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Figure 1: The architecture of the trajectory classi�cation module.

ABSTRACT
Nowadays, massive volumes of mobility data are being generated
from thousands of tracking devices, such as GPS devices, RFID
sensors, location-based services, satellites, and wireless communi-
cation technologies. This phenomenon can be strongly observed
in the maritime domain and as a result, today’s industry is �ooded
with tracking data originating from vessels across the globe that
transmit their position at frequent intervals. Automated methodolo-
gies able to extract meaningful information and identify mobility
patterns from such tracking data are of utmost importance since
they can reveal abnormal or illegal vessel activities in due time. To
this end, we present a demo of a trajectory classi�cation methodol-
ogy that is able to classify vessels’ trajectories into activities that
the vessels are engaged in from AIS data streams in real-time. The
goal is to provide maritime authorities with a visualization tool and
an API of the vessel trajectories and their activities in real-time.
The trajectory classi�cation methodology that is used in this demo
achieves a classi�cation performance of over 95%.
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1 INTRODUCTION
The maritime industry generates large volumes of data through
tracking sensors, particularly the Automatic Identi�cation System
(AIS) used for vessel location. Originally designed for safety, AIS is
now also utilized by maritime authorities to identify illegal activi-
ties and monitor vessel behavior, enhancing Maritime Situational
Awareness (MSA). This increased awareness is essential for var-
ious purposes, including detecting unusual vessel behavior due
to damage, aiding in Search And Rescue (SAR) operations, colli-
sion prevention, combating piracy, and addressing illegal �shing
activities.

Researchers have developed techniques that use vessel trajectory
data to enhance Maritime Situational Awareness (MSA). These al-
gorithms focus on features like trajectory clustering, classi�cation,
anomaly detection, and event prediction. Trajectory classi�cation
is a key method for identifying abnormal patterns or events. Such
techniques allow the authorities to further take advantage of the
trajectories formed from the AIS messages either in real-time [3, 6]
or on historical data [11, 12]. Several approaches for trajectory
classi�cation attempt to exploit global features such as mean ve-
locity, acceleration, or their standard deviations [1, 7]. Other ap-
proaches try to apply trajectory partitioning [5] or �nd relevant
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sub-trajectories [2] in an attempt to identify more discriminative
features. In most of these studies, the context of the analysis is
typically the physical world and the geography. The three funda-
mental features of a possibly multidimensional space are: position,
speed and acceleration. Experts, however, heavily rely on trajectory
visualization to identify and categorize trajectories that are of some
signi�cance. This provides an intuition to move the analysis in a
di�erent domain, by leveraging computer vision approaches (i.e.
Convolutional Neural Networks (CNNs)) on trajectory classi�ca-
tion. One of the most common goals of such networks is to classify
a set of images into a prede�ned set of labels of interest.

In this work, we present a demo of a real-time, trajectory clas-
si�cation methodology for vessels that employs a deep learning
streaming methodology over AIS data streams. The methodology
for this demo was presented in [3, 4]. Streaming vessel trajectory
patterns are transformed into images, which in turn are accurately
classi�ed into vessel activities in real-time, using deep neural net-
works. Our system relies on the well-known Lambda architecture
[10] in an attempt to balance latency and throughput for the 4Vs
of the Big Data (i.e., Volume, Velocity, Veracity, and Variety). A
‘batch-processing’ layer (o�ine) is responsible for training the clas-
si�cation model, which is then used to distinguish the vessel ac-
tivities in the ‘stream-processing’ layer (real-time) at which data
continuously arrive from vessels at high rates.

2 ARCHITECTURE
Several frameworks exist for distributed stream processing, namely
Apache Spark1, Apache Flink2 and Kafka streams3. Out of these
three options, Apache Spark is not preferred since it performsmicro-
batching over streams of events and a system is needed that can
handle real-time event processing. Despite the fact that both Apache
Flink and Kafka streams have inherent support for real-time stream
processing, the development of the trajectory classi�cation module
was limited to the frameworks’ programming paradigm. Therefore,
to balance event processing with low latency, high throughput, and
the ability to freely develop the module that would be optimized
for our use case, the Apache Kafka4 framework was used. Apache
Kafka is a distributed publish-subscribe and message-exchange
platform similar to a message queue able to process streams of
events as they arrive. The Apache Kafka ecosystem consists of
topics, producers, and consumers. A kafka topic is a category/feed
name to which messages are stored and published. A producer
is an application that continuously publishes or stores messages
on a topic. A consumer is an application that is subscribed to a
topic and continuously consumes messages. A kafka topic can
be divided into : partitions with each partition storing di�erent
messages. Speci�cally, messages with the same key will be stored in
the same partition.: consumers can be subscribed to the partitioned
topic with each consumer reading from a di�erent partition thus
enabling high throughput. A producer can store messages to the
partitioned topic and Apache Kafka will handle the load balancing
of the messages among the partitions internally. In our use case,
the vessel identi�er can be considered as the message key, the AIS
1https://spark.apache.org/streaming/
2https://�ink.apache.org/
3https://kafka.apache.org/documentation/streams/
4https://kafka.apache.org/

receiver as the producer, and the trajectory classi�cation module as
the consumer. An even distribution of load within the nodes of the
system reduces the probability that a node turns to a hotspot and
its property also acts as a safeguard to the system reliability [8, 9].

The architecture of the trajectory classi�cation module can be
broken down into three parts as seen in Figure 1. The �rst part
(left of Figure 1) refers to the collection of streams of AIS messages
via a base station installed in the premises of the Department of
Informatics and Telematics, at Harokopio University of Athens5.
The base station is comprised of a Very High Frequency (VHF)
antenna that is connected to a Raspberry Pi. Then, an NMEA-01836
multiplexer is used, called Kplex7, to receive messages from the
antenna. Then, these messages are decodedwith the use of the DMA
AisLib Java library8, are sent through a Kafka topic and stored in a
PostgreSQL9 database.

The second part (bottom of Figure 1) refers to the training of
a machine learning model. Speci�cally, AIS messages stored in
the database are annotated to speci�c labels or activities, namely
anchored, moored, �shing, and underway. Then, the trajectories of
the vessels engaged in such activities are transformed into images.
To do so, and because the distance each vessel travels through space
is di�erent (e.g. vessels traveling in the Atlantic ocean will cover
greater distances compared to vessels traveling in the Irish sea), the
bounding box or the surveillance area in which the vessel moves
needs to be normalized. In order to accurately capture and place
the shape of the trajectory inside a normalized bounding box, the
total distance of both the G and the~ axis in which the vessel moves
must be de�ned �rst. Therefore, we calculate the total horizontal
distance and the total vertical distance the vessel travels based on
the minimum and maximum longitudes and latitudes, respectively.
Then, the distance eachAIS position has traveled from theminimum
longitude and latitude is calculated. Next, the percentage of the
total distance each AIS position has traveled from the minimum
coordinate in both G and ~ axes is also calculated. As a result, each
AIS position can be placed inside a normalized bounding box or
a surveillance space of a user-de�ned size that is essentially an
image representation. More details can be found in [3, 4]. Finally, a
well-established, deep learning model, called VGG16 is trained on
the annotated trajectories that have been transformed into images.
VGG16 is pre-trained on the ImageNet10 dataset and its weights
are updated based on the new training image dataset created from
the AIS messages.

The third part (top of Figure 1) is the real-time classi�cation
of the streaming AIS trajectories, where messages are collected
through the AIS receiver and the Kafka topic and transformed into
images at run-time. Then, the already trained VGG16 model is used
to classify the newly created images and predict an annotation for
the vessel. To classify the vessels’ trajectories, the module uses
a temporal sliding window of a 6-hour length and a step of one
AIS message. Therefore, in every received message the module

5https://dit.hua.gr/index.php/en/
6An electrical and data speci�cation for communication between marine electronics
such as GPS receivers. It has been de�ned and is controlled by the National Marine
Electronics Association (NMEA).
7https://github.com/stripydog/kplex
8https://github.com/dma-ais/AisLib
9https://www.postgresql.org/
10https://www.image-net.org/
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takes into account all of the AIS messages in the past 6 hours and
converts them into an image. The six-hour window was chosen
because it is long enough for patterns to emerge and short enough
to classify these patterns as soon as possible. Furthermore, previous
experiments [3] demonstrated that the six-hour window is the
optimal window for better classi�cation results. Next, the deep
learning model classi�es the image and outputs a probability for
each of the prede�ned vessel activities. The vessel activity with the
highest probability is the �nal prediction of the module. It should be
noted that the classi�cation is performed on a per-vessel basis and
that multiple classi�cation models can run at the same time and in
a distributed fashion to support larger volumes of data streams and
number of vessels due to Apache Kafka. Currently, the classi�cation
module consumes approximately 266, 112 messages per day from
one AIS base station and from over 1200 vessels in the area of
the Saronic Gulf of Attica, Greece. The classi�cation module can
be seen live at HUA AIS Station. It is also worth noting that the
training of the deep learning model is trained in Keras11, Python
and the real-time processing of AIS messages and classi�cation is
implemented in Java’s Deeplearning4j12 library.

3 MODULE FUNCTIONALITIES
At �rst glance, the user is able to visualize a vessel’s past 6-hour
trajectory by clicking on a vessel of choice. Figure 2 demonstrates
this use case. Di�erent colors of vessel markers indicate a di�erent
vessel type, e.g., a passenger vessel. A gray vessel marker indicates
that the vessel has not yet transmitted static messages that contain
information about its vessel type. Static messages are transmitted
once every six minutes and include the vessel’s static information
such as type, draught, and �ag. Dynamic messages are transmitted
from once every three seconds and up to once every three minutes
depending on the vessel’s speed and rate of change of course. In
the example of Figure 2, it can be observed that the vessel’s marker
is initially colored gray and then becomes red which indicates a
tanker vessel.

Moreover, the user can see information regarding its activities
when clicking on the selected vessel. Figure 3 illustrates an example
of a vessel that has been classi�ed as engaged in �shing. When �sh-
ing vessels are engaged in �shing activities, they tend to manoeuver.
Due to the fact that other types of vessels could manoeuver (e.g.,
anomalous behavior) the label is mentioned as manoeuvering and
not �shing in order to be more generic. The user can decide based
on the type of the vessel, the exact activity that it is engaged in.
For visualization purposes, a pop-up appears that illustrates the
probability for each pre-de�ned activity or label. The activity with
the highest probability is also visualized as the �nal classi�cation
of the vessel’s activity for that point in time and space. Also, the
pop-up illustrates other information regarding the vessel such as
its name, identi�cation number, and speed as seen in Figure 3.

Furthermore, the trajectory classi�cationmodule is able to visual-
ize the coverage of the AIS base station. When the button “Receiver
Coverage” is clicked, a blue polygon appears on top of the map
that indicates the geographic boundaries of the receiver’s coverage.
In essence, the polygon is the convex hull of all the AIS messages

11https://keras.io/
12https://deeplearning4j.konduit.ai/

Figure 2: A vessel’s past 6-hour trajectory.

Figure 3: Example of a vessel classi�ed as being engaged in
�shing.

received in the past four hours. Given a set of points in space, the
convex hull is the smallest convex polygon that contains all the
points.

Finally, the user can also access the data illustrated in the classi-
�cation module via a REST API which will appear when the “Data
Access” button is clicked. Through this API, the user can retrieve
information that includes a vessel’s past twelve-hour trajectory, a
vessel’s trajectory during a speci�c period in time, and all vessels’
trajectories received from the AIS station during a speci�c period
in time.
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Figure 4: Network coverage.

Table 1: Results of the evaluation of the trajectory classi�ca-
tion module.

Methodology Cross Validation
Precision Recall F1-score

First Dataset 0.9755 0.9705 0.9723
Second dataset 0.9686 0.9652 0.9653

4 EXPERIMENTAL EVALUATION
This paper presents a demo and a visualization tool of a trajectory
classi�cation methodology. This section brie�y presents the classi�-
cation performance of the methodology used in the demo and it has
already been presented in more detail in previous works [3, 4]. Two
datasets were used for experimental evaluation of the trajectory
classi�cation module. The �rst dataset contained AIS messages
collected from a Terrestrial AIS receiver (T-AIS) that covers the
Saronic Gulf (Greece) and contains high-quality AIS information
without gaps of information. The vessels have been monitored for
almost one and a half month period starting on February 18th, 2020,
and ending on March 31th, 2020. The dataset provides information
for 1229 unique vessels and contains 11, 769, 237 AIS records in
total. The AIS messages used for our ground truth dataset contain
activities that have been extracted from vessels engaged in the
following activities: underway, anchored and moored. The second
dataset that was used was provided by MarineTra�c13 and contains
AIS messages from January 1BC , 2018 to February 28C⌘ , 2018 in the
seas of Northern Europe. The AIS messages used for our ground
truth dataset contain the following activities: trawling, longlining,
moored, and underway. The total number of AIS messages in this
dataset sums up to 61, 050. In both datasets, the navigational status,
the vessel type, and the destination reported in the AIS messages
were used as annotations for the labels. Furthermore, manual anno-
tation and �ltering also took place to create representative samples
for training.

To evaluate the trajectory classi�cation module, we performed a
10-fold cross-validation on both datasets, keeping at each fold 90% of
the data for training and 10% of the data for validation and reported
the macro-average results. The evaluation results demonstrate the
high-accuracy classi�cation performance of the trajectory module
and are illustrated on Table 1.
13https://www.marinetra�c.com

5 CONCLUSION
In this work, we presented a demo of a methodology that is able to
classify vessels’ trajectories in real-time using a deep neural net-
work. This demo module can provide maritime experts with insight
regarding vessels’ activities and supports several functionalities
that highlight the past and current behavior of multiple vessels in
a speci�c region. Data consumed by the AIS receiver are publicly
available via a REST API. Future works include adding support for
more vessel activities such as tugging. Finally, due to the unparal-
leled quantities of trajectory data, which in turn can overwhelm
human analysis approaches, we intend to utilize compression tech-
niques in order to minimize the size of the trajectory data, while
at the same time minimizing the impact on the trajectory analysis
methods.
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