thickness of the top layer and two
times the wavelength. This choice essentially provides a semi-infinite substrate compared to the thin layer,
and it relies on a theoretical justification thanks to Pence and Song (1991) and Yue et al. (1994) (see the
barreling curves reported in such papers in Fig.s 4, same numbering in each paper).
Based on the geometry described above, it is clear that the smaller the ratio ρML is, the bigger the size
of the substrate will be. Upon utilizing two-dimensional plane strain solid elements, the thickness of
the layer governs the characteristic size of the mesh (that is to avoid distorted mesh that could lead to
numerical ill-posedness of the governing operator). As a result, the simulations with small ρML will be
penalized from a computational point of view, due to an extremely high number of nodes.
Therefore, the following choices have been adopted for the discretization and computational analysis of
the system. As pointed out in (Sun et al., 2011), instead of modeling the upper layer on the basis of a
two-dimensional geometry, the thinness of the top layer relative to its length suggests the use of modified
B22 beam elements, by means of the built-in stringer option in ABAQUS. The elements just mentioned
above are indeed properly modified to represent the plate behavior of the layer undergoing plane strain
conditions. The latter evidently constrains the lateral contraction/expansion of each stripe of the top film
during wrinkling. Henceforth, the representative cross-section of the thin layer can be taken with unit
height, whereas its base must be set equal to (1 − ν2

L)
−1. Regarding the substrate, eight-node, hybrid,

plane strain elements CPE8H are adopted. In order to properly display the wrinkling mode, the mesh size
is calibrated at about λcr/40.
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The outcomes of the numerical simulations performed on the model are in excellent agreement with the
analytic ones for ρML = 10−6, 10−5. Indeed, the error between the analytic and the computational results
are of the order of 10−3. Upon exploring cases for which ρML = 10−4, such an error rises to 10−2, thereby
suggesting that lowering this discrepancy can be done by modeling the film itself through the CPE8H
elements mentioned above.
Concerning the material properties, while the layer is described by a classical linear elastic law with
Poisson ratio equal to 1/2 (because of incompressibility), for the substrate a custom UMAT routine to
properly simulate the OGH constitutive relation defined by (1) has been written. This is because the
built-in ABAQUS routine neglects the contribution of the compressed fibers, deactivating them once they
buckle.
Finally, an extended buckling analysis is performed by making use of an extended number of simulations
(actually over 170), due to the need to cover the whole range of parameters. From Figures 5 ÷ 7 it is clear
how the outcomes of FEM display a full agreement with theoretical ones. In particular, Figures 5 and 6
show the critical strain and wavenumber with respect to the angle for ρML = 10−4 and different values
of mismatch fibers/matrix ρFM. It is worth noting that, the closer to 1/3 the dispersion is, the flatter the
curves are, approaching to the neo-Hookean case when κ = 1/3 (as well as when ρFM = 0). Finally, in
Figure 7 the critical quantities are shown by setting a constant angle θ = 70◦ and varying the ratio ρML,
assuming a perfect alignment of the fibers. Furthermore, it is noteworthy that the representation of the
critical strain and wavenumber with respect to the stiffness mismatch ρML is susceptible to an interesting
property. In fact, by using a bi-logarithmic scale as in Figure 7, it becomes apparent that these quantities
arrange along straight lines with slope 2/3 and 1/3, respectively.
For the sake of completeness, in Figure 8 the post-buckling phase of a bilayer is shown. For this case
ρML = 10−3, ρFM = 2, k2 = 0.8393, κ = 0 and θ = 90◦ have been assumed. The amplitude has been
evaluated as the absolute value of the deviation from the mean height of the surface of two representative
points, namely the global maximum and minimum.
Figure 8 shows that, depending on the contractile strain, the dimensionless amplitude defined by A/λcr =
Akcr/(2π) changes, and a re-organization of the surface emerges. Indeed, while the upper surface is
initially flat, after the onset of the wrinkling the amplitude increases, with the current wavelength being
kcr/λcr

1 . The field (3) reproduces the kinematics that the bilayer has until the onset of the period-doubling.
Note that in such a region, which extends up to ten times the wrinkling strain, the amplitude is governed
by the well-known relation A = h

√
ε/εcr − 1. This has been obtained in the absence of fibers, as reported

by X. Chen and Hutchinson (2004), Huang et al. (2005), and Mane and Huang (2022) among others.
Moreover, beyond a certain strain, two consecutive crests begin to join, and the valley between them
flattens out, causing period-doubling. Finally, by further increasing the compression the waves move
closer, until they make contact with one another (folding).

4 Approximation based on linearized orthotropic properties

In order to explain the trend of the critical strain an approximation has been constructed in Nguyen et al.
(2020) by treating the substrate as an orthotropic material. This leads to the derivation of stiffness moduli
and Poisson’s ratios through an appropriate linearization. In this section it is proved that the scaling laws
(27) and (28) can actually be rewritten by taking into account the approximation above, thereby expressing
them in terms of stiffness parameters of the linearized orthotropic substrate.
In a fiber-reinforced material, the principal directions P1 − P2 are identified by the orientation of fibers
and by their normal, which may not coincide with the "natural" reference system X1 − X2 used to solve
the equilibrium problem. Using the expressions found by Nguyen et al. (2020), the stiffness moduli with
respect to the natural directions result as follows

EX1 = µM
6 + 8ρFM(1 − 3κ)2(1 − 3 cos2(θ) sin2(θ))

1 + ρFM(1 − 3κ)2 sin4(θ)

EX2 = µM
6 + 8ρFM(1 − 3κ)2(1 − 3 cos2(θ) sin2(θ))

1 + ρFM(1 − 3κ)2 cos4(θ)
.

(29)

Henceforth, their value in the principal system is obtained by placing θ = 0, by assuming the axis P1 and
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Figure 5: Comparison of the critical strain between FEM, the plate model (dots) and the asymptotic
expansion (23) (solid line) with respect to the angle θ, ρML = 10−4 and ρFM = 2, 5, 10.

14



Figure 6: Comparison of the critical dimensionless wavenumber between FEM, the plate model (dots) and
the asymptotic expansion (19) (solid line) with respect to the angle θ, ρML = 10−4 and ρFM = 2, 5, 10 ((a),
(c), (d)). In (b) the wrinkling mode, with normalized amplitude, of a representative set of values is shown.
Finally, in (e) the magnitude of the normalized displacements resulting from the FE analysis is plotted.
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Figure 7: Comparison of the critical strain and wavenumber for κ = 0, θ = 70◦ and k2 = 0.8393, as a
function of the stiffness mismatch between the matrix and the film ρML. Note that the plots are on a
bi-logarithmic scale.

Figure 8: Dimensionless amplitude A/λcr for the case ρML = 10−3, ρFM = 2, k2 = 0.8393, κ = 0 and
θ = 90◦. As the contractile strain increases different patterns emerge on the surface. Initially, the film is
flat but, after reaching the critical strain εcr wrinkling occurs. In such a region the amplitude turns out to
scale like h

√
ε/εcr − 1. In the post-wrinkling regime period-doubling and creases can be observed.
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X1 aligned, so that
EP1 = EX1(θ = 0) = µM

(
6 + 8ρFM(1 − 3κ)2),

EP2 = EX2(θ = 0) =
µM
(
6 + 8ρFM(1 − 3κ)2)

1 + ρFM(1 − 3κ)2 .
(30)

Noting that their ratio is
EP1

EP2

= 1 + ρFM(1 − 3κ)2 (31)

it is clear it can be substituted into the amplitude function (27), obtaining

ζ(ρFM, κ, θ) = ζortho
(
EP1 /EP2 , θ

)
=

6

√√√√EP1

EP2

+

(
EP1

EP2

− 1

)2
sin2(4θ)

4
. (32)

In this way the scaling laws (27) and (28) can be rewritten as follows

kortho
h,cr = kh,nh ζortho

(
EP1 /EP2 , θ

)
, εortho

cr = εh,nh ζ2
ortho

(
EP1 /EP2 , θ

)
(33)

from which one can see how the response depends on the ratio of the orthotropic stiffness moduli in the
principal system and on the angle that fibers have with respect to the natural one.

By assuming a bilayer with a geometry similar to what is considered in this paper, though with a
linear elastic orthotropic substrate instead of a fiber-reinforced one, Vonach and Rammerstorfer (2000)
obtained scaling laws for such systems. In Eqns. (22) and (23), such authors provided explicit formulas
for the semi-wavelength and the critical longitudinal load at the onset of wrinkling of an isotropic thin
plate resting on an elastic foundation. By adapting these results to write down the actual wavelength and
the critical strain it follows that

kh,cr = h 3

√
ks

2KL
(34)

εcr =
h2

12

(
1

3
√

4
+

3
√

2
)

3

√
k2

s

K2
L

, (35)

where KL = EL h3/
(
12(1 − ν2

L)
)

is the bending stiffness of the top layer, while ks is the substrate stiff-
ness. It is noteworthy that these relations are particularly similar to the ones valid for isotropic bilayers.
Depending on the specific problem under consideration, ks can assume different forms. For instance, the
outcomes of Eqn.s (34) and (35) displayed in Figure 9, arise by choosing the substrate’s stiffness ks as in
Eqn. (21) of Vonach and Rammerstorfer (2000). It must be mentioned that for the evaluation of such a
quantity the linearized orthotropic moduli obtained in Appendix 2 of Nguyen et al. (2020) have been used.
Furthermore, in Eqn. (7) of that same paper, the authors constructed a scaling law for the critical strain
that fits the results obtained for low substrate/layer mismatches with good agreement. Such an expression
is neither based on an asymptotic expansion nor on a rigorous derivation, and it makes use of an ad-hoc
elastic module, Es

eff, such that the following relations hold:

εcr = 0.85 3

√
Es

effG
s
xy

E2
L/(1 − ν2

L)
2

, with Es
eff ≈

√
Es

xEs
y

1 − νs
xzνs

zx
. (36)

Finally, unlike Eqn. (22) and (23) by Vonach and Rammerstorfer (2000) and the Eqn. (7) by Nguyen et al.
(2020), it is worthy of mention that Figure 9 shows how scaling laws (27) and (28) derived in this paper well
capture the quasi-symmetric trend of the critical wavenumber and critical strain at the onset of wrinkling.
Indeed, the case ρML = 10−3 portrayed in Figure 9 presents a slight asymmetry when ρFM = 10 that is not
present whenever ρML ≤ 10−4 and 0 ≤ ρFM ≤ 10.
Therefore, in the range of parameters examined in this present work, the novel scaling laws (27) and (28)
show minor deviations from the analytical model, and they are definitely much closer to the exact results
compared to the other formulations available in the literature.
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Figure 9: Comparison of the critical strain (a) and dimensionless wavenumber (b) assuming ρML = 10−3,
κ = 0 and k2 = 0.8393. Although the curves are slightly asymmetric for ρFM = 10, it emerges that
scaling laws (27) and (28) approximate the exact results better than formulations proposed in Vonach and
Rammerstorfer (2000) and in Nguyen et al. (2020).
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5 Conclusions

Compressed bilayers made of stiff thin films perfectly bonded to the top of fiber-reinforced deep soft
substrates have been studied in this paper. To begin with, it has been shown how assuming a plate
behavior for the thin top layer actually allows the reproduction of similar results to the ones obtained in
Nguyen et al. (2020), where a three-dimensional elastic behavior for the film itself was adopted. It has
then been illustrated that for high stiffness mismatch ratios between the substrate and the adhering layer,
both models essentially show the same results, although the dimensional-reduced model naturally entails
significantly less computational cost. Upon varying the relative angle between the two families of fibers,
the simulations performed for cases in which the substrate is much softer than the layer yield a symmetric
and sinusoidal trend both for the critical strain and for the corresponding wavenumber.
Although complex theoretical and numerical analyses can be performed case-by-case, a prompt evaluation
of the main wrinkling features for the bilayers at hand is often needed. This is certainly the case when
it comes to comparing experimental findings with handy estimates of the topographic features of the
corrugation in such systems. Unfortunately, no tools yet exist owing to the rapid evaluations mentioned
above. To this end, appropriate scaling laws would certainly fill such a gap. In particular, no rigorously
derived simple relations governing the critical strain and the wave number at the onset of wrinkling had
been provided for highly mismatched hyperelastic fiber reinforced bilayers before this present work. This
drawback did include biological systems, even in the case of estimating the most basic features of the
exhibited corrugated topography of organs such as arteries. Although in Nguyen et al. (2020) several
interesting analyses were performed (actually by a team of researchers involving three of the coauthors
of this present paper) for flat fiber reinforced bilayers, a systematic rationale for mathematically deriving
scaling laws for the features highlighted above was not pursued. Indeed, in such a paper only an ad-hoc
scaling for the strain at the onset of wrinkling was provided for specific cases.
The main result of this work relies upon the novel scaling laws for the critical strain and its corresponding
wavenumber characterizing the initial wrinkling of compressed fiber-reinforced bilayers. This has been
achieved only thanks to the outcomes of the simplified model developed in this paper. Indeed, close-
form solutions to the bifurcation problem governing the balance of forces at the interface between the film
(treated as a thin plate) and the fiber-reinforced substrate (modeled as an SRM) enabled one to analytically
find explicit asymptotic expansions owing to the new scalings mentioned above. Remarkably, either the
absence of fibers or their complete randomness reduce the new scaling laws to the well-known ones valid
for neo-Hookean bilayers (see e.g. (Cao & Hutchinson, 2012; Sun et al., 2011)).
In all the other cases, a modulating factor depending on the properties of the fibers turns out to govern the
newly obtained laws (see Figure 4). As expected, for certain fiber orientations and for certain fiber-matrix
stiffness ratios, this can amplify the (dimensionless) wavenumber up to a factor 1.80 and the corresponding
wrinkling strain of over 3.2. This significant amplification would then be missing if the novel scaling laws
were erroneously replaced either by existing estimates based on the film and the matrix properties alone
or on the ad-hoc relations mentioned above. The analyses in Sect.s 2÷ 3, among other results, provide de-
tailed comparisons between the outcomes of the novel scaling laws against both the results obtained from
the dimensionally reduced analytical approach, and from the FE analyses. These results show how truly
satisfactory the outcomes of the newly obtained scaling laws are relative to the corresponding analytic and
numerical results. Furthermore, Sect. 4, Figure 9 displays the discrepancies between the results coming
from fully linear approaches (i.e. Vonach and Rammerstorfer (2000)) and the ad-hoc relation found in
Nguyen et al. (2020) versus both the novel scalings and the analytic formulation for certain values of the
parameters of the fiber-reinforced bilayers. Unlike the first two sets of results, Figure 9 displays how the
last two methods, which have been shown to essentially agree with the outcomes of the FE analyses in the
previous sections, reliably hold throughout the whole range of variability of the fiber’s angle.
Finally, in Sect. 5 it has also been shown how material parameters obtained in Nguyen et al. (2020),
appendix 2, providing orthotropic linearized moduli for the substrate can be used to express the newly
obtained scaling laws.
Providing tools like appropriate and rigorously derived scaling laws is key for the analysis of geometrically
complex situations involving compressed highly mismatched bilayers containing fibers, with whatever de-
gree of dispersion relative to a main orientation they have. Indeed, having the availability of scaling laws for
the main features of wrinkling, i.e. the critical strain at its onset and the associated wavenumber, becomes
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definitely useful when it comes to performing a firsthand comparison with experimental measurements even before
running computational/analytical analyses.
The strategy undertaken in this paper to obtain such laws is currently under investigation for low-
mismatch fiber-reinforced bilayers, that are even more amenable for soft biological tissues. Furthermore,
new scaling laws in the presence of possible sources of inelasticity, such as growth, or even yielding and
plasticity of the top layer in the presence of metallic films may be accounted for upon generalizing the
methodology proposed in this paper to such situations. In other words, the systematic approach intro-
duced in this paper to asymptotically expand complex representation formulas of the main wrinkling
features paves the way for many other related problems, such as pre-stretch induced corrugation both in
flat and curved fiber-reinforced bilayers, the latter being much closer to the geometry of the cross sections
of wrinkled arteries.
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