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Abstract. With the complexity of emerging systems rapidly multiply-
ing, it is important to evolve our testing infrastructures required to better
understand how our distributed systems deal with scaling, failover and
fatal tolerance. Compared to random testing the test of ”deep” failure
paths requires different methods for deriving test cases and for running
the test. This paper introduces Frisbee, a platform for the automated
testing of distributed applications over Kubernetes. Frisbee leverages
static and dynamic runtime instrumentation to spin-up the dependency
stack and perform execution-driven testing actions, while automating the
collection of performance metrics and the assertion of system’s behav-
ior. This technique enables the controlled injection of realistic software
faults while the target system executes, ensuring a predetermined fault
load distribution throughout the experiment, regardless of the particular
system or workload. Our evaluation demonstrates that Frisbee signifi-
cantly enhances the precision and controllability of prior tools with only
modest memory and performance overhead during fault-free execution.

Keywords: Cloud-Native testing · systems benchmarking · Event-driven
Chaos testing

1 Introduction

In 2012, Netflix introduced the concept of Chaos Engineering to detect potential
system failures before they resulted in outages. However, their initial approach
of random testing, which involved subjecting complex cloud-deployed systems to
negative behavior, had limitations. While it could reveal shallow bugs caused by
independent faults, it was unlikely to expose ”deep” failures resulting from com-
binations of different components and types of faults. These untested scenarios
could be a problematic aspect of the system.

As Chaos Engineering has evolved, researchers have moved towards mimick-
ing worst-case failure scenarios, allowing the system to be driven into unlikely
but severe corner cases through intentional, measured, known failures. However,
testing these ”deep” paths can be challenging, given the inherent complexity
and concurrency of distributed systems. Triggering faults using an external timer
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without accounting for the system’s state is difficult, especially when attempting
to inject faults at precise runtime conditions.

This paper introduces Frisbee, a Kubernetes platform that uses execution-
driven fault injection, a new technique for dependable general-purpose Chaos En-
gineering experiments. Unlike existing tools, Frisbee injects a controlled and pre-
determined faultload distribution as the system executes at runtime, thanks to
a combination of containerized workflows, Chaos toolkits, and a well-distributed
monitoring baseline that provides insights into the system’s state. As a result,
Frisbee can deliver precise, controllable, and observable fault injection experi-
ments with negligible impact on the system during normal execution.

The paper also introduces a comprehensive Chaos Engineering language that
allows testers to create sophisticated Chaos scenarios by combining base scenar-
ios without needing to write new code. Testers can define the entire dependency
stack, bring the system into a steady state, schedule switching between fault-free
and faulty execution, validate transitions for bad states or SLA violations, and
use a broad range of containerized systems and application benchmarks. In this
way, Frisbee provides a flexible and scalable solution for conducting reliable and
reproducible Chaos Engineering experiments.

2 The Frisbee Framework

2.1 Features

Cloud application developers face numerous challenges when exploring the per-
formance and reliability of their applications under different operational condi-
tions. Frisbee offers several features to help developers overcome these challenges:
Extensibile and Portable Testbed The Frisbee framework is designed to be
easily extensible, portable, and practical. The core features of Frisbee operate
in Kubernetes to eliminate infrastructure-specific constraints, ensuring similar
environments for dev, test, and production. This means that Frisbee scenarios
are reproducible across a range of environments, including local workstations
(e.g., minikube, microk8s), bare-metal cluster setups (e.g., k8s), and Cloud de-
ployments (e.g., EKS).
Event-Driven Initialization, Workload and Faultload Frisbee provides di-
rect access to the runtime environment to ensure controllability and precision of
executed actions. This means that testers can build execution-driven scenarios,
allowing them to spin up the dependency stack of the System Under Test (SUT)
in a deterministic manner, build complex workloads with dynamically chang-
ing request patterns, and surgically inject faults into specific locations without
introducing spurious faults that may compromise the validity of the results.
Failure-Aware Semantics Managing the SUT and the failure injection from
within the same workflow allows testers to distinguish between an unexpected
service failure (i.e., due to a bug in the application’s code) and an expected
service failure (i.e., part of a Chaos experiment). This is a highly required feature
in resiliency testing [1]. In the first case, the test should abort immediately,
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whereas in the second case, the fault does not constitute a culpable failure, and
the test should continue.
Contextualized Visualizations: Frisbee provides additional interpretation and
contextual data to help testers visually correlate the observed behavior with a
root event. For example, an annotation marking a network fault’s injection could
help explain an otherwise enigmatic drop in the system’s throughput. To achieve
this, when Frisbee performs an action (e.g., create a service, inject a fault), it
interacts with Grafana to annotate the action’s beginning and ending.
Hierarchical Assertions Frisbee promotes the decomposition of complex prop-
erties into simpler assertions that are provable at the action level. This is impor-
tant because testing workflows are defined hierarchically (e.g., clusters managing
hundreds of services), making it natural to partition large verification problems
into a set of properties associated locally with the entities of the workflow hier-
archy [2].

2.2 System Overview

At a high level, Frisbee interfaces with Kubernetes to run the experiment, mon-
itor system state and application metrics, and compare them against assertions.
To do so, Frisbee implements a set of Actions that cover the full spectrum of
operations needed to test a distributed system. Each action is defined on a sep-
arate CRD and is managed by a dedicated controller. The overall architecture
is shown in Figure 1.

The experiment starts with the user specifying the testing resources in a
YAML file. The most important resources are the templates for the System
Under Test (SUT) and the testing scenario that will drive the testing process.
Within the SUT template, the user specifies the properties of the SUT (e.g,
listening ports) and the benchmarks to evaluate the SUT. Within the scenario,
the user specifies the sequence to bootstrap the SUT, changes in the environ-
ment that will happen throughout the experiment (testing actions), as well as
conditions that should be met in order for the test to be successful. Actions
may include creating instances from SUT templates, deleting running instances,
executing scripts in running instances, injecting or revoking faults, and more.

After the scenario is ready for deployment, the user submits it to Kuber-
netes API via either the standard kubectl tool or the Frisbee CLI. Subsequently,
the Kubernetes API invokes the Frisbee admission controller, which performs a
preliminary validation of the scenario to detect malformed dependencies, expres-
sion errors, and ensure that the scenario does not contain infinite loops which
cause the scenario to run forver, thus preventing other test-cases from execution.
After validation from the admission controller, the scenario is being forward to
the Scenario controller for execution. In general, listed actions are executed im-
mediately, unless the user has specified scheduling constraints or inter-action
dependencies. In this case, the execution is postponed until the desired con-
ditions are met. The conditions are described using Frisbee expressions, which
can be time-driven, state-driven, metrics-driven, or tag-events. These events are
summarized on Table 1
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Fig. 1: Frisbee architecture. Given a template describing the system under test
and a workflow describing the experiment, Frisbee interfaces with Kubernetes
to run the experiment. Notice the loop among controllers, telemetry stack, and
kubernetes API.
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During scenario execution, Frisbee collects system and application metrics
from distributed components using a monitoring sidecar attached to the same
pod as the target application [3,4]. Prometheus scrapes the metrics periodically
and stores them in a time-series database for analysis using Grafana, which pro-
vides aggregation functions, real-time visualizations, and alerting capabilities.
Reporting is emphasized, and the controller pushes a descriptive annotation
to Grafana when creating or deleting an object to provide context for visually
correlating observed behavior with a root event. The controller maintains a bidi-
rectional link with Grafana, capturing alerts raised by it, which can be used in
evaluating scheduling policies and testing assertions.

Finally, it worth mentioning that Frisbee is shipped with a cli which simplifies
testing-related tasks, such as running tests on isolated namespaces, providing an
overview of the test status, facilitate inspection of the testing environment, and
save testing results for further processing.

Event Description

Time-driven Fired after an elapsed time measured by the controller.
State-driven Fired by the Kubernetes API when managed objects have state

changes, errors, or other messages that should be broadcast to the
system.

Metrics-driven Fired by the telemetry stack when the outcome of statistical analysis
on the collected metrics matches a given rule.

Tag-events Fired when one controller passes contextual information to another
controller.

Table 1: Events used to drive assertions, conditional loops, and other places
involving execution-driven knowledge.

2.3 Scenario Modeling

An Frisbee scenario describes a set of dependent actions that collectively describe
the testing process. The scenario defines three important properties: 1. a list of
actions that drive the testing process, 2. the preconditions of the runtime before
each action, and 3. the desired state of the runtime after each action.

Actions covers a full range of operations required to test a distributed sys-
tem, and consists of five comprehensive and fine-grained abstractions: services,
clusters, faults, calls, and checkpoints. Descriptions are in Table 2. Under the
hood, actions invoke templates that provide solid definitions of the SUT. This
strategy allows us to create a library of frequently-used specifications and use
them to generate objects on-demand throughout the experiment. When called
without parameters, templates generate services initialized with reasonable de-
faults. With parameters, templates generate the customized configuration by
replacing the placeholders (denoted as ...) with the given input. Due to the lim-
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ited space, we only provide the definition of a scenario 1.1, not the underlying
templates.

Action Description

Service Standard representation of a containerized application.
Cluster Abstraction for managing multiple services in a shared execution context.
Fault Condition that disturbs a running service, network, or storage.
Call Command executed by the controller to a running service.

Checkpoint Store the status and the metrics of the SUT at the given time.

Table 2: Using just 5 basic primitives, Frisbee covers a full range of operations
required to test a distributed system.

Code 1.1: Scenario demonstrating action with logical dependencies (depends),
parameterization (inputs), addressing macros (.cluster), and injection of tem-
plates faults.

2.4 Extensibility and Integration with Chaos Controllers

Every action in Frisbee is represented by a different CRD and is managed by a
separate controller, e.g, the cluster action will handled by the Cluster controller.
Practically, this architecture builds a tree of domain-specific controllers with a
top-level controller (the scenario) that dispatch requests based on the type of
action. Controllers interact by submitting and receiving requests recorded in the
Kubernetes API. In the previous example, the Scenario controller will create
a Cluster resource to the Kubernetes API, that will be subsequently captured
by the Cluster controller. After handling the request, the Cluster controller will
modify the Cluster resource with the updated status, and the Kubernetes API
will notify the Scenario controller about the change.

2.5 Manage Dependencies Between Actions

To manage the logical dependencies between actions, the scenario controller
should inspect the status of the various actions (stored in the Kubernetes API)
and, once it comes to the desired state, trigger the following action. This, how-
ever, requires the Scenario controller to know how to parse the various statuses
and understand their semantics. One solution is to let the user specify parsing
rules for each action and explicitly model the reaction to every possible outcome.
Instead of this laborious task, we have set a common phase-field so that all ob-
jects managed by Frisbee can consistently communicate where they are in their
lifecycle. The values and their meaning are tightly guarded, as shown in Table 3.
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Phase Description

Uninitialized the request has been accepted by the Kubernetes API, but it is not yet
dispatched to the Frisbee controller.

Pending the request has been accepted by a Frisbee controller, but at least one
of the constituent jobs has not been created.

Running all constituent jobs of the request have been created, and at least one
job has not been completed yet.

Success all the constituent jobs of a request have been successfully completed.
Failed at least one job of the request has terminated in a failure.

Table 3: Lifecycle Semantics. Logical Dependencies are built upon them.

2.6 Expected versus Unexpected Failures

Frisbee features a holistic approach to failure detection, propagation, and re-
covery [5], which provide testers the ability to distinguish between expected and
unexpected failure. The basis of our mechanism is that almost all fault-injections
in Kubernetes happen at a Pod level. Whenever the workflow controller encoun-
ters a Chaos action, it traverses the ownership semantics for finding the service
responsible for the affected pod and places a metadata.Chaos tag on it. This tag
describes the type of impending fault (e.g., partition, kill). It then applies the
action. If the pod crashes, the failure is propagated to the service via the status
updating mechanisms, making the service fail as well. When this happens, the
service owner (i.e., cluster) can conclude whether the failure is expected or not
by inspecting the service’s metadata for the presence of a chaos tag. If there is
no tag, the failure is unexpected, and the cluster fails immediately to cut losses
and quickly try something else. If there is a tag, the failure is expected, and
the behavior is tunable according to the clusters’ semantics, e.g., the number of
tolerated failures.

2.7 Extract State and Performance Metrics

Expressions in Frisbee can be state-driven or metrics-driven. State Expressions

are used to describe dependencies on the lifecycle of a Kubernetes object (i.e
when a service has failed). They consume state events fired by the Kubernetes
API. For simplicity, we provide a set of aggregation functions that are callable
from within the expressions, e.g., ‘.state.failed() > 4’. Expressions can also be
combined into complex assertions via logical/arithmetic/string comparators.

Metrics Expressions are used to describe dependencies on the performance
of a running service (i.e when percentile latency exceeds a given limit). They in-
volve an initial step for setting an alert to Grafana and then checking if the
alert is fired. For interoperability, we have adopted the Grafana syntax for writ-
ing alerts. For example, ‘MAX() QUERY(metric, 1m, now) IS ABOVE(70000)’
roughly translates as ‘raise an alert if the max value of the given metric for the
period between not and 1 minute ago has been above 70000‘.
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The expressions are well-integrated into the Frisbee language and are reusable
across assertion, conditional loops, and other places involving execution-driven
knowledge. Additionally, the extracted output of the expressions can be stored
using the Checkpoint action. As demonstrated in the Evaluation Section, the
Checkpoint allows us to take snapshots and use this information in assertions to
compare performance metrics before and after an action (i.e., network partition).

2.8 Scoped Assertions

Every resource managed by Frisbee (e.g., services, faults, clusters, cascade) has
its own assertions. The main benefit is that we can isolate failed services while
allowing the workflow components to synchronize their knowledge and correlate
individual failures to top-level events [6, 7]. For state-based expressions, the as-
sertions only consider jobs in the local scope – those created by the entity. This
way, we prevent cross-references on jobs belonging to a different resource, thus
saving the user from never-ending loops. Nonetheless, we cannot wholly exclude
cross-references, given that metrics-driven expressions have access to the com-
mon telemetry stack. Therefore, we prevent cross-references to a job but not
to a job’s performance metrics. Regardless of this peculiar case, we still permit
top-level assertions to use available assertions at lower hierarchy levels.

3 Evaluation

We evaluate Frisbee using the CockroachDB. The decision was based on the fact
that CockroachDB have open-sourced their own tool (roachtest) for performing
large-scale (multi-machine) automated tests, and have a large collection of test-
ing scenarios that we replicate in Frisbee. The evaluation was conducted on a
Kubernetes cluster with 4 server-grade nodes, and the default settings were used
to configure CockroachDB and YCSB benchmarks. Bitnami containers Telegraf,
Prometheus, and Grafana were used for monitoring, while Chaos-Mesh was used
for fault injection [8].

Load testing experiments were conducted using a sequence of YCSB work-
loads to evaluate the precision of Frisbee’s event-driven strategy. The scenario
consisted of creating a cockroach cluster, preloading the server with keys, and
running YCSB workloads A-F and E, while using different invocation strate-
gies (Kubernetes Vanilla, Time-Driven, State-Driven) and collecting statistics
on system utilization and application-specific metrics (number of Go routines).
As shown in Figure 2, the vanilla Kubernetes policy was found to be unreli-
able due to its expectation of a final state and lack of logical dependencies. The
time-driven policies is also found to be flaky. If the sleeping time is small, sub-
sequent stages of the workflow will overlap, leading to erroneous results. If the
sleeping time is large, there is a huge portion of idle time, that is translated
to long-running experiments with increased time and energy costs. In contrast,
state-driven execution was found to respect job ordering regardless of the number
of ingested keys.
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(a) Kubernetes Scheduling, 500 keys (b) State-Driven Scheduling, 500 Keys

(c) Time-Driven Scheduling, 500 Keys (d) State-Driven Scheduling, 1M keys

Fig. 2: Scheduling Policies for the standard sequence of YCSB workloads
(A,B,C,F,D,E)

SSTable Corruption The purpose of this scenario is to test whether the
storage layer (pebble) can detect corrupted SST files and fail fast [9]. The sce-
nario involves provisioning a 3-node cluster, importing TPC-C data from the
workload node, corrupting six random SST files on each node, starting each
node, and verifying that each node panics. If the nodes do not panic, the TPC-C
workload is run for up to 10 minutes on node 1, and the cluster is verified to
panic. The experiment is aborted if the workload finished but no panic occurred.
As can be seen in Figure 3, Frisbee can successfully detect the panicked service
and abort the experiment.

Fig. 3: SSTable corruption, with assertions

Goroutine Leak This scenario is adopted from the roachtest suite that
tests for leaking goroutines after recovering from a network partition [10]. The
scenario involves provisioning a 4-node cluster, importing TPC-C data, waiting
for replication, running a workload, partitioning node 1 from the rest of the
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nodes, and verifying that the maximum number of goroutines has not spiked
after removing the network partition. As can be seen in Figure 4, Frisbee can
successfully inject and repair a network partition fault. However, the number of
goroutines after the partition have not spiked, and Frisbee correctly continues
the execution of the test.

Fig. 4: Network Partition

4 Related Work

We compare the related work concerning these two rules: (i) automation of the
testing process and (ii) creation of realistic testing environments.
Test source code: Frameworks like Ginkgo for Go, Robot for Python, or Seren-
ity for Java, provide a rich and expressive Domain-specific Language (DSL) for
writing test scenarios. These frameworks implement the scenarios using thin
threads [11,12], each representing a single service, which makes them impracti-
cal for systems whose components are written in different languages.
Test processes in physical infrastructure: Another approach is to use Chef
and Puppet, which provide a declarative way to automate the deployment and
configuration of testing objects like servers and benchmarks. However, since these
tools are designed for deployment and configuration, they are not well-suited for
testing, which typically involves multiple intermediate steps with logical depen-
dencies between them.
Test containers in Docker The rise of Docker led to a shift in the testing com-
munity towards using containers instead of virtual machines. Initially, containers
were managed manually with scripts, which mixed the test case with the testing
mechanism. Later, the Docker-native approach was to use the Docker-Compose
language for running multi-container tests, as demonstrated by BenchPilot [13],
Fogify [14], and IOTier [15]. However, Docker-Compose lacks assertions in the
language, and it only works for single-node deployments.
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Test containers natively in Kubernetes While some tools like Cilium and
Testground create a small multi-node Kubernetes environment for testing fea-
tures beyond a single host, this solution incurs significant state-management con-
cerns, since the test suite runs externally to Kubernetes. Instead, KUTTL [16]
and Iter8 [17] are Kubernetes-native testing tools, but they differ from our goals.
KUTTL is a toolkit for testing a Kubernetes controller, and Iter8 aims at testing
the progressive rollout of microservices.

5 Conclusion

Because our systems and system designs have evolved in such an unprecedented
way, we must also evolve our testing methods to better understand how our
systems perform under normal and adverse operating conditions. We believe the
answer lies in building a new generation testing tools that can support truly
precise, controllable, observable, and language-agnostic experiments. With Fris-
bee, our ultimate goal is to foster the development of a common Cloud-Native
Testing Framework [18] for systems researchers and practitioners, in order to
support dependable, reproducible, and comparable experiments in Chaos cam-
paigns. The Frisbee and the experiments are made available open-source. The
link is disclosed for blindness purposes.
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